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ABSTRACT 

The Kyoto Protocol of the United Nations Framework Convention on Climate Change 

(UNFCCC) was developed as an attempt to confront and begin to reverse the rising CO2 

concentrations. But in order to set emission reduction targets in AFOLU (Agriculture, 

Forestry and Other Land Uses) sector, land use scenarios must be developed. The present 

study addressed this issue in exploring the possible future temporal and spatial impacts on 

CO2 and N2O emissions from vegetation degradation in the Dassari Basin in the North-

West of Benin. To achieve this objective, the current vegetation carbon and nitrogen 

stocks were estimated using the highest Tier level recommended by Intergovernmental 

Panel on Climate Change (IPCC) and scenarios were developed based on the current trend 

of land use and socio-economic status of the site. The land use cover changes showed a 

deforestation rate of 1.48 %. The estimated mean carbon stock values and attached 

standard errors varied from 1.52 ± 0.14 (for the cropland) to 97.83 ± 27.55 (for the 

plantations) Mg C ha
-1

. The estimated nitrogen stock varied from 0.0077± 0.0067 (for the 

cropland) to 0.321±0.088 (for the plantations) Mg ha
-1

 of N. A total of 175,347.75 ± 

21,042.48 (CI) and 875.53 ± 101.45 (CI) Mg was found for carbon and nitrogen stocks 

respectively in 2013 at 95 % (CI). The business as usual scenario or the baseline (LUS1) 

will contribute to the emissions of 26.70 Gg CO2 eq. and to a net removal of 21.70 Gg of 

CO2 per year over the period 2013-2025. The impact of the policy based food security 

scenario (LUS2) will contribute to decrease the total emission by up to 29.25 % and will 

increase the net removal by up to 42.94 % whereas policy based adaptation and mitigation 

strategy to climate change scenario (LUS3) and food security based mitigation strategy to 

climate change scenario (LUS4) will respectively contribute to reduce the total emission 

by up to 13.14 % and 36.47 %. Despite these findings the basin will still be a sink by 

2025, but it is time to act and react to strengthen the resilience of vulnerable communities 

and contribute to the removal of CO2 through local project development or project based 

carbon fund. 
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RESUME 

Le Protocol de Kyoto de la Convention des Nations Unies sur les Changements 

Climatiques a été ratifié en vue d’essayer d’inverser la concentration de dioxyde de 

carbone (CO2) dans l’atmosphère. Mais dans la perspective de cibler la réduction des 

émissions dans le secteur AFOLU (Agriculture, Foresterie et autres Formes d’ Utilisation 

des Terres et Changement d’Affectation des Terres) les scenarios d’utilisation des terres 

doivent être développé. La présente étude soulève ces préoccupations en explorant de 

possibles impacts spatio-temporelles des émissions de dioxyde de carbone et d’oxyde 

nitreux provenant de la dégradation de la végétation sur le bassin versant de Dassari au 

Nord-Ouest du Benin. Pour atteindre cet objectif, les stocks de carbone et azote de 

végétation ont été estimés sur la base du niveau Tier le plus élevé recommandé par le 

GIEC (Groupe Intergouvernemental des Experts sur l’Evolution du Climat) et les 

scenarios sont développés en se basant sur la tendance actuelle d’utilisation des terres et 

les conditions socio-économiques du site. Le taux de déforestation évolue à un rythme de 

1.48 % par an. Les moyennes de stock de carbone de végétation et l’erreur standard 

associée varient de 1.52 ± 0.14 (pour les champs et jachères) à 97.83 ± 27.55 (pour les 

plantations) Mg C.ha
-1

. Dans le même sens les estimations pour l’azote de végétation 

donnent 0.0077± 0.0067 (pour les champs et jachères) à 0.321±0.088 (pour les 

plantations) Mg ha
-1

 d’N. Les estimations des stocks de carbone et d’azote en 2013 sont 

respectivement de 175347,75 ± 21042,48 (IC) et 875,53 ± 101,45 (IC) Mg à 95 % 

d’intervalle de confiance (IC). Le scenario de base ou pratique actuelle (LUS1) 

contribuerait aux émissions de 26,70 Gg d’Eq.CO2 (dioxyde de carbone équivalent) et une 

absorption nette de 21,70 Gg de CO2 d’ici à l’horizon 2025. Le scenario, politique fondée 

sur la sécurité alimentaire (LUS2) contribuerait à une réduction de 29,25 % des émissions 

de CO2 et une augmentation d’absorption nette de 42,94 % de CO2 tandis que la tendance 

actuelle appuyée par la politique d’atténuation et d’adaptation aux changements 

climatiques (LUS3) et le scenario sécurité alimentaire (LUS4) appuyé par les politiques 

d’atténuation aux changements climatiques contribueraient respectivement à une réduction 

des émissions de CO2 respectivement de 13,14 % et 36,47 d’ici à l’horizon 2025. Au vu 

des résultats obtenus le bassin demeurerait un puit de carbone d’ici à l’horizon 2025. 

Toutefois, il est temps d’agir en vue de contribuer à éradiquer la pauvreté en renforçant les 

capacités d’adaptation des communautés vulnérables aux effets néfastes des changements 

climatiques et de contribuer à la séquestration du carbone à travers les projets basés sur le 

fond carbone.  
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CHAPTER I: CLIMATE CHANGE AND LAND USE LAND COVER 

CHANGES (LULCC) 

 

1.1 Background 

Motivated by the rapid increase in atmospheric carbon dioxide (CO2) due to human activities 

since the Industrial Revolution, several international scientific research programmes have 

analysed the role of individual components of the Earth system in the global carbon cycle 

(Falkowski et al., 2000). Land-use change is central to environmental management through 

its influence on biodiversity, trace gas emissions, carbon cycling and livelihoods (Lambin et 

al., 2000). Land-use and land-cover changes (LULCC) has effects on carbon dioxide as well 

as on other trace gases and on both inorganic and biogenic aerosols including dust between 

vegetation, soils, and the atmosphere (Pielke et al., 2011; Senay, 2008; Pielke et al., 1998; 

Pielke, 2005; McAlpine et al., 2010; Dirmeyer et al., 2010; Mahmood et al., 2010). 

Agricultural expansion and intensification was found as the major drivers of global LULCC 

(Pielke  et al., 2011). Many scientists stressed that LULCC, emerged as a central issue in the 

broader debate of global change; and that change, has its origins in the concerns for human-

induced impacts on the environment and their implications for climate change (Schneider and 

Pontius, 2001; Lambin and Geist, 2002), through decrease in vegetation carbon and nitrogen 

stocks. LULCC has also had a substantial biogeochemical effect on global climate through 

emission of CO2 and other greenhouse gases (GHGs), such as CH4 and N2O (Denman, 2007).  

The main greenhouse gas emission /sources removals and process in managed ecosystems are 

NOx, CO2, N2O, CH4, CO, NMVOC (IPCC, 2006), (Figure 1.1). The key greenhouse gases of 

concern for this study are CO2 and N2O. According to the Intergovernmental Panel on 

Climate Change (IPCC, 2006), the use of carbon stocks changes to estimate CO2 emissions 

and removals, is based on the fact that changes in ecosystem carbon stocks are predominately 

(but not exclusively) through CO2 exchange between the land surface and the atmosphere 

(i.e. other C transfer processes such as leaching are assumed to be negligible). 
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Figure 1. 1 The main greenhouse gas emission /sources removals and process in 

managed ecosystems (IPCC, 2006) 

The carbon sequestered or stored in the forest trees are mostly referred to as the biomass of 

the tree or forest (Kuyah et al., 2012). IPCC (2006) identified five carbon pools of the 

terrestrial ecosystem involving biomass, namely the aboveground biomass, below-ground 

biomass, litter, woody debris and soil organic matter. Among all the carbon pools, the 

aboveground biomass constitutes the major portion of the carbon pool (Hairiah et al., 2010; 

Kuyah et al., 2012). Estimating the amount of forest biomass is very crucial for monitoring 

and estimating the amount of carbon that is lost or emitted during forest or vegetation 

degradation, and it also gives an idea of the forest’s potential to sequester and store carbon in 

the forest ecosystem (Hairiah et al., 2010; GOFC-GOLD, 2013; Kuyah et al., 2012). 

Estimations of forest carbon stocks are based upon the estimation of forest biomass. Forest’s 

carbon stocks are generally not measured directly. However, many authors assume the carbon 

content of tree parts to be around 50% of the dry mass. Thus, cutting down trees in the forest 

or in any land use system means the release of carbon to the atmosphere (Hairiah et al., 2010; 
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IPCC, 2013). Carbon stored in the aboveground living biomass of trees is typically the largest 

pool and the most directly impacted by deforestation and degradation (Hairiah et al., 2010).  

 

1.2 Problem statement 

In North-West Benin, particularly in Dassari Basin, the demand for land is very crucial for 

agricultural purpose. The increase of rural population has increased the pressure on the land. 

Many vegetated areas are converted into agricultural land because of the agricultural 

practices or the land utilization systems. The current land use practices have resulted in a 

decrease in vegetation carbon and nitrogen stocks, with the related release of carbon dioxide 

and nitrous oxide into the atmosphere. Forest lands are cleared and burnt (Picture 1a) to 

establish cropland. The background of this picture shows so far the cleared areas with many 

burned trees meaning in the short terms the decrease of the vegetation carbon and nitrogen 

stocks. New yams field are established in the area of recent burned trees (Picture 1b). The 

two pictures allow asserting that the process of farming has its impact on the vegetation 

carbon and nitrogen stocks. Once the tree has been burned or cut, after the forest has been 

cleared for farming purpose, the amount of carbon and nitrogen held by the burned or cut tree 

are assumed to be released into the atmosphere in the form of CO2, N2O and other gases 

(Figure 1.1) that are not included in the present research study. Infact, biomass burning 

includes the combustion of living and dead material in forests, savanna, agricultural wastes 

and the burning of firewood (Levine, 1994). Under the ideal conditions of complete 

combustion the burning of biomass material produces carbon dioxide (CO2) and water vapour 

(H2O), according to the reaction (Levine, 1994).  

CH20 + 02 -> CO2 + H20                                                                    (1.1) 

Where CH2O represents the average composition of biomass material. 

Since complete combustion is not achieved under any conditions of biomass burning, other 

carbon species, including carbon monoxide (CO), methane (CH4) non-methane hydrocarbons 
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(NMHCs), and particulate carbon, result through the incomplete combustion of biomass 

material. In addition, nitrogen and sulfur species are produced from the combustion of 

nitrogen and sulfur in the biomass material. In addition about 90% of the released carbon is in 

the form of C02 (Levine, 1994). 

Hence the present study could not deal with the uncertainty link to biomass burning under 

incomplete condition and in addition there is lack information on emission ratio of biomass 

burning in Africa and particularly in Sudan Savannah environment. We therefore focused on 

completed emission related to carbon dioxide. Thus, the study focused on carbon dioxide and 

nitrous oxide which are the main emitted greenhouse gases from biomass burning.  

  

Picture 1. 1 Burned trees explaining impacts of agricultural practices on the vegetation 

carbon and nitrogen stocks 

The research was not to determine how many years the release process will be completed but 

to underline that once the tree has been burned or cut or the forest land has been cleared for 

farming, the carbon dioxide uptake stops, and carbon dioxide and nitrous oxide emissions 

took place IPCC (2006). Reducing emissions from deforestation and forest degradation 

(REDD+) policy is based on a core idea: reward individuals, communities, projects and 

countries that reduce greenhouse gas (GHG) emissions from forests (Angelsen, 2008). For 

b 
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this reason, policy decisions on land use and management should be based on a proper 

balance between the ecosystem products and services in sustaining human livelihoods and 

protecting the environment (Le, 2005). Land-use changes simulation models can inform 

policy-setting and decision-making processes on the use and management of land resources 

(Le, 2005). The LUDAS (the Land Use Dynamic Simulator) model is useful to unravel the 

dynamics of land use and project near future land-use trajectories in order to target 

management decisions (Le, 2005).  

The Land Use Dynamic Simulator (LUDAS) model has been recognized (Villamor, 2012; 

Le, 2005) to be well suited to express the co-evolution of the human and basin systems based 

on socio-economic, environmental and land use information. Multi-Agent System models 

like LUDAS allow capturing the complex nature of both spatial interactions and explicit 

human decision-making on land use, presenting LULCC patterns and associated population 

dynamics as self-organizing processes emerging from local interactions (Verburg et al., 2004; 

Parker et al., 2002; Berger and schreimakers, 2006; Deadman and Hare, 2004, Villamor, 

2012). The first implementation of LUDAS by Le (2005) in Vietnam was called VN-

LUDAS. The MAS-LULCC model developed in this study is named BEN-LUDAS (Benin- 

Land Use Cover Dynamic Simulator). This is the first implementation of the model in the 

Benin Republic where the socio-economic and environmental context have changed and 

changes made in the model components and procedures to fit the Benin context. In fitting the 

model in the Benin context it could be transferred to other West African countries such as 

Ghana, Nigeria and Togo since the socio-economic situation of these countries are similar.  

However, LUDAS does not help to determine vegetation carbon and nitrogen stocks. The 

present study aimed at using BEN-LUDAS for simulating scenarios based on LULCC and 

socio-economic data and at using field data from forest inventories and allometric models to 

quantify the vegetation carbon and nitrogen stocks by each type of land use land cover 
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(LULC). The developed allometric equations were integrated into BEN-LUDAS as carbon 

and nitrogen yield sub-models for the prediction based on each land use change scenario. The 

study contributes to determine towards the action of the impacts of these land use scenarios 

for prediction climate in terms of emissions or removal of carbon dioxide and emissions of 

nitrous oxide. In addition, there are knowledge gaps in biomass allometric equations in the 

Sudan Savannah environment and the level of emission factors for carbon accounting is 

unknown. For example Mbow (2013) published allometric equations in the forest ecosystems 

of Senegal. Sawadogo (2010) published allometric equations for selected tree species in the 

Sudan Savannah of West Africa. Unfortunately, both equations cannot be applied to estimate 

the biomass in other land use categories (cropland, grassland and settlement) of the Sudan 

Savannah environment. This study contribute towards filling these knowledges gaps by 

providing allometric models in each land use category to estimate the vegetation carbon and 

nitrogen stocks and at using land use change model (BEN-LUDAS) to monitor and to predict 

future emissions of carbon dioxide and nitrous oxide for the period 2013-2025.  

According to the international agreement under United Nation Framework Convention on 

Climate change (UNFCCC), countries have an obligation to report their emissions and carbon 

stocks to assist in the global bookkeeping of emissions and the drivers of climate change. 

Developing countries that want to participate in other mechanisms of the convention will 

need to provide such data, as part of global transparency (GOFC-GOLD, 2013). According to 

IPCC (2006), the use of C stock changes to estimate CO2 emissions and removals is based on 

the fact that changes in ecosystem C stocks are predominately (but not exclusively) through 

CO2 exchange between the land surface and the atmosphere. Hence, increases in total C 

stocks over time are equated with a net removal of CO2 from the atmosphere and decreases in 

total C stocks (less transfers to other pools such as harvested wood products) are equated with 

net emission of CO2 (IPCC, 2006). 
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This study supports the initiatives of REDD+ and Monitoring, Reporting and Verifying 

(MRV) (Kyoto Protocol, 1997; IPCC, 2006; Angelsen, 2008; Angelsen et al., 2009; Henry et 

al., 2011a; Angelsen et al., 2012, GOFC-GOLD, 2013; Hewson et al., 2014). The results 

address the key message for scientists and decision makers about the ways lands have been 

used and how each land use decision or land use strategy (scenario) can contribute to the 

removal or emission of carbon dioxide and nitrous oxide into the atmosphere.  

 

1.3 Hypothesis of the study  

h1: The aboveground C and N stocks (stand tree carbon and nitrogen stocks) vary by land use 

cover type in Dassari Basin;  

h2: The different groups of farmers are driven by socio-economic and environmental factors 

in land use decision and few farmers adopt mitigation strategies (plantation/agroforestry 

systems) to reduce emission of carbon dioxide and nitrous oxide due to farming activity; 

h3: The current use of land contributes to the high quantity of carbon dioxide and nitrous 

oxide emissions into the atmosphere, whereas REDD+ policy based will help to reduce 

emission of these gases from the basin to the atmosphere. 

 

1.4 Objectives of the research 

The main objective of this study was to assess the impacts of land-use changes scenarios on 

CO2 and N2O emissions from the Dassari Basin for the period (2013-2025). 

The specific objectives were to:  

SO1: Quantify the vegetation carbon and nitrogen stocks at the basin level based on remote 

sensing, forest inventory data and allometric models;  

SO2: Determine land use decision drivers and mitigation strategies at the farm level; 
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SO3: Assess the land use scenarios impacts on CO2 and N2O emissions (2013-2025) at the 

basin level. 

Based on the specific objectives, the following research questions were: 

Rq 1: What is currently the amount of vegetation carbon and nitrogen stocks (aboveground 

biomass of living trees e.g, C and N stocks of living trees) at the basin level? 

Rq 2: What are the drivers of environmental degradation and mitigation measures adopted at 

the farm level in the Dassari Basin? 

Rq 3: What will happen up to 2025 in the vegetation carbon and nitrogen stocks and in the 

CO2 and N2O emissions if the current land transformation rate continues i.e. nothing changes 

in the way of land utilization? Or the policy is: 

-  Food security based? 

-  Businesses as usual supported by REDD+? 

- Food security and REDD+ based? 

 

1.5 Thesis outline 

The study is presented in seven chapters.  

 Chapter One contains the introduction, problem statement related to climate change and 

LULCC issues. The hypothesis, objectives and research questions of this research are 

outlined. 

 Chapter Two focuses on the BEN-LUDAS model overview. The context of using the 

present model is explained. The architecture of the model is summarised and the details 

of components are described by Le (2005) who developed VN-LUDAS for Vietnam. The 

chapter lays out a conceptual framework of MAS-LULCC, which is the basis for the 

application of MAS (Multi-Agent System). 
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 Chapter Three is dedicated to the first specific objective. This chapter used many 

approaches to quantify the vegetation carbon and nitrogen stocks at the basin level. These 

approaches are based on remote sensing, forest inventory data and allometric equations. 

Satellite remote sensing forms the basis for characterization of land use pattern and to 

determine the size of each land use / cover of the total basin. Wood stock, the carbon and 

nitrogen concentration of the main species of the basin were estimated. The biomass 

expansion factor useful for the Sudan Savannah environment was established. Finally 

estimates of the biomass, carbon and nitrogen stock for each LULCC were done and 

mapped. 

 Chapter Four deals with the second specific objective. In this chapter, land use decision 

drivers were found out. The level of mitigation strategy at the farmer’s field scale was 

determined and estimates of their willingness to adopt agroforestry and plantation for the 

future were assessed. The results from the socio-economic data were used as inputs for 

the BEN-LUDAS model.  

 Chapter Five explains the ecological dynamics of heterogeneous basin agents in the 

Dassari Basin. The basin variables such as environmental conditions of the basin were 

used as inputs for the BEN-LUDAS model.  

 Chapter Six deals with the third specific objective. In this chapter land use scenarios were 

developed based on specific assumptions. The impacts of each scenario were assessed. 

The assessment was expressed in terms of removal and emission of carbon dioxide and 

nitrous oxide and their impacts on the livelihood of rural communities.  

 Chapter Seven presents the key conclusions related to the short and long terms of the 

impact of the scenarios on carbon dioxide and nitrous oxide emission or carbon 

sequestration. Recommendations were also made for future land use decisions by 

farmer’s household and for authorities at the local, regional and national levels.  
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CHAPTER II: LAND-USE CHANGE MODELS 

 

2.1 Introduction  

Land use changes give rise to series of processes that lead to systematic effects on both 

local/regional and global climate (Pielke et al., 2011). On a local/regional scale, changes in 

the radiative properties (albedo), turbulent heat exchanges, water availability, biochemical 

and trace gases cycles result from the conversion from an ecosystem (e.g. forest) into another 

that has different functions (e.g. crop or pasture). On a global scale, historical conversion into 

agriculture affects Net Primary Productivity (NPP), and therefore the storage reservoirs of 

carbon. Agriculture has therefore altered the global carbon cycle (Bondeau et al., 2007), 

which in turn modifies the atmospheric CO2 concentration and thereby, potentially, the global 

climate.  

Evidence for a significant effect of LULCC on climate at local scales is therefore convincing 

(IPCC, 2007; Smith et al., 2014). Where LULCC has been intensive, the regional impact is 

likely to be at least as important as greenhouse gases and aerosols. The impacts of change on 

human vulnerability are evident when climate change is realized locally and regionally. 

LULCC is a significant regional scale driver of climate making it sufficient to require its 

incorporation into past, present and future climate model simulations. Agarwal et al. (2000) 

have presented a review and assessment of land-use change models (Fitz et al., 1996; Voinov 

et al., 1999; Veldkamp, 1996; Veldkamp and Fresco, 1996a; Hardie and Parks, 1997; 

Mertens and Lambin, 1997; Chomitz and Gray, 1996; Gilruth et al., 1995; Wood et al., 1997; 

Landis 1995; Landis and Zhang, 1998; Berry et al., 1996; Wear and Bolstad, 1998; Swallow 

et al., 1997). These models of land-use change were compared in terms of scale and 

complexity, and how well they incorporate space, time, and human decision making. Some of 

the models captured spatial, temporal and human decision making characteristics. Conversion 

of Land Use and Its Effects (CLUE) Model, (Veldkamp and Fresco, 1996b) for example 
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applies several human drivers, incorporates collective decision-making levels, from local to 

national, considers the temporal range of decision making explicitly, in determining the time 

period for updating changes in land-use types as well as minimum economic age and rotation 

length of  various land-use classes. 

Unfortunately, few of the models attempted to incorporate on sight social processes in 

modelling land-use change, which is the main important aspect of this case study. The 

coupled human-environment system in modelling land use/cover changes was of concern for 

the present study. The lack of progress is largely due to the traditional separation of 

ecological and social sciences (Rosa and Dietz, 1998).  

A promising approach to modelling the complex LUCC processes is the multi-agent systems 

for simulating LULCC (MAS-LUCC) (Le, 2005). The MAS has been recognized as a useful 

tool for building a sound theoretical framework to deal with the complexity of LULCC (van 

der Veen and Otter, 2001; Bousquet and Page, 2004) and to more efficiently support 

environmental decision-making processes (Ligtenberg et al., 2004; Barreteau et al., 2001). 

Thus, many scientists have attempted to obtain simulation models that describe autonomous 

individual organisms individual based models (IBM) or agents agent-based models (ABM) 

(Grimm et al., 2006). ABMs were based on the standard protocol for describing such 

simulation models, which can make them easy to understand and to avoid duplication. ODD 

(Overview, Design concepts, and Details) was a first step for establishing a more detailed 

common format of the description of IBMs and ABMs (Grimm et al., 2006) and has been 

used for the present case study within the BEN-LUDAS model.  

The aim of this chapter is to explore the existing land use/cover change and MAS-LULCC 

models for the implementation of BEN-LUDAS (Benin - Land Use DynAmics Simulator) in 

the study area. The specific focus will be on: 
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- The adoption of the MAS modelling framework of BEN-LUDAS that reflects the 

organization of the coupled human-environment system of Dassari Basin in an 

understandable manner and 

- The decision-making models for human agents and ecological system for basin 

(environmental) agents. 

 

2.2 Land-Use Change Models 

Land use change models are significant when attempting to understand the dynamics of the 

environment and how change affects the welfare of the socio-ecological system. LULCC is a 

widespread, accelerating, and very significant process to humans. LULCC change is both 

driven by human actions, and, in many cases, it also drives changes that impact humans 

(Agarwal et al., 2000). Modelling these changes is critical for formulating effective 

environmental policies and management strategies.  

Humans had transformed significant portions of the Earth’s land surface. 10–15 % of the 

Earth’s surface is dominated by agricultural crop or urban-industrial areas, whereas 6–8 % is 

by pasture (Vitousek et al., 1997). These changes in land use have important implications for 

future changes in the Earth’s climate and, in return, great implications for subsequent land-

use change (Agarwal et al., 2000). Existing land use/cover change models have been 

reviewed by Agarwal et al. (2000) (See section 2.1) who gives overall setting for these 

models.  

Existing land use/cover changes models were analysed based on the model scale (time step 

and duration, resolution and extent, agent and domain), model complexity (temporal 

complexity, spatial complexity, human decision-making complexity) and came to the 

conclusion that agent-based models are useful to explain changes in land use cover.  
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2.3 Concept of Multi-Agent System (MAS) model 

For the last decade, the challenge has been to develop a new approach focusing more on the 

interaction between ecological and social components, and taking into account the 

heterogeneity of these components (Bousquet and Page, 2004). In addition, researchers in the 

field of ecosystem management can use multi-agent systems (households and patch agents in 

the present case study) to go beyond the role of the individual and to study more deeply and 

more effectively the different forms of organization (spatial, networks, hierarchies) and 

interactions among different organizational levels (Bousquet and Page, 2004). Therefore 

MAS-LULCC becomes a useful tool for problems integrating social and spatial aspects. 

ABM represents autonomous entities, each with dynamic behaviour and heterogeneous 

characteristics. Agents interact with each other and their environment, resulting in emergent 

outcomes at the macroscale that can be used to quantitatively analyse complex systems 

(Heckbert and Baynes, 2010).  

More information on MAS-LULCC could be found in Le (2005), Bousquet and Page, (2004), 

Damaceanu (2012), Grimm et al. (2010), Heckbert et al. (2010), Parker et al. (2002), 

Railsback et al. (2006) and Matthews et al. (2007). Since BEN-LUDAS is conceived in the 

setting of agent-based models its selection for understanding the human environmental 

system is required.  

 

2.4 The BEN-LUDAS model as a Conceptual MAS-LULCC Model 

The LUDAS framework (Le et al., 2008) has been used for the BEN-LUDAS conceptual 

MAS-LUCC. Le et al. (2010) described the LUDAS model using the ODD (Overview, 

Design concept, and Details) protocol, (Grimm et al., 2010). The BEN-LUDAS is applied in 

the West African context and mainly represents the real world of socio-ecological pattern of 

the study site. The BEN-LUDAS used the same ODD protocol and focuses on the dynamics 
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of environment based on agricultural activity procedure as the main component of interaction 

between social and ecological system while VN-LUDAS (Le, 2005) and LB-LUDAS 

(Villamor, 2012), dealt with logging activity respectively in Vietnam and Indonesia. In 

addition a procedure was developed based on mitigation strategy to climate change and the 

related probability of adoption that were not considered in the previous LUDAS.  

 

2.4.1 Purpose 

The LUDAS model was primarily designed to support land-use decisions in the forest 

margins with the following three aims to:  

 explore the magnitude of possible socio-ecological changes over space and time as 

driven by different land-use policy interventions,  

 identify the most affected components of the system (what), locations (where) and 

periods (when) with respect to specific policy intervention, and  

 highlight sound policy interventions that likely enhance environmental and socio-

economic benefits efficiently.  

For the BEN-LUDAS model development these aims were assumed, but possible impacts of 

policy intervention on future CO2 and N2O emissions from vegetation degradation due to 

agricultural activity was highlighted. In addition BEN-LUDAS aimed to assess the impacts of 

the adoption of mitigation strategy to climate change (adoption of agroforestry system and 

plantation) and socio-economic impacts on the livelihood of households.  

With regards to the mentioned assumptions, the structure of BEN-LUDAS is presented in 

Figure 2.1. In LUDAS, organizations that influenced the ecosystem management in the study 

area are treated externally. In this way, different scenarios and management settings were 

pre-defined, and the course of future system development was compared to assess ex-ante 

impacts of policy interventions.  
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Figure 2. 1 Conceptual framework of BEN-LUDAS model 

 

2.4.2 Entities, Variables and Scales  

The BEN-LUDAS Model has human community and environmental systems which consist 

of household and basin entities (agents), respectively. The variables of basin entities are grid 

layers of elevation, slope, wetness, upslope, land use and soil that are in units of pixels. The 

variables of the household entities are listed in Table 2.1. There is one institutional spatial-

variable, owner, which relates each pixel of the part of basin a household owns to the 

household. The model also contains institutional policy variable. The two types of variables 

in terms of temporal dynamism in the model are as follows: 
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a. Static variables in the model are owner, elevation, slope, soil suitability, wetness, upslope, 

household Id, x-coordinate of household house, y-coordinate of household house, household 

head, educational level, etc. (Table 2.1). For any given head of household these variables are 

considered fairly constant in the model, within the long term period under consideration i.e. 

till the household head takes hold, dies and a new head of household is born.  

