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ABSTRACT 

Accurate and comprehensive knowledge of spatial soil characteristics is crucial for 

environmental modelling, risk assessment, and decision-making. The utilization of Remote 

Sensing data for Digital Soil Mapping has proven to be a cost-effective and time-efficient 

alternative to traditional soil mapping methods. However, the potential of Remote Sensing 

data in enhancing understanding of local-scale soil information in West Africa remains 

largely untapped. This research aimed to explore the use of satellite data, and laboratory-

analysed soil samples to map the distribution of organic carbon (SOC) in Northeastern 

Ghana. Three statistical prediction models, namely Random Forest, Xtreme Gradient 

Boosting, and Naïve Bayes were employed and compared. To ensure robustness, internal 

validation was performed using cross-validation techniques. Analysis of model 

performance statistics indicated that the RF and XG techniques exhibited slightly superior 

performance compared to the Naïve Bayes Algorithm, with RF yielding the highest 

accuracy in most cases. One limitation of Naïve Bayes was its inability to effectively 

capture non-linear relationships between dependent and independent variables, leading to 

less accurate predictions of soil properties in unsampled locations. Among the spectral 

predictors, precipitation data was found to be the most significant in Random Forest and 

Xtreme Gradient Boosting models, while Soil Organic Matter, Soil Bulk Density, Biomes, 

and NDVI emerged as prominent terrain/climatic variables in predicting soil properties. 

Furthermore, the results highlighted Precipitation, Soil Bulk Density, Soil Organic Matter, 

and Land Surface Temperature as significant predictors in the Naïve Bayes Algorithm. 

With the growing availability of freely accessible Remote Sensing data, the enhancement 

of soil information at local and regional scales in data-scarce regions like West Africa can 

be achieved with relatively minimal financial and human resources. 
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RESUME 

Une connaissance précise et complète des caractéristiques spatiales du sol est cruciale pour 

la modélisation environnementale, l'évaluation des risques et la prise de décision. 

L'utilisation des données de télédétection pour la cartographie numérique des sols s'est 

avérée être une alternative rentable et rapide aux méthodes traditionnelles de cartographie 

des sols. Cependant, le potentiel des données de télédétection pour améliorer la 

compréhension des informations sur les sols à l'échelle locale en Afrique de l'Ouest reste 

largement inexploité. Cette recherche visait à explorer l'utilisation de données satellitaires 

et d'échantillons de sol analysés en laboratoire pour cartographier la distribution du carbone 

organique (COS) dans le nord-est du Ghana. Trois modèles de prédiction statistique, à 

savoir la forêt aléatoire, Xtreme Gradient Boosting et Naïve Bayes ont été utilisés et 

comparés. Pour assurer la robustesse, une validation interne a été effectuée à l'aide de 

techniques de validation croisée. L'analyse des statistiques de performances du modèle a 

indiqué que les techniques RF et XG présentaient des performances légèrement supérieures 

à celles de l'algorithme Naïve Bayes, la RF produisant la plus grande précision dans la 

plupart des cas. L'une des limites de Naïve Bayes était son incapacité à capturer 

efficacement les relations non linéaires entre les variables dépendantes et indépendantes, 

conduisant à des prédictions moins précises des propriétés du sol dans les emplacements 

non échantillonnés. Parmi les prédicteurs spectraux, les données sur les précipitations se 

sont avérées les plus importantes dans les modèles Random Forest et Xtreme Gradient 

Boosting, tandis que la matière organique du sol, la densité apparente du sol, les biomes et 

le NDVI sont apparus comme des variables terrain/climatiques importantes pour prédire les 

propriétés du sol. De plus, les résultats ont mis en évidence les précipitations, la densité 

apparente du sol, la matière organique du sol et la température de surface du sol comme des 

prédicteurs significatifs dans l'algorithme Naïve Bayes. Avec la disponibilité croissante de 

données de télédétection librement accessibles, l'amélioration des informations sur les sols 

à l'échelle locale et régionale dans des régions où les données sont rares comme l'Afrique 

de l'Ouest peut être réalisée avec des ressources financières et humaines relativement 

minimes. 
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CHAPTER 1: INTRODUCTION 

1.1 CONTEXT AND BACKGROUND 

Soil, as a vital part of the ecosystem, is the net source or sink of soil organic carbon (SOC), 

since approximately two or three times more SOC lies in the soil than in the atmosphere. 

Soil can sequester CO2 into the atmosphere because of both natural and anthropogenic 

activities. As SOC increases, agriculture and the environment benefit, and atmospheric 

carbon reduction effectively leads to climate change mitigation (Mirchooli et al., 2020).  

The exchange of carbon between soil and the atmosphere is a significant component of the 

global carbon cycle and has drawn increasing attention in recent years owing to its 

interaction with the Earth’s climate system. Soil stores the most abundant carbon (C), and 

it holds more C than terrestrial vegetation and the atmosphere. Soil total carbon (STC) is 

present in two forms: soil organic carbon (SOC) and soil inorganic carbon (SIC). SIC (and 

thus STC) includes carbon in the form of carbonates (e.g., CaCO3) (i.e., mineral-based 

rather than organic-based). SOC plays a vital role in the maintenance of soil fertility, soil 

microbial activity, and agricultural development in farmlands. SIC is also an important 

component of the STC pool, but little   

 attention has been devoted to spatial distributions (W. Zhang et al., 2022). 

