Please use this identifier to cite or link to this item: http://197.159.135.214/jspui/handle/123456789/573
Title: High-Resolution, Integrated Hydrological Modeling of Climate Change Impacts on a Semi-Arid Urban Watershed in Niamey, Niger
Authors: Boko, Boubacar Abdou
Konaté, Moussa
Yalo, Nicaise
Berg, Steven J.
Erler, Andre R.
Bazié, Pibgnina
Hwang, Hyoun-Tae
Seidou, Ousmane
Niandou, Albachir Seydou
Schimmel, Keith
Sudicky, Edward A.
Keywords: climate change
integrated hydrological model
semi-arid
impacts
Issue Date: 2020
Publisher: MDPI
Abstract: This study evaluates the impact of climate change on water resources in a large, semi-arid urban watershed located in the Niamey Republic of Niger, West Africa. The watershed was modeled using the fully integrated surface–subsurface HydroGeoSphere model at a high spatial resolution. Historical (1980–2005) and projected (2020–2050) climate scenarios, derived from the outputs of three regional climate models (RCMs) under the regional climate projection (RCP) 4.5 scenario, were statistically downscaled using the multiscale quantile mapping bias correction method. Results show that the bias correction method is optimum at daily and monthly scales, and increased RCM resolution does not improve the performance of the model. The three RCMs predicted increases of up to 1.6% in annual rainfall and of 1.58 C for mean annual temperatures between the historical and projected periods. The durations of the minimum environmental flow (MEF) conditions, required to supply drinking and agricultural water, were found to be sensitive to changes in runo resulting from climate change. MEF occurrences and durations are likely to be greater from 2020–2030, and then they will be reduced for the 2030–2050 statistical periods. All three RCMs consistently project a rise in groundwater table of more than 10 m in topographically high zones, where the groundwater table is deep, and an increase of 2 m in the shallow groundwater table.
Description: Research Article
URI: http://197.159.135.214/jspui/handle/123456789/573
Appears in Collections:Climate Change and Water Resources

Files in This Item:
File Description SizeFormat 
High-Resolution, Integrated Hydrological Modeling.pdf7.38 MBAdobe PDFView/Open


Items in WASCAL Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.