 

Table 2. 1 Entities and Variables in BEN-LUDAS Model 

Entity Variables 

Static Dynamic 

Household Household Id, x-coordinate of 

household house, y-coordinate of 

household house, household head, 

Educational level, Upland Area 

crop owned by household,  

Agroforestry area owned by 

household, plantation area owned 

by household, household livelihood 

typology, Fraction of labour for 

farming or time-labour. 

Household size, Age of household 

head, Household head Leader 

position, Labour availability: 

Dependency ratio (persons not in 

labour force/persons in labour 

force), Household income, Per-

capita household income, Access to 

fertilizer subsidy.  

Basin Owner, Elevation, Slope, Wetness 

Upslope, Soil, Spatial policy, Strict 

restriction 

Land use, farming (burned), number 

of years after a farming event (Pt) 

 

 

b. The dynamic variables are further divided into two groups: 

 Dynamic variables driven by natural processes are beyond human control: the age of the 

household agents and natural forest growth of forested pixels, 

 Dynamic variables induced by household decisions or policy interventions are land use 

type and protection code of land pixel. 

One time step represents one year. One grid cell or pixel represents 30 m x 30 m (900 m
2
) 

and the model basin covers 192.57 km
2
 (either a total of 213971 pixels). 
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2.4.3 Overview Process and Scheduling 

In the BEN-LUDAS model, neighbourhood interactions are taken into account in land use 

decisions and land cover transition (see section 5.3.4). Therefore, changes in basin or in 

community status which gives a feedback to households are pixel-based processes.  

 

2.4.4 Design Concepts 

The interface of LUDAS, MAS-HES (Multi Agent System-Human Environment System) 

model presents simple and essential information (Le, 2005) relating to interaction between 

human beings and the environment. The BEN-LUDAS uses the same structure like the 

original one. The coding programmes are simple to build and understand. The design 

concepts reveal sensing of owner variable as an ownership entity that can influence the use of 

the land. Interaction among agents causes emergent landscape/community phenomena that 

lead to landscape and population dynamics (Le, 2005). To observe its internal dynamics as 

well as its system-level behaviour, the expected outputs of the model needed are, land use 

cover change area, carbon and nitrogen stocks per land use/cover (LUC) type, biomass stocks 

per LUC type, annual gross income based on cultivated, annual gross income based on 

carbon credits, financial return based on carbon credits, Lorenz and Gini information’s, size 

of the income group and households size or population dynamics over the years. These 

findings have been presented in graphics, maps, files output and data on the households.  

The main goal was to explore the use of BEN-LUDAS, MAS-HES model to simulate spatial 

scenarios based on modelling multi-actor decision-making within a spatial planning process. 

The model consists of agents representing households involved in rural area activities 

(farming, subsidized agriculture, etc.). The multi-actor based decision-making is modelled by 

generating beliefs and preferences of actors about the location of spatial objects and the 
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relation between them. This allows each agent to pursue these beliefs and preferences with 

their own desires and with that of other agents.  

 

2.4.5 Initialization 

The details of BEN-LUDAS consist of three elements namely: initialization, input data and 

parameters as well as sub-models, and follows the ODD protocol (Grimm et al., 2006). The 

initial number of columns and rows for the basin grid were 601 and 715, respectively, 

whereas the maximum patch x coordinate (max-pxcor) and maximum patch y coordinate 

(max-pycor) were 300 and 357, respectively. 

 

2.4.6 Input Data and Parameters 

Inputs for simulations in BEN-LUDAS entail two types: data and parameters. The input data 

for initial model variables were elevation, slope, wetness, upslope, soil types and land use 

maps as well as household data. The inputs for model parameters were as follows: 

- The strict restricted area, which constrains farmers’ decision to farm within the area 

limited by the soil type (no suitable area for farming activity).  

- the policy thresholds, which constrains farmers to farm within the area under 

legislation. 

- the deforestation rate, which drive the overall speed of forest degradation due to 

farming activity, 

-  the vision of farmers in farming activity, which determine the location of farming 

activity based on the position of nearest forest patch, 

-  the productivity, which determines the crop yield of the study site and the related  

market price, which define the price of various crops in the market. 
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-  the financial return allowed to define the rate of the budget to be allocated to the 

farmers if the carbon fund project exists. Mitigation-agroforestry and mitigation plantation 

with the related probability were applied in the scenarios based mitigation strategy, 

- The population growth rate (Table 4.1) and maximum age determined the dynamics 

of the population. 

 

2.4.7 Sub-Models 

Regarding the context of the study area (West African Sudan Savannah zone) the BEN-

LUDAS model used 6 additional sub-models and calculation routines to 13 key sub-models 

and calculation routines of VN-LUDAS (Le, 2005) (Table 2.2). 

Table 2. 2 Main sub-models/ procedures of BEN-LUDAS coded in NetLogo 4.1.3 

(modified from Le et al., 2010).  
N Sub-models/ Calculation 

routines 

Functions Entity 

involved 

1 Initialization Import GIS data and sampled household data, 

generate remaining population, create household 

pixels, generate household coefficients, and 

calculate initial carbon and nitrogen stocks 

Household 

Pixel 

2 REDD+ adoption Calculate the willingness to adopt the REDD+ 

policy of the household (agroforestry and 

plantation) i.e probability of adoption is applied 

Household 

3 Time-Labour-allocation Set the time-labour list of the household annually   Household 

4 Financial-return Calculate the annual economic return of carbon 

credit to the farmers 

Household 

 

5 Update-household-state Update the changes in household profiles annually  Household 

6 Agent-Categorizer Categorize households into similar groups  Household 

7 Generate-household 

coefficients 

Generate behaviour coefficients of household, 

allow variants within the group but stabilize 

behaviour structure of the group 

Household 

 

8 Natural-Transition Perform natural succession among vegetation 

types based on accumulated vegetation growth 

and ecological edge effects 

Pixel 

9 Allometric-model Calculate biomass stocks for each land use/cover 

using allometric equations 

Pixel 

10 Calculate-carbon-stocks  Calculate carbon stocks for each LUC type  Pixel 

11 Calculate-nitrogen stocks Calculate vegetation nitrogen stocks for each LUC 

type  

Pixel 

12 Life-cycle Create a young new household controlled by an 

empirical function of population growth 

Household 

13 Plot-Graphs Draw different graphs of system performance 

indicators 

Household 

Pixel 
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The sub-models are: 

1) REDD+ adoption, 2) Calculate biomass-stocks, 3) Calculate-carbon-stocks, 4) Calculate 

nitrogen-stocks and 5) Financial-return 6) life-cycle which are briefly described. For detailed 

descriptions (e.g. model parameters, dimension and reference values) and justification of 

specific sub-models (see Chapters 3 and 5). 

Model calibration and validation details are outlined in Section 6.4.1.  

 

 

2.5 Conclusions 

The evolution of ABM platforms over the past ten or more years has been fascinating. The 

goal of developing this model is to explore alternative scenarios to improve livelihoods of 

rural communities at the local scale and mitigate climate change. The model specification, 

module-by-module and object-by-object, clearly shows an explicit and fully parameterized 

architecture, which accounts for the evolution of the coupled human-environment systems. 

The proposed agent-based architecture (BEN-LUDAS) allows integrating diverse personal, 

environmental and policy-related factors into upland farmers’ decision-making about land use 

and the subsequent accumulated outcomes in terms of spatially explicit patterns of the natural 

basin and population. The model is useful in explaining the dynamics of human and 

environment system and to perceive the changes of both over time and how these changes 

affect the livelihood and the future impacts on CO2 and N2O emissions from vegetation 

degradation.  
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CHAPTER III: ASSESSMENT OF CURRENT VEGETATION CARBON AND 

NITROGEN STOCKS OF THE WEST AFRICAN SUDAN SAVANNAH BASIN  

 

3.1 Introduction 

The sources and sinks of carbon from LULCC are significant elements in the global carbon 

budget (Houghton et al., 2012). Current challenges of forest management are related to 

verifiable, reliable, accurate and cost-effective methods to adequately document forest 

resources dynamics (GOFC-GOLD, 2013).  

The accuracy of carbon stock by each land use cover type depends on the availability of 

reliable allometric models to infer oven-dry aboveground biomass of trees from tree census 

data (Chave et al., 2015). However, large uncertainties in emission estimates arise from 

inadequate data on the carbon stock of forests and the regional rates of deforestation (Baccini 

et al., 2012; Houghton et al., 2012). These uncertainties in turn compromise the estimation of 

terrestrial carbon emissions (DeFries et al., 2002; Houghton 2005; Grassi et al., 2008; 

Pelletier et al., 2011) and the required knowledge on biomass or carbon stocks. Infact, 

uncertainty related to the estimation of carbon stock is the related standard error.  

A number of comprehensive allometric models for biomass estimation have previously been 

developed for the major tree species in Europe, America and Asia (Ter-Mikaelian and 

Korzukim, 1997; Jose et al., 1998, Moura-Costa and Stuart, 1999; Nelson et al., 1999; Clark 

and Clark, 2000, Eamus et al., 2000; Grierson et al., 2000; Keith et al., 2000; Keller et al., 

2001; Fleurant et al., 2004; Jenkins et al., 2004; Chave et al., 2005; Zianis and Mencuccini, 

2005; Domke et al., 2012; Chave et al., 2015). In Sub-Saharan Africa most of the estimation 

of the total carbon stocks in Africa, and especially West-African countries focused on the use 

of allometric models together with forest inventory data (Chave et al., 2005; Akindele and 

Lemay, 2006; Dossa et al., 2008; Mbaekwe and Mackenzie, 2008; Djomo et al., 2010; 

Djuikouo et al., 2010; Sawadogo et al., 2010; Henry et al., 2011b; Rasmussen et al., 2011; 
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Shirima et al., 2011; Bakayoko et al., 2012; Kuyah et al., 2012; Mbow et al., 2013; 

Ngomanda et al., 2014). The majority of studies have so far focused on forest ecosystems, 

specific tree species or plantations for the estimation of aboveground biomass and carbon 

stocks (Daolan et al., 2004; Akindele and Lemay, 2006; Li and Xiao, 2007; Basuki et al., 

2009; Fonton et al., 2009; Djomo et al., 2010; Djuikouo et al., 2010; José 2010; Henry et al., 

2011b; Návar-Chaidez 2011; Rasmussen et al., 2011; García et al., 2012; Guendehou et al., 

2012; Aholoukpe et al., 2013; Hunter et al., 2013; Ngomanda et al., 2014; Chave et al., 2015; 

Montagnoli et al., 2015). Very few studies have focused on the estimation of aboveground 

biomass in the agricultural landscape (Kuyah et al., 2012). 

Attempts to estimate aboveground biomass at the basin level requires typically remote 

sensing derived land use/land cover information as well as allometric models from each land 

use/cover category (LUCa). The data for allometric models for estimating biomass in woody 

vegetation comes either from destructive or from non-destructive methods. Destructive 

methods are based on the harvest of the living trees together with measurements of DBH 

(diameter at breast height) or girth, stem and total height as well as the dry mass of stem, 

foliage and branches. The collected variables are then used as input for estimating tree 

volume and biomass for selected trees species (Chave et al., 2005; Litton and Kauffman, 

2008; Basuki et al., 2009; José 2010; Mbow et al., 2013). The application of destructive 

methods is labour intensive and time consuming Djomo et al. (2010). This method is 

therefore restricted to small trees at small scales (Ketterings et al., 2001; Li and Xiao, 2007). 

Additionally, harvesting trees requires in general special authorization which is often not easy 

to acquire, especially when the study region involves protected areas.  

Recent assessments have switched to the use of non-destructive methods (Montes et al., 

2000; Lehtonen et al., 2004; Flombaum and Sala, 2007; Nogueira et al., 2007; Tackenberg 

2007; Chen et al., 2008; Henry et al., 2010; Guendehou et al., 2012). The tools and 



 

23 
 

approaches used thereby varied considerably between regions. A biomass expansion factor 

and wood stock were the key parameter/variable used by allometric models based on non-

destructive methods for the assessment of total biomass of living trees. Wood stock is the 

third variable that contributes to reduce uncertainty in estimating tree biomass using 

allometric model. The importance of wood stock for estimating forest biomass and 

greenhouse-gas emissions from LULCC change has been stressed by Nogueira et al. (2007). 

A variety of different approaches has been applied. Montes et al. (2000), for instance, 

estimated the biomass of Thuriferous juniper woodland in Morocco based on component 

volumes estimated from two orthogonal-view photographs and the stock of each component. 

This approach is not well suited to estimate biomass in natural environments (Thuriferous 

juniper woodland), especially when the environment is subject to degradation by human use 

and wood supply to the local populations is at stake. Lehtonen et al. (2004) developed 

expansion factors conditional on stand age and dominant tree species to estimate total 

biomass of pine trees in Norway. Flombaum and Sala (2007) presented an approach for the 

calibration of a fast non-destructive method to estimate aboveground plant biomass by 

double-sampling vegetation cover and aboveground biomass in the Patagonian steppe. They 

fitted linear regression models to describe the relationship between vegetation cover and 

biomass for the dominant species and life forms. Tackenberg (2007) presented a non-

destructive method based on scaled digital images analysis of the plants silhouettes, 

addressing not only aboveground fresh biomass and oven-dried biomass, but also vertical 

biomass distribution as well as dry matter content and growth rates. The method used by 

Tackenberg (2007) is time and cost effective compared with the destructive method, 

especially if development or growth rates are to be measured repeatedly.  

Two problems hinder the transfer of the currently used non-destructive methods in the West-

African context: first, biomass expansion factors are not available for most relevant local tree 
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species and the devices used are costly and very complex to use. In the southern part of the 

Republic of Benin, Guendehou et al. (2012) assessed stem biomass based on stem volume for 

selected tropical tree species using an increment borer as the device of stem wood sample 

extraction and wood stock of selected species. Unfortunately, the obtained biomass expansion 

factor (BEF) could not be applied in the context of the current study since the study was 

undertaken under the tropical forest conditions in that are different from the conditions in the 

study region which is in Sudan Savannah zone. The work by Guendehou (2012) needed 

therefore to be expanded to reflect conditions and tree species in different land use systems to 

allow a more precise estimation of the relevance of African trees for carbon stocks.  

In order to reduce the uncertainty in estimates of carbon emissions resulting from 

deforestation and forest degradation, more complete and higher quality information on the 

spatial distribution of carbon stocks is needed. The estimation of the total carbon stocks at the 

basin level is the most complex and requires the most fineness methods for many reasons. 

Firstly, at the basin or catchment scale the vegetation pattern is changed from one land 

use/cover to another and the tree species distribution varied gradually in size and species 

composition. Secondly, there is a need for reliable methods that are applicable to target 

species in the region of interest (Henry et al., 2010). The accurate estimation of the 

vegetation carbon and nitrogen stocks is based on Tier three approach recommended by IPCC 

(2006). Remote sensing data is needed for mapping carbon distributed along the basin using 

the obtained forest inventory data, developed allometric equations and the carbon and 

nitrogen content of the main species of the region to considerably reduce uncertainty.  

The aim of this chapter is to quantify the vegetation carbon and nitrogen stocks at the basin 

level using current land use/cover (2013-2014), ground truth data, allometric equations and 

carbon and nitrogen fraction of the main species of the site, which belongs to the Sudan 

Savannah environment. 
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3.2 Methodology 

Schematic presented in the methodology is given in Figure 3.1. The main steps were: 

 Acquisition of data from four sources (MODIS NDVI, field work, high resolution 

images and Landsat 8 images), 

 First Field work to conduct forest inventory for analysis based on Importance Value 

Index (IVI) for the selection of the main species of the basin,  

DATA SOURCES

Rapid Eye Images

& Ground truth data

[ Roads, Rivers, Agroforestry 

system,

Plantation, Settlement]

Times series 

MODIS NDVI

Plots design, Forest 

Inventory 

& training area

Importance Value 

Index (IVI) 

estimation from 

plots data

Allometric Models

Biomass & C & N 

estimation at the tree level

Biomass, C & N estimation at the 

plot level

2013 Landsat 8

Images processing

Accuracy

assessment

Land Use / 

Cover map

First Classification

Reclassification

Features 

extraction

Non-destructive Method

(Wood density & Biomass Expansion 

Factor)

Calibration & 

Validation

Chemical Analysis

Estimation of C & N contents 

of main species 
Aboveground biomass, Carbon 

and Nitrogen  Stocks at the basin 

level

 

Figure 3. 1 Flowchart showing main steps of the aboveground biomass, carbon and 

nitrogen stocks assessment 

 

 Images classification, accuracy assessment and reclassification, 

 Second field work and surveys of the individual main tree species, 

 Non-destructive method assessment,  

 Chemical analysis for the estimation of C and N of the wood samples, 
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 Development of allometric models based on three predictors (DBH, height and wood 

density), 

 Biomass, carbon and nitrogen content assessment at the tree level and plots level 

based on allometric models and C and N content previously estimated, 

 Mapping the aboveground biomass, carbon and nitrogen stocks at the basin level 

using ArcGIS 10.1. 

 

 

3.2.1 Data Collection  

a. Land Use/Cover Classification 

Data Sources for Images Classification 

The Landsat data product used for this study was derived from the Landsat Data Continuity 

Mission (LDCM), (http://glovis.usgs.gov). The Level 1 Terrain (L1T) data products (data 

type) used consist of Level 1 Radiometric (L1R) data products with systematic geometric 

corrections. The data were also terrain corrected for relief displacement. Two scenes of 

Landsat 8 were used for land use/cover classification. The acquisition dates were 13 October 

2013 and 29 October 2013 both with path-row 193-53 with 30 m spatial resolution. Many 

reasons explain the choice of this moment. Firstly, from June to September clouds are the 

main constraints for a good quality of images acquisition because this period falls in the rainy 

season. During October the maximum photosynthetic activity can be reached for any land 

use/cover. In addition, crops are easily discriminated from other land use/cover such as 

vegetation and the cloud cover percentage is quasi-null. From November to January, fire 

patterns disturbed the quality of the images and crops are harvested by farmers and this can 

lead to the soil surface response (bare soil) in the acquired images. The characteristics of the 

four used bands in each scene are presented in Table 3.1.  
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Table 3. 1 Landsat 8 bands identification for land use/cover classification 

Band Reference 

Number 

Band Description  Band Centre 

(nm) 

Band 2 Blue (Operational Land Imager (OLI)) 482 

Band 3 Green (OLI)  562 

Band 4 Red (OLI)  655 

Band 5 Near-Infrared (NIR) (OLI)  865 

 

 

State of the art for land use/cover classification 

The land use/cover classification was first based on the observed classes in the study area. 

The approaches to identify these land use/cover (LULC) classes were based on field 

campaign and contact with resource persons from CENAGREF (“Centre National de Gestion 

des Réserves de Faune”, National Centre of Fauna Reserve Management) institution. The 

results of investigations from CENAGREF enabled Dassari Basin to be classified into three 

strata. The first stratum is the local community site where farming activity are carried out 

without any restriction. The second stratum is a narrow band of 3 to 4 km qualified as 

controlled land use zone (Zone d’Occupation Contrôlée) according to CENAGREF. In this 

stratum farming activity can be carried out when it is allocated. The third zone is a protected 

area or national Park, where farming activity is not allowed. 

The classification scheme adopted was fitted to the regional classification described in the 

West African region. This regional concept for LULC classification was based on Aubreville 

(1956) classification, which was reviewed and underlined in Table 3.2.  

Eleven LULC classes were used, seven of which reflected the dominant land use classes in 

the case study region. These are riparian forest and woodland, savanna woodland, shrub 

savanna, cropland and fallow, settlements, agroforestry and plantation. Agroforestry and tree 

plantation were separated from cropland since an increase of agroforestry and plantation 

could be a mitigation strategy to climate change. 
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Table 3. 2 Description of LULC types identified in Dassari Basin 

N Land-use/cover 

(LULC) types 

Description Data sources  

1 Riparian forest 

and woodland 

Forest along the river bank and woodland in the 

mountainous zone. Both are area of land covered with 

mature trees and other plants growing close together 

with (cover trees > 70 %). 

Landsat 8 

2 Savanna 

woodland 

 

Area covered by few grass with big and small trees.  Landsat 8  

3 Shrub savanna Area covered by grassland and small trees (trees with 

DBH < 20 cm and 5 m in height) but sometimes with 

scattered big trees  

 

Landsat 8 

4 Grass savanna  

 

Area covered by 80 % of grass and very scattered trees Landsat 8 

5 Cropland and 

Fallow 

Area covered by crops (maize, sorghum, millet, bean, 

yam, cotton, rice, etc.). Fallow are areas of abandoned 

farms within 2 to 5 years old. 

 

Landsat 8  

6 Bare land Bare area,  Landsat 8 

 

7 Settlements Areas that have been populated with permanent 

residents or covered with scanty grass and exposed 

rock, and bare lands. According to IPCC (2006), the 

land-use category settlements includes soils, 

herbaceous perennial vegetation, such as turf grass and 

garden plants, trees in rural settlements, homestead 

gardens and urban areas. 

 

Landsat 8 + Rapid 

Eye (0.5 to 2m 

resolution)  

8 Agroforestry Agroforestry is non timber trees-based system (cashew) 

or fruit based system. Cashew plantations were 

extracted by digitizing  Rapid Eye images in ArcGIS 

10.1  

 

Rapid Eye + 

Ground truthing 

data 

 

9 Plantation A plantation is timber trees-based system (Eucalyptus, 

teak, mango, etc.). Plantations were extracted by 

digitizing Rapid Eye images in ArcGIS 10.1 

 

Rapid Eye + 

Ground truthing 

data 

 

10 Stream and rivers Areas covered with water such as small reservoirs and 

rivers 

Landsat 8 + 

ASTER (30m 

resolution) 

 

11 Road Bitumen and main laterite roads Rapid Eye + 

 

Each land use/cover type has been classified within IPCC (2006) land use categories as 

shown in Table 3.3.  

AFOLU consists of Agriculture, Forestry and Other Land Use (IPCC, 2006). Land use 

categories (LUCa) are forest land, cropland, grassland, wetland, settlements and other land. 
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For this study wetland is not taken into account as land use type in Dassari Basin for two 

main reasons. 

The first reason was that, according to IPCC (2006) wetlands include any land that is covered 

or saturated by water for all or part of the year, and that does not fall into the forest land (FL), 

cropland (CL), or grassland (GL) categories. Emissions from unmanaged wetlands are not 

estimated. The second reason was based on the fact that the study focused on the change in 

the vegetation pattern that could affects carbon and nitrogen stocks or carbon dioxide and 

nitrous oxide emission through stand trees degradation. 

 

Table 3. 3. AFOLU sector and land use/cover classes of Dassari Basin 

Land use/cover categories (IPCC, 2006) 

Forest land Grassland  Cropland Wetland Settlements Others land 

Riparian forest and 

woodland, 

Savanna woodland, 

Shrub savanna 

Grass 

savannah  

 

Crop, 

Fallow 

      

 - 

Settlements 

(hamlet, 

tarred road, 

homestead 

gardens) 

Bare ( bare 

area laterite 

road), water 

(small 

Reservoir, 

rivers). 

 

 

b. Forest inventory approach 

Establishment of gridded vegetation index map using MODIS data 

Clusters of land use based on time series were derived using Normalized Difference 

Vegetation Index (NDVI) of Moderate-resolution Imaging Spectro-radiometer (MODIS). 

MODIS data was used with 500 m resolution and 0 % cloud cover from August 2013 to 

November 2013 (https://lpdaac.usgs.gov/products/modis_products_table) (Table 3.4). 

NDVI (Eq. 3.1), mean NDVI (Eq. 3.2) and the sample variance (Eq. 3.3) were calculated per 

pixel across time. The mean NDVI was used as input in the k-mean cluster analysis. The 

numbers of retained clusters were based on the number of LUCa.  
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Table 3. 4 Downloaded 500 m Resolution MODIS Images  

N° Julian day Acquisition date 

1 225 13-8-2013 

2 241 29-8-2013 

3 257 14-9-2013 

4 273 30-9-2013 

5 289 16-10-2013 

6 305 1-11-2013 

 

These clusters were then used for a stratified random sample creation in ArcGIS 10.1. The 

centroids of the selected pixels were used to establish plots at which ground training area 

information was derived for the classification (Figures 3.2). The gridded vegetation index 

map was edited for the installation of plots for forest inventory within each land cover and 

land use system. For any given pixel, model builder component of ERDAS imagine 10 

software was used to calculate the mean NDVI and its variance based on Equations 3.1, 3. 2 

and 3.3, by using these six time series dataset based on the built models (equations) in this 

software. The formulae of these equations are: 

 

NDVI𝑖 =    
NIR𝑖−𝑅𝑒𝑑𝑖

NIR𝑖+Red𝑖
                                                                                    (3.1)  

MeanNDVIi
=

∑ (𝑁𝐷𝑉𝐼(𝑥,𝑦)𝑖)
𝑁

𝑖=1

𝑁
                                                                   (3.2)  

The unbiased sample variance was expressed as: 

𝑠2 = 1/(𝑁 − 1) ∑[𝑁𝐷𝑉𝐼𝑖 − 𝑀𝑒𝑎𝑛𝑁𝐷𝑉𝐼𝑖]2                                      (3.3)

𝑁

𝑖=1

 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 MeanNDVIi
= [(MeanNDVIi

− 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)/(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)] 𝑥 (28 − 1)           (3.4) 

Where, 

NDVI = Normalized Difference Vegetation Index 

NIR =   Near-Infrared band of MODIS 

Red =   Red band of MODIS  

i      =    pixel position (i.e. pixel i) in the scene 

N    =    number of scenes or elements 

x     =    longitude coordinate of pixel i 

y     =    latitude coordinate of pixel i 

s
2 
   =   variance of pixel i 

MeanNDVI (i) = Mean NDVI of pixel i 
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Min = Minimum value of Mean NDVI of all pixels 

Max = Maximum value of Mean NDVI of all pixels 

 

NDVI was rescaled from range [-1; 1] to [0; 255] using logarithmic function (Eq. 3.4) in 

ERDAS Imagine 10 to avoid negative values in data manipulation and visualization (Figure 

3.2). 

 

Cluster analysis of the vegetation index and plots installation 

The Lloyd (1982) and MacQueen (1967) algorithms were used for k-mean cluster in R 

software to fit with the number of LUCa (forest land, cropland, savannah grassland, 

settlement and other land use). Secondly, a number of candidate pixels that had large 

homogenous patches on the initial MODIS cluster image were selected randomly based on 

the previous estimated variance of pixels. Finally, if the patch (pixel) shown on the map (Fig. 

3.2) was indeed relatively homogeneous and large enough when visited on the ground, a field 

measurement plot was selected for forest inventory in the mid-point of this MODIS pixel at 

30 m x 30 m scale for forest land, grassland and cropland, and 100 m x 100 m for settlement. 

The size of plots was 30 m x 30 m for forest land, grassland and cropland, 100 m x 100 m for 

settlements and 10 m x 20 m for agroforestry and plantation. The total plots of 250 (Figure 

3.2 and Table 3.5) cover a total area of 27.26 ha. 
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Figure 3. 2 Gridded vegetation index map with plots location data 

 

Community analysis was carried out during six months (from April to September of 2014). In 

every land use/cover system, plots were installed randomly proportionally to their size (Table 

3.5) using the gridded vegetation index map (Fig. 3.2).  
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Table 3. 5 Land use/cover (LUC) classes and number of installed plots.  