 

The spatial distribution of soil is influenced by a variety of important environmental 

factors(i.e., such as land uses/covers, climate, soil, topology, Normalized Vegetation Index, 

Precipitation, Temperature, time, biology, and parent material) (Jenny, 1994). In recent 

years, human activities (e.g., land use changes) have also been key environmental factors 

in changing the direction and intensity of soil formation.  

 

Understanding the spatial variability of SOC is essential to soil productivity, climate 

stability, and food security. Accurate and detailed spatial soil information is essential for 

sustainable land use and management as well as for environmental modelling and risk 

assessment(Forkuor et al., 2017a). A comprehensive assessment of SOC data and maps is 

available in many countries and territories, such as Nigeria (Akpa et al., 2016), and South 

Africa Africa (van Zijl, 2019) using various mapping approaches.  In Ghana, where land 

degradation and loss of soil fertility have been reported by numerous studies(Mirchooli et 

al., 2020), a comprehensive assessment of the spatial dynamics of SOC stocks at a national 

scale does not exist. For Ghana, thus far, the only available SOC map was created at 250m 

resolution in the framework of a global, top-down mapping exercise(Hengl et al., 2017). 
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Traditional soil-mapping approaches have mostly relied on ground-based surveys. Hence, 

classical field surveys, including soil sampling and laboratory analyses, are time consuming 

and expensive, especially when mapping is performed at national, regional, or global scales. 

Such small-scale maps are unsuitable for national-level planning.  

Hence, there is an urgent need to develop precise, up-to-date, dependable, spatially explicit 

assessments. High-resolution spatial information on soils can assist decision-makers to 

better target areas for soil fertility interventions and implement knowledge-based policies 

that aim to increase agricultural production and improve the livelihoods of small-scale 

farmers in the subregion. This is crucial for sustainable use of soil resources, particularly 

in the context of climate change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 PROBLEM STATEMENT 

Agricultural activities are responsible for approximately one-third of the world’s 

greenhouse gas (GHG) emissions, and this share is projected to grow, especially in 



  

ERNEST KWAME BAYAH | ED-ICC | U-JKZ | BURKINA FASO 3 

 

developing countries(Metz & Intergovernmental Panel on Climate Change, 2007). 

Agriculture in tropical developing countries produces approximately 7–9 % of the annual 

anthropogenic greenhouse gas (GHG) emissions and contributes to additional emissions 

through land-use change.  

 

At the same time, nearly 70 % of the (Smith et al., 2005) technical mitigation potential in 

the agricultural sector occurs in these countries (Jo Smith et al., 2006). Enabling farmers in 

developing tropical countries to manage agriculture to reduce GHG emission intensity 

(emissions per unit product) is an important option for mitigating future atmospheric GHG 

concentrations(Smith et al., 2007). 

The northern savanna regions of Ghana have a very high incidence of land and soil 

degradation because of severe soil erosion and increased demographic pressure(Boakye-

Danquah et al., 2014). Moreover, these systems have typically encountered significant 

depletion of soil organic matter (SOM) caused by the intensive decomposition resulting 

from soil ploughing, the removal of a substantial portion of aboveground biomass during 

harvest, and the increased soil erosion associated with these practices. The current ability 

to quantify GHG emissions and mitigation from agriculture in developing tropical countries 

is remarkably limited. Empirical measurements are expensive and therefore limited to small 

areas. Emissions can be estimated for large areas with a combination of field measurement, 

modelling, and remote sensing, but even simple data about the extent of activities are often 

not available, and models require calibration and validation. These guidelines focus on how 

to produce field measurements as a method for consistent and robust empirical data, and to 

produce better models. 

 

To determine how to manage which soil yields optimal agricultural production, information 

about soil type or soil properties that influence agronomic production must be known. 

Therefore, producing accurate and relevant soil classification maps would not only 

contribute to worldwide Digital Soil Mapping (DSM) activities, but would also be very 

useful for Ghana and its policy and decision makers. In this study, three key soil properties, 

acidity or alkalinity (pH in H2O), Cation Exchange Capacity (CEC), and soil depth (depth), 

were studied.  

1.3 RESEARCH QUESTIONS 

The study seeks to address the following research questions. 
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Q1: What is the comparative performance of three machine learning algorithms when 

trained on remote sensing selected auxiliary variables? 

Q2: Which modeling method, Random Forest (RF), Xtreme Gradient Boosting (XGB), or 

Naïve Bayes (NB), is the most reliable and accurate in predicting Soil Organic Carbon 

(SOC) stocks in the surface 0.30m of the soil profile in the district of Tolon? 

Q3: What is the spatial distribution of soil organic carbon (SOC) in the Tolon District, 

including an assessment of associated uncertainty, and how does SOC content vary across 

different geological units, soil classes, and land uses? 

1.4 RESEARCH HYPOTHESIS 

H1: The performance of three machine learning algorithms, when trained on remote 

sensing-selected auxiliary variables, will significantly differ in predicting the target 

variable. 

H2: The Random Forest (RF) modeling method will demonstrate greater reliability and 

accuracy in predicting Soil Organic Carbon (SOC) stocks in the surface 0.30m of the soil 

profile in the district of Tolon compared to the Xtreme Gradient Boosting (XGB) and Naïve 

Bayes (NB) methods. 

H3: There will be a significant spatial variation in the distribution of soil organic carbon 

(SOC) within the Tolon district, and this variation can be accurately predicted using spatial 

modeling techniques. Furthermore, SOC contents will differ significantly across different 

geological units, soil classes, and land uses, indicating the influence of these factors on 

SOC levels in the district. 

1.5 RESEARCH OBJECTIVES 

The overall aim of the study is to achieve the following research objectives: 

O1: to determine the important remote sensing auxiliary variables driving the SOC contents 

in the district of Tolon due to the lack of an SOC base-line distribution map in Tolon 

District. 

O2: To compare the predictive reliability and accuracy of the Random Forest (RF), Xtreme 

Gradient Boosting (XGB), and Naïve Bayes (NB) modeling methods for predicting Soil 

Organic Carbon (SOC) stocks in the surface 0.30m of the soil profile in the district of Tolon 

and determine which method performs best in terms of reliability and accuracy. 
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O3: to predict the spatial distribution of SOC for mapping with associated uncertainty and 

to compare SOC contents in different geological units, soil classes and land uses in Tolon 

district. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6 LITERATURE REVIEW 

1.6.1 INTRODUCTION TO LITERATURE REVIEW 

Machine learning is a science that enables computer applications to learn without explicit 

programming. In principle, machine learning develops models or algorithms that can 
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predict an output value with an acceptable error margin, based on a set of known input 

values. Advanced statistical analysis techniques were used to build these models. 

Modelling Soil Organic Carbon (SOC) is a relatively new field that has emerged in response 

to the increasing demand for accurate and detailed soil information to support sustainable 

land management practices.  

 

Soil organic carbon (SOC) holds significant importance in soil health due to its crucial role 

in nutrient cycling, soil structure maintenance, and water retention. Precise measurement 

of SOC content in soil is essential for effective agricultural management and climate change 

mitigation. Machine learning (ML) techniques have gained considerable popularity in 

accurately classifying SOC content in soil. Modelling uses a range of data sources, 

including remote sensing, geographic information systems (GIS), and machine learning 

techniques, to map the distribution of soil properties across a landscape. This literature 

review focuses on recent studies that have employed machine learning (ML) techniques for 

the classification of soil organic carbon (SOC) content. 

 

Several literature reviews have been conducted on modelling of soil organic carbon, which 

provides valuable insights into the state-of-the-art in this field. In this literature review, 

some key findings from these reviews were identified.  One of the earliest literature reviews 

on DSM was conducted by (Forkuor et al., 2017a). They identified the key challenges 

facing the field, including the need for accurate and representative soil data, development 

of robust and reliable predictive models, and need for effective methods of spatial 

interpolation. 

 

Another study by (Lagacherie & McBratney, 2006) argued that existing soil databases are 

not exhaustive or precise enough to promote an extensive and credible use of soil 

information within the spatial data infrastructure that is being developed worldwide. The 

main reason is that their present capacities only allow the storage of data from 

conventional soil surveys, which are scarce and sporadically available. Traditional soil-

mapping approaches have mostly relied on ground-based surveys. Classical field surveys, 

including soil sampling and laboratory analyses, are time consuming and expensive, 

especially when mapping is performed at national, regional, or global scales.  

 

In view of this bottleneck, new techniques for obtaining high-resolution soil information 
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are being developed and still need to be optimized  (Hengl et al., 2017). Recently, several 

reviews have focused on the use of machine learning techniques in DSM. For example, 

(Minasny & Hartemink, 2011) reviewed the use of machine learning techniques, such as 

artificial neural networks, decision trees, and support vector machines, in DSM. They 

highlighted the importance of choosing appropriate input variables, defining the spatial 

resolution of maps, and testing the accuracy of models. 

 

Modeling of Soil Organic Carbon Using Machine Learning (Bui et al., 2009) presented a 

piecewise linear decision tree model generated using a machine learning approach for 

predicting the percentage of soil organic C (SOC) in the agricultural zones of Australia. 

Using the canadian-managed forest as a case study, the main objective of this study was to 

investigate the extent to which the choice of statistical method and model specification 

could improve the spatial prediction of soil properties with limited data (Beguin et al., 

2017). (Forkuor et al., 2017a) investigated the use of high spatial resolution satellite data 

(RapidEye and Landsat), terrain/climatic data, and laboratory-analyzed soil samples to map 

the spatial distribution of six soil properties: sand, silt, clay, cation exchange capacity 

(CEC), soil organic carbon (SOC), and nitrogen in a 580 km2 agricultural watershed in 

south-western Burkina Faso. A machine learning-based model was fitted using a global 

compilation of SOC data and the History Database of the Global Environment (HYDE) 

land-use data in combination with climatic, landform, and lithology covariates (Sanderman 

et al., 2017). (Gomes et al., 2019) applied a methodological framework to optimize the 

prediction of SOC stocks for the entire Brazilian territory and determined how the 

environmental heterogeneity of Brazil influences SOC stock distribution. (Padarian et al., 

2019a) aim to describe and evaluate the effectiveness of transfer learning to “localise” a 

general soil spectral model. (Wadoux, Brus, et al., 2019) investigated sampling design 

optimization for soil mapping using a random forest. (Rentschler et al., 2019a) evaluated 

an approach that compared polynomial, logarithmic, and exponential depth functions using 

non-linear machine learning techniques, such as multivariate adaptive regression splines, 

random forests, and support vector machines, to quantify SOC stocks spatially and depth-

related in the context of biodiversity and ecosystem functioning research. The measurement 

technique and land use are two soil structure-related attributes typically available in the 

descriptions of infiltration experiments. (Karahan et. al., 2020) (Karahan & Pachepsky, 

2022) hypothesized that these attributes may be good predictors of the performance of 
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different infiltration models and the parameter values in those models. (Ma et al., 2021) 

evaluated the proposition that soil properties can be predicted at any depth. 