LUCa/ LULCC Area (ha) Percentage (%) 

in the basin 

Area sampled 

(ha) 

Number of 

installed plots 

Forestland  

RFW 320.4 1.66 0.81 9 

SW 5447.79 28.29 2.43 27 

SS 4241.88 22.03 5.04 56 

Grassland  

GL 96.48 0.5 3.06 34 

Cropland  

CPF 8031.15 41.7 7.2 80 

Settlement  

SL 486.72 2.53 8 8 

Other land use  

AGF 20.7 0.11 0.26 13 

PLT 16.74 0.09 0.46 23 
Note: RFW: Riparian forest and woodland; SW: Savanna Woodland; SS: Shrub Savanna; GL: Grassland; 

CPF: Cropland and Fallow; SL: Settlement; AGF: Agroforestry; PLT:  Plantation 

NB: Agroforestry and plantation were seen as mitigation strategies to climate change, they were therefore 

discriminated from cropland.  
 

 

c. Tree community analysis 

Total number of tree species identifies during plots survey was 84. Three variables namely 

diameter at breast height (dbh), stem and total height were measured on all trees with dbh 

greater than or equal to 5 cm.  

 

Similarity index analysis 

Similarity indices estimation was a basis for determining the LULC types that might be 

combined for further importance value index and specific allometric model establishment. 

According to Anne et al. (2005), the classic Jaccard index depend on the number of species 

shared by two assemblages and the number of species unique. In the case of this study 

Jaccard index (Table 3.6) has been used to determine the level of similarity of the main 

LULC types at basin scale. 
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Access 2010 software was used to establish the database. Once the tabulation has been 

carried out, query language was used to count species according to their distribution in 

different land use/cover type. 

 

Table 3. 6 Jaccard index (%) for diverse LULC types  

 Riparian 

forest and 

woodland 

Savanna 

woodland  

Shrub 

savanna 

Grass 

savanna 

Cropland 

and fallow 

Settlement 

Riparian forest 

and woodland 

 61.7 46.2 17 45.9 8.6 

 

Savanna 

woodland 

  53.8 17.6 51.6 6.3 

 

Shrub savanna 

   16 48.4 4.8 

 

Grass savanna 

     

20.9 

 

13 

 

Cropland and 

fallow 

     15.4 

 

Settlement 

      

 

The Jaccard coefficient measures similarity between finite sample sets, and is defined as the size of 

the intersection divided by the size of the union of the sample sets (Eq. 3.5): 

𝐽𝑐𝑙𝑎𝑠 =
𝐴

A + B + C
                                                                                      (3. 5) 

Where 

A and B represent two communities 

Jclas    = Jaccard index,  

A      = Common species from 2 LULC types, 

B      = Species from LULC type 1, 

C      = Species from LULC type 2 

 

The results show that the level of similarity was high between LULC types of forest land: 

61.7 % between riparian forest and woodland; 53.8 % between savanna woodland and shrub 

savanna (Table 3.6). The level of similarity was high with forest land and cropland and 

fallow. This was based on the fact that the forest land (riparian forest and woodland, savanna 

woodland and shrub savanna) was converted to cropland and fallow for farming activities. 

https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
https://en.wikipedia.org/wiki/Union_%28set_theory%29


 

35 
 

The importance value index (IVI) was used to determine the main species that can contribute 

to the vegetation carbon and nitrogen stocks in each LULC type of the basin. 

 

Importance Value Index (IVI) analysis  

Importance value index was used for the first time by Curtis (1956) to determine the overall 

importance of each species in the trees community structure. The IVI is calculated in 

summing up the percentage values of the relative frequency, relative density and relative 

dominance of the species (Table 3.7). Density (D), frequency (F), Dominance (Dom), relative 

density (RD %), relative frequency (RF %), relative dominance (RDom %)) and Importance 

Value Index (IVI) were calculated for each species in each LUCa based on IPCC (2006) 

classification (Table 3.3) from the count data in Access 2010 (Table 3.6). The various 

parameters were obtained as:  

Density (D): 

𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 Ai

𝐴𝑟𝑒𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑑
                                                                    (3.6)       

Frequency (F):  

𝐹 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑜𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 Ai 𝑜𝑐𝑐𝑢𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.  𝑜𝑓 𝑝𝑙𝑜𝑡𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑
                         (3.7) 

Dominance (Dom):  

𝐷𝑜𝑚 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑣𝑒𝑟 𝑜𝑟 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 Ai

𝐴𝑟𝑒𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 
                            (3.8) 

Relative density (RD %):  

𝑅𝐷 =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 Ai

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 
𝑋 100                                       (3.9) 

Relative frequency (RF %):  

𝑅𝐹 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 Ai

𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠
𝑋 100                    (3.10) 

Relative dominance (RDom %):  

𝑅𝐷𝑜𝑚 =
𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 Ai

𝑇𝑜𝑡𝑎𝑙 𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 
𝑥 100                          (3.11) 

Importance Value Index (IVI):  
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𝐼𝑉𝐼(𝐴𝑖) = ∑(𝑅𝐷 + 𝑅𝐹 + 𝑅𝐷𝑜𝑚)                                                        (3.12) 

Where, 

IVI (Ai) = Importance Value Index of species Ai with i varied from 1 to N (here N equal to 81) 

RD = relative density of each specie expressed in percentage (%) 

RF = relative frequency of each specie expressed in percentage (%) 

RDom = relative dominance of each specie expressed in percentage (%) 

Total density for all species = sum of density from each species  

Total frequency values for all Species = Sum of frequency from each species 

Total Dominance for all species = Sum of dominance from each species 

 

The retained species for performed measurements on individual trees were presented in each 

LUCa and had high IVI (Table 3.7). These main species of the basin belonged to these LUCa 

and respectively represented 80.5 %, 82.75 %, 79.55 % and 76.8 %, for forestland, grassland, 

cropland and settlement. From these retained main trees species; analysis was performed to 

define the validity domain of size class distribution for each LUCa. 

 

Table 3. 7 IVI of main species in each LUCa 

Species name IVI index 

Forestland Grassland Cropland and 

fallow 

Settlement 

Terminalia genus 42.57 125.85 19.23 - 

Acacia genus 33.18 24.39 21.01 - 

Combretum genus 31.13 - 5.99 - 

Pterocarpus erinaceus 25.55 - 6.02 - 

Anogeisus leiocarpus 24.09 - - - 

Mitragyna inermis 18.22 - - - 

Lannea genus 16.06 - 44.97 28.25 

Ficus genus 8.79 32.28 28.84 42.08 

Crosopteryx febrifuga 8.01 - - - 

Entada Africana 7.32 22.27 - - 

Parkia biglobosa - 42.14 65.50 - 

Vitelaria paradoxa - - 21.28 - 

Azadirachta indica - - 15.92 96.63 

 

Defining validity domain of size class distributions for different land use categories 

The validity domain of size class distribution is a basis for defining the validity domain of 

further established allometric equations. Table 3.8 shows the proportion of surveyed trees by 

two ranges of DBH size classes. 



 

37 
 

The DBH of the main species ranged between two size class distributions. The two size 

class’s distributions on DBH are 5 to 45 cm and 45 excluded to 100 cm. The results provided 

from the 250 plots data revealed the size class distribution of these main species according to 

the DBH range in Table 3.8. The species belonged to the first class in each LUCa represented 

98.6 %, 87.5 %, 99.3 % and 91.9 % respectively for forestland, grassland, cropland and 

fallow, and settlement. From the tabulation of plots data, the DBH of the second class (45 

excluded to 100 cm) the trees have their DBH scattered for all LUCa. Most tree species have 

their DBH within the first class for each LUCa and these classes were retained for further 

developed allometric equations in each LUCa.  

 

Table 3. 8 Range of DBH (cm) of trees species and their proportion in each LUCa 

 Range of DBH (cm) and their proportion in (%) 

First range Second range 

Forestland 5-45 (98.6)  45-100 (1.4) 

Grassland 5-45 (87.5) 45-100 (12.5) 

Cropland and fallow 5-65 (99.3) 65-100 (0.8) 

Settlement 5-55 (91.9) 55-100 (8.1) 

Note: ( ) represents the proportion in percent of trees species within DBH range.  

 

 

Special considerations for stem diameter, stem and tree height measurements 

Stem diameter (or girth), total tree height and wood stock are three main variables accounted 

for aboveground biomass assessment at the basin level. To avoid unbiased measurements, 

tree shape and stem height were taken into account. Statistical analysis was done for all 

species (Table 3.9) to define the number of diameters to be measured along the stem (Figure 

3.3). The result of stem height analysis of these retained species according to IVI index, 

helped to estimate the number of this diameter stem measurements based on the proportion of 

tree species in two ranges of stem height (Table 3.9).  
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Table 3. 9 Proportion in percent of trees species stem height within two ranges of height 
 

Species Proportion in (%) of trees species stem height   

Trees stem height = < 2.3 m Trees stem height > 2.3 m 

Terminalia genus 95.85 4.15  

Acacia genus 91.57 8.43  

Combretum genus 91.5 8.5  

Pterocarpus erinaceus 74.86 25.14  

Anogeisus leiocarpus 72.29 27.71  

Mitragyna inermis 87.79 12.21  

Lannea genus 94.81 7.02  

Ficus genus 88.63       11.37  

Crosopteryx febrifuga 93.13 6.87  

Entada Africana 98.01 1.99  

Parkia biglobosa 93.1 6.9  

Vitelaria paradoxa 97.05 2.95  

Azadirachta indica 79.2 20.8  

 

Most trees species (from 72 % to 98%) have stem height less or equal to 2.3 m (Table 3.9). 

The conclusion was that most stem trees height was less or equal to 2.3 m in this West 

African Sudan Savannah zone. 4 to 20 % of trees species have their stem height higher or 

equal to 2.3 m. Based on these considerations, three measurements (G1, G2 and G_crown), 

(Figure 3.3), of stem diameter were considered for the performed measurements on individual 

tree species. The first measurement was done at 1.3 m, the second at 2.3 m, the third at the 

crown base (Figure 3.3). This approach helped to avoid unbiased stem volume and stem 

biomass estimation.  

 

Size classes distribution of selected species  

The results from Table 3.7 and 3.8 led to the establishment of diameter of each tree species 

within the basin. Once the number of each tree species has been distributed along its size 

class distribution with 5 cm interval, proportion rate was applied and the number of trees was 

estimated for survey detailed measurements on individual trees (Table 3.10).  
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Table 3. 10 The number of sampled trees within divers LUCa 

Species N Range of DBH 

(cm) 

Range of stem 

height (m) 

Range of total 

tree height (m) 

Terminalia genus 24 5.0 – 50.1 1.1 – 8.5 1.5 – 12.5 

Acacia genus 18 5.0 – 39.2 1.2 – 6.0 1.7 – 12.4 

Combretum genus 11 5.0 – 36.1 1.2 – 6.3 2.0 – 9.0 

Pterocarpus erinaceus 16 5.2 – 96.5 1.3 – 7.0 2.1 – 15.0 

Anogeisus leiocarpus 16 5.0 – 82.0 1.2 – 7.0 2.0 – 14.0 

Mitragyna inermis 14 5.0 – 65.0 1.3 – 6.0 2.0 – 12.0 

Lannea genus 23 5.4 – 68.9 1.1 – 5.5 1.3 – 12.8  

Ficus genus 15 5.0 – 75.3 1.3 – 4.8 2.0 – 8.8 

Crosopteryx febrifuga 08 5.5 – 40.4 1.3 – 4.3 2.0 – 10.8 

Entada Africana 07 5.0 – 25.6 1.2 – 4.0 1.8 – 7.5 

Parkia biglobosa 17 5.5 – 104 1.3 – 6.2 2.0 – 14.0 

Vitelaria paradoxa 08 5.3 – 54.3 1.1 – 4.5 2.0 – 12.5 

Azadirachta indica 19 5.3 – 80.0 1.3 – 4.8 2.5 – 10.6 

Note: The range of DBH at 1.3 m aboveground for each species in the entire basin was expressed in 

cm. The range of stem and total height of each species in the entire basin were expressed in metres. 

N= Number of selected trees in different size classes by species. In addition trees were surveyed in 

agroforestry system and plantation. 

 

d. A non-destructive method for estimating aboveground biomass 

Tree variables measurements 

The criterion for selecting trees from each species was that stem height should lower or equal 

to 2.3 m. Many conditions were considered when choosing sample trees in the field. The 

sample tree should be supposed none deformed. The selected sample trees should be straight 

and without nodules. Figure 3.3 shows the various variables collected within a sample tree in 

this basin. A total of 270 trees were non-destructively sampled be considering all the main 

tree species (Table 3.10). In the previous of this non-destructive survey the destructive 

approach was applied to the 13 tree species, belonging to 7 species. Advantage was taken of 

rural electrification project along the road from Dassari to Tigniga (Figure 4.1). Trees along 

this road were to be logged to give way to electrification extension. Negotiations were done 

with the project officers for the release of 13 individual from these seven selected species 

namely Terminalia macroptera, Ficus sp, Acacia seyal, Entanda Africana, Combretum 

glutinosum, Crosopteryx febrifuga and Anogeisus leiocarpus for destructive and non-

destructive measurements. Only tree species commenced for logging and fall within the 
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species of interest (Table 3.10) were destructively measured. These were used for the 

establishment of Biomass Expansion Factor (BEF) function as well as for assessment of the 

uncertainties. For the non-destructive method, the following were carried out on individual 

trees.  

i. Measurement of stem girth at 1.3 m, 2.3 m and crown base, and stem height (Picture 

3.1); 

ii. Extraction of stem wood sample of the tree at 1.3 m above ground using the increment 

borer (Picture 3.2); 

iii. Oven-drying the wood sample obtained with the increment borer and estimation of the 

wood density of the surveyed tree; 

iv. Estimation of stem-dry mass of the tree species using Eqs. 3.16 to 3.19. 

The destructive approach consisted of the following steps: 

i. Logging of the tree species by rural electrification project officers, 

ii. Weighting of fresh mass of stem, branches and foliage using weighing score; 

iii. Oven-drying of fresh wood samples selected from stem, branches and foliage at 75ºC 

for 2 to 3 days to constant weight; 

iv. Estimation of dry mass of stem, branches and foliage of the tree using Eq. 3.20, 

v. Calculation of BEF based on dry mass of stem, branches and foliage using Eq. 3.21, 

vi. Modelling BEF as a function of stem dry mass, 

vii. Comparison of the non-destructive method to the destructive method based on 

predictive total biomass by BEF function. 
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G1 = stem Girth at breast height (at 1.3 m), 

G2 = stem Girth of tree at 2.3 m height,   

G_crown = stem Girth of tree at crown 

base,  

NB: The below ground biomass is not 

considered in this study.   

Figure 3. 3 Tree design showing detailed measurement of diameters and heights on 

individual sample tree 

 

Collecting wood samples in the field 

Samples of wood were extracted from the tree using an increment borer. The wood samples 

were extracted at 1.3 m above the ground.  

The inner diameter of the bit of this device was 0.5 cm, indicating the diameter of the core 

sample extracted to be 0.5 cm. 

Once the wood was extracted, its length L was measured and expressed in centimetres. An 

example of wood sample is presented in Picture 3.3. 
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Picture 3.1 Techniques of trees 

measurement in the field. (CHABI, 2014) 

 

Picture 3. 2 Techniques of extraction of 

wood sample using increment borer. 

(CHABI, 2014) 

 

 

1= Increment borer 

2= Wood sample 

Picture. CHABI, October 2014 

Picture 3. 3 Fresh wood sample obtained from increment borer 

 

Estimation of basic wood density 

The extracted core wood from each selected tree species was oven-dried at 75º C for 48 to 72 

hours depending on water content of the wood sample constant weight. The oven dry density 
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(ρ) in terms of dry mass per fresh volume was estimated for each wood sample as in 

(Eq.3.16).  

ρ =
4dMSi

π𝑑2𝐿𝑖
                                                                                                   (3.16)   

Where: 

ρ = wood density in g.cm
-3 

dMSi = Dry mass of wood sample i expressed (g) 

d = diameter of the core wood (0.5 cm) 

Li = length of the sample i expressed (cm) 

 

Estimation of stem volume and stem biomass 

The stem volume of measured trees was measured by section according to Figure 3.3. The 

truncated cone function was used to estimate stem volume (Eq. 3.17):  

𝑉𝑠𝑡𝑒𝑚𝑖 = 𝑆ℎi x 
1

12𝜋
 𝑥 ( 𝐶1𝑖

2 +  𝐶2𝑖
2 +  𝐶1𝑖  ∙ 𝐶2𝑖)                               (3.17)  

Where: 

Shi = height (m) of section i of the tree stem,  

C1i = the greater girth of the section i of the tree stem, 

C2i = the smaller girth of the section i of tree stem, 

Vstemi = Volume (cm
3
) of section i of the tree stem,   

 

Stem mass were estimated based on wood density and stem volume values of the sections of 

the tree stem (Eq. 3.18). Total mass of the tree stem is calculated as the sum of all sections 

(Eq. 3.19): 

𝐵𝑠𝑡𝑒𝑚𝑖 = (𝜌 𝑥 𝑉𝑠𝑡𝑒𝑚𝑖)/1000                                                             (3.18)  

𝑇𝐵𝑠𝑡𝑒𝑚 = ∑    𝐵𝑠𝑡𝑒𝑚𝑖                                                                        (3.19)

𝑛

𝑖=1

 

Where: 

Vstemi = Volume (cm
3
) of section i of stem,   

Bstemi = Biomass (Kg) of section i of stem,   

TBstem = Total mass of tree stem (Kg) 

n = Number of the stem section of the tree  

 

In the next step, dry mass of stem, branches and foliage (total biomass) were derived by the 

destructive approach for the same trees: 

𝐵𝑡𝑜𝑡 = ∑
𝑓𝑀𝑗∗𝑑𝑚𝑆𝑗

𝑓𝑚𝑆𝑗

𝑚
𝑗=1                                                                            (3.20) 

Where: 

Btot = Total mass of a tree (sum of dry mass of stem, branches and foliage) (Kg) 
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fM = Fresh mass of stem, branches or foliage (Kg), 

fmS = Fresh mass of sample of stem branches or foliage (g). 

dmS = Dry mass of wood sample of stem branches or foliage(g), 

j = index of the different components (stem, branches and foliages) 

m= number of components of the various 3 organs  

 

For the following step, the Biomass Expansion Factor (BEF) per tree for the 13 individual 

trees was calculated using Eq. 3.21. 

𝐵𝐸𝐹 =
Btot

Bstem
                                                                                              (3.21) 

Where: 

Btot = Total mass of a tree (sum of dry mass of stem, branches and foliage) (Kg), 

Bstem = Stem dry mass (kg) 

BEF = Biomass Expansion Factor 

 

Equations 3.16 to 3.19 were applied to the non-destructive method concerning 270 tree 

species whereas Equations 3.16 to 3.21 were applied to the 13 trees species using both the 

destructive and non-destructive approaches for comparison.  

Once the BEF has been modelled based on the 13 trees, the total mass of the 270 individual 

trees were estimated then using the BEF model.  

 

Modelling BEF as a function of stem dry mass 

The calculation of the 13 destructively sampled trees was correlated to stem dry mass and the 

linear regression model was applied. Stem dry biomass was log-transformed to provide a 

more even spread of the data. 

BEF = 𝛽0 + 𝛽1ln (𝐵𝑠𝑡𝑒𝑚) + 𝜀                                                                  (3.22) 

Where β0 and β1 are model parameters  

 

 

Chemical analysis for the estimation of carbon and nitrogen content of wood samples  

The samples from Eucalyptus trees (7 samples) were added to the samples obtained from the 

main species (245 samples) of the natural vegetation, cashew (25 samples). Total number of 

wood samples was 277 obtained from 18 tree species (Picture 3.4-3.5). Initial assignment for 
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the chemical analysis was the grinding of 277 wood samples obtained from 18 tree species. 

The samples were first re-dried (because it was dry when estimating wood density) to avoid 

any water content. The weighing process followed the grinding.  

 

 

 

 

 

 

 

 

Chemical analysis was done at the Institute of Crop Science and Resource Conservation, 

within the laboratory of the Department of Plant Nutrition in Germany (Bonn) using the 

EA3000 model CHNS-O Elemental Analyser (http://www.eurovector.it/) (Picture 3.6-3.8).  

 

3.2.2 Data analysis 

a. Random forest (RF) algorithm for image classification 

The images classification in R software was based on the following steps: 

Picture 3. 4 

Example of 

grinding sample in 

the small bottle 

Picture 3. 5 Total number of ground wood 

samples in the small bottles 

Picture 3. 6 Euro EA 3000 

Picture 3. 7 The analytical circuit Picture 3. 8 Output presented 

in the screen of the computer 
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1. Importing co-registered images into R; 

2. Spectral Bands and Indices; 

3. Preparing Data for Random Forest; 

4. Running Random Forest; 

5. Recursive Partitioning and Regression Trees (Rpart). 

The variables used for random forest (RF) were bands 2, 3, 4, 5 (Table 3.1), NDVI 

(Normalized Difference Vegetation Index) of Landsat 8 satellite images.  

 

b. Accuracy assessment of the supervised classification 

According to Gómez and Montero (2011), any supervised classification is not complete until 

an assessment of its accuracy has been performed. The classification accuracy is a measure of 

the degree to which the derived image classification agrees with reality or conforms to the 

‘truth’ (Campbell, 1996; Janssen and Van der, 1994; Maling, 1989; Smits et al., 1999). 

Generally an error matrix known as confusion matrix is used to compare information based 

expert judgement and the classifier. Let A1, . . . Ak be the set of crisp classes under 

consideration, the error matrix N is defined as a frequency matrix, where each element (nij) 

represents the number of pixels that the expert classified as pixel in land use type i but the 

classifier did in land use type j, (Gómez and Montero, 2011; Foody, 2002). In the case of this 

study two types of accuracy indices (overall accuracy and Kappa index) were used. The 

following formula characterized each type of indices: 

Given the error matrix N = nij, the overall accuracy is defined as: 

𝑂𝑐 =    ∑ nij
𝑘
𝑖=1 /|𝑇|                                                                      (3.23)   

Where |T| is the number of pixels being tested.  

Given the error matrix N = (nij) the Kappa statistic is defined as: 

𝐾 = (𝑂𝑐 − 𝑝𝑒)/(1 − 𝑝𝑒)                                                             (3.24) 



 

47 
 

Where pe represents the percentage of items that have been classified correctly by chance, that is: 

pe =
1

𝑛
  ∑ 𝑛𝑖 . 𝑛𝑖                                                                          (3.25)

𝑖
 

By applying these equations for the confusion matrix of the classification results, overall 

accuracy and Kappa index were 0.75 and 0.69 respectively. 

The performance evaluation of kappa stress that it does not quantifies the level of agreement 

between two datasets. It represents the level of agreement of two dataset corrected by chance. 

 

c. Method for the establishment of biomass allometric equations at the basin level 

The sample size consisted of 270 individual trees that have been non-destructively surveyed 

(Table 3.12). For each tree of that sample, the BEF was applied to calculate the aboveground 

biomass (AGB). The AGB was then used as the response which we tried to predict with 

generalized linear models (GLM) (McCullagh and Nelder, 1989) using predictors easily 

measured in the field. The models were fitted using (1) just on DBH, (2) DBH and H, (3) 

and a combination of the three predictors. Based on the properties of the residuals we 

decided on a Gamma GLM with a log link. For each level of complexity we started with a 

model that contained the interactions between all involved predictors as well as the main 

effects (conditional on the interactions). The model structure was simplified on the small 

sample size corrected Aikaike Information Criteria (AICc) (Sugiura 1978, Burnham and 

Anderson, 2004). Quadratic effects were not considered since their inclusion led to unrealistic 

model behaviour for higher response values that were interpreted as overfitting of the model.  

Models were fitted for each land use category (LUCa) – i.e. data were sub-set by LUCa 

before fitting. Effects of species on the model fit as well as on the structure of the residuals 

were tested but effects were small. We used the following LUCa to fit the models: forest land 

(the combination of riparian forest, savanna woodland and shrub savanna), savanna grassland 

(grassland), settlement, cropland (cropland and fallow). The sample size differed by LUCa: 
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agroforestry: 25, forest: 181, cropland: 178, settlements: 63, grassland: 90. We did not fit 

models for the land use category plantation but applied published equations. Aboveground 

biomass from plots plantations of Tectona grandis and Eucalyptus grandis were obtained 

using published allometric equations from Guendehou et al. (2012) and Montagu et al. 

(2005) respectively whereas the generic equation (Table 3.15) was applied to estimate 

aboveground biomass of Azadirachta indica and Gmelina arborea. 

We further compared model predictions with the observed aboveground biomass at the tree 

level based on the average deviation (Cairns et al., 2003, Chave et al., 2005, Basuki et al., 

2009). The average deviation is calculated as follows: 

δ(%) =
100

𝑛
∑

Ý − 𝑌𝑖

𝑌𝑖

𝑛

𝑖=1

                                                            (3.27)         

Where δ is the average absolute deviation in percent, Yi = the observed dry weight, Ý the predicted dry weight, 

n = number of observations. 

 

d. Method for the estimation of aboveground biomass, carbon and nitrogen stocks 

Biomass stock map was generated using the best specific equation for each LUCa especially 

equation type III which involved the three predictors. Biomass stock of each plot was 

estimated in two steps when Phoenix reclinata and Borassus flabellifer were seen in the plot 

data. These species were retrieved from each plot data and their biomass estimated using 

equation from Schoroth et al. (2002) developed for the estimation of aboveground biomass of 

coconut. In the second step we applied specific equations for the concerned plots and we 

summed up together the two results to obtain the total biomass of the plot.  

The estimation of carbon and nitrogen was first based on the results of biomass data at the 

tree level. The mean carbon and nitrogen content were applied to each species of the plots. 

The results of chemical analysis for carbon and nitrogen content were the input (Table 3.18). 

The mean biomass, carbon and nitrogen stock maps were edited in ArcGIS 10.1. The total 
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aboveground biomass, carbon and nitrogen stocks of each LUC class were estimated as the 

product of the mean biomass stock (Mg.ha
-1

) or mean carbon stock (Mg C ha
-1

) or mean 

nitrogen stock (Mg.ha
-1 

of N) value per hectare and the size (expressed in hectare) of the LUC 

type.  

 

3.3 Results and discussions 

3.3.1 Land use/cover types of Dassari Basin in 2013 

The land use cover map of the study area spread as a baseline for estimating vegetation 

carbon and nitrogen stocks at the basin level (Figure 3.4). Three main land use/cover types i.e 

cropland and fallow, savanna woodland and shrub savanna characterized the Dassari Basin.  

These land use/cover types respectively represented 41.70 %, 28.29 %, and 22.03 % of the 

total area.  

 

Table 3.11. Area (ha) and proportion (%) of each LUC type in Dassari Basin 

N LUC types Area (ha) Proportion in % 

1 Riparian forest and woodland 320.4 1.66 

2 Savanna woodland 5447.79 28.29 

3 Shrub savanna 4241.88 22.03 

4 Grass savanna  96.48 0.50 

5 Cropland and Fallow 8031.15 41.70 

6 Bare land 107.91 0.56 

7 Settlements 486.72 2.53 

8 Agroforestry 20.7 0.11 

9 Plantation 16.74 0.09 

10 Stream and rivers 348.57 1.81 

11 Roads 139.05 0.72 

  TOTAL 19257.39 100.00 

 

The high proportion of cropland and fallow proved that the vegetation degradation due to 

farming activity was very crucial in the Dassari Basin and this could lead to the loss of high 

proportion of vegetation carbon and nitrogen stocks, thus more emission of CO2 and N2O. 

Agroforestry system and plantation respectively covered only 0.11 % and 0.09 % of the total 

area of the basin. These low proportions configure the assertion that mitigation strategies to 
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climate change based on the adoption of agroforestry systems and plantations were little 

known by farmers of these villages.  

At some instances in the text we refer to forest land that incorporates the LUCa (Land use 

category) riparian forest and woodland, savanna woodland and shrub savanna. Agroforestry 

and plantation were separated from cropland since an increase of agroforestry and plantation 

could be a mitigation strategy to climate change. 
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Figure 3. 4 Land Use/Cover types of Dassari Basin in 2013 
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3.3.2 Basic wood density of the main species 

Estimated basic wood density of the main species in the study area is presented in Table 3.12. 

The species Anogeisus leiocarpus, Combretum glutinosum, Terminalia macroptera, Vitelaria 

paradoxa, Pterocarpus erinaceus, Azadirachta indica, Acacia seyal, and Crosopteryx 

febrifuga were characterized by a high mean wood density. The low mean density observed 

for Lannea microcrapa and Ficus sp was in line with the high water content of the species 

which is lost during the drying process. The threshold for this low was 0.500 g.cm
-3

.  