 

1.6.2 SUPERVISED CLASSIFICATION OF SOIL ORGANIC CARBON 

(Causarano et al., 2008) use the EPIC model to study impacts of soil and crop management 

on SOC in corn (Fantappiè et al., 2010) and soybean (Stoorvogel et al., 2009) used a 

classification tree approach combined with literature and a small dataset of 40 point SOC 

observations to map the topsoil organic carbon (SOC) content in a data-poor environment 

in the Senegalese Peanut Basin. (Wiesmeier et al., 2011a) studied the digital mapping of 

soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem. 

The analysis of variable importance showed that land use, RSG, and geology were the most 

important variables influencing SOC storage. (Fantappiè et al., 2010) studied factors 

influencing soil organic carbon stock variations in italics during the last three decades. The 

soil database in Italy was the main source of information. (Gray et al., 2016) presented a 

classification of parent material for pedologic purposes, which includes 12 lithology classes 

based on mineralogical and chemical composition. (Žížala et al., 2017) was performed at 

four study sites approximately 1 km2 in size, representing the most extensive soil units of 

agricultural land in the Czech Republic (Chernozems and Luvisols on loess and Cambisols 

and Stagnosols on crystalline rocks). The Nile Delta provides two-thirds of Egypt's 

agricultural land but is threatened by urban sprawl. (Abd-Elmabod et al., 2019a) aimed to 

quantify urban expansion over a 45-year period using six time points from 1972 to 2017 

and its impacts on agricultural potential, soil organic carbon stocks, and implications for 

water use. (Baldassini et al., 2020) estimated carbon (C) emissions due to deforestation in 

a portion of Argentine semi-arid Chaco (around 11 M ha) in 12 land use scenarios. 

Assessment of SOC in karst mountainous areas is a great challenge because of the high 

spatial heterogeneity in topography, land use, and soil. (Bai & Zhou, 2020a) use 2755 soil 

samples from a karst watershed in southwestern China to quantitatively study the spatial 

variability in SOC in this small karst watershed. (Janssen & Dewilligen, 2006) reported 

similar results. 

 

1.6.3 MODELLING OF SOIL ORGANIC CARBON USING RANDOM FOREST 

Although both PLSR and RF models were successful in modelling C fractions, RF models 

appear to target the physical properties linked to the property being analyzed, and may 

therefore be the better modelling method to use when generalizing to new areas. (Knox et 
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al., 2015) demonstrated that diffuse reflectance spectroscopy is an effective method for the 

non-destructive analysis of soil C fractions, and using RF modelling, a spectral range 

between 2000 and 6000 nm should suffice to model these soil C fractions. The purpose of 

(Dharumarajan et al., 2017) was to map the spatial variation of major soil properties in the 

Bukkarayasamudrum mandal of Anantapur district, India, using the Random Forest model. 

(H. Zhang et al., 2017) use classification and regression tree (CART) to identify the 

importance of the potential drivers of SOC at 241 sites from an intensively managed 

reclamation zone of eastern China.  Zhang used digital soil mapping techniques to map the 

profile wall of an Alfisol (90‐cm depth × 100‐cm width). (Wadoux, Brus, et al., 2019) 

investigated sampling design optimization for soil mapping using a random forest. 

(Rentschler et al., 2019a) evaluated an approach that compared polynomial, logarithmic, 

and exponential depth functions using non-linear machine learning techniques, such as 

multivariate adaptive regression splines, random forests, and support vector machines, to 

quantify SOC stocks spatially and depth-related in the context of biodiversity and 

ecosystem functioning research. Multiple linear regression (MLR) and random forest (RF) 

models were used to estimate the activities of soil amylase and urease using covariates, 

such as soil water content (SWC), electrical conductivity (EC), total nitrogen (TN), total 

phosphorus (TP), soil organic carbon (SOC), soil bulk density (BD), and pH. The results 

revealed that the amylase activity of fishponds was significantly higher than that of other 

land use types, whereas the urease activity of rape land, broad bean land, and fishpond was 

notably higher than that of bare flat, Spartina alterniflora, and uncultivated land (Xie et al., 

2021). (Wang et al., 2022) used SOC data in a digital soil-mapping framework to predict 

current and future SOC stocks across the state of New South Wales (NSW) in southeastern 

Australia. Other influential studies include (Hounkpatin et al., 2018) (Wang et al., 2018). 

1.6.4 MAPPING OF SOIL ORGANIC CARBON WITH SUPPORT VECTOR MACHINE 

(Stevens et al., 2010) study measuring soil organic carbon in croplands at a regional scale 

using airborne imaging spectroscopy. SOC maps of bare agricultural fields were produced 

using the best calibration model.(Forkuor et al., 2017a) investigated the use of high spatial 

resolution satellite data (Rapid Eye and Landsat), terrain/climatic data, and laboratory-

analysed soil samples to map the spatial distribution of six soil properties: sand, silt, clay, 

cation exchange capacity (CEC), soil organic carbon (SOC), and nitrogen in a 580 km2 

agricultural watershed in south-western Burkina Faso.(Lamichhane et al., 2019) review the 

current research and applications of various digital soil mapping (DSM) techniques used to 

map Soil Organic Carbon (SOC) concentration and stocks following a systematic mapping 
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approach from 2013 until present (18 February 2019). (Rentschler et al., 2019b) evaluate 

an approach that compared polynomial, logarithmic and exponential depth functions using 

non-linear machine learning techniques, i.e. multivariate adaptive regression splines, 

random forests and support vector machines to quantify SOC stocks spatially and depth-

related in the context of biodiversity and ecosystem functioning research.(Meng et al., 

2020) provide a highly robust and accurate method for predicting and mapping regional 

SOC contents.(Emadi et al., 2020a)e machine learning algorithms for  support vector 

machines, artificial neural networks regression trees, random forests, extreme gradient 

boosting, and conventional deep neural networks for advancing SOC prediction models. 

Linear (i.e., partial least squares regression, PLSR) and nonlinear (i.e., artificial neural 

networks, ANN; cubist regression tree, Cubist; Gaussian process regression, GPR; and 

support vector machine regression, SVMR) multivariate techniques were compared to 

assess their ability to map the soil C fractions in the profiles. A spectral variable selection 

technique (i.e., competitive adaptive reweighted sampling, CARS) was applied to these 

multivariate models (i.e., CARS-PLSR, CARS-ANN, CARS-Cubist, CARS-GPR, and 

CARS-SVMR)(Xu et al., 2020a).(Zhou et al., 2020) evaluate the potential of different 

remote sensing sensors (Sentinel-1 and Sentinel-2) to predict SOC and STN content.(Sahu 

et al., 2021) compare deterministic (Inverse Distance Weightage, IDW), geostatistical 

(spherical and exponential kriging (OK) and Empirical Bayesian Kriging, EBK) and 

Machine Learning (Random Forest, RF, Support Vector Machine, SVM) method for 

samples collected at four grid spacings (20, 40, 60 and 80 m) to find out the combination 

of best interpolation method and sample spacing to produce a variability map for SOC.  

 

1.6.5 NAÏVE BAYES PREDICTION OF SOIL ORGANIC CARBON 

Sampling 23 salt marshes in the United Kingdom(Ford et al., 2019) developed a salt marsh 

carbon stock predictor (SCSP) with the capacity to predict up to 44 % of the spatial 

variation in surface soil organic carbon (SOC) stock (0–10 cm) from simple observations 

of plant communities and soil types. Soil samples were collected, analyzed, and compared 

across three land-use types: undisturbed, semi-disturbed, and cultivated. (Willy et al., 2019) 

studied the effect of land-use change on soil fertility parameters in densely populated areas 

of Kenya. To achieve these objectives, descriptive, Nutrient Index, and Classification and 

Regression Tree (CART) analysis methods were used. The Nile Delta provides two-thirds 

of Egypt's agricultural land but is threatened by urban sprawl. (Abd-Elmabod et al., 2019b) 

aimed to quantify urban expansion over a 45 year period using six time points from 1972 
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to 2017 and its impacts on agricultural potential, soil organic carbon stocks, and 

implications for water use. Assessment of SOC in karst mountainous areas is a great 

challenge because of the high spatial heterogeneity in topography, land use, and soil.(Bai 

& Zhou, 2020b) use 2755 soil samples from a karst watershed in southwestern China to 

quantitatively study the spatial variability in SOC in this small karst watershed. 

(Gholizadeh et al., 2020) aimed to evaluate the potential of vis--NIR spectroscopy in 

characterizing and predicting the SOC content of organic and mineral horizons in forests. 

(Wabusya et al., 2020) studied the effects of land use changes on soil chemical parameters 

in the kakamega-nandi forest complex. Land cover and vegetation change were determined 

using a series of multispectral Landsat images. The objective of (Tayebi et al., 2021) was 

to determine the impact of temporal environmental controlling factors obtained from 

satellite images over the SOC stocks along soil depth using machine learning algorithms. 

(Shanavas et al., 2021) proposed deep learning and machine learning methods for the 

prediction of the functional properties of soil, such as percent organic carbon, total nitrogen, 

bulk density, pH, vegetation index, water index, percent sand, and clay. A review and 

hierarchical classification of plant fungal partners according to their ecosystem potential 

with regard to the available technologies aimed at field uses will be discussed with a 

particular focus on interactive microbial associations and functions such as Mycorrhiza 

Helper Bacteria (MHB) and nurse plants (Nasslahsen et al., 2022). 