 

Table 3. 12 The Basic wood density (g.cm
-3

) of the main tree species 

 

 

Trees species 

The present study Previous studies 

N Basic wood 

density 

Mean (SE) DBH (cm) 𝜌  (g.cm
-3

) 

min max min max 

Terminalia macroptera 19 0.740 0.893 0.821 (0.010) 9.3 40.7 0.768
1* 

;  0.870
2*

 

Acacia seyal 16 0.669 0.909 0.751 (0.015) 7.6 34.4 - 

Combretum glutinosum 11 0.827 0.962 0.877 (0.013) 7.9 31.9 0.900
2*

 

Pterocarpus erinaceus 21 0.671 0.973 0.826 (0.015) 6.9 44.7 0.740
1*

 

Anogeisus leiocarpus 16 0.813 0.977 0.889 (0.012) 6.9 32.4 - 

Mitragyna inermis 18 0.579 0.687 0.631 (0.008) 7.0 34.5 - 

Lannea microcrapa  22 0.472 0.648 0.546 (0.011) 7.0 50.6 - 

Lannea acida 06 0.504 0.676 0.573 (0.027) 10.8 35.9 - 

Ficus sp 21 0.440 0.607 0.528 (0.010) 8.6 52.7 - 

Crosopteryx febrifuga 18 0.518 0.778 0.704 (0.016) 5.6 30.5 - 

Entada africana 15 0.556 0.688 0.631 (0.010) 8.4 27.6 - 

Parkia biglobosa 23 0.566 0.689 0.630 (0.006) 8.6 62.4 0.525
3*

 

Vitelaria paradoxa 23 0.608 0.950 0.838 (0.016) 8.0 53.8 - 

Azadirachta indica 16 0.619 0.886 0.763 (0.018) 8.8 50.5 0.660
4*

 ; 0.620
5*

 

Anacardium occidentale 25 0.512 0.625 0.569 (0.006) 9.2 57.9 0.431
3*

; 0.500
5*

 

Note: N=Number of trees selected. The stem wood samples of selected trees were extracted at 1.3 m of the 

ground. DBH range = Range of diameter at breast height of sampled species. Figures in bracket represent the 

standard error.  

References of previous studies: 
1*

 Sallenave, P. 1955, 1964 
2*

 von Maydell, HJ, 1983  
3*

 Carsan et al., 2012 
4*

 Oey, et al., 1951 
5*

 Little and Wadesworth, 1964 
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Standard error of the measurements were very low for all species and confirmed thereby the 

accuracy of the measurements as well as the relative low importance of confounding factors 

which influence density variation per species as described by Chave et al. (2006). 

Measurements on basic wood density were in line with results from previous studies (Oey, 

1951; Sallenave 1955, 1964; Little and Wadesworth, 1964; Von, 1983; Carsan et al., 2012).  

 

3.3.3 Biomass Expansion Factor (BEF)  

The biomass expansion factor increased significantly with the log of stem dry mass (Table 

3.13 and Figure 3.5). The BEF as a function of stem dry mass varied between 1.46 and 1.88, 

with a mean of 1.67 ± 0.08 (95 % confidence interval). The BEF of Terminalia macroptera, 

which is the main species of the study site ranged from 1.55 to 1.88, with a mean value of 

1.73. The model explained 69 % of the variance in the data.  

 

Table 3. 13 Coefficients for the BEF – stem dry biomass relationship fitted  

 Coefficient Standard error p-value 

Intercept 1.24155  0.09253 3.66 x 10
-8 

ln(stem dry biomass) 0.14701 0.02968 0.000434 

Note: 13 trees belonging to 7 species were available for the comparison of destructive method to the non-

destructive assessment for BEF modelling 
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Figure 3. 5 Estimated relationships between stem dry biomass and biomass expansion 

factor  

Note: The model used 13 trees that were available for the analysis by the destructive approach. The 

dashed lines represent the 95% confidence band. 

 

Total mass obtained by the destructive sampling (observed values from 13 trees) and the total 

biomasses estimated by the non-destructive method (predicted values from these trees using 

the estimated BEF – stem dry mass relationship) were very similar (Figure 3.6, Pearson 

correlation coefficient of 0.99). 

Given the small sample size (13 individual trees from seven species) and the limited range of 

DBH (less than 25 cm) care should be taken not to extrapolate results. However, the sampled 

trees represent the common size distribution of trees in the human influenced ecosystems of 

the study region. Therefore, the results can be assumed to provide a good estimate for 

biomass expansion factor assessments in the region. 
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Figure 3. 6 Comparison between total biomass derived by the destructive and the non-

destructive method 

Note: The grey line represents the 1:1 line to aid interpretation. 

 

 

Segura et al. (2005) used a similar approach based on an estimated biomass expansion factor 

function for the per-humid premontane transitional forest zone in Costa Rica. In contrast to 

our findings, BEF decreased with stem biomass. While the Costa Rican study underestimated 

total biomass of trees on average by 17.31 %, the study results overestimate total biomass 

slightly by 1.82 % when applying the Segura (2005) equation to the data. Levy et al. (2004) 

estimated biomass expansion of coniferous species in Great Britain. Levy’s BEF was a 

function of tree height of stand tree. Levy’s BEF overestimated the total biomass of our 

sampled tree species on average by 4.46 %. Magalhães and Seifert (2015) used BEF as a 

function of DBH when estimating aboveground biomass of Androstachys johnsonii in 
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Mozambique. The BEF of Magalhães and Seifert (2015) underestimates the total biomass on 

average by 62.54 % of the samples tree species.  

The BEF can also be estimated based on dbh of the 13 trees assessed by the destructive 

approach (Figure 3.7). 

 

Figure 3. 7 Estimated relationships between DBH and biomass expansion factor  

Note: The model used 13 trees that were available for the analysis by the destructive approach. The 

dashed lines represent the 95% confidence band. 

The model based on dbh was slightly superior to the model based on stem dry biomass if 

compared by means of the small sample size corrected AIC (AICc) or a likelihood ratio test 

and explained 75% of the variance in the BEF (Table 3.14). 

 

Table 3. 14 Coefficients for the BEF – DBH relationship fitted  

 Coefficient Standard error p-value 

Intercept 1.25801 0.07697 4.61 x 10
-9 

DBH 0.0314 0.00543 0.000122 

Note: The analysis was based on the 13 destructively sampled trees and non-destructive assessment 
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If this model was used to predict total biomass, the values derived by the destructive 

approach were overestimated on average by 2.27 % - a bit higher compared to the model 

based on stem dry mass. We therefore stuck to the estimation based on stem dry biomass. 

 

3.3.4 Allometric model at the basin level 

All models indicated a high goodness of fit expressed by the explained deviance as well as by 

the pseudo-R
2
 by Nagelkerke (1991). While the AICc clearly favoured the more complex 

models (Table 3.15), even the models using only dbh as a predictor provided a high goodness 

of fit. While analyses of the effect of land use categories as an additional predictor on all 

sample points indicated significant differences between the coefficients across land use 

categories the effect of size is relatively low. A notable exception is the land use class of 

agroforestry, which was clearly distinct from the other models. Effect of plots indicate, 

however, that even the small differences between coefficients across the land use categories 

led to important changes in prediction. Within a model class, coefficients always had the 

same sign and of the same order of magnitude. For models of type II, the inclusion of the 

interaction between dbh and total height always was selected based on the lower AICc. For 

the other categories wood density was included in the models in addition to the other two 

main effects and the interaction between dbh and total height. For forest land and grassland, 

the interaction between dbh and wood density was also selected based on AICc. 

The basic wood density (ρ) was not a good predictor for the estimation of AGB in 

agroforestry system (cashew plantation). In cashew plantations, big trees i.e cashew trees 

over 45 years old tend to lose their wood ignition followed by the observed decrease of wood 

density for bigger cashew trees. In the available 25 cashew trees, wood density was high for 

cashew trees with an age of 10 to 20 years.   
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Table 3. 15 Parameters and expressions of the allometric models generated using dbh (cm), height H (m) and ρ (g.cm
-3

)  
Models LUCa 

                 

Coefficients 

Intercept 

 

β0 

DBH 

 

β1 

H 

 

β2 

DBH:H 

 

β3 

ρ  

 

β4 

DBH:ρ 

 

β5 

AIC Expl. 

Dev. 

Nagelkerke 

  I                  𝒍𝒏 (𝑨𝑮𝑩) =           𝜷𝟎          +                    𝜷𝟏(𝑫𝑩𝑯)   

 Forest land 2.391980*** 
(0.082228) 

0.111911*** 
(0.003528) 

    1921.3 0.82 0.89 

 Grassland 2.219779*** 

(0.092797) 

0.114745*** 

(0.004002) 

    895.75 0.90 0.94 

 Cropland 2.751514*** 

(0.072229) 

0.091492*** 

(0.002608) 

    1981.3 0.84 0.91 

 Settlements 2.454958*** 
(0.091445) 

0.091898*** 
(0.003292) 

    636.64 0.91 0.95 

 Agroforestry 2.563685*** 

(0.137175)    

0.077676*** 

(0.004729) 

    241.67 0.92 0.95 

II              𝒍𝒏 (𝑨𝑮𝑩) =                 𝜷𝟎       +                         𝜷𝟏(𝑫𝑩𝑯)        +          𝜷𝟐(𝑯)            +           𝜷𝟑(𝑫𝑩𝑯𝒙𝑯)   

 Forest land -0.051323 
(0.178402) 

0.160755*** 
(0.009200) 

0.456829*** 
(0.029571) 

-0.011051*** 
(0.001321) 

  1745.9 0.93 0.96 

 Grassland -0.115578 

(0.227236) 

0.177817*** 

(0.010732) 

0.439903*** 

(0.040451) 

-0.012521*** 

(0.001474) 

  821.11 0.96 0.98 

 Cropland 0.0871685 

(0.1495242) 

0.1549490*** 

(0.0062096) 

0.4660558*** 

(0.0251691) 

-0.0113066*** 

(0.0007811) 

  1818.4 0.94 0.97 

 Settlements 0.570740* 
(0.257908) 

0.153706*** 
(0.011535) 

0.329399*** 
(0.043811) 

-0.010279*** 
(0.001639) 

  607.38 0.95 0.97 

 Agroforestry 0.361587 

(0.444254) 

0.136600*** 

(0.015331) 

0.403086*** 

(0.085069) 

-0.010145*** 

(0.002141) 

  226.77 0.96 0.98 

III             𝒍𝒏 (𝑨𝑮𝑩) =               𝜷𝟎     +                            𝜷𝟏(𝑫𝑩𝑯)       +           𝜷𝟐(𝑯)        +               𝜷𝟑(𝑫𝑩𝑯𝒙𝑯)     +        𝜷𝟒(𝛒)       +                    𝜷𝟓(𝑫𝑩𝑯𝒙𝛒)    

 Generic -0.7654108*** 

(0.1091666) 

0.1573235*** 

(0.0042834) 

0.4238142*** 

(0.0155108) 

-0.0108973*** 

(0.0005404) 

1.3500342*** 

(0.1004703) 

 2300.2   

 Agroforestry Model reduced to the type II model 

 Forest land -0.529352* 

(0.218806) 

0.153447*** 

(0.009621) 

0.421777*** 

(0.022671) 

-0.011862*** 

(0.001007) 

0.838169** 

(0.285044) 

0.024398* 

(0.011265) 

1645.1 0.96 0.98 

 Grassland -0.406853 
(0.276970) 

0.146300*** 
(0.013038) 

0.418648*** 
(0.028276) 

-0.011198*** 
(0.001026) 

0.729644* 
(0.366277) 

0.027054° 
(0.015229) 

757.26 0.98 0.99 

 Cropland -0.7272044*** 

(0.1278645) 

0.1501417*** 

(0.0045440) 

0.4212572 *** 

(0.0185620) 

-0.0103647*** 

(0.0005729) 

1.4462214*** 

(0.1095952) 

 1709.1 0.97 0.98 

 Settlements -0.031603 

(0.284948) 

0.150500*** 

(0.010299) 

0.341267*** 

(0.039210) 

-0.010006*** 

(0.001463) 

0.938432*** 

(0.260039) 

 

 597.9 0.96 0.98 

   

Note: The coefficients are provided at the link scale. The log-link was used for fitting the gamma glm. The ‘:’ operator represents the interaction between both involved 

variables. Standard error is provided in parenthesis. The sample size differed by land use category: agroforestry: 25, forest: 181, cropland: 178, settlements: 63, grassland: 90. 

AGB = Aboveground biomass based on dry weight (kg/tree). The statistical analyses are significant at 95% confidence interval. ***p < 0.001; **p < 0.01; *p < 0.05; and 

non-significant, °p > 0.05. 
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3.3.5 Comparing the equations to previously published equations 

We could only compare our allometric models for forest lands with previous published 

allometric equations due to lack of allometric equations for cropland, grassland and 

settlements. We therefore compared only the models for forest land and the generic model 

with results from Brown et al. (1997), Chave et al. (2005), Chave et al. (2015) and Jose 

(2010). Equations developed by these authors were chosen in the global dry forest region for 

comparison. The results were in line with all mentioned equations in terms of mean deviation 

of the observed aboveground biomass at the stand tree level (Table 3.16).  

 

Table 3. 16 The average deviation of various models compared to the models type of the 

present study in each LUCa 

LUCa  Previous studies Present study 

Brown et 

al. 

(1997) 

Chave et 

al. 

(2005) 

Jose 

(2010) 

Chave et 

al. 

(2015) 

Models type 

I         II         III    

 Average deviation δ (%) 

Forest land 25.02 9.04 26.41 14.87 21.67 8.64 4.77 

Grassland 34.23 6.54 35.73 12.69 11.88 5.00 2.34 

Cropland 29.30 10.21 30.77 14.74 24.50 10.06 5.26 

Agroforestry - - - - 8.00 3.75 - 

Settlements 60.93 9.70 62.77 15.46 12.40 7.30 6.35 

Generic - 9.00 - 14.19 - - 5.34 

  

Note: Model type I is function of dbh, model II is function of dbh and height and the model type III is function 

of dbh, height and wood stock. 

 

The model type I, which was only based on dbh revealed an average deviation of 21.67 % for 

forest land whereas equations based on dbh for Brown et al. (1997) and Jose (2010) showed 

respectively 25.02 and 26.41 % of the average deviation from the observed above ground 

biomass. The same analysis was done with the model type II and III in comparison with the 

previous studies when dbh was not the only predictor. Model type III revealed an average 
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deviation of 4.77 % for forest land whereas Chave et al. (2005) and Chave et al. (2015) 

respectively presented 9.04 and 14.78 %. This confirmed the good performance of the model 

that could be used to estimate aboveground biomass at the stand tree level in the Sudan 

Savannah ecosystems in West Africa. 

 

3.3.6 Aboveground biomass stock at the basin level 

The mean biomass stock and attached standard error varied from 3.28 ± 0.31 to 204.92 ± 

57.69 Mg.ha
-1

 at 95 % confidence interval with the low (Mg.ha
-1

) biomass stock within the 

cropland and the highest (Mg.ha
-1

) biomass stock in plantation emphasizing the importance 

of mitigation strategy in the climate change debate. The large uncertainty of plantations can 

be explained by the differences in age structure as explained already. Since the land use data 

classification used could not separate between young and old cashew tree plantations we 

unfortunately have to deal with this high uncertainty. The biomass stock map was generated 

from the best equations obtained for each LUCa. The map in Figure 3.8 shows the LUC types 

and the biomass stock at the basin level. Information on uncertainty for biomass stock can be 

found in Table 3.17.  
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Figure 3. 8 The land use/cover classes and biomass stock at the basin level 

Note: The mean biomass stock was expressed in Mg.ha
-1

. The total biomass stock in each LUC is 

presented in Table 3.17 

 

 

 

 



 

62 
 

Table 3. 17 Aboveground mean biomass stock (Mg.ha
-1

) and total biomass stock (Mg) with the sample plot data and attached 

uncertainty 

 

LUC / LUCa 

Descriptive statistic 

Range of Biomass stock (Mg.ha
-1

) Mean biomass stock in 

Mg.ha
-1 

and 

(S.E.) 

Percentage error 

(% error) 

Total biomass stocks 

(Mg)  min max 

Forest land 340534.70 ±36445.4 

Riparian forest and woodland 76.29 120.22 94.58   (4.98) (10.33) 32271.87±334.74 

Savanna Woodland 27.22 69.84  45.29    (2.51) (10.89)  248050.22±27019.98 

Shrub Savanna 6.47 25.14 14.05   (0.72) (10.11) 60212.61±6090.67 

Grassland 349.66±68.81 

Savanna grassland  0.06 9.20 3.62    (0.36)  (19.68) 349.66±68.81 

Cropland 26409.82±5024.04 

Cropland and Fallow 0.07 9.32 3.28    (0.31) (19.02) 26409.82±5024.04 

 Settlements 2375.84±988.13 

Settlements 0.86 9.60 4.86   (1.03) (41.59) 2375.84±988.13 

Agroforestry 1132.73±584.46 

Cashew plantation 10.74 211.19 46.06   (14.40) (61.28) 1132.73±584.46 

Plantation 3138.20±1777.35 

Eucalyptus grandis 7.69 695.20 204.92  (57.69) (55.17) 2819.78±1556.44 

Tectona grandis 32.41 232.75 162.00    (64.88) (78.50) 145.80±114.46 

Azadirachta indica  64.45 240.53 179.62  (57.61) (62.86) 129.33±81.30 

Gmelina arborea 10.39 34.39 25.17    (7.46) (58.09) 43.29±25.14 

Note: The minimum (min) and maximum (max), the mean biomass stock and its stand error (SE), the confidence interval (CI) at 95 % with its percent error 

and the total biomass at each LUC type / LUCa were illustrated. The age of plantations and agroforestry system varied from 5 to 45 years old which explained 

the large percentage error obtained from their plots data. The area of each LUC was provided in Table 3.11



 

63 
 

3.3.7 Carbon and nitrogen contents of dry matter of the main wood tree species 

The results of the carbon and nitrogen content of the stem wood samples of the main species 

of the basin in this Sudan Savannah environment are presented in Table 3.18. The species 

which had the high mean carbon fraction of dry matter and related standard error were 

Terminalia macroptera (49.43±0.24), Pterocarpus erinaceus (49.43±0.27), and Crosopteryx 

febrifuga (49.17±0.21). The species that exhibited the least carbon fraction was Combretum 

glutinosum (41.73 %) and the highest value was obtained with Acacia seyal (53.07 %). The 

estimated mean with attached standard error varied from 44.28±0.209 to 49.43±0.27. The 

overall mean or the mean of mean of the stem wood samples was 47.01±0.28 %. The 

obtained mean value is comparable to the IPCC (2006) default value of 47 %, when dealing 

with the Tier 1 approach.  

Vitellaria paradoxa
Terminalia macroptera

Terminalia avicennioides
Pterocarpus erinaceus

Parkia biglobosa
Mitragyna inermis

Lannea microcarpa
Lannea acida

Ficus sp.
Entanda africana

Crossopteryx febrifuga
Combretum glutinosum

Azadirachta indica

Acacia seyal
Anogeissus leiocarpa

Acacia gourmaensis

 

Figure 3. 9 Boxplot showing the distribution of carbon content by tree species  

However, our results revealed that some species have their carbon higher than 47 % and some 

carbon content lower than 47 % (Table 3.18 and Figure 3.9) and confirmed the relevance of 
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using higher Tier for carbon accounting. This default IPCC (2006) values might over or 

under estimate the carbon stocks of the ecosystem or any land use category (LUCa). 

The main question to be asked was which default value to use 0.47 or 0.5 when using Tier 1 

for carbon accounting? The use of local data (Tier 3) in this study resulted in greater accuracy 

level (see Table 3.19 for uncertainty) in estimating carbon stock. In addition the greater 

number of samples size (277) for the estimation of carbon content helped to discover the 

uncertainty level of each default value applied for the mean biomass stock in each LUC type. 

The application of the default carbon content value of 0.5 to convert the mean biomass stock 

into the mean carbon stock for each LUC type, overestimated the mean carbon stock for all 

LUC types. The use of the default value of 0.5 resulted in overestimation of the mean 

biomass stock to the mean carbon stock by 5.52 % (for riparian forest and woodland), 6.54 % 

(for savanna woodland), 6.41 % (for shrub savanna), 8.21 % (for grassland), 7.6 % (for 

cropland and fallow), 5.53 % (for settlements), 7.65 % (for agroforestry system) and 4.72 % 

(for plantation). The application of the coefficient 0.47 to convert the mean biomass stock to 

the mean carbon stock slightly overestimated biomass stock by 0.15 % (for savanna 

woodland), 0.54 % (for shrub savanna), 1.72 % (for grassland), 1.14 % (for cropland and 

fallow), and 1.19 % (for agroforestry) and underestimated by 0.81 % (for riparian forest and 

woodland), 0.80 % (for settlements) and 1.55 % (for plantation).  

It can be concluded that the coefficient 0.47 despite it could not reach the higher level of 

accuracy in estimating carbon stock like the present case study can be used in the absence of 

the information about the carbon content of the in situ data from the main species of the 

region. Despite the fact that tree species varied considerably from one region to another for 

the previous studies the obtained carbon content ranged in the same order with other authors 

(Guendehou et al., 2012; Hughes et al., 1999; Andreae and Merlet., 2001; Lasco and Pulhin, 

2003; Feldpausch et al., 2004; McGroddy et al., 2004).  
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The nitrogen content of the main species varied from 0.08 % to 0.58 %. The mean fraction of 

nitrogen in dry matter varied from 0.128±0.012 (SE) to 0.357±0.016 % (SE). The mean of 

mean fraction of dry matter nitrogen content was estimated to be 0.229±0.016 %. The species 

with high nitrogen content are Acacia seyal, Acacia gourmensis, Ficus sp, Entanda africana 

and Lannea microcarpa. The impact of human disturbance on these tree species could 

contribute to the high level of N2O emissions into the atmosphere explaining the high Global 

Warming Potential of this gas which is 298 times that of CO2.  

The C/N ratio ranged from 80.71 (minimum) to 570.05 (maximum). The mean C/N ratio for 

these species and related standard error ranged from 135.97±6.75 to 386.52±28.28. The C/N 

ratio was high for all tree species and confirmed thereby their terrestrial origin. C/N ratios in 

the range 4-10:1 are usually from marine sources, whereas higher ratios are likely to come 

from a terrestrial source (Gray and Biddlestone, 1973). Therefore, the C/N ratio serves as a 

tool for understanding the sources of sedimentary organic matter, which can lead to 

information about the ecology, climate and ocean circulation at different times in the Earth’s 

history (Ishiwatari and Uzaki, 1987).  
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Table 3. 18 Carbon (C) and nitrogen (N) content of dry matter of stem wood of the main species of the basin  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: % dm = percentage of C and N in dry matter. n = Number of trees selected. The stem wood samples of selected trees were extracted at 1.3 m of the 

ground. DBH range = Range of diameter at breast height of sampled tree species. Figures in bracket represent the standard error (SE) of the mean   

 

                                            n     Carbon (C) contents (% dm) Nitrogen (N) contents (% dm) DBH (cm)               C/N ratio 

Trees species  min max Mean  (SE) min max Mean  (SE) min Max   min  max Mean  (SE) 

Terminalia macroptera 19 46.267 51.241 49.474 (0.266) 0.108 0.303 0.192 (0.013) 9.3 40.7 160.50 428.39 281.81 (18.33) 

Terminalia avicennioides 03 47.971 49.759 48.70 (0.53) 0.155 0.181 0.168 (0.007) 16.6 24 265.03 312.16 289.96  (13.67) 

Acacia seyal 14 43.928 53.071 46. 50 (0.684) 0.13 0.583 0.290 (0.037) 7.6 34.4 80.71 357.6 194.24 (21.72) 

Acacia gourmaensis 02 47.55 48.09 47.824 (0.269) 0.297 0.349 0.323 (0.025) 13.4 19 160.11 137.80 148.95 (11.15) 

Combretum glutinosum 11 41.737 45.959 44.72 (0.438) 0.14 0.358 0.241 (0.020) 8 32 125.94 320.95 201.36 (19.15) 

Pterocarpus erinaceus 21 46.779 51.645 49.438 (0.278) 0.164 0.427 0.242 (0.014) 6.9 44.7 110.09 295.09 216.28 (10.63) 

Anogeisus leiocarpus 16 44.037 46.003 44.917 (0.167) 0.08 0.273 0.128 (0.012) 6.9 32.4 161.30 570.05 386.52 (28.28) 

Mitragyna inermis 18 44.978 47.74 46.724 (0.174) 0.177 0.354 0.243 (0.011) 7 34.5 129.46 262.19 199.40  (9.23) 

Lannea microcrapa  20 42.091 45.938 44.282 (0.209) 0.148 0.405 0.273 (0.015) 7 50.3 110.95 306.08 173.47  (11.14) 

Lannea acida 6 43.408 45.164 44.526 (0.248) 0.14 0.386 0.265 (0.035) 10.8 36 115.60 320.80 186.92 (30.61) 

Ficus sp 21 43.931 46.38 45.153 (0.139) 0.16 0.427 0.294 (0.015) 8.6 52.7 105.3 286.90 163.14 (9.83) 

Crosopteryx febrifuga 18 47.662 52.229 49.172 (0.217) 0.118 0.306 0.182 (0.014) 5.6 30.6 161.14 417.54 295.68 (20.50) 

Entada africana 15 45.852 48.377 47.098 (0.191) 0.242 0.475 0.357 (0.016) 8.4 27.6 100.09 196.18 135.97 (6.75) 

Parkia biglobosa 23 44.02 47.636 46.516 (0.214) 0.127 0.396 0.201 (0.013) 8.6 62.4 119.40 358.43 247.85 (12.35) 

Vitelaria paradoxa 22 45.972 50.032 47.942 (0.228) 0.13 0.337 0.228 (0.010) 8 60 136.41 367.23 220.11 (11.37) 

Azadirachta indica 16 47.253 52.999 49.005 (0.413) 0.104 0.302 0.177 (0.014) 8.8 50.5 162.43 474.64 302.38 (22.53) 

Anacardium occidentale 25 44.928 47.693 46.446 (0.138) 0.103 0.32 0.161 (0.011) 9.2 57.9 146  441.34 375.79  (17.58) 

Eucalyptus grandis 7 47.018 49.031 47.744 (0.350) 0.125 0.191 0.157 (0.011) 5.7 29.2 247.25 376.14 310.57 (21.94) 
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3.3. 8 Carbon and nitrogen stock at the basin level in 2013 

The results of this study found respectively a total of 175347.75 ± 21042.48 (CI) and 875.53 

± 101.45 (CI) Mg of carbon and nitrogen stocks in 2013 at 95 % confidence interval. The 

mean carbon stock in Mg C.ha
-1

 and its standard error were 44.81±2.38 (riparian forest and 

woodland), 21.35±1.16 (savanna woodland), 6.57±0.35 (shrub savanna), 1.67±0.15 (savanna 

grassland), 1.52±0.14 (cropland and fallow), 2.30±0.48 (settlement), 21.39±6.68 

(agroforestry system) and 97.83±27.55 (plantation). The carbon stock was higher in 

settlements than in cropland and savanna grasslands and confirms our observation in the field 

which tested that people aimed at planting trees within settlements. This human action 

confirmed the importance of the mitigation strategy to climate change in line with the 

implementation of Kyoto protocol. The analysis of the carbon stock in each LUC revealed 

that the carbon stock in riparian forest and woodland was higher than that obtained in the 

agroforestry system based cashew plantation. In fact despite the fraction of dry matter of stem 

wood of cashew plantation (Anacardium occidentale) which ranged from 44.928 to 47.693 % 

with a mean fraction of dry matter and its standard error of 46.446 ± 0.138 % its stock is 

lower than the riparian forest and woodland explaining the tree spacing within the cashew 

plantation which was an example of mixing crops and trees. The tree stock per hectare in 

cashew plantation was estimated at 300 trees whereas it was 1397 trees per hectare in riparian 

forest and woodland. The amount of carbon lost when a patch of riparian forest and woodland 

was cleared for farming activity cannot unfortunately be completely compensated during the 

growth period of cashew plantation even if it has reached the climax. We evaluated this loss 

to be 23.42 Mg C.ha
-1

. Despite the loss, it is important to adopt agroforestry after riparian 

forest has been cleared to the detriment of cropland because in the absence of cropland the 

carbon stock lost is equal to a carbon stock of 44.81±2.38 Mg C.ha
-1

.  
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Figure 3.10 shows the spatial distribution of carbon and nitrogen stock at the basin level.  