 

1.6.6 ASSESSMENT OF SOIL ORGANIC CARBON USING DEEP LEARNING 

Estimation of the soil organic carbon content is important to understand the chemical, 

physical, and biological functions of the soil. (Emadi et al., 2020b) proposes machine 

learning methods of support machines, artificial neural networks, regression tree, random 

forest, extreme gradient boosting, and conventional deep neural network for advanced 

prediction models of SOC. There are 1879 soil samples and 105 auxiliary data that are 

predictors. The results show that precipitation is the most important predictor of spatial 

variability, followed by vegetation, day temperature, and land use. The lowest prediction 

error and uncertainty was reported by the DNN model based on 10 fold cross validation. In 

terms of accuracy, DNN yielded a mean absolute error of 59 percent, a root mean squared 

error of 75 percent, and a Lins correlation coefficient of 0.83. Younger geological age soils 

had lower SOC than dense forestland soils. Due to its flexibility and ability to extract more 

information from the auxiliary data surrounding the observations, the proposed DNN has 

high accuracy for the prediction of the baseline map and minimal uncertainty. 
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Low-cost, high-throughput analysis of soils has been made possible by the use of IR. As 

soil libraries grow in size, linear models may be challenged by the number and diversity of 

spectrum. ANN are an emerging deep learning approach that can offer advantages in the 

quantification of soil properties. (Margenot et al., 2020) compared the two models for 

predicting a soil health indicator, permanganate oxidizable C, as well as more frequently 

predicted soil variables. Candidate ANN architectures were evaluated and described to 

identify best-practices for the application of ANN to soil. For routinely measured variables 

that represent soil organic matter (SOC) and physical properties (clay, silt, sand, bulk 

density), predictions by the resulting ANN were similar or slightly improved. The accuracy 

of POXC predictions was similar to that of ANN. The models drew on shared but distinct 

wavenumbers to show differential use of information in the soil. ANN shows comparable 

performance even in small datasets of similar soil types. A systematic procedure to select 

ANN model hyperparameters is proposed to help guide future applications of ANN. 

 

In Portugal, beef cattle are fed with a mixture of forages and concentrate feed. Quality 

animal feed and offset concentrate consumption were provided by the biodiverse pastures. 

Large amounts of carbon are sequestered by SBP. We develop and test the combination of 

remote sensing and machine learning approaches to predict the most relevant production 

parameters of plant and soil. Previously collected soil samples were used to obtain 

hyperspectral data for soils. The data was acquired from a satellite. Several vegetation 

indexes were calculated. Random forests regressions and artificial neural networks were 

used in the machine learning. The models showed a good prediction capacity with r-squared 

higher than 0.70 for most of the variables. Estimation error can be lower using hyperspectral 

data. The results did not show a systematic overestimation or underestimation. The fit is 

accurate for yield and organic matter greater than 0.80. The lowest standard estimation error 

is found in the soil organic matter content, while the highest is found in the legumes 

fraction. The results show that a move towards automated monitoring can lead to expedited 

and low-cost methods for mapping and assessment of variables in sown biodiverse pastures. 

 

(Li et al., 2021) used a machine learning approach and climate sensitivity experiments to 

investigate the impacts of precipitation variations and warming on SOC dynamics in the 

Qilian Mountains. The simulation showed a decreasing trend between the top 20 cm and 

the top 100 cm soil since 2009, which is earlier than 2012 in the top 100 cm soil. SOC 100 
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may be more sensitive to warming due to the strengthened microbial decomposition rate 

and additional carbon source through deepened active layer. The different responses of 

upland and lowland SOC to precipitation variations resulted in more intense responses to 

precipitation than SOC 100. The enriched SOC caused by increased precipitation may 

offset the carbon loss caused by warming, according to our projection. The increased 

carbon emissions from the warming caused by the strengthened decomposition rate, 

additional carbon source from the deepened active layer, and exposed soil carbon to the 

atmosphere were projected to decrease SOC 100. The study deepened our understanding of 

the mechanism of climate effect on SOC dynamics and can be helpful for regional soil 

ecological security assessment and risk projection. 

 

1.6.7 ARTIFICIAL NEURAL NETWORK 

According to (Agyare et al., 2007) water and chemical movement, heat transfer, or land-

use change can be modeled using soil data. Most soil properties are hard to measure and 

therefore have to be estimated. concluded that tropical soils lack efficient methods for 

estimating soil properties. One of the key soil hydraulic properties for two pilot sites in the 

Volta basin of Ghana is estimated using easy-to-measure soil properties together with 

terrain attributes in artificial neural networks. Data preprocessing is important for ANN 

because good data distribution, range, and amounts are prerequisites for good estimation. 

ANN can be used to estimate Ks using soil properties such as sand, silt, and clay content, 

bulk density, and organic carbon. Although the inclusion of terrain parameters can improve 

the estimation of Ks using ANN, they cannot be relied on as the sole input parameters as 

they yield poor results for the scale considered in this study. The source of training data 

was found to have an effect on the topsoil but not the subsoil. (Shi et al., 2016) investigated 

the use of extreme learning machines for predicting well logs data has been investigated. 

We use log data from two unconventional gas wells in China. There were seven wireline 

logs from this well. An artificial neural network based on Levenberg-Marquardt logarithm 

has been compared with the model. A single hidden-layer feed-forward network with many 

advantages over multi-layer networks is called an Extreme Learning Machine (ELM) 

network. The results showed that the ELM method can achieve high accuracy while 

maintaining high running speed. The study shows that ELM technology can be incorporated 

into a software system that can be used in quick guidance for well completion. (Moreno et 

al., 2017) The global carbon cycle has a key role in the soil organic carbon. Modelling of 

SOC variation is difficult because of the complex relationships among the components of 
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C cycle. Artificial neural networks can determine interrelationships based on information. 

The goal was to develop and evaluate models based on the ANN technique to estimate the 

SOC. Three long term experiments data was used. Management and meteorological 

variables were selected. Number of years from the beginning of the experiment, proportion 

of soybean in the crop sequence, yield, and proportion of crop rotation were some of the 

management information variables. The minimum and mean air temperature were selected. 