 

 

Figure 3. 10 Carbon and nitrogen stock at the basin level in 2013 

 

The analysis of the same results from Table 3.20 showed the mean nitrogen stock and related 

standard error ranged from 0.007±0.0067 (cropland) to 0.321±0.088 (plantation) Mg.ha
-1

 of 

N.  
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Table 3. 19 Mean Carbon stock (Mg C.ha
-1

) and total carbon stocks (Mg) with the sample plot data and attached uncertainty 

 

LUC / LUCa 

Descriptive statistic 

Range of carbon stock (Mg C.ha
-1

) Mean carbon stock 

(Mg C.ha
-1

)  (S.E.) 

Percentage error 

(%  error) 

Total carbon stocks 

(Mg) min max 

Forest land 159841.01±17094.11 

Riparian forest and woodland 35.46 57.27 44.81   (2.38) (10.42) 15291.86±1593.81 

Savanna Woodland 12.50 31.90  21.25   (1.16) (10.77)  116401.70±12539.08 

Shrub Savanna 2.76 12.22 6.57   (0.35) (10.52) 28147.43±2961.21 

Grassland 161.55±29.86 

Savanna grassland  0.03 2.98 1.67   (0.15) (18.48) 161.55±29.86 

Cropland 12272.24±2326.92 

Cropland and Fallow 0.03 4.33 1.52  (0.14) (18.96) 12272.24±2326.92 

 Settlements 1125.66±466.99 

Settlements 0.41 4.57 2.30  (0.48) (41.48) 1125.66±466.99 

  Agroforestry 442.91±271.41 

Cashew plantation 4.99 98.08 21.39     (6.68) (61.28) 442.91±271.41 

Plantation 1504.36±853.17 

Eucalyptus grandis 3.67 331.91 97.83  (27.55) (55.19) 1346.27±743.14 

Tectona grandis 16.52 108.70 82.62   (33.09) (78.50) 74.36±58.37 

Azadirachta indica  31.58 117.87 88.02   (28.23)  (62.86) 63.37±39.84 

Gmelina arborea 4.88 16.16 11.82    (3.50) (58.06) 20.34±11.81 

Note: The minimum (min) and maximum (max), the mean carbon stock or emission factor and its stand error (S.E.), the confidence interval at 95 % with its 

percent error and the total carbon stocks at each LUC type / LUCa or activity data were illustrated. The age of plantations and agroforestry system varied 

from 5 to 45 years which explained the large percentage error obtained from their plots data. The area of each LUC was provided in the Table 3.11 
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Table 3. 20 Mean Nitrogen stock (Mg N.ha
-1

) and total nitrogen stocks (Mg) with the sample plot data and attached uncertainty 

 

LUC / LUCa 

Descriptive statistic 

Range of nitrogen stock (Mg.ha
-1

 of  N) Mean nitrogen stock 

(Mg.ha
-1

 of N) (S.E.) 

Percentage error 

(%  error) 

Total nitrogen stocks 

(Mg) min max 

Forest land 740.37±85.05 

Riparian forest and woodland 0.170 0.285 0.212  (0.014) (13.23) 72.41±9.58 

Savanna Woodland 0.045 0.160  0.096    (0.005) (11.67)  530.79±61.97 

Shrub Savanna 0.008 0.064 0.032   (0.001) (9.81) 137.16±13.46 

Grassland 0.825±0.12 

Savanna grassland  0.0001 0.0178 0.0085  (0.0068) (15.73) 0.825±0.12 

Cropland 62.57±10.57 

Cropland and Fallow 0.00018 0.0252 0.0077  (0.0067) (16.90) 62.57±10.57 

 Settlements 5.20±2.03 

Settlements 0.0017 0.0201 0.0106  (0.0021) (38.99) 5.20±2.03 

Agroforestry 1.53±0.90 

Cashew plantation 0.017 0.340 0.0741  (0.022) (58.63) 1.53±0.90 

Plantation 5.01±2.79 

Eucalyptus grandis 0.012 1.091 0.321  (0.088) (54.06) 4.42±2.39 

Tectona grandis 0.058 0.418 0.291  (0.115) (77.61) 0.26±0.20 

Azadirachta indica  0.114 0.425 0.317  (0.101) (62.64) 0.23±0.14 

Gmelina arborea 0.024 0.079 0.058  (0.017) (58.05) 0.10±0.05 

Note: The minimum (min) and maximum (max), the mean nitrogen stock or emission factor and its stand error (S.E.), the confidence interval at 95 % with its 

percent error and the total nitrogen stocks at each LUC type / LUCa or activity data were illustrated. The age of plantations and agroforestry system varied 

from 5 to 45 years which explained the large percentage error obtained from their plots data. The area of each LUC was provided in the Table 3.11 
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3.4 Conclusions 

The results from this study help to close the existing knowledge gap with respect to biomass, 

carbon and nitrogen stocks in the Sudan Savannah environment. The fitted generalized linear 

model equations fitted on local data can be useful for future scientific works in the Sudan 

Savannah environment generally populated by the determined main species in the present 

study. The estimation of above ground biomass, carbon and nitrogen stock in each land use 

cover category are of great importance for carbon balance calculations in the Sudan Savannah 

in West Africa. The work also provides a database in wood density of the main species of the 

Sudan Savannah zone, the related biomass expansion factor, the biomass, carbon and 

nitrogen stock in each land use cover class that would be an indispensable information tool 

for carbon accounting programme related to the implementation of the Kyoto Protocol and 

REDD+ initiatives in the Sudan Savannah environment.   
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CHAPTER IV: DRIVERS OF LAND USE CHANGE AND MITIGATION 

STRATEGIES 

 

4.1 Introduction 

Rural households pursue a wide range of livelihood strategies in developing countries (Fang 

Haiyang, 2012). Some households diversify their livelihood strategies while others rely on 

one or more activities. The sustainable livelihood assets (SLA) framework first established by 

the Department for International Development (DFID) of the United Kingdom has been 

adopted by many domestic organizations and scholars since 2000. The concept of sustainable 

livelihoods is increasingly important in research about local and regional development, 

poverty alleviation, rural agriculture development and resource management. However, the 

level and degree of reliance on livelihood capital differ across households (Bebbington, 1999) 

and the impact on the environment is perceived differently. According to Fang and Haiyang 

(2012) livelihood stability would force the related policy to act co-ordinately while 

eradicating poverty and promoting resource sustainability. Factors that contribute to the 

economic reliance of households on a particular economic activity in general and on 

livelihood capital in particular may vary depending upon the type of resource endowment, 

household demographic and economic characteristics, as well as exogenous factors such as 

markets, prices, policies and technologies (Brown et al., 2006). In this regard, understanding 

factors that determine variations in choice in relation to household activity and, particularly, 

understanding the reliance of these choices on livelihood capital is essential for both 

conservation and development-targeted policies (Jonathan, 2000). 

The security and quality of the livelihood of farmers is of paramount concern in rural areas of 

Benin and especially in the Dassari Basin. Land use scenarios development and impact 

assessment on the future emissions of carbon dioxide and nitrous oxide cannot be well 
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understood without any particular attention on the livelihood of farmer’s communities of 

Dassari Basin who mostly depend on land resources. 

This chapter characterizes household’s agents based on factors that influence a household’s 

decision making and identifies the level of the mitigation strategy to climate change. In 

addition, the findings of the characterization were linked to the BEN-LUDAS model and used 

to parametrize the model.  

 

4.2 Geographic location and boundary of the study area 

Dassari Basin is situated in the North-West of Benin (Figure 4.1) and covers an area of 

192.57 km
2
. The site is located between latitudes 10°44’08’’ and 10° 55’ 42’’ North and 

longitudes 1° 01’ 32’’ and 1°11’30’’ East. 
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Figure 4. 1 Geographic location of Dassari Basin in North-West of Benin (Field work, 

2014) 
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4.3  Socio-economic setting of the study site 

Benin Republic has 77 municipalities (administrative units). The West Atacora is part of 

North–West Benin with four municipalities, namely Materi, Tanguieta, Boukoumbe and 

Cobly. The Dassari site (Figure 4.1) got the name from Dassari village, which is one sub-

commune of Materi commune. This Dassari sub-commune comprises of more than 10 

villages and hamlets. The villages that belong to the catchment were taken into account for 

the socio-economic field investigation. Pattern of the population size of these four communes 

is presented in Table 4.1. Analysis of the population revealed an increment in population 

since the first assessment of the population in 1979 and the last one in 2013. According to 

INSAE (2013) the population growth rate of Materi commune was 1.69 per year, increase to 

3.65 % and then decrease to 2.54 % during the periods 1972-1992, 1992-2002 and 2002-2013 

per year respectively. This situation can be explained by migration as underlined by Sow et 

al. (2014).   

 

Table 4. 1 Population of West Atacora commune in Benin  

Municipality Population of West Atacora Population growth rate (%) 

1979 1992 2002 2013 1979-1992 1992-2002 2002-2013 

Materi 46274 58516 83721 111003 1.69 3.65 2.54 

Tanguieta 27242 40430 54719 73731 2.86 3.07 2.69 

Boukoumbe 47049 58196 60568 83147 1.53 0.4 2.86 

Cobly 26796 38382 46660 68955 2.6 1.97 3.53 

Source: INSAE (2003; 2013) 

 

The analysis of the population growth of these communes from 1979 to 2013 shows an 

exponential increase (Figure 4.2). This population growth can have a negative impact on the 

socio-ecological system of the Dassari Basin such as the pressure on forest land, decrease of 

soil fertility and an increase of poverty.  
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Figure 4. 2 Population trends of West Atacora from 1979 to 2013 

Table 4. 2 Projection of the population to 2,025 

Municipality Population 

in 2013 

Population 

growth rate  ( Tx 

in %) 2002-2013 

Population 

trend 

equations 

Projection in 

2025 based 

on equations 

Projection 

based on Tx 

for 2025 

Materi 111,003 2.54 33,598e
0.2983x

 149,301 149,987 

Tanguieta 73,731 2.69 20,173e
0.329x

 104,517 101,388 

Boukoumbe 83,147 2.86 39,362e
0.1748x

 94,330 116,629 

Cobly 68,955 3.53 19,992e
0.3031x

 90,998 104,559 

X =1 time scale equal to 10 years 

Sources: INSAE (2013) provided raw data (Population in 2013 and population growth rate) 

 

The main activities in this area are agriculture and livestock. Farmer’s households 

represented 98 % (RGPH, 2003) in the rural area, especially in the Dassari Basin. Regarding 

farming, women were involved in all the value chain of this activity, from ploughing to 

harvesting, i.e. women thus performed labour in all the processes of farming.   

 

4.4 Methodology 

The socio-economic data collection and analysis is illustrated through the flowchart (Figure 

4.3). The households’ agent’s characterization helped to determine the level of human 

impacts on the environment. The methodological approach is outlined as follows: 

 Systematic sampling (Sample size estimation, sample selection),  

Pop(Materi) = 33598e0.2983x 
R² = 0.9943 

Pop (Tanguieta) = 20173e0.329x 
R² = 0.995 

Pop (Boukoumbe) = 39362e0.1748x 
R² = 0.9226 

pop (Cobly) = 19992e0.3031x 
R² = 0.9856 

0

20000

40000

60000

80000

100000

120000

1979 1992 2002 2013

P
o

p
u

la
ti

o
n

 s
iz

e
 

Years 

Materi

Tanguieta

Boukoumbe

Cobly

Expon. (Materi)

Expon. (Tanguieta)



 

77 
 

 Questionnaire administration, 

 Socioeconomic data collection and analysis, 

 PCA for the determination of the main factors affecting households agents, 

 Data analysis based hierarchical cluster following by K-mean cluster for the 

determination of the number of households group evolving in the farming in the basin 

using PCA scores, 

 Analysis based binary logistic model to estimate factors affecting adoption of 

agroforestry and plantation by households. 

 
Figure 4. 3 Flowchart showing the approach used for socio-economic data collection 

                    and analysis 
 

4.4.1 Households sampling techniques 

This section is focused on the sampling design. The households sampling techniques was first 

based on the analysis of the population trend of Materi (Figure 4.2) commune on which 

Dassari (the pilot site) is one of the sub-communes. According to INSAE (2013) the 

proportion of the farmer’s households represented 98 % of the total households of the 

commune with a mean of 7.4 persons per household. Based on this consideration this 
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proportion was used to determine the required number of households to be chosen for 

investigation or questionnaire administration.   

The following formula (Eq. 4.1) (United Nations, 2005) was used for the estimation of 

households sample size:  

𝑁ℎ =
(𝑧1−𝛼/2)2.  𝑝 (1 − 𝑝)

𝑑2
                                                                    (4.1) 

Where:  

Nh is the parameter to be calculated and is the sample size in terms of number of households to be selected; 

z1-α/2 is the statistic that defines the level of confidence desired; here at 5% type I error (p<0.05) it is 1.96 

p is the proportion of the total population accounted for by the target population (p=0.98); 

d is absolute error or precision (has to be decided by the researcher). 0.02 (2%) was chosen for d.  

 

Finally a total of 188 households were estimated based on the Eq 4.1. The entire 

questionnaire was administrated to 187 households. The list of farmers was obtained from the 

local institution for agricultural development. This list accounted for 510 farmers. The 

sampling interval was determined based on Eq 4.2. 

𝑘 =
N

n
                                                                                                      (4.2)  

Where, 

k = Sampling interval, 

N = The total number of the farmers obtained from the list, (510 farmers) 

n = The sample size (188)  

 

The estimation of k was equal to 2.71 or 3. The starting point was determined by choosing a 

random number between 1 and 3. The random obtained was 2. Thus the first selected number 

in this list was 2, the second 5 and so on till the full selection of the 187 farmers or head of 

households. These 187 households were selected in 10 villages within 24 villages and 

hamlets of the basin. The plots of households were surveyed and georeferenced using GPS 

(Global Position System). A GIS database of upland crops, agroforestry systems and 

plantations was constructed and mapped (Figure 4.4). 
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Figure 4. 4 Locations of surveyed holding plots in the study area 
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4.4.2 Methods for categorizing household agents  

a. Concept of sustainable livelihoods framework   

According to DFID (Department for International Development) (2000) livelihood strategies 

comprise the range and combination of activities and choices that people make/undertake in 

order to achieve their livelihood goals. It should be understood as a dynamic process in which 

people combine activities to meet their various needs at different times. In the past most 

efforts have been geared towards application of the sustainable livelihood framework in 

diverse geographical and sectoral settings (Ellis et al., 2003; Ellis and Biggs, 2000; Hussein, 

2002; Bebbington, 1999; Baumann, 2000; Beall and Kanji, 1999; Turton, 2000; Hobley and 

Shields, 2000).  

The livelihood framework includes five core asset categories: human, social, financial, 

natural and physical capital (DFID, 2000; Campbell et al., 2001). Odero (2002) proposed an 

extension to the sustainable livelihoods framework by introducing a sixth asset, information 

capital which was not assessed in the present study.  

Within these assets, human capital is perhaps the most important factor (Chivaura and 

Mararike, 1998; Odero 2002) for the fact that people are both object and subject of 

development. A feedback loop to the household’s organization in the Dassari Basin confirms 

this assertion. A new household generates the value of two persons for labour availability 

(household head and wife) at the time of marriage and this number is increasing as soon as 

the household head gets children or an additional wife. Thus, the livelihood approach states 

that the type of activity undertaken and the amount of income earned by a household is a 

function of the assets at its disposal (Barrett et al., 2005; Brown et al., 2006; Fang and 

Haiyang, 2012).  
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b. Statistical analyses for discovering grouping criteria and agent groups 

Principle Component Analysis (PCA) for characterizing household’s agents 

Principal component analysis is a powerful tool for reducing a number of observed variables 

into a smaller number of artificial variables that account for most of the variance in the data 

set (Kim and Mueller, 1978; Cattell, 1966; Stevens, 1986). With a large number of variables, 

the dispersion matrix may be too large to study and interpret properly. There would be too 

many pairwise correlations between the variables to consider. Thus, graphical display of data 

may also not be of particular help with the obtained 19 variables. To interpret the data in a 

more meaningful form, it is therefore necessary to reduce the number of variables (19) to a 

few, interpretable linear combinations of the data assuming that the relation between 

variables is linear. The variable were centred and scaled prior to the PCA. 

The general form for the formula to compute scores on the first component extracted 

(created) in a principal component analysis was as followed: 

 

𝑃𝐶1 =   𝑏1𝑋1 +  𝑏2𝑋2 + ⋯ … … +. 𝑏𝑃𝑋𝑃                                                  (4.3)  

Where: 

PC1 = the subject’s score on principal component 1 (the first component extracted) 

 b1 …. bp = the regression coefficient (or weight) for observed variable p, as used in creating principal 

component 1  

Xp = the subject’s score on observed variable, Xi. is i = 1, …., p. 

 

 

Each linear combination corresponded to a principal component.   

Four criteria were used to determine the number of meaningful components for interpretation: 

the eigenvalue-one criterion, the scree-test, the proportion of variance accounted for and the 

interpretability criterion. The eigenvalue-one criterion, also known as the Kaiser criterion 

(Kaiser, 1960) was used to retain and interpret any component with an eigenvalue greater 

than 1.00. The first six retained component have their eigenvalue higher than 1.00.  
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With the scree-test (Cattell, 1966) approach the eigenvalue associated with each component 

was plotted and a “break” between the components with relatively large eigenvalues and 

those with small eigenvalues were observed. The components that appear before the break are 

assumed to be meaningful and are retained for rotation; those appearing after the break are 

assumed to be unimportant and are not retained. According to the proportion of variance 

accounted for; the cumulative percent of variance of components accounted for at least 70 % 

were retained. Once the components were selected based on the three outlined criteria, we 

now observed each component and found if: 

 Each of them used the minimum of three variables with meaningful loadings,  

 The variables that load on a given component shared the same conceptual meaning, 

 The variables that load on different components measured different constructs? 

 The rotated factor pattern demonstrated “simple structure”. 

 

K-Mean clustering analysis (KCA) using PCA 

The cluster analysis (Duda et al., 2000; Hastie et al., 2001; Jain and Dubes, 1998) attempts to 

pass through data quickly to gain first order knowledge by partitioning data points into 

disjoint groups such that data points belonging to same cluster are similar while data points 

belonging to different clusters are dissimilar. One of the most popular and efficient clustering 

methods is the K-means method (Chris and Xiaofeng, 2004; Hartigan and Wong, 1979; 

Lloyd, 1957; MacQueen, 1967; Jain and Dubes, 1998; Wallace, 1989) which uses prototypes 

(centroids) to represent clusters by optimizing the squared error function. They are 

determined by minimizing the sum of squared errors (Chris and Xiaofeng, 2004). 

The cluster analysis was run using the five factors identified in the PCA in the aim to avoid 

collinearity. Thus, hierarchical cluster was first run using the five factors of the PCA as input. 
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The results from hierarchical cluster were used to run k-mean cluster. The number of clusters 

determine in the hierarchical cluster is equal to k in k-mean cluster.   

When running k-mean cluster the k means the household’s agents groups.  

Equation 4.3 was used to determine household agent groups based on the PCA results:  

Jk =  ∑   ∑(

𝑖𝜖𝐶𝑘

𝑥𝑖 −

𝑘

𝑘=1

𝑚𝑘)2                                                                        (4.4)     

Where (x1, · · ·, xn) = X is the data matrix and mk = Pi∈Ck xi/nk is the centroid of cluster Ck and nk is the 

number of points in Ck. 

 

From the 28 variable collected within the households, some of them revealed that there are 

household which were only focused on food production, most of them used cotton production 

as financial option and in other ways some farmers applied agroforestry or plantation in their 

plots.  

 

4.4.3 Binary logistic regression model to estimate the likelihood of adoption of mitigation 

strategies 
 

The willingness to adopt mitigation strategy to climate change by households was estimated 

based on binary logistic regression model analysis. The model was constructed by an iterative 

maximum likelihood procedure using SPSS 17 package.  

log (
𝑝𝑖

1 − 𝑝𝑖
) =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ +  𝛽𝑘𝑥𝑘                                     (4.5)           

Where i denotes the i-th observation in the sample, Pi is the predicted probability of adoption, which is coded 

with 1 (willingness to adopt) or with 0 (not to adopt), ßï is the intercept term, and ß1, ß2, ..., ßk are the 

coefficients associated with each explanatory variable X1, X2, ...Xk. 
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4.5  Results and discussion 

4.5.1 Land use decision drivers, model of farmers decision making and mitigation strategies 

at the farmer’s field scale 

Conceptual model of farmers decision making and drivers of land use change 

The results from questionnaire administration were used to establish the farmers’ decision 

making. The main driving forces outlined from this survey revealed some drivers of land use 

in the basin. The broad categories of driving forces have been identified (Figure 4.5) using 

the combination of answers provided from farmers and experts from local agricultural 

development programmes. These driving forces allowed the determination of the 

demographic change which was a function of population growth explained by an increase of 

natality and an increase of the size of households. The demographic change was also 

explained by migration of young households who moved sometimes from the Materi 

commune to Nigeria (neighbouring country).  

 

Figure 4. 5 Flowchart showing drivers of land use and model of farmers’ decision 

making 

 



 

85 
 

4.5.2 Identification of typological agent groups 

a. PCA (Principal Component Analysis) for discovering household agents group 

The results of PCA for deriving the households typology showed five components with initial 

eigenvalues higher than 1.0 (Table 4.3). The five components which were used to determine 

the household agents group explained 75.083 % of the total variance of original variables.   

The rotated Component Matrix (i.e. loadings or the regression coefficient b or weight for 

observed variable) using Varimax rotation method and Kaiser Normalization of first five 

principal components allowed a better understanding of what each component meant.  

The first component is strongly related to holding cotton (b = 0.970), subsidy fertilizer 

(b=0.970) and income (b = 0.728).  

Table 4. 3 Total variance explained by extracted components, using Principal 

Component Analysis (PCA) as the extraction method 

Comp

onent 

Initial Eigenvalues Extraction Sums of 

Squared Loadings 

Rotation Sums of Squared 

Loadings 

Total % of 

Varian

ce 

Cumulat

ive % 

Total % of 

Variance 

Cumulat

ive % 

Total % of 

Varian

ce 

Cumulati

ve % 

1 5.457 34.106 34.106 5.457 34.106 34.106 3.103 19.393 19.393 

2 2.449 15.304 49.410 2.449 15.304 49.410 2.986 18.665 38.058 

3 1.747 10.920 60.330 1.747 10.920 60.330 2.904 18.150 56.208 

4 1.346 8.413 68.742 1.346 8.413 68.742 1.624 10.153 66.361 

5 1.014 6.340 75.083 1.014 6.340 75.083 1.395 8.722 75.083 

6 0.960 5.998 81.081             

7 0.927 5.793 86.874             

8 0.643 4.021 90.895             

9 0.540 3.373 94.268             

10 0.427 2.666 96.934             

11 0.332 2.074 99.008             

12 0.134 0.837 99.845             

13 0.025 0.155 100             

14 0.000 0.000 100             

15 0.000 0.000 100             

16 0.000 0.000 100             

 

This component had a contribution of 34.10 % for the total variance of the original dataset 

and confirms the importance of cotton production in the site. Infact, the results from 
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interview revealed that cotton production was mostly used by the farmers of the basin. Infact, 

this crop contributed to the high pressure on the land and lead to the high deforestation rate. 

The component was named holding cotton.   

The second component (PC2) is most weighted by upland crop (b=0.927), income from 

upland crop (b=0.921) and total holding (b=0.745). We choose to call this component holding 

upland crop factor which has 15.3% of the total variance of the variables.  

 

Table 4. 4 Rotated Component Matrix (i.e., loadings) using Varimax rotation method 

and Kaiser Normalization of first five principal components 

 
 

 Variables 

Principal Components 

Holding 

cotton 

factor  

(34.1%) 

Holding up 

crop 

factor  

(15.3%) 

Labour 

factor 

(10.92%) 

Mitigation 

factor 

(8.41%) 

Education 

factor 

(6.34%) 

1 2 3 4 5 

Household age (Hage) -0.172 0.070 0.430 0.253 -0.582 

Household size (Hsize) 0.131 0.184 0.819 -0.010 -0.031 

Household Education (Hedu) 0.126 0.019 -0.163 0.068 0.776 

Household sex (Hsex) 0.472 0.387 0.052 -0.011 0.196 

Household leader (Hlead) -0.086 0.177 -0.325 -0.274 -0.419 

Household labour (Hlabour) 0.137 0.157 0.926 0.027 -0.104 

Household holding (Hhold) 0.540 0.745 0.207 0.271 0.018 

Household income (Hincome) 0.728 0.590 0.207 0.131 0.013 

Household subsidy (Hsub) 0.970 0.073 0.124 0.064 0.089 

Household hold cotton (Hcot) 0.970 0.073 0.124 0.064 0.089 

Household hold upcrop 

(Hupcrop) 

0.072 0.927 0.193 0.136 -0.068 

Household hold agroforestry 

(Hagro) 

0.052 0.252 -0.038 0.705 -0.008 

Household hold plantation 

(Hplant) 

-0.048 0.171 0.147 0.768 0.315 

Household income from crop 

(Hincrop) 

0.116 0.921 0.149 0.115 -0.072 

Household income from 

livestocks (Hliv) 

0.137 0.157 0.926 0.027 -0.104 

Households income from other 

activities (Hoth) 

-0.214 0.053 0.023 -0.511 0.304 

Notes: - Numbers in parenthesis are percentages of total variance of original variable set explained by the 

principal components. 

- Bold numbers are the high loadings, indicating most important original variables representing the principal 

components. 

 

The component 3 (PC3) is weighted by labour (b=0.926), income from livestock (b =0.926) 
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and household size (b=0.819). The component represented 10.92 % of the variance of all 

variables and was named labour factor.  

The principal component 4 (PC4) is linked to the variable holding plantation (b = 0.768) and 

holding agroforestry system (b=0.705). This component explained 8.41 % for the variance of 

the original dataset. The component is named mitigation strategies. 

The component 5 (PC5) is weighted by the variables education (b = 0.776) and age (b = -

0.582) with a contribution of 6.34% to the variance of the original dataset. This component 

was called education factor.  

The statistics of the key categorical variables were used to determine the pattern of each 

household group using the most variables characterized by various factors. (Table 4.5).  

 

b. Livelihood typologies of household agents 

Three types of households were determined based on the results from hierarchical and k-

mean clustering procedures.  

Household type 1: Group of farmers with cotton production based 

The first group (I) of farmers was identified based on holding cotton factors and education. 

This group of farmers is characterized by the variables income, holding cotton, subsidy, 

education, age and leadership. The group (Table 4.5) was characterized by the mean holding 

cotton of 2.73 ha with 1 and 7 ha for minimum and maximum respectively. The mean holding 

cotton of this group is 1.16 and 3.69 times higher than the mean holding cotton of group II 

and group III respectively. In contrast, the labour availability of group I was 1.24 and 1.07 

times lower than the labour availability of group II and group III respectively. We can 

conclude that this group have the revenue for farming activity and doesn’t only rely on labour 

availability. This group of farmers used mechanization for ploughing their holdings. The 

group represented 46 % of the whole population.  
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Household type 2: Mitigation and multi crop production group of farmers 

The group II or the group of famers with multi crop production represented only 5.34 % the 

total number of the households. The farmers of this group have the ability to adopt mitigation 

strategies to climate change.  

 

Household type 3: Group of poor farmers 

This group is the most important in the basin. It represented 48.66% of the total number of 

the farmers. The mean upland crop is equal to 3.32 ha whereas the lower upland crop is less 

than 1 ha. The households of this group had developed livelihood based food production 

rather than cotton production.  

 

Table 4. 5 Descriptive statistics for 5 key categorizing variables for each classified agent 

group  

Categorizing variable Househ

olds 

groups 

N Mean S.E. min max 

Labour availability (Hlabor) I 86 4.89 0.30 2 18 

II 10 6.1 0.86 4 12 

III 91 5.25 0.28 2 14 

Holding cotton (Hcotton) in ha I 86 2.73 0.14 1 7 

II 10 2.35 0.31 1 4 

III 91 0.74 0.08 0 3 

Holding upland crop (Hupcrop) in ha I 86 3.48 0.19 0.75 10.5 

II 10 5.47 1.09 1 12 

III 91 3.32 0.22 0.65 11.5 

Holding agroforestry (Hagro) in ha I 86 0.03 0.01 0 1 

II 10 1.17 0.24 0 2 

III 91 0.02 0.1 0 1 

Holding plantation (Hplant) in ha I 86 0.02 0.009 0 0.5 

II 10 0.72 0.18 0 1.7 

III 91 0.008 0.006 0 0.5 

Annual gross income in (1000 CFA) I 86 507.821 27.321 101.250 1234.000 

II 10 1062.688 169.593 392.500 2207.000 

III 91 920.582 48.581 281.395 2382.000 

Note: N = The number of households, the mean of the variable, the related standard Error (S.E.), the 

minimum and the maximum in each agent group 
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4.5.3 Mitigation strategy at the farm level 

The farmers of Dassari Basin still have little knowledge on the mitigation strategy to climate 

change. The analysis of the socio-economic and field investigation revealed that only 7.48 % 

of farmers adopted agroforestry system (cashew plantation) in combination with cropping 

system in their holding. The size of agroforestry system varied from 0.2 (minimum) to 9.9 

(maximum) ha with a mean of 1.57 ha.  

Plantation, mainly Eucalyptus plantations was planted by 8.55 % of farmers. The mean size 

of plantation was 2.26 ha. In contrast to the adoption of agroforestry, Eucalyptus plantation 

was planted between 1988 and 1992 as a result of a project which involved farmers. Thus, the 

age of Eucalyptus ranged from 20 to 25 years. The Eucalyptus plantation represented 97.89 

% of the total area of plantations of the basin. The remaining plantations were mango trees 

(about 35 years), teak or Tectona grandis (about 18 years) and Gmelina arborea (about 5 

years). Due to the high proportion of Eucalyptus plantations, future analysis focused on its 

carbon sequestration for developed scenarios. Thus the carbon and nitrogen content, and the 

carbon stock of this plantation were estimated to assess the impact of mitigation based 

plantation to climate change at the basin level.  

The investigation to test the level of the adoption of mitigation strategies to climate change 

(Table 4.6) showed that 17.6% of farmers have no intention to adopt neither agroforestry nor 

plantation in their farm land whereas 66.4% would rather adopt agroforestry than plantation. 

In the same order 15.5 % would like to adopt plantation than agroforestry system.  

Table 4. 6 Statistics on the adoption of mitigation strategies 

 Adoption of plantation (%) 

No Yes 

Adoption of agroforestry (%) No 17.6 15.5 

Yes 66.4 0.5 
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Table 4. 7 Estimated parameters of factors affecting agroforestry adoption 

  

Variables 

 

Annotation 

Coefficient Standard 

error 

Wald 

statistic 

Significance

. 

Constant β0 1.56 0.66 5.52 0.02 

Age X1i -0.01 0.01 0.80 0.37 

Size X2i 0.02 0.05 0.20 0.66 

Education X3i -0.61 0.38 2.61 0.11 

Sex X4i -0.04 0.45 0.01 0.92 

Labour X5i 0.03 0.09 0.12 0.73 

Total Holding X6i 1.39 1.05 1.76 0.19 

Holding cotton X7i -1.35 1.06 1.64 0.20 

Holding cropland X8i -1.50 1.06 1.99 0.16 

Holding agroforestry X9i -2.66 1.42 3.53 0.06 

Chi -square (df = 8) = 8.360 

(-2) Log likelihood = 221.724 

Accuracy of prediction overall (%) = 72.2 

Nagelkerke R
2
 = 0.12 

 

The positively significant coefficient of total holding indicates its positive influence on 

agroforestry adoption which was as presumed. The coefficient of holding agroforestry was 

negatively significant, which implies that the older the farmers, the less the probability of 

adopting agroforestry. The level of the adoption of agroforestry is also functional linked to 

the land tenure or total holding (Table 4.7) and the previous status of holding agroforestry. 

Farmers who have high value holding tend to devote a piece of their land to agroforestry.  

 

Table 4. 8 Estimated parameters of factors affecting plantation adoption 

Variables Annotation Coefficient Standard 

error 

Wald 

statistic 

Significance 

Constant β0 -1.28 0.84 2.35 0.13 

Age X1i -0.01 0.02 0.44 0.51 

Size X2i 0.03 0.07 0.21 0.65 

Education X3i 0.78 0.48 2.61 0.11 

Sex X4i -0.36 0.57 0.40 0.53 

Labour X5i -0.01 0.11 0.01 0.90 

Total holding X6i 0.04 0.71 0.00 0.96 

Holding cotton X7i -0.24 0.74 0.10 0.75 

Holding cropland X8i -0.08 0.73 0.01 0.91 

Holding plantation X9i -0.66 1.95 0.11 0.74 

Chi -square (df = 8) = 7.83 

(-2) Log likelihood = 159.146 
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Accuracy of prediction overall (%) = 84 

Nagelkerke R
2
 = 0.05 

 

 

In the same order, subsistence oriented small farmers are highly risk averse to adopt 

plantation (Table 4.8) due to limited holding. The model was able to explain 12 percent 

relationship between the variables and the adoption probability and 72 percent of the sample 

cases correctly (Table 4.7) in adopting agroforestry system. Educated farmers tend to adopt 

plantation than non-educated farmers (Table 4.8).  

In general, farmers were more willing to adopt agroforestry than plantation because it was 

possible to combine crop and agroforestry based cashew plantation in the same land during a 

time scale of 10 years.  

 

4.6 Conclusions 

The households of the Dassari Basin are driven by a broad range of factors which 

compromise their livelihoods and impacted environmental conditions. The main factors 

which involved the farmers’ decision making are population growth, high production of 

cotton based subsidy with fertilizers, farming based mechanization, the protection zoning 

area, the variability in rainfall pattern and drought with dry skew and soil suitability. 

Population growth can lead to pressure on the land if the trend continues and the rate of 

migration doesn’t change.  
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CHAPTER V: ECOLOGICAL DYNAMICS OF HETEROGENEOUS 

LANDSCAPE AGENTS IN THE DASSARI BASIN 

 

5.1 Introduction 

The role of land-use in global environmental change requires historical reconstruction of past 

land-cover conversions and/or projection of likely future changes (Stéphenne and Lambin, 

2001), with component processes and stated variables that may change rapidly in space and 

time (Beven and Kirkby, 1979). In the context of human ecological system modelling, the 

priority should be given to formulate and approve ecological processes that play important 

roles in building human-environment relationships (Le, 2005). Therefore, modelling the 

dynamics of ecosystem through forest yields and forest conversion due to natural and human 

disturbance becomes relevant to the representation of the complexity of the LULCC process. 

According to Le (2005) the major assumption of ecological dynamics of heterogeneous 

landscape agents is that different landscape patches have different potential productivities 

(forest yields) in response to natural conditions and human interventions.  

This chapter attempts to explain the complexity of the basin and the related environmental 

and biophysical characteristics through the following specific objectives: 

1. Estimate the historical rate of changes and trajectory in LULC of the basin, 

2. Characterize the heterogeneity and biophysical characteristics of landscape agents 

and, 

3. Formulate and calibrate ecological sub-models (i.e. forest yield and natural transition) 

of landscape agents. 
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5.2 Bio-physical characteristics 

5.2.1 Climate 

Long-term (1952-2010) minimum temperature of Natitingou station located 50 km from the 

site showed daily minimum temperature range from 15.25 to 25.08 ºC, with an average of 

20.53 ºC. In the same order, the observed daily maximum temperature ranged from 26.63 to 

39.27 ºC, with a mean temperature of 32.59 ºC. The observed trend line of these minimum 

and maximum temperatures during this period showed a positive slope of 0.0017 and 0.0023, 

respectively.  

Long-term (1971-2013) mean monthly precipitation for Tanguieta station (15-20 km from the 

study area) is 87.5 mm. 

The standardized precipitation index (SPI), developed by McKee and Kleist (1993), showed 

two periods, 1978-1979 and 1985-1986 of extreme drought with some years of moderate to 

severe droughts during the 42 years of observation.  

 

5.2.2 Soil types 

The basin is characterized by six soil types (Figure 5.1). These soil types are namely 

hydromorphic ferruginous soil on plate schist, ferruginous indurate soil on colluvium 

material, ferruginous indurate soil on tablet schist, hydromorphic mineral soil, brute mineral 

soil on breastplate and little developed soil on alluvium-colluvium material.  

GIS tools were used to sum the area of all polygons that belonged to a soil class by estimating 

the area of these soils type. The ferruginous indurate soil on tablet schist covered a total of 

75.43 % of the total area of the basin. The maximum cropping area was growing within this 

soil type.  
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Figure 5. 1 Soil types of the study area 
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5.3 Methodology 

The ecological dynamics of the basin involves its complexity related to environmental and 

biophysical characteristics. The Landsat ETM+ was used to estimate deforestation rate from 

2001 to 2013. The deforestation rate is the main important input for simulating land use/cover 

change between two periods. In addition to the land use map, the biophysical characteristics 

of the basin (dealt in this chapter) and the sub-models from the chapter 3 were integrated in 

the BEN-LUDAS model. 

 

5.3.1 Methods for the classification of Landsat ETM+ of 2001 

a. Data source 

The Landsat 7 ETM + (Enhanced Thematic Mapper plus) was downloaded from 

http://glcf.umd.edu/index.shtml. The path-row 193-52 scene of 2001/10/20 was used based 

on the criterion defined in Section 3.2.1.1.  

 

b. Classification based Landsat 7 ETM+ key interpretation 

The classification of the scenes was mainly based on the key interpretation of Landsat 7 

ETM+. Utility of each important selected band (1, 2, 3, 4 and 5) for this study is presented in 

Table 5.1.  

The analyses of colour composite based on these criteria identified some features within the 

others (Figure 5.1). Thus: 

 For the true colour rendition, band 1 was displayed in the blue colour, band 2 was 

displayed in the green colour and band 3 was displayed in the red colour. The resulting image 

was fairly close to realistic and there was little contrast and features in the image, which were 

hard to distinguish;  
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 For the false colour, band 2 was displayed in blue, band 3 was displayed in green, and 

band 4 was displayed in red. This rendition looks rather strange vegetation, which jumps out 

as a bright red because green vegetation readily reflects infrared light energy; 

 

 

Table 5. 1 Application domain of each selected band for images classification of 2001 

Bands Electro magnetic 

Spectrum  (EMS) 

And Band width (, µm) 

 

Application domain  

1 Blue light 

(0.45-0.515) 

This band penetrates clear water better than other colours. It is 

absorbed by chlorophyll, so plants not show up very brightly in 

this band; useful for soil/vegetation discrimination, forest type 

mapping, and identifying man-made features 

 

2 Green light 

(0.525-0.605) 

This band reflects more green light than any other visible colour; 

man-made features are still visible 

 

3 Red light 

(0.63-0.69) 

It has limited water penetration; reflects well from dead foliage, 

but not well from live foliage with chlorophyll; useful for 

identifying vegetation types, soils and urban (city and town) 

features 

 

4 Near IR (NIR) 

(0.75-0.90) 

A good band for mapping shorelines and biomass content; very 

good at detecting and analysing vegetation 

 

5 Shortwave IR 

(SWIR) 

(1.55-1.75) 

This band provides a good contrast between different types of 

vegetation; useful for measuring the moisture content of soil and 

vegetation 

Source: Landsat 7 ETM+ handbook (images were downloaded via GLCF: 

http://www.landcover.org/index.shtml)  

 

In the pseudo natural colour, band 2 was displayed in blue, band 4 was displayed in green, 

and band 5 was displayed in red. This rendition looks like a jazzed up true colour rendition - 

one with more striking colours. 

Different features presented various patterns from one colour composite to another. The 

crossing of information lead to the discrimination of two to three features (Table 5.2). In 

addition, four main criteria were defined and added to perform the analysis. These criteria 

were based on the mountainous area, the rivers, restricted areas like private area under 

protection (farm of ostrich in Dassari) and the specific location of tree species like Terminalia 

macroptera. The discrimination of various land cover such as riparian forest and woodland, 
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savanna woodland, shrub savanna and grassland was based on the use of gradient colour 

(from high to fairly). During the forest inventory, the field observations revealed the location 

of Terminalia macroptera in the area with high soil moisture content. To confirm the 

observation plots coordinates where 100% of this species appeared were selected and 

projected and recognized as woodland or wetland vegetation (Table 5.2) if dark red colour 

appeared when using false colour composite. 

 

Table 5. 2 Criterion for discriminating different land use / cover of 2001 in the study 

area 

Ground Cover Type In Natural Colour 

(3,2,1), appears: 

In False Colour: 

(4,3,2), appears: 

In Pseudo Natural 

Colour (5,4,2), 

appears: 

Trees and bushes Olive Green 

 

Red Shades of green 

Crops Medium to light green 

 

Pink to red Shades of green 

Wetland Vegetation Dark green to black 

 

Dark red Shades of green 

Water Shades of blue and green 

 

Shades of blue Black to dark blue 

Urban areas White to light blue 

 

Blue to gray Lavender 

Bare soil  White to light gray  Blue to gray Magenta, Lavender, 

or pale pink 
Source: Landsat 7 ETM+ handbook. The information from this table provided keys indicators for the 

classification of the images for this work. 

 

In summary, a visual inspection of natural colour, false colour and pseudo natural colour 

(Table 5.2) representation of the Landsat scene has been used to identify training areas of 

each feature (land use/cover class) in these colour composites. The training area was finally 

generated using the previous approaches. The supervised classification using maximum 

likelihood classification was performed.  
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Figure 5. 2 Colour composite of Landsat 7 ETM+ bands 

 

 

c. Accuracy assessment of land use map of 2001 

The accuracy assessment indices used were described in Section 3.2.2.1. The selected sample 

points for accuracy assessment were historical google earth images (2006) based. The points 

from land use classes such as riparian forest and woodland, savanna woodland, shrub savanna 

and grassland savanna were located in the specific areas such as mountains and strict 

protected zone for the fact that the classified Landsat ETM+ was from 2001 and the available 

high resolution google earth pro images was for 2006. In addition, we assumed that in terms 
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of ecological dynamics of the ecosystem in the mountainous area there is no significant 

change between 2001 and 2006 in the Sudan Savannah environment. The cropland was easily 

discriminated using the colour composite approach (Figure 5.1) and band 5 of Landsat 

ETM+. The chosen settlement points were based on the socio-economic information, i.e 

coupled information between the building date of churches and schools of the site and the 

overpassing date of satellite sensor. The overall accuracy and kappa index (Gómez and 

Montero, 2011) have respectively shown 0.75 and 0.70 acceptable to retain the results of the 

classification.  

 

d. Reclassification of land use/cover map 

The reclassification of the land use map used the same approach for 2013 in Section 3.2.2.2. 

However, the area of roads has been enlarged from 2001 to 2013. The socio-economic 

information gathered in the field revealed an increase of the size of the roads due to the 

development of the main roads. For example the main road from Benin-Burkina Faso was not 

bitumenous in 2001. To overcome this constraint, buffer zone of 12 m was applied as default 

to delineate the size of this road along Wantehou and Pouri villages (Figure 4.1). The overlay 

of agroforestry and plantation that were surveyed during the field work (2013) to the 

classified map was based on the historical planting date. Infact, when each agroforestry and 

plantation was surveyed with GPS and sometimes with the support of Rapid Eye high 

resolution image (0.5 -2 m resolution) the planting date was given by the owner of this 

agroforestry or plantation. The chosen layers from these agroforestry and plantation was 

based on the assumption that the tree must have a minimum of 5 years before the passing date 

of Landsat ETM+ sensor, i.e a minimum of 17 years in 2013. The agroforestry and plantation 

that responded to this query were extracted and overlaid to the land use map of 2001. We also 
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assumed that plantations less than 5 years old do not contribute so much to the carbon 

sequestration.  

e. Change detection method 

A number of the image analysis approaches to change detection can be referred to as linear 

techniques, meaning that land cover change at each image location is associated with some 

linear transformation of a bi-temporal spectral vector (Collins and Woodcock, 1996). 

Classified maps for 2001 and 2013 were compared quantitatively by change matrix and also 

qualitatively by evaluation of spatial change map. The image difference rows calculated for 

each class was obtained from Eq. 5.1 (Erener et al., 2012):  

𝐼𝑑𝑓𝑟 =
FCT − ICT

ICT
                                                                          (5.1)    

Where;  

Idfr is image difference rows for each class, FCT is the final class total in pixel count, ICT is the initial class 

total in pixel count. 

 

5.3.2 Methods of landscape characterization 

The bio-physical characteristics of the study site are the main inputs into the BEN-LUDAS 

model. These bio-physical characteristics nourish the dynamics of ecosystems within the 

basin. The upslope contribution area for the patch is a proxy for soil nutrient accumulation. 

The elevation (m) at the patch location is used to derive surface slope (degree) at the patch 

location. This index is a profound indicator for soil erosion risk. The wetness index (a 

positive coefficient) at the patch location is a good proxy for indicating soil moisture content 

(Sørensen et al., 2006; Wilson and Gallant, 2000).  

 

a. Upslope contributing area  

Upslope area (PAs), is defined as the total catchment area above a point or short length of 

contour (Moore et al., 1991; Tarboton 1997). It is a distributed quantity that has important 

hydrological, geomorphological, and geological significance (Costa-Cabral and Burges, 
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1994). Upslope area is commonly used for the automatic demarcation of channels relying on 

the notion of a critical support area (O’Callaghan and Mark, 1984; Jenson and Domingue, 

1998; Morris and Heerdegen, 1988; Lammers and Band, 1990; Tarboton et al., 1992; Martz 

and Garbrecht, 1992).  

For a grid cell i of a DEM, PAs is computed from the grid cells from which the water flows 

into the cell i: 

𝑃𝐴𝑠 = (
1

b
) ∑ 𝜌𝑖. 𝐴𝑖

𝑛

𝑖=1

                                                                         (5.2) 

Where, Ai is the area of the grid cell i, n is the number of cells draining into the cell i, ρi is the weight depending 

on the runoff generation mechanism, and b is the contour width approximated by the cell size. 

 

The mapping of upslope contributing area in ArcGIS 10.1 software was first based on the 

delineation of flow direction as input for flow accumulation. Once the flow accumulation was 

known the upslope was derived. 

 

b. Soil suitability index for agriculture 

The soil suitability for agriculture influences the farmer’s decision choice in the basin. Within 

the six soil types of the catchment, the level of their suitability to agriculture varies each from 

other. To express this constraint as the variable, which characterize the basin based suitability 

index, the logarithmic function of the suitability based on expert judgment was calculated. 

The level of suitability was classified (from 1 not suitable, to 6 highly suitable to agriculture).  

 

c. Topographical wetness index 

Topographic wetness index (Pwet) can quantify the control of local topography on 

hydrological processes and indicate the spatial distribution of soil moisture and surface 

saturation (Quinn et al., 1995). The distribution of the index may be calculated for any 
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catchment and is used as a basis for the prediction of source areas, saturation excess overland 

flow and subsurface flows. The index has the form: 

𝑃𝑤𝑒𝑡 = 𝐿𝑛 (
𝑎

𝑡𝑎𝑛𝛽
)                                                                      (5.3) 

 

Where, in terms of a raster DEM, a = the upslope area, per unit contour length, contributing flow to a pixel; tanß 

= the local slope angle acting on a cell (this is taken to approximate the local hydraulic gradient under steady-

state conditions) 

 

 

5.3.3 Method to specify forest yield function: (the Forest Yield Dynamics sub-model) 

a. Basal area of forest stand 

Basal area is the cross-sectional area of a tree trunk at breast height. The stand basal area was 

estimated using Eq. 5.4.  

𝐵𝐴 =
1

𝐴
 ∑ CSA                    

𝑛

𝑖=1

                                                      (5.4)   

Where BA is the basal area of the plot in m
2
.ha

-1
, A the area sampled in ha, n the number of the trees in the plot 

and CSA the tree cross sectional area in m
2
.  

 

According to Le (2005), BA indicates not only the forest yield, but also the stock of a forest 

stand, which is strongly correlated with the competition status that is important for the growth 

of forest trees. In forestry practice, the amount of timber logged is often expressed in terms of 

basal area (Le, 2005).  

The basal area was first estimated for each plot of each land use / cover system. Thus, the 

average forest yield (variable p_yieldforest) (YLUC) and its uncertainty range [YLUC - CILUC, 

YLUC + CILUC] where CILUC is the confidence interval of YLUC. At the confidence level of 95 

%: 

CILUC = 1.96 x SdtLUC/sqrt (NLUC) where SdtLUC = standard deviation of YLUC, and NLUC the 

number of plots surveyed in each land use / cover system.  
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b. Forest growth model 

The forest yield model developed in this study was previously developed in VN-LUDAS 

model (Le, 2005). The yield function can be expressed either by the integration of the growth 

function along elapsed time (i.e., 
t
PGr = ∫ 

t
Z G.dt), or by the previous residual stock (

t-1
PGr) 

plus the instant growth rate (i.e., 
t
PGr = 

t-1
PGr + 

t-1
ZG). Thus the relationship of these concepts 

can be numerically expressed as follows: 

t
PGr = (

t-1
 PGr + 

t-1
 ZG)  - Gremovals                                             (5.5) 

 

Where 
t
PGr is the basal area at time t, 

t-1
PGr is the previous residual stock, 

t-1
ZG is the instant growth rate; and 

Gremovals is the harvested basal area.  

 

Accordingly like Le (2005), we used residual basal area 
t
PGr as the response variable to 

represent forest dynamics.  

ZG expresses the theoretical basal area growth (Vanclay, 1994) of a forest stand as a whole 

and can be calculated as: 

ZG = a(PG)
ε 
– b(PG)                                                                 (5.6) 

Where, PG is stand basal area, a and b are the constants, and ε is a coefficient of very small value (ε -------> 0).  

 

 

However, when empirical data are available, it is still difficult to fit the equation of this non-

linear form with the data (Le, 2005; Vanclay, 1994). 

To determine the parameters a and b of Eq. 5.6, the following was assumed: 

1- The stand growth rate ZG is asymptotically zero in the equilibrium state (
eq

PG). 

2- The derivative of the growth function ZG is zero when it reaches the maximum 

(
max

ZG). 

3- eq
PG is constant over space since there is no evidence to correlate this parameter with 

location variables. 

Accordingly, the 
eq

PG and 
max

ZG are settable either by forestry experts or review of literature 

on tropical forests (Havel, 1980; Vanclay, 1994). 
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Assuming that the parameters ε, 
eq

PG and 
max

ZG are known, the following equations 

determined the parameters a and b: 

    a = 
max

ZG / [(
eq

PG)
ε 
(ε 

ε/(1- ε)
 – ε

1/(1- ε)
)]                                    (5.7) 

    b = 
max

ZG / [
eq

PG
 
(ε 

ε/(1- ε)
 – ε

1/(1- ε)
)]                                       (5.8)  

Where, 
max

ZG is the value that can be approximated from the projected outputs of empirical growth models, 
eq

PG 

is the high value of the plot basal area of the surveyed plots in the riparian forest and woodland, savanna 

woodland, shrub savanna and savanna grassland  ε is fixed by setting a very small value (i.e., ε = 10
-6

). 

 

In the case of the present study area we used reference from Jean-Louis (1997) to estimate 

max
ZG. The author presented the basal area increment of some species in the region where the 

the rainfall is about 900 to 1000 mm per year in the West of Burkina-Faso. The region 

presents similar characteristics in rainfall pattern and specific species like our study site. For 

this reason, the mean increment basal area of species such as Entada Africana, Terminalia 

avicinoides, Lannea acida, Combretum glutinosum, Stereospermum kunthianum and Parkia 

biglobosa respectively showed 6.76, 2.13, 1.64, 6.20, 11.06 and 6.43 % of the mean 

increment basal area for Jean-Louis (1997) study. Thus the overall mean increment basal area 

was set to be 5.7 %. We used this mean increment for the present case study and assume that 

for any given tree species of stand basal area BA, its increment within the year is equal to  5.7 

times BA divided by 100.  

The 
max

ZG was then estimated for each LUC class of our plots data and the results were used 

as input into the BEN-LUDAS Model. The following steps were used before the integration 

into the BEN-LUDAS model: 

- Estimation of the individual cross sectional area of trees based on the plots data 

obtained from each land use/cover system, 

- Calculation of the average basal area of all trees for each LUC, 

- Applying 5.7 % to this average and considered the obtained value as 
max

ZG for each 

LUC. 
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The 
max

ZG increment for each LUC were 1.04 (riparian forest and woodland), 0.42 (savanna 

woodland), 0.16 (Shrub savanna), 0.23 (savanna grassland), and 0.03 (cropland and fallow).  

 

c. Special consideration for overcoming Gremovals for farming activity 

The main human activity in the Dassari Basin is farming. Increases of agricultural land are of 

the expense of removal of tree cover in riparian forest and woodland, savanna woodland and 

shrub savanna and in a few cases in savanna grassland.  Removals of tree cover were done by 

farmers through: logging of the small trees and burning of the big ones. It is assumed that 

burning and logging both contributed to the mortality of the tree, hence to the decrease of 

vegetation carbon and nitrogen stocks. Direct count of the number of logged and burned trees 

in the field are considered not realistic especially when the establishment of the farm to the 

detriment of natural vegetation took place over a certain number of years and in addition the 

residual trees were converted into firewood consumption or into charcoal production. To 

overcome this constraint, the amount logged or burned trees were approximated as the 

observed difference between basal area of forest and farm land.  The following steps were 

used based on available plots data. 

- Calculation of the difference between the mean basal area of natural vegetation 

(riparian forest and woodland, savanna woodland, shrub savanna and grassland) and 

farm land, 

- Estimation of the difference of mean tree stock between natural vegetation and farm 

land, 

- Estimation of the mean logged cross sectional area for a single tree.  

- Estimation of the amount logged, which was equal to the mean difference of basal 

area (or mean trees stock times mean logged/burned basal area) between forest land 

and farm land. 
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5.3.4 Method for modelling natural transition among land-cover types: the Natural 

Transition sub-model 

Two type of conversion govern forest ecosystem: natural conversion and human induced 

conversion. The natural conversion occurred in forest when trees grow in a normal way and 

stand basal area of the forest patch is higher than the threshold (Eq. 5.11) of LUC. The land 

use transition occurred in the case of N1 to N3 (normal transition routine) (Figure 5.3).  

Three categories of human induced conversion occurred in the basin. The first category is the 

conversion due to logging activity, which occurred through the transition rule from riparian 

forest to savanna woodland, savanna woodland to shrub savanna and shrub savanna to 

grassland (decision rule H1, Eq.5.5 and 5.11). 

The second category of conversion occurred during the farming activity when the forest patch 

is transformed to the farm (decision rules H2 to H5, Eq. 5.5 and Section 5.3.3.3). The third 

category of conversion occurred when farmers’ decision was motivated by the 

implementation of REDD+. The first type of REDD+ is the initiative based regeneration of 

degraded land without human disturbance (decision rule H5, explained as the transition from 

cropland to grassland and to other forest land during long period).  