The ANNs were able to estimate the SOC in the upper 0.20 m. The model with the best 

performance included six management variables, all of which are easily available and have 

low level of uncertainty. Simple and easily available input variables could be used to 

estimate soil organic C changes. Artificial neural network technique can be used to develop 

robust models to help predict SOC changes. 

 

1.6.8 CONVOLUTIONAL NEURAL NETWORK 

(Emadi et al., 2020c) focuses on the estimation of soil organic carbon (SOC) content using 

various machine learning algorithms. The research aims to improve prediction models for 

SOC by utilizing support vector machines, artificial neural networks, regression tree, 

random forest, extreme gradient boosting, and conventional deep neural network 

algorithms. The results of the study indicate that precipitation is the most significant 

predictor, accounting for 15% of the spatial variability in SOC content. Among the 

algorithms tested, the deep neural network (DNN) model exhibited the best performance, 

with the lowest prediction error and uncertainty, based on 10-fold cross-validation. The 

researchers highlight the potential of the proposed DNN algorithm for handling large 

amounts of auxiliary data at a province scale. The flexibility and information-extraction 

capability of DNN from the surrounding auxiliary data resulted in high accuracy for 

predicting the SOC baseline map and minimized uncertainty. The findings shed light on the 

key predictors influencing SOC variability and provide insights into SOC distribution 

across different soil moisture regimes and land types. In another study (Padarian et al., 

2019b) trained CNN model to simultaneously predict soil organic carbon at multiples 

depths using a soil mapping example. The results showed that the CNN model reduced the 

error by 30 % compared with conventional techniques that only used point information. In 

the example of country-wide mapping at 100 m resolution, the size of the neighborhood is 

more effective than at a point location and larger neighborhood sizes. The CNN model is 

able to predict soil carbon at deeper soil layers more accurately because it produces less 

prediction uncertainty. The framework for future DSM models can be found in the CNN 
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model. Other influential work include (Wadoux, Padarian, et al., 2019). The paper 

introduces a deep learning model for contextual digital soil mapping. An objective function 

can be weighted with respect to a measurement error of soil observations to find spatial 

non- linear relationships between measured soil properties and neighbors. A single model 

can be trained to predict a soil property at different depths. The method is used to map top 

and subsoil organic carbon. The results show that the CNN significantly increased 

prediction accuracy when compared to a conventional DSM technique. The interrelation 

between soil property and depths was preserved. The CNN is an effective and promising 

model to predict soil properties at multiple depths while accounting for contextual covariate 

information and measurement error. 

 

1.6.9 CATEGORICAL VARIABLES 

According to (Costa et al., 2018) there is strong variation in space in the southeastern Brazil 

due to vegetation cover, climate, relief, and geology. The goal of the study was to compare 

and evaluate the performance of classical multiple linear regressions and geographically 

weighted regression models to predict soil organic carbon and chemical fractions in the 

Brazilian southeastern mountainous region. The models were fitted based on the chemical 

fractions. The points were selected by the pedologist. The variables that drive soil carbon 

content and its dynamics were selected using the empirical knowledge of pedologists. 

Geology map, legacy soils map, terrain attributes derived from digital elevation model, and 

remote sensors were used as covariates. The legacy soil map was selected as a covariate by 

the stepwise approach. FAF and humin were not predicted by the geology map. The 

variables were selected by the models. The GWR models had the best performance for the 

predictions of the SOC, HUM, and FAF. The results were extrapolated by the MLR models. 

Local landscape variability affected the relationships among SOC, SOM fractions, and 

environmental covariates. On the other hand, (Ruehlmann, 2020) developed a model based 

on the soil texture and soil organic carbon recorded in the soil inventories. The problem 

faced was that the conversion factor and particle density were variable. A mechanistic 

approach to predict the particle density of soils was generated. The required boundary 

conditions were provided for the model calibration. The full range of possible soil organic 

matter contents, diverse textures and soil parent materials were covered in our model. The 

mean particle densities of the clay-, silt- and sand-size fractions were quantified in the 

results. Since soil organic carbon (SOC) and its labile C fractions play a central role in soil 

quality and C cycles, (Xu et al., 2020b) aimed to investigate the potential of laboratory-
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based hyperspectral imaging (HSI) spectroscopy to predict and map SOC. The results 

showed that the nonlinear models performed better than the PLSR models in most cases. 

Other influential work include. (Ahirwal et al., 2021) This study looked at the importance 

of environmental variables in predicting carbon stock in the Indian Himalayan Region. The 

importance of various environmental variables in predicting carbon stock was examined 

using machine learning techniques. Natural forests have the highest biomass C stock, while 

plantation forests have the highest SOC stock. The relationship between the environmental 

variables and carbon stock was not significant. Our study shows that the carbon stock in 

the IHR varies on a large scale due to a variety of land uses. Predicting the driver of carbon 

stock on a single environmental variable is impossible for the entire IHR. The IHR has a 

carbon sink. India's commitment to nationally determined contributions is dependent on its 

protection. 

 

1.7.1 CONTINUES VARIABLES 

(Gomez et al., 2008) compares the predictions of soil organic carbon with remote sensing 

data. The Narrabri region was dominated by vertisols and soil samples were collected there. 