The second REDD+ initiative is the mitigation strategy to climate change based (decision 

rule H6 to H7).  
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Type of cover conversion

Natural conversion, 

performed by the 

NaturalTransition routine

Nx

Riparian forest

         (Pcover = 1)

Savanna woodland

          (Pcover = 2)

Shrub savanna

          (Pcover = 3)

Savanna grassland

          (Pcover = 4)

Plantation

         (Pcover = 9)
Agroforestry system

         (Pcover = 8)

Roads

          (Pcover = 11)

Rivers and water body

         (Pcover = 10)

Bareland

         (Pcover = 6)

Cropland and fallow

         (Pcover = 5)

Mitigation Covers

Fixed Covers

Settlements

         (Pcover = 7)

Natural Covers

Agricultural Cover

N
1

N
2

N
3 H

1

Human-induced conversion, 

performed by the DECISION 

module

Hx

H2

H4

H3

H6 H7

H5

Human induced

Cover

H8

 
Figure 5. 3 Land use/cover transition in BEN-LUDAS: combination of human-induced 

transition (influenced by DECISION module) and natural transition (viz. Natural 

Transition sub-model) 

 

This type of conversation, which leads to the transition from cropland to plantation and 

agroforestry system is due to farmers’ decision motivated by farmers’ skills or the external 

action based carbon fund project. Other type of conversion occurred when the surrounding 

area in the settlements or the garden were converted to settlements (decision rule H8). These 

areas are naturally farm lands.  

The human induced conversion is the consequence of deforestation and forest degradation 

which required appropriate tools to estimate the deforestation rate.  
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5.3.5 Estimation of the deforestation rate based algorithms 

The deforestation rate was applied between 2001 and 2013 using the results of land use maps 

from the two periods. Deforestation rate was estimated (Eq. 5.9) following Aguilar-

Amuchastegui et al. 2014 and Puyravaud, (2003) as,. 

𝑟 =
1

𝑡2 − 𝑡1
𝑙𝑛

𝐴2

𝐴1
                                                                                        (5.9) 

In addition to Eq. 5.9 another equation from FAO, (1995) for comparison Eq. 5.10. The 

following equation is given as (FAO cited by Orekan, 2007): 

𝑟 = [(
𝐴2

𝐴1
)

(
1

𝑡2−𝑡1
)

 ] − 1                                                                            (5.10) 

Where, r is the deforestation rate in decimals, t2-t1 is the difference between the years of the forest cover area 

assessments (the assessment period), A1 is the forest area at t1 and A2 is the corresponding area at t2 

 

When comparing the results obtained from the two equations, the difference in magnitude 

was of the order of 0.0, which is not significant. For that reason, the equation Eq. 5.9 which is 

easier to manipulate was selected. 

 

 

5.4 Results and discussion 

5.4.1 Land use cover change analysis (2001-2013) 

The land use/cover maps showed on increment in the area of cropland by 21.76 % between 

2001 and 2013 indicating most cropland expended at the expense of other land cover classes. 

The total area of cropland covered 34.25 % in 2001 (Table 5.3 and Figure 5.4) was increased 

to 41.70 % in 2013 (Table 5.3 and Figure 5.5). The forest land while comprised of riparian 

forest and woodland, savanna woodland and shrub savanna covered 62.11 % in 2001 and was 

decreased to cover 51.98 % of the total area of the basin. In 2013, the rate of decease in forest 
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cover within the period was therefore 1.48 % per year. The rate of increase in cropland cover 

was estimated to be 1.8 % per year.  

 

Table 5. 3 Statistics of land use/cover in 2001 and 2013 

 Land use cover  

classes 

  

Area in ha 

  

Area in percentage 

2001 2013 

 

Riparian forest and 

woodland 

1531.35 320.4 

Savanna woodland 3238.02 5447.79 

Shrub savanna 7190.55 4241.88 

Grassland savanna 57.33 96.48 

Crop and fallow 6595.83 8031.15 

Bare land  122.4 107.91 

 

Settlements 33.75 486.72 

Agroforestry 

system 

2.07 20.7 

Plantation 9 16.74 

Rivers and water 

body 

344.61 348.57 

Roads 132.48 139.05 

 



 

110 
 

 

Figure 5. 4 Land use/cover map of 2001 in the Dassari basin 
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Figure 5. 5 Land use/cover map of 2013 in the Dassari Basin 

 

 

 



 

112 
 

5.4.2 Basin characterization 

The biophysical variables of the basin (Figure 5.6) were determined by the natural growth of 

the forest. Four main bio-physical variables based on statistical and GIS analysis were 

utilised. These variables were the elevation, slope, upslope contribution area and the wetness 

index.  

The basin was characterized by two reliefs (upland and mountainous zones) with range of 

elevation from 140 m to 277 m above mean sea level. The mountainous zone is covered by 

the same type of plant species seen in the upland zone. The mountainous area could be seen 

around Wantehou and Firihou villages. This elevation determined the slope gradient observed 

in the basin. The slope was expressed as a good indicator for erodibility (Le, 2005) and varied 

from 0 to 0.34 radius or 2.44 to 4.83 º. When the slope is high in the area of high pressure on 

the land it contributed to the loss of the productivity in farm land. We use this indicator as an 

input for modelling the dynamics of the ecosystem. We used upslope contribution area as a 

proxy for soil nutrient accumulation (see Section 5.3.2.1). The nutrient accumulation helps to 

determine area of good vegetation and area of potential yield for cropping system. The 

upslope contribution area which was log10 transformed, varied from 30 to 62.10
6
 with high 

value along the rivers and water body indicating the water flow accumulation. This variable 

was used to map biomass, carbon and nitrogen stocks following Gaussian distribution for 

each land use cover type. The wetness index is a good proxy for indicating soil moisture 

content (see Section 5.3.2.3). The wetness index showed high pattern along the river and 

within the lowlands with the value ranging between 4.44 and 22.54. These biophysical factors 

for basin characterization were used as input in the BEN-LUDAS model to determine the 

dynamics of the ecosystem. 
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Figure 5. 6 Raster images of a) elevation (m), b) slope gradient (radius), c) upslope 

contributing area (m
2
/m) (log10 transformation), and d) wetness index in Dassari basin 
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5.4.3 Modelling the dynamics of stand basal area 

The stand basal area is the key factor which has been applied to model farming activity in the 

Dassari Basin. It was assumed that when a forest patch is cleared and the land is sown for 

cropland purpose, its state changed by losing some amount of yield forest. The current state 

of each land use cover type within its uncertainty ranged is expressed in Eq. 5.11. 

 

 (5.11) 

2013
PGr (j)    

 

 

 

Table 5. 4 Stand basal area in each land use/cover type (LUC) 

LUC Descriptive statistic 

Mean YLUC,  

(m
2
ha

-1
) 

SE (Standard Error) CILUC at 95 % 

Riparian forest and woodland 24.71 4.36 5.59 

Savanna woodland 9.20 2.06 1.285 

Shrub savanna 3.43 0.64 0.33 

Savanna grassland 2.85 0.38 1.50 

Cropland and fallow 2.48 0.43 0.36 

Settlement 1.45 0.41 0.54 

Agroforestry (Cashew) 16.61* 1.8 3.7 

Plantation (Eucalypt) 32** 3.44 15 

Note: *The socio-economic information revealed the age of this agroforestry system (cashew) ranged from 7 to 

16 years old. ** The socio-economic information revealed the age of this plantation (eucalyptus) ranged from 5 

to 35 years old. The plots from other plantations (10 plots) such as Gmelina arborea, Azadirachta indica, 

Tectona grandis and Mangifera indica were not involved in estimating stand basal area for the fact that their 

area are very small in the catchment.  

 

 

The yield lost is a function of the initial state of the patch. A patch from the riparian forest 

and woodland, which has 24.71±5.59 (SE) m
2
ha

-1 
(Table 5.4), will be converted to cropland 

with the final yield of 2.48±0.36 (SE) m
2
.ha

-1
 (decision rule H2) during the life-span of the 

cropland or when the farmers decided to let it as fallow for a long time. The cropland can 

19.12 + random (11.18)       if    
2013

Pcover (j) = 1 

07.915 + random (2.57)       if    
2013

Pcover (j) = 2 

03.1 + random (0.66)           if    
2013

Pcover (j) = 3 

2.85 + random (3)               if    
2013

Pcover (j) = 4 

1.35 + random (0.72)          if    
2013

Pcover (j) = 5 

0.91 + random (1.08)         if    
2013

Pcover (j) = 7 

12.91 + random (7.4)         if    
2013

Pcover (j) = 8 

17.0 + random (33)            if    
2013

Pcover (j) = 9 

0                                         if    
2013

Pcover (j) ∉ [6, 10, 11] 
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change the state and converted to grassland (decision rule H5) by increasing its yield from 

2.48±0.36 (SE) m
2
.ha

-1 
to 2.85±1.50 (SE) m

2
.ha

-1
 if the cropland became not productive and it 

was abandoned by farmers. The recovery process of the patch can be started by gaining yield 

(regeneration) which was one of REDD+ implementation option. In the same order a farmer 

can decide to devote the degraded land to either agroforestry system or plantation (decision 

rule H7 and H6, Figure 5.3). When a cropland patch was devoted to agroforestry system and 

plantation its yield changed and respectively become 16.61±3.7 (SE) m
2
ha

-1
 and 32±15 (SE) 

m
2
ha

-1
.  

 

5.5 Conclusions 

A better understanding of the biophysical environment of any territory is a key factor for the 

evidence of the decision making. The current state of the socio-ecological system of the 

Dassari Basin could help to project for the future dynamic of the environment. The 

degradation rate of 1.48 % per year in the basin is significant information to predict the future 

impacts on CO2 and N2O emissions from vegetation degradation under various policies 

setting or scenarios. The biophysical characteristics of the site can also be useful as input for 

BEN-LUDAS model. Forest yield and natural transition rule were the key factors which 

determined the dynamics of the site. The flexibility of BEN-LUDAS model allowed the 

integration of these parameters in the model procedures.  
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CHAPTER VI: IMPACTS ASSESSMENT OF LAND USE SCENARIOS  

 

6.1 Introduction 

The Kyoto Protocol (http://unfccc.int/kyoto_protocol/items/2830.php) of the United Nations 

Framework Convention on Climate Change (UNFCCC) was developed as an attempt to 

confront and begin to reverse the rising CO2 concentrations. Emissions of CO2 from land use 

and land-use change represent up to 20 % of current CO2 emissions from burning fossil fuels 

(Dixon et al., 1994; Smit et al., 2014; Brown et al., 1996). According to the Kyoto protocol, 

changes in land-use can positively impact atmospheric CO2 concentrations by either: 

i) Decreasing emissions that would occur without intervention, or 

ii)  Sequestering CO2 from the atmosphere into vegetation and the associated soil.  

The Kyoto Protocol recognised the role that changes in the land use such as deforestation and 

afforestation, have on the global carbon cycle. Possible mitigation strategies to sequester 

carbon are planting trees, changing agricultural tillage or cropping practices, or re-

establishing grasslands. In addition, the Protocol includes a mechanism by which 

industrialised (Annex I) nations can offset some of their emissions by investing in projects in 

non-industrialised (non-Annex I) nations in line with the clean development mechanism 

(CDM, Article 12).  

The purpose of the clean development mechanism is to assist Parties not included in Annex I 

in achieving sustainable development and in contributing to the ultimate objective of the 

convention, and to assist parties included in Annex I in achieving compliance with their 

quantified limitation and reduction commitments.  

In the context of this study the land use scenarios are the different policies that could be 

adopted to change the way the land is used for agricultural purpose. In other terms, scenarios 

define the new approaches for agricultural practices with the aim to reduce the impacts of the 

current practice in the environment and to alleviate poverty at the household level. These 
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scenarios or policies are characterized by the improvement of socio-economic and agronomic 

conditions of the site at different levels. These scenario need to be developed with the aim to 

set emission reduction target. These scenarios have a baseline or counterfactual with the aim 

to estimate what would have happened in the absence of a policy or project. It is required so 

that the mitigation impact of a project or policy can be quantified. In the forestry sector, the 

baseline is particularly important in attempts to reduce emissions from deforestation and 

degradation (Bond et al., 2009). 

The developed land use scenarios will help countries with historically high rates of 

deforestation to adjust their policy in term of land use management and to unfold the future 

impact of the defined policies. The present chapter addresses this issue in developing four 

land use scenarios based on the change of land use pattern between 2001 and 2013 and the 

socio-economic situation of the study site.   

The aim was to compare scenarios based mitigation strategy to climate change as an issue of 

contributing for carbon and nitrogen sequestration, and the condition financial investment’ as 

an economic development pathway, and to explore the possible future temporal and spatial 

impacts on vegetation carbon/nitrogen stocks or CO2 and N2O emissions. 

 

6.2 International agreements for climate change mitigation strategy in AFOLU sector 

 

Kyoto Protocol  

The Kyoto Protocol (1997) was adopted in Kyoto on 11
th

 December 1997. The Protocol is the 

set of 28 Articles and the Parties to this Protocol being Parties to the UNFCCC. The Kyoto 

Protocol recognized that some GHGs such as Carbon dioxide (CO2), Methane (CH4), Nitrous 

oxide (N2O), Hydrofluorocarbon (HFCs), Perfluorocarbons (PFCs), Sulphur hexafluoride 

(SF6) destroy ozone layer and contribute to the global environmental change.  
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Safeguards in REDD plus under the Cancun Agreement 

UNFCCC Cancun and Durban Agreements (Decision 1/CP.16 and Decision 12/CP.17) define 

safeguards as policies and measures that aim to address both direct and indirect impacts of 

REDD + in communities and ecosystems (UNFCCC, 2013). The safeguards comprise three 

levels (governance, social and environment) and are underlined as follows: 

 That actions complement or are consistent with the objectives of national forest 

programmes and relevant international conventions and agreements;  

 Transparent and effective national forest governance structures, taking into account 

national legislation and sovereignty; 

 Respect for the knowledge and rights of indigenous peoples and members of local 

communities, by taking into account relevant international obligations, national 

circumstances and laws. 

 The full and effective participation of relevant stakeholders, in particular indigenous 

peoples and local communities, 

 That actions are consistent with the conservation of natural forests and biological 

diversity, ensuring that the actions referred to in paragraph 70 of this decision are not used for 

the conversion of natural forests, but are instead used to incentivize the protection and 

conservation of natural forests and their ecosystem services, and to enhance other social and 

environmental benefits, 

 Actions to address the risks of reversals; 

 Actions to reduce displacement of emissions. 

In line with the Cancun Agreement, Paris Agreement was approved by Parties in 2015.  

 

Paris Agreement (COP 21) 

The adoption of the Paris Agreement is recalling: 
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 decision 1/CP.17 on the establishment of the Ad Hoc Working Group on the Durban 

Platform for Enhanced Action, 

 Articles 2, 3 and 4 of the Convention, 

 relevant decisions of the Conference of the Parties, including decisions 1/CP.16, 

2/CP.18, 1/CP.19 and 1/CP.20, 

The Paris Agreement is based on the key goal: “Transforming our world: the 2030 Agenda 

for Sustainable Development”. In accordance with this goal the main important retained 

resolution which fit with the present research study are:  

 The Conference of the Parties recognize that climate change represents an urgent and 

potentially irreversible threat to human societies and the planet and thus requires the widest 

possible cooperation by all countries, and their participation in an effective and appropriate 

international response, with a view to accelerating the reduction of global greenhouse gas 

emissions,  

 The Conference of the Parties notes with concern that the estimated aggregate 

greenhouse gas emission levels in 2025 and 2030 resulting from the intended nationally 

determined contributions do not fall within least-cost 2 ˚C scenarios but rather lead to a 

projected level of 55 gigatonnes in 2030, and also notes that much greater emission reduction 

efforts will be required than those associated with the intended nationally determined 

contributions in order to hold the increase in the global average temperature to below 2 ˚C 

above pre-industrial levels by reducing emissions to 40 gigatonnes or to 1.5 ˚C.   

The developed scenarios in the case of this research study were simulated from 2013 to 2025 

with the aim of determining the impact of each scenario in terms of emissions of carbon 

dioxide (CO2) and nitrous oxide (N2O) due to vegetation degradation in the basin and in 

addition to assess their future impacts in terms of emissions reduction and net removal of 

carbon dioxide.  
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6.3 National circumstance   

 

Benin is a West African country located between latitude 6º 30’ and 12º 30’ North and 

longitude 1º and 3º 40’ East with an area of 114,763 km
2 

(DCN, 2011). Regarding the 

agricultural sector, the country produces cash crops mainly cotton with the emergence of 

pineapple and cashew (DCN, 2011). The most important food crops are maize, cassava and 

sorghum. Farming is still influenced by traditional practices.  

Brief analysis of the national inventory of GHGs emissions revealed the need for the country 

to build an effective climate change action and defines options for mitigating climate change. 

The country also provides a basis to participate in the flexibility mechanisms associated with 

the United Nations Framework Convention on Climate Change (UNFCCC), focusing on 

REDD+ with regards to these actions, the methodological approach for the national GHGs 

inventory was based on the IPCC Tier 1 method. The DCN (2011) revealed that in the year 

2000 the agricultural and energy sectors were the main sources of the total emissions, with 68 

and 30 %, respectively.  

In the agricultural sector, climate scenarios were used for the horizon 2015 and 2025 with the 

analysis of the magnitude of the impacts on crops yield in the different agro-ecological zones 

of Benin. In the forestry sector, the scenario were used for the horizon 2050 and 2100 with 

the analysis of the increase of the temperature on the ecosystem in terms of water stress or 

heat that could cause tree mortality.  

Despite these actions to mitigate climate change in the AFOLU sector more effort are needs 

to be done. Infact, the country still uses the Tier 1 method for the GHGs inventory. In 

addition there is the lack of data provided from modelling land use/cover changes and its 

future impacts on the GHGs emissions in the AFOLU sector. The results provided by this 
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research work will contribute towards closing these gaps for this part of the country (Sudan 

Savannah zone) and also contribute towards decision making at the national level.  

 

6.4 Methodology 

6.4.1 BEN-LUDAS model calibration and validation process 

The calibration and validation of the BEN-LUDAS model was based on socio-economic 

information, two time series land use cover maps and the deforestation rate (Figure 6.1) using 

the sub-model Time-Labour-allocation previously defined in Table 2.2. 

The model calibration was based on the livelihoods strategy of farming. The human asset of 

the livelihoods strategy defines the percentage of time and the labour allocated to agriculture 

practices by the farmers. Time-Labour-Allocation sub-model was used through labour-spent 

procedure developed within the BEN-LUDAS model. Infact, the change of land use during 

the time and space is a function of the quantum time-labour (percentage of time devoted to 

farming) and the number of persons who farm. The sub-model Time-Labour-allocation 

(Table 2.2) expressed the time-labour (in % times persons) allocated to farm a piece of land 

(at the pixel scale or patch level) during a time scale of one year or unit of simulation. For 

this purpose, farming is a function of the time allocated to the agricultural practice and the 

number of persons or the number of workers within the household. The deforestation rate is 

inversely proportional to the time-labour, i.e. high is the time-labour allocated to sow a patch 

of land, low is the deforestation rate. The Time-Labour-Allocation sub-model was 

constructed by simulating the model several times (11) using land use map of 2013. We run 

the model at the time scale of 12 years and we used the output to estimate the deforestation 

rate using Eq. 5.9. The log-transformation Time-Labour-Allocation sub-model was generated 

using SPSS 17 packages. The sub-model was then expressed in the form of ln (Time-

Labour) = -1.023 x ln (deforestation rate) + ln (38.924) function (Figure 6.1 and Table 6.1) 
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with R
2
 = 0.9999. The sub-model was finally transformed in the exponential function (Eq. 

6.1) as follows: 

Time-labour [%] = exp [-1.023 x ln (deforestation rate) + ln (38.924)]    (6.1) 

Deforestation rate [%]

Observed

Model curve

T
im

e
-L

a
b

o
u

r 
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]

 

Figure 6. 1 Time-labour as a function of deforestation rate 

 

The Time-Labour-allocation sub-model was integrated into the BEN-LUDAS model for 

validation and for simulating LULCC of developed scenarios. 

 

Table 6. 1 Parameters of Time-Labour-Allocation sub-model  

 Coefficient Standard error Sig. 

Intercept 38.924 0.069 0.000
 

ln (deforestation rate (%)) -1.023 0.004 0.000 

Note: The independent variable is ln (Time-Labour (%)) 

 

 

The model validation was based on the following steps: 

 Estimation of the deforestation rate using Eq. 5.9, 
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 Integration of the land use map of 2001 into the BEN-LUDAS model, 

 Simulating land use map of 2001 using the estimated deforestation rate from land use 

cover maps of 2001 and 2013, 

 Comparing (Table 6.2) 12 years simulated (2013), (the outputs of the model) to the 

classified land use map of 2013, 

 Estimating the difference between the classified map and the simulated one using Eq. 

6.2 as follows: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = [
LUC 2013−Simulated (2001−2013)

LUC 2013
   ] 𝑋 100                           (6.2)   

Where: 

LUC 2013 is the classified land use/cover map of 2013 and simulated 2013 is the output of the 

classified land/cover 2001 simulating for 12 years under BEN-LUDAS.  

 

 

 

Figure 6. 2 Flowchart showing the calibration and validation process of BEN-LUDAS 

 

The 12 years’ timeline simulated 2013 shows (Table 6.2) the order of difference with the 

magnitude of 0.09 % for forest land whereas the difference was estimated to be 0.46 % for 
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cropland and fallow. The low difference estimated between the observed and the predicted 

confirms that the model mimics well the reality and can be used for simulating land use/cover 

changes under developed scenarios.  

Table 6. 2 Model validation (simulated 2013 versus classified land use cover maps of 

2013) 

LUCa Area in (ha) Difference (%) 

LUC 2001 LUC 2013  Simulated LUC 2013 

Forest land 

 

11959.92 10010.25 10019.16 0.09 

Cropland and 

fallow 

6595.83

  

8031.15 8068.59 0.46 

 

 

6.4.2 Land use scenarios 

a. Business as Usual Scenario 

The business as usual (BAU) scenario (LUS1) was based on the farmer’s practices. The 

farming activity comprises the logging and burning of plant biomass. The main crops were 

maize, sorghum, millet, yam, rice, and beans as food crops and cotton as industrial crop. The 

assumptions for the business as usual scenario were the population growth rate of 2.54 %, a 

deforestation rate of 1.48 % and the present mean crop yield of 0.7 t.ha
-1

. The observed 

deforestation rate of 1.48 % explained an increase of cropping area to 21.76 % from 2001 to 

2013.  

The assumptions of this scenario assumes that an increase of agricultural area without any 

AFOLU (Agriculture, Forestry and Other Land Use) initiative affects vegetation carbon and 

nitrogen storage at the basin level and this leads to the emission of carbon dioxide and nitrous 

oxide into the atmosphere due to farming activity.  

 



 

125 
 

b. Food security scenario 

The food security scenario (LUS2) aims to contribute to the policy enhancement in farming 

activity. The cotton production is perceived as one of land use change drivers which leads to 

the increment of farm land and does not significantly contribute to alleviate poverty of rural 

population (according to our investigations from different stakeholders). The policy based 

food security that will lead to the increment of crop yield by 2.5 t.ha
-1

 and the abandonment 

of cotton production in this part of the country is needed. Thus, this policy will help to 

decrease farm land size from 2013 to 2025 and to maintain the deforestation at the rate of 

0.97. To estimate the deforestation rate of 0.97 % we first assumed that this rate was obtained 

under only food security between 2001 and 2013 i.e. assuming that cotton was not produced 

between 2001 and 2013. Infact, the forest land decreases to 1949.85 ha between 2001 and 

2013 meaning an increment of cropland to 23.02 %. The socio-economic information 

revealed that cotton represents 32.27 % to the total crop. To calculate deforestation rate 

without cotton 32.27 % of 1949.85 was first estimated. This was then added to the area of 

forest land in 2013 and obtained 10639.32 ha. This value was used to calculate the 

deforestation rate, which is without cotton, and we obtained a rate of 0.97%. This rate was 

used for food security scenario. In addition to these inputs, the population growth rate of 

2.54% was assumed.  

 

c. Business as usual based adaptation and mitigation strategy scenario 

This scenario (LUS3) assumed that farmer’s households are conscious of the fact that their 

environment or weather is changing. It is assumed the farmers believe that there is a 

relationship between rainfall patterns and natural vegetation and that they decide as a result to 

devote a piece of their land for planting trees or adopt agroforestry systems to respond to the 

carbon market project and adaptation option to climate change. The mitigation strategy to 
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climate change support farmers to adopt agroforestry systems and plantations at the farmer’s 

fields and adaptation options (cropping systems strategies used to increase productivity at the 

farmer’s field scale) contribute to increased resilience of farmers due to climate effect. To 

implement this scenario, input of LUS1 were considered and previous probability of 70 % 

and 65 % respectively for agroforestry system and plantation estimated were applied. In 

addition, the adaptation options to climate change assumed to increase the crop yield from 0.7 

to 2.5 t/ha.  

The policy based on the assumptions of this scenarios support REDD+ initiatives. This 

includes activities related to: Afforestation, Reforestation and Vegetation (ARR), 

Agricultural Land Management (ALM), Improved Forest Management (IFM) and Reduced 

Emissions from Deforestation and Degradation (REDD). The assumptions for each scenario 

are outlined in Table 6.3. 

 

Table 6. 3 Main assumptions of the land use scenarios based on land use change 

between 2001 and 2013 and on the socio-economic condition of the site 

LUS
1
: BUA 

(business as usual ) 

LUS
2
: Food 

security 

LUS
3
: BUA based 

Adaptation and 

Mitigation strategy to 

climate change 

LUS
4
:Food security 

based 

 Mitigation strategy to 

climate change 

Population growth 

rate of 0.0254  

Population growth 

rate of 0.0254 

Probability of 

agroforestry system 

adoption is  70 % 

Probability of 

agroforestry system 

adoption is 70 % 

 

Deforestation rate 

of 1.48 % 

(Increment of 

cropland based 

cotton production 

to 23. 02 %) 

 

Deforestation rate  

of  0.97 % 

(Increment of 

cropland to 15 %)  

 

Probability of plantation 

adoption 

  is 65 % 

Probability of 

plantation adoption  is 

65 % 

Productivity  does 

not change (Mean 

Yield equal to 0.7  

T / ha) 

Policy enhancement 

in agricultural 

practices (yield 

improvement i.e 

from 0.7 to 2.5 t/ha) 

 Policy based adaptation 

strategy to climate 

change (yield 

improvement based 

adaptation option i.e 

from 0.7 to 2.5 t/ha) 

 Policy enhancement in 

agricultural practices 

(yield improvement i.e 

from 0.7 to 2.5 t/ha) 
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d. Food security based mitigation strategy scenario  

The food security based mitigation strategy to climate change scenario (LUS4) used in 

addition to the assumptions of food security scenario the probability to adopt agroforestry 

system and plantation by farmers. Probability of 70 % (for agroforestry system) and 65 % 

(for plantation) were applied for this scenario.  

 

6.4.3 Approach for estimating carbon stocks change (Emission-Removal of CO2) 

In the context of this study, the key activity data requirement for modelling carbon dynamics 

are area of forest land remaining forest land, forest area affected by disturbance, land 

afforested derived from cropland and land converted to forest through plantation or natural 

regeneration. For land use, the IPCC recognizes two methods to estimate carbon emissions: 

the Stock-Change method and the Gain-Loss method (IPCC, 2006). The Stock-change 

method estimates emissions by identifying the changes in carbon stocks at the beginning and 

end of the period over an entire monitoring area. The Gain-Loss method estimates emissions 

by identifying the area of change from one cover type to another and the difference in stocks 

between those two types per unit area (Angelsen, 2008). Hewson et al. (2014) provides a 

more detailed explanation and assert that for the Gain-Loss method, the field inventory is 

conducted to obtain an estimate of mean stock-per-unit-area for each cover class. These 

stocks per-unit-area estimates can then be assumed to be constant, and land use is monitored 

to estimate the areas of change between pairs of classes. In this case, the data on the 

difference in stocks associated with a change between two classes over time are called 

Emission Factors (EFs), and the areas of change are called Activity Data. These are 

multiplied to estimate the emissions associated with each type of land-use change.  
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We applied the stock-change approach (Eq. 6.3) in the case study to estimate emission and 

removals of carbon and nitrogen during 12 years simulations (2013-2025) for all scenarios. 

Land use transition rule based change detection approach (Section 5.3.15) was applied to 

determine area of change between the two periods and the carbon and nitrogen stock was 

assumed to be constant. This change detection approach used the two land use maps: the map 

of 2013 and the output of one of the scenarios. The net losses in total ecosystem carbon 

stocks were used to estimate CO2 emissions to the atmosphere, and net gains in total 

ecosystem carbon stocks were used to estimate removal of CO2 from the atmosphere (IPCC, 

2006). 

Equation 6.3 was used to express this removal/emission for each LUC class: 

∆C =  
𝐶𝑡2 − 𝐶𝑡1

𝑡2 − 𝑡1

                                                                                                                                    (6.3) 

 

Where:  

ΔC = annual carbon stock change in the pool, Gg C yr
-1

 

Ct1= carbon stock in the pool at time t1, Gg C 

Ct2= carbon stock in the pool at time t2, Gg C 

 

The conversion from the biomass to carbon and from the carbon to the carbon dioxide at the 

tree level was based on the Eq 6.4 as follow: 

𝐶𝑂2 (𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛) = 𝐴𝐺𝐵(𝑎𝑙𝑙𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑙)   𝑥  𝐶%(𝑐𝑎𝑟𝑏𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)  𝑥   
44

12
              (6.4) 

Where: 

CO2 = Carbon dioxide emission 

AGB = Aboveground biomass at the tree level using allometric equation 

C%   = carbon content (%) of the tree species  

 

6.4.4 Illustration of the emission/removal process based on the zoom in the specific areas 

The specific area was zoomed with few pixels to explain the process of land use transition 

matrix and its implication in the estimation of carbon dioxide emissions and removal from 

land use cover changes. It was first assumed that the mean carbon stock previously estimated 

for each LUC class in the Table 3.19 was constant over the year. In fact, the mean carbon 

stock or emission factors (EFs), which is agro-ecological zone based for each country, is the 
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key input for carbon accounting recommended by IPCC (2006). At the pixel level for 

example, the decision rules of land use transition from Figure 5.3 and the mean carbon stock 

from Table 3.19 can be applied to estimate emission or removal of carbon dioxide `during 

two periods. The removal and emission process during two periods (2013 and 2025) are 

explained in Figure 6.3. The process of land use transition and its implication in the removal 

/emission process were explained in the four scenarios as an example and which mimic the 

real world. These cases are as followed: 

1. The pixel A (Figure 6.2) was savanna woodland in 2013 and has changed to cropland 

under the scenarios LUS1. Thus, the named pixel holds the mean carbon stock of 21.35±1.16 

Mg.ha
-1

 which has become 1.52±0.14 Mg.ha
-1

 over 12 years timeline because of farming 

activity or shifting cultivation. Thus, the estimation of emission/removal factor was based on 

the difference between two mean carbon stocks from two LUC class. The lost was equal to 

19.53 Mg .ha
-1

 meaning the difference of: 21.35 Mg.ha
-1

 – 1.52 Mg.ha
-1

. For this given pixel 

of the size 0.09 ha which represented the activity data (AD) it will release 1.75 Mg of carbon 

or 6.45 Mg of carbon dioxide during the change of its state from savanna woodland to 

cropland.  

Initial state in 2013

LUS1: Business as usual scenario LUS2: Food security 

scenario

LUS3: Business as usual 

based adaptation and 

mitigation strategy to climate 

change scenario

LUS4: Food security 

based mitigation 

strategy to climate 

change scenario

A

A A A A

B

B B B B

C

C C CC

D

D D D D

 

Figure 6. 3 Land use transition scheme and its implication in the removal/emission 

process 
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2. The pixel B was cropland in 2013 and has changed the state to become plantation 

under the scenario LUS3. Thus, it can be said that the owner of the land decided to adopt 

mitigation based plantation. This mitigation action to climate change lead to a reduction of 

(1.52 Mg.ha
-1

 - 97.83 Mg.ha
-1

. x 0.09 ha) of carbon from the atmosphere equals the removal 

of 31.81 Mg of carbon dioxide from the atmosphere.  

3. The pixel C was riparian forest and woodland in 2013 and has changed the state to 

become agroforestry under the scenario LUS3. This context means that during the 12 years 

simulation it was assumed that the farmers aim to first convert the forest land to agricultural 

land for crop production during a certain number of years before they decide to transform that 

land to either agroforestry or plantation. In the present case, the final state is concerned 

despite we could say there is first emission before that emission was reduced due to 

agroforestry system. The emission was estimated to be 2.10 Mg of C or 7.73 Mg of CO2 

despite agroforestry has been established after cropland. In the absence of agroforestry 3.89 

Mg of C or 14.29 Mg of CO2 will be emitted. It was previously explained in Section 3.3.8 

that agroforestry cannot help to compensate the total amount of carbon loss from riparian 

forest when it is converted to cropland.  

4. The pixel D was cropland in 2013 and has changed to agroforestry under the scenario 

LUS4 indicating the removal of 1.78 Mg of C or 6.56 Mg of CO2 from the atmosphere.  

 

6.5 Results and discussion 

6.5.1 Impact assessment of land use cover change on CO2 and N2O emission (2001-2013) 

The assessment of LULCC on CO2 and N2O emission from 2001 to 2013 was based on the 

results of mean carbon stock used to estimate emission factors (Table 3.19). The mean carbon 

stocks were assumed to be constant over time during 2001 and 2013.  
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Table 6. 4 Emission of CO2 and N2O in Gg per year during 2001-2013 

Period CO2 

emission 

CO2  

removal 

N2O  

 

Net removal 

 

Emission  

CO2eq. 

2001-2013 12.04 -36.62 0.03 -24.58 21.34 

 

The total of 21.34 CO2 eq Gg of carbon dioxide was emitted per year during 2001 and 2013 

due to farming activity. This trend will continue if there is no policy to mitigate the effect of 

change or to reduce emission from the vegetation degradation.  

 

6.5.2 BEN-LUDAS as a tool for visualizing and testing the impacts of land-use scenario 

BEN-LUDAS graphic user interface (GUI) is presented in 3 main parts as follows: 

 The button of importation of spatial data, the button that enable user to generate basal 

area, biomass, carbon and nitrogen stocks and the button for the importation of the 

households data. All these buttons were executed under the command procedure based sub-

models (number 1 of part 1). The set of number 2 buttons in part 1 deal with the spatial 

attributes such as elevation, slope, upslope, spatial policy, restricted area, wetness index, land 

use, soil type. These spatial attributes can also be visualized several times as soon as the 

buttons of the biomass, carbon and nitrogen content. The setup button allows clearing all data 

in the screen. The number 3 presented the GIS raster, simulation button and output 

exportation button (Figure 6.3). 

 Part 2 (numbers 4, 5 and 6) describe the global parameters and the parameters for land 

use scenarios development. The set of number 4 button dealt with the times scale of the 

simulation, the global parameters such as spatial policy related to protected zone area, the 

deforestation rate, the vision of the farmer or its sphere of influence, the productivity 

parameters, the markets price input and the counter of population dynamic. User will find the 

parameters of mitigation setting of the set of buttons in number 5. This set of buttons show 
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the on/off buttons for adoption or not of mitigation strategy (adoption or not of agroforestry 

and plantation) during the scenario running and their defined probability. The set of buttons 

in number 6 show the population dynamic sub-model. This population dynamic sub-model 

was built based on the assumption of birth and death and the rates associated.  

 The part 3 (numbers 7 to 18) show respectively the Lorenz curve, the financial return 

to the farmers if mitigation strategy was applied during the implementation of carbon fund 

project in scenarios based mitigation, the size of different groups of household during the 

simulation process, the curve of household growth (or population growth), the Gini index, the 

annual gross income based carbon credit curve, the annual gross income based cultivated 

area, the area in hectares of each LUC, the biomass, carbon and nitrogen stocks and finally 

the area of mitigation strategy. 
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           Figure 6. 4 The BEN-LUDAS’s graphic-user interface enables users to visualize and test impacts of land-use scenarios 
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6.5.3 Impact assessment of developed land use scenarios   

a. Impacts of developed land use scenarios on LULCC 

The business as usual scenario is based on the continuation of observed trends in land use 

practise and livelihood of rural communities known as business-as-usual scenario. The 

deforestation rate was 1.48 % per year for the business-as-usual scenario. The business-as-

usual scenario (LUS1 in Figure 6.5) in this context will contribute to the increment of 

cropland by 3.79 % per year by 2025, whereas the area of forest land (riparian forest, savanna 

woodland and shrub savanna) will decrease by 3.03 % per year if the trends continue without 

any policy change. The current way of using the land will lead to the abandonment of much 

farm lands as fallows. This situation can be explained by the decrease of productivity from 

2013 to 2025 because some land will be over-exploited due to the high pressure on the land 

as a result of lack of forested area for farming in the future. 

The policy intervention actions under the food security scenario are the improvement of the 

productivity at the farmer’s field scale and on a legislation declares the West-Atacora on 

which the study area as not suitable for cotton production. Infact, these actions aim to restore 

the degraded land by limiting the impact of human pressure in the forest land. The effects of 

these actions tested under food security scenario (LUS2 in Figure 6.5) will contribute to the 

increment of cropland by 2.12 % per year and the decrease of forest land by 2.65 % per year. 

The productivity improvement could strengthen the resilience of rural communities and 

alleviate poverty at the household scale.  

The scenario based adaptation and mitigation strategy to climate change (LUS3 in Figure 6.4) 

was built to change policy setting of business as usual by adopting agroforestry and planting 

tree in the devoted land by farmers and by improving crop based adaptation options (different 

cropping systems used at the farm scale to improve productivity). The adaptation options to 

climate change will be applied to strengthen the resilience of farm land thus, of rural 
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communities who are dependent on the productivity of the land. This scenario will lead to an 

increment of agroforestry system by 481.52 % per year and increment of the plantation area 

by 191.93 % per year. The increment of cropland was estimated to be 1.64 % per year and the 

decrease of forest land by 2.62 % per year, which is in contrast to the developments under 

LUS1. 

 

The food security scenarios based mitigation strategy to climate change will lead to an 

increment of cropland by 0.94 % per year from 2013 to 2025 whereas the area of forest land 

will decrease by 1.89 % per year and area of agroforestry and plantation will respectively 

increase by 401.88 % and 182.66 % per year if mitigation strategies are adopted at the 

farmer’s field scale within the degraded land.  

The future spatial pattern (2013-2025) of land use/cover for these scenarios is illustrated in 

Figure 6.6. The observation of land use cover trajectory of LUS1 revealed that except for the 

villages of Wantehou and Koupendry (Figure 4.1) the pressure on the land will increase in the 

areas of the remaining villages and the national park which was protected is at risk and may 

be an object of conflict between farmers and the authority in charge of the protection of this 

zone regarding the trajectory of change for all scenarios. In the other way, in the absence of 

land for farming, households may be constrained to migrate. Infact, the land use trajectory 

has shown the area of change between the two periods for all scenarios. The outputs provided 

is an important tool for decision making in the setting of land and forest management to 

mitigate climate change. The trajectory of change between 2013 and all scenarios is in line 

with the past trend (2001-2013) (Figures 5.4 and 5.5). 
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LUS1: Business as usual scenario 

 
LUS2: Food security scenario 

  
LUS3: Business as usual based adaptation and mitigation strategy 

to climate change scenario 

LUS4: Food security based mitigation strategy to climate change 

scenario 

 

Figure 6. 5 Simulated areas of land-uses /cover changes for developed scenarios between 2013 and 2025 

Source: Data exported from BEN-LUDAS
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LUC IN 2013

LUS1: Business as usual 

scenario

LUS2: Food security 

scenario

LUS3: Business as usual based 

adaptation and mitigation 

strategy to climate change 

scenario

LUS4: Food security based 

mitigation strategy to climate 

change scenario

SIMULATED LAND USE COVER CHANGES UP TO 2025 FOR THE FOUR SCENARIOS

 
Figure 6. 6  Simulated land-uses/cover changes for developed scenarios between 2013 and 2025 

Source: Data exported from BEN-LUDAS 
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b. Impacts of developed land use scenarios on the vegetation carbon and nitrogen stocks 
 

The research in Chapter 3 determined respectively a total storage of 175347.75 ± 21042.48 

(CI) and 875.53 ± 101.45 (CI) Mg of carbon and nitrogen stocks in 2013 at 95 % confidence 

interval. The analysis of the scenarios revealed that LUS1 and LUS2 scenarios will 

respectively contribute to the decrease of carbon stocks by 2.34 and 1.66 %, and nitrogen 

stocks by 2.31 and 1.64 % per year. In contrast, the scenarios LUS3 and LUS4 will 

respectively help to uptake carbon by 0.85 % and 1.12 % per year and sequestered nitrogen 

into the vegetation by 0.03 and 0.37 % per year. 

 

Figure 6. 7 Simulated stocks of carbon (in Mg) for developed scenarios between 2013 

and 2025 in each LUC 

Source: Data exported from BEN-LUDAS 
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Figure 6. 8 Simulated stocks of nitrogen (in Mg) for developed scenarios between 2013 

and 2025 

Source: Data exported from BEN-LUDAS 

 

The amount of carbon and nitrogen sequestered within the forest land will decrease whereas 

the carbon sequestration of cropland will increase under scenarios LUS1 and LUS2 (Figures 

6.7 & 6.8). This will lead to the emission of CO2 and N2O into the atmosphere and contribute 

to global warming for the future climate.  

 

c. Impacts of developed land use scenarios on future emissions of CO2 and N2O  

The business as usual scenario or the baseline (LUS1) will contribute to the emissions of 

16.805 Gg of CO2 and 0.033 Gg of N2O, to the net removal of 21.70 Gg of CO2 and to the 

total emissions of 26.70 Gg of CO2 eq. per year over the period 2013-2025 (Table 6.5). The 

impact of the policy under food security (LUS2) scenario will contribute to decrease the total 

emission by 29.25 % and will increase the net removal by 42.94 % whereas policy based 

adaptation and mitigation strategy to climate change (LUS3) and food security based 

mitigation strategy to climate change (LUS4) will respectively contribute to reduce the total 

emission by 13.14 % and 36.47 %. The scenarios LUS3 and LUS4 will also respectively 
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contribute to increase the net removal by 105.05 % and 131.11 % per year from 2013 to 

2025. To reach the objectives of the policy behind the baseline motivated by the adaptation 

and mitigation strategy to climate change scenario (LUS3) which is built to support REDD+ 

and MRV initiatives, 101.4 ha and 32.13 ha respectively for agroforestry system (mixed 

crops and fruit based trees) and plantation (timber based trees) will be adopted per year from 

2013 to 2025. This action means the conversion 1.4 % of cropland to agroforestry and 

plantation per year. In the same time for the food security motivated by the mitigation 

strategy to climate change, 84.91 ha of agroforestry and 31.97 ha of plantation will be 

adopted per year by the households of the basin meaning conversion of 1.3 % of cropland to 

agroforestry and plantation. The analyses of the results (Table 6.5) allow asserting that the 

basin will still be a sink for the next 12 years (up to 2025). 

Despite this, it is time to act and react with the aim to strengthen resilience of farmers and 

contribute to carbon sequestration through local project development or project based carbon 

fund.  

 

Table 6. 5 Results of simulated CO2 and N2O emission in Gg per year from 2013 to 2025  

Scenarios CO2 

 emission 

CO2 

 removal 

N2O 

 emission 

Net removal Emission of  

CO2 eq. 

LUS1 16.80 -38.50 0.033 -21.70 26.70 

LUS2 11.88 -42.91 0.024 -31.02 18.89 

LUS3 14.59 -59.09 0.029 -44.50 23.19 

LUS4 10.67 -60.85 0.021 -50.17 16.96 

 

In the context of this study, we analysed the net removal that could occur due to the 

adaptation and mitigation to climate change for the scenarios LUS3 and estimated this to be 

44.5 Gg of CO2 eq per year. In the same line, the net removal that could occur in applying 

LUS4 was estimated to be 50.17 Gg of CO2 eq per year. 
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d. Impacts of developed land use scenarios on the socio-economic status of households 
 

Lorenz curve was used to measure the income distribution of households when simulating 

various land use scenarios. The Lorenz curve is shown in Figure 6.9 for each scenario. The 

Gini index (Figures 6.10) is a measure of the inequality of a distribution. A value of 0 

expressed total equality and a value of 1 explained the maximal inequality. Given the Lorenz 

Curve plot, the Gini coefficient was computed as a function of socio-economic status of 

households under developed land use scenarios using NetLogo 4.1.3.  

  

Lorenz curve for LUS 1 Lorenz curve for LUS2 

  

Lorenz curve for LUS3 Lorenz curve for LUS4 

Figure 6. 9 Graphical outputs of Lorenz Curve under the four scenarios 

Source: Data exported from BEN-LUDAS 
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The Gini values showed significant trends after 6 years of simulation. The difference of Gini 

values of 0.01 within the same year between two scenarios can explain the significant 

difference in term of livelihood of population as Gini varies from 0 to 1.  

The Gini index increased during the 12 years simulation of LUS1 and tested that the 

population will be poorest for the coming years due to the high pressure on the land and its 

lack and mainly due to the low productivity obtained at the farmer’s plots. The other 

scenarios showed increasing trends but with a moderate slope and tested the importance of 

the improvement of crop yield at the farmer’s plots level and in addition the adoption of 

agroforestry systems and financial returns for farmers as an issue of mitigation strategy to 

climate change. The Gini values for each scenario during 12 years simulation were presented 

in appendix 1 and Table 9.2. 

 

 

 

Figure 6. 10 Graphical outputs of Gini index showing the simulated 

 income distribution of the households  

Source: Data exported from BEN-LUDAS 
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6.6 Conclusions 

The impacts of developed land use scenarios on CO2 and N2O emission revealed an 

increment of the amount of CO2 and N2O into the atmosphere if the present trend of land 

disturbance would continue for the next 12 years (from 2013 to 2025). The business as usual 

scenario or the baseline (LUS1) will contribute to the emissions of 16.805 Gg of CO2, 0.033 

Gg of N2O, to the net removal of 21.70 Gg of CO2 and to the total emissions of 26.70 Gg of 

CO2 eq. per year over the period 2013-2025. The impact of food security (LUS2) based 

policy action would lead to reduction of the total emissions by 29.25 % and would increase 

the net removal by 42.94 % whereas policy based adaptation and mitigation strategy to 

climate change (LUS3) and food security based mitigation strategy to climate change (LUS4) 

would respectively contribute to reduce the total emissions by 13.14 % and 36.47 %. The 

scenarios LUS3 and LUS4 would also respectively contribute to increase the net removal by 

105.05 % and 131.11 % per year from 2013 to 2025. 
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CHAPETR VII: CONCLUSIONS AND RECOMMENDATIONS 

7.1 Introduction 

The present research was conducted to support REDD and MRV initiatives and to inform 

policy makers about the current status of land use and the future impacts of various policy 

setting on carbon dioxide and nitrous oxide emissions from vegetation degradation in the 

Dassari Basin. The key conclusions and recommendations are focused on the impacts of 

policy settings tested under business as usual, food security, business as usual motivated by 

adaptation and mitigation strategy to climate change and food security based mitigation 

strategy to climate change scenarios.  

 

7.2 Conclusions 

The results from this study help to close the existing knowledge gap with respect to 

vegetation carbon and nitrogen estimation in the Sudan Savannah environment. The 

generalized linear models, equations fitted on local data can be useful for future scientific 

works in the Sudan Savannah environment generally populated by the determined main 

species in the present study. The estimation of carbon and nitrogen stock and aboveground 

biomass in each land use cover category are of great importance for carbon balance 

calculations in the Sudan Savanna in West Africa. 

The work has provided indispensable information on wood density of the main species of the 

Sudan Savannah zone, the related biomass expansion factor, the carbon and nitrogen content 

of the main tree species, the biomass, carbon and nitrogen stocks in each land use cover 

category that will be an important tool for carbon accounting programme related to the 

implementation of REDD+ in the Sudan Savanna environment.   

The impacts of developed land use scenarios predicted an increment of the emission of CO2 

and N2O into the atmosphere if the present trend of land disturbance is continued for the 
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horizon 2025. The business as usual scenario or the baseline (LUS1) will contribute to the 

emissions of 16.805 Gg of CO2, 0.033 Gg of N2O, to the net removal of 21.70 Gg of CO2 and 

to the total emissions of 26.70 Gg of CO2 eq. per year over the period 2013-2025. The impact 

of the policy based food security (LUS2) will contribute to decrease the total emission by 

29.25 % and will increase the net removal by 42.94 % whereas policy based adaptation and 

mitigation strategy to climate change (LUS3) and food security based mitigation strategy to 

climate change (LUS4) will respectively contribute to reduce the total emission by 13.14 % 

and 36.47 %. The scenarios LUS3 and LUS4 will also respectively contribute to increase the 

net removal by 105.05 % and 131.11 % per year by 2025. 

The main factors which involved the farmers’ decision making are population growth, high 

production of cotton based subsidy with fertilizers, the farming based mechanization, the 

protection zoning area, the variability in rainfall pattern and drought with dry spells and the 

soil suitability. The farmers of Dassari basin still have little knowledge on the adaptation 

strategies to climate change and there is no significant factor affecting adoption of these 

strategies at the farm level.  

Despite that, the basin will still be a sink up to 2025. It is time to act and react with the aim to 

strengthen the resilience of farmers and contribute to carbon sequestration through local 

project development or project based carbon fund.  

 

7.3 Limitations 

The study presented some few limitations in the evolving global carbon budget. We did not 

parameterize this component and we stuck to the forest growth sub-model which used the 

basal area as increment of the tree species of the basin to illustrate the dynamic of the 

ecosystem. Indeed, the increment of stand basal area is a function of the rainfall pattern and 

other climatic and biophysical environment. Except for the rainfall pattern which could 
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define climate variability, our model involved biophysical parameters in the BEN-LUDAS 

procedures. The study mainly focused on Net Ecosystem Productivity (NEP) which can be 

assessed as a time-averaged C stocks of the system (Hairiah et al., 2010; IPCC, 2006) using 

the forest yield dynamic sub-model. Another limitation could be the miss validation using 

current land use cover map of 2015 or 2016 which was not available. Further research need to 

focus on other carbon pools which were not taken into account by the present research study. 

In addition, the current research study focuses only on CO2 and N2O. Further research on the 

ratio of emitted GHGs from biomass burning is recommended.  

 

7.4 Research outlook  

The World Bank’s BioCarbon Fund provides carbon finances for projects that sequester or 

conserve greenhouse gases in forest, agroecosystems and other ecosystems. The BioCarbon 

Fund aims to “test and demonstrate how land use, land-use changes and forestry activities can 

generate high-quality emission reductions with environmental and livelihood benefits that can 

be measured, monitored and certified and stand the test of time” (GOFC-GOLD, 2013).  

Each BioCarbon Fund project is expected to deliver between 400,000 and 800,000 tonnes of 

CO2 equivalents (CO2eq) over a period of 10 to 15 years. In return, a typical project will 

receive about US$2-3 million in payments (GOFC-GOLD, 2013). It is hoped that the finding 

of this study can convert the LUS3 or LUS4 as a project acceptable in the BioCarbon Fund. 

The implementation of one or two of these scenarios can support the baseline by the 

adaptation and mitigation strategy to climate change which can receive a minimum of US$ 2 

million in payment.  

In addition the project will involve some other relevant scientific researches that were not a 

part of this work. The additional research aspect will involve for example the remaining 

carbon pools and other parameters in the BEN-LUDAS model.  
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7.5 Recommendations for policy and research 

The research findings are important decision making tools for environmental management 

when attempting to alleviate poverty and contribute to the implementation of the Kyoto 

Protocol and REDD+ initiatives. The policy tested under baseline motivated by adaptation 

and mitigation strategy to climate change scenario can be a useful strategy to reduce the 

emission of carbon dioxide from the basin into the atmosphere while maintaining economic 

growth.  

For scientists, the present research needs to be completed by taking into account other carbon 

pools.  
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9 APPENDICES 

9.1 Appendix 1. Land use cover change matrix between 2001 and 2013 

 Table 9. 1 Land use transition matrix between 2001 and 2013 

 

Legend: The yellow cell represents the unchanged pixels between 2001 and 2013. The cells up and bellow yellow cells explain the value of pixels that were changed from 

one LUC to another between 2001 and 2013. The red cell is the total area in hectares.  

 

 

 

Riparian forest 

and woodland

Savanna 

woodland

Shrub 

savanna

Grassland 

savanna

Crop and 

fallow Bareland Setlement 

Agroforestry 

system Plantation

Rivers and 

water body Roads

Total (ha) in 

2001
Riparian forest and 

woodland 162.27 1150.47 116.91 31.59 70.11 0.00 0.00 0.00 0.00 0.00 0.00 1531.35

Savanna woodland 81.63 1944.99 618.12 44.73 544.23 0.54 2.70 0.00 0.27 0.00 0.81 3238.02

Shrub savanna 62.73 1900.26 2225.34 17.73 2803.23 12.96 147.87 2.34 5.13 0.00 12.96 7190.55

Grassland savanna 0.09 2.52 43.92 0.09 7.20 0.00 3.51 0.00 0.00 0.00 0.00 57.33

Crop and fallow 15.93 429.03 1244.16 0.81 4572.63 4.50 290.70 16.65 5.40 0.00 16.02 6595.83

Bareland 0.63 7.02 11.07 0.00 3.78 89.55 10.08 0.09 0.00 0.00 0.18 122.40

Setlement 0.00 0.36 1.98 0.00 2.52 0.09 28.80 0.00 0.00 0.00 0.00 33.75

Agroforestry system 0.00 0.09 0.00 0.00 0.36 0.00 0.09 1.53 0.00 0.00 0.00 2.07

Plantation 0.18 0.09 0.27 0.00 2.16 0.09 0.27 0.00 5.94 0.00 0.00 9.00

Rivers and water body 17.73 38.52 14.85 1.62 26.46 0.00 0.45 0.00 0.09 244.89 0.00 344.61

Roads 0.00 3.15 5.94 0.00 11.79 0.18 3.87 0.09 0.00 0.63 106.83 132.48

Total (ha) in 2013 341.19 5476.50 4282.56 96.57 8044.47 107.91 488.34 20.70 16.83 245.52 136.80 19257.39

Land use / cover in 2001
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Table 9.2 Gini values of each scenario during 12 years simulation 

 

Years 

  

Scenarios 

LUS1 LUS2 LUS3 LUS4 

1 0.33 0.33 0.33 0.33 

2 0.36 0.36 0.35 0.36 

3 0.38 0.37 0.38 0.38 

4 0.40 0.40 0.40 0.39 

5 0.43 0.42 0.43 0.42 

6 0.45 0.44 0.44 0.44 

7 0.49 0.46 0.46 0.46 

8 0.51 0.48 0.48 0.48 

9 0.52 0.50 0.50 0.50 

10 0.55 0.52 0.52 0.51 

11 0.58 0.54 0.53 0.53 

12 0.59 0.57 0.55 0.54 

 

 

9.2 Appendix 2. Simulated major land-use/cover changes 

The following figures expressed the simulated land-use/cover changes from 2013 to 2025 for 

the four scenarios.  

 

Figure 9. 1. Comparison of simulated changes in forest land (ha) under four scenarios 
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Figure 9. 2. Comparison of simulated changes in cropland (ha) under four scenarios 

 

Figure 9. 3. Comparison of simulated changes in agroforestry system (ha) under four 

scenarios 

 

Figure 9. 4. Comparison of simulated changes in plantation (ha) under four scenarios 
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9.3 Appendix 3. Simulated carbon and nitrogen stocks  

The following figures showed the simulated carbon stocks under the four scenarios. 

 

Figure 9. 5. Comparison of simulated carbon stocks in forest land (ha) under four 

scenarios 

 

Figure 9. 6. Comparison of simulated carbon stocks in cropland land (ha) under four 

scenarios 

 

Figure 9. 7. Comparison of simulated carbon stocks in  

agroforestry system (ha) under four scenarios 
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Figure 9. 8. Comparison of simulated carbon stocks in plantation (ha) under four 

scenarios 
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9.4 Appendix 4. Simulated socio-economic status of the site 

The socio-economic status of households on the horizon 2025 were illustrated through the 

annual gross income based cultivated (annual and perennial crops, agroforestry and 

plantation) and annual gross income based carbon credits if a carbon fund project is 

implemented.  

 

Figure 9. 9. Simulated households dynamics under the four scenarios 

Note: The household’s trend does not change for the four scenarios 

 

Figure 9. 10. Simulated annual gross income based cultivated under four scenarios 
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Figure 9. 11. Simulated annual gross income based cultivated and carbon credits under 

four scenarios 
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