The vis–NIR spectrum was collected over this region with a portable spectrometer and a 

satellite hyperspectral sensor. The partial least-squares regression was used to predict the 

contents of the SOC. Predicting accuracy was unaffected by the resolution of the data. The 

predictions of the SOC using the Hyperion spectrum were not as accurate as those of the 

Agrispec data. The predicted map shows similarity with field observations. Predicting soil 

organic carbon can be done with the use of hyperspectral remote sensing. Digital soil 

mapping will be aided using these techniques. (Hansen et al., 2009) suggest that 

constructing a cost-effective and detailed digital soil map of Africa will require the 

extensive utilization of both legacy soil data and legacy soil-landscape knowledge. They 

looked at a hybrid approach for disaggregating soil maps that used expert knowledge, 

followed using modeling techniques to map the landscape units. Significant class 

differences in soil texture, color, organic carbon, base saturation, pH, effective cation 

exchange capacity, and clay mineralogy were shown in a statistical analysis of soil property 

data from a small catchment located within the study area. A valuable starting point for 

digital soil mapping can be found in disaggregated soil maps, which are rare in Africa. It 

was the same as the previous. Contrary to Hansen, The spatial distribution of stocks of soil 

organic carbon (SOC), total carbon (Ctot), total nitrogen (Ntot) and total sulphur (Stot) was 

evaluated by (Wiesmeier et al., 2011b). Random Forest was used as a new modeling tool 
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for soil properties and as an additional method for the analysis of variable importance. The 

highest amount of SOC, Ctot, Ntot and Stot stocks can be found under the mountains. 

River-like structures of very high stocks in valleys within the steppes are partly to blame 

for the high amount of SOC for grasslands. The most important variables are land use and 

geology. The predicted accuracy of the RF modeling and generated maps was acceptable. 

The risk of rapid soil degradation if steppes are cultivated was shown to be up to 70%. They 

are not suitable for agricultural use. Other influential work in this domain can be found in 

(Forkuor et al., 2017b) where the use of Remote Sensing data as secondary sources of 

information in digital soil mapping were found to be cost effective and less time consuming 

compared to traditional soil mapping approaches. 

 

1.8 CONCLUSION OF LITERATURE AND RESEARCH GAPS 

Based on the systematic mapping approach, this paper examined different algorithms and 

environmental factors employed in digitally mapping the concentration and stocks of soil 

organic carbon (SOC) in recent times, as well as their suitability. The research identified 

both geographic clusters and gaps in empirical knowledge within the field of digital SOC 

mapping. There is an uneven distribution of empirical studies utilizing digital mapping 

techniques, with concentrated efforts observed in specific countries such as China, 

Australia, and the USA. In terms of the temporal trend, the number of publications peaked 

in 2016 and 2017 after steadily increasing from 2013. However, there was a significant 

decline in publications after 2017 until 2018. 

 

When it comes to predictive models, there has been a transition from Linear models to 

Machine Learning (ML) models since the previous review conducted in 2013. Although 

Random Forest (RF) outperformed other algorithms in most comparative studies, no single 

model emerged as the strongest in all scenarios. The use of Regression Kriging or hybrid 

models that combine deterministic and stochastic error modeling proved to be more 

effective than separate models that solely addressed deterministic components or relied 

solely on spatial autocorrelation of SOC for interpolation. Among the various predictive 

models, several primary studies focused on promising algorithms such as RF, Cubist, BRT, 

SVM, NN, and GWR. Therefore, to perform a comprehensive comparison of these models, 

it is recommended to employ a meta-analysis approach to identify the most competitive 

algorithms. However, for other algorithms, further primary research is necessary to address 

existing gaps in knowledge. 
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The association between environmental covariates and soil carbon levels was found to 

primarily depend on environmental conditions, soil depth, mapping resolution, and the 

extent of the area being studied. When mapping at regional scales, climate was identified 

as the most influential factor affecting SOC levels, followed by parent materials, 

topography, and land use. However, when mapping at a finer resolution that represents 

plots or small fields, variations in land use were considered more influential in predicting 

SOC. Local variations in topography were also recognized as significant for determining 

SOC levels. In a previous study by  Minasny et al. (2013), topographic variables were 

reported as the most commonly utilized covariates for predicting SOC. However, our 

review reveals that variables representing the 'organisms' factor are among the most 

frequently employed covariates, followed by covariates related to 'climate' and 

'topography'. While improving prediction accuracy through better models and covariates is 

important, other factors such as the size and representativeness of the training samples also 

play a crucial role in the predictive mapping of SOC. 

 

Compared to the previous review conducted by Minasny et al. (2013), there is now a more 

prevalent practice of validating SOC mapping tasks and estimating spatially explicit 

uncertainty in order to enhance the reliability and accuracy of SOC estimation. However, 

the majority of the studies reviewed still did not employ additional probability sampling to 

evaluate predictive performance, likely due to the additional resources and time required 

for such an approach. Instead, most studies relied on data-splitting techniques and 

considered it as an independent evaluation of the results. It is recommended to incorporate 

external validation using soil sample datasets collected through additional probability 

sampling methods to ensure an unbiased assessment of SOC concentration and stocks 

prediction. 
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CHAPTER 2: METHODOLOGY 

2.1 STUDY AREA 

The study took place in the Tolon District, located in northern Ghana. Tolon spans from 

latitude 9°15'N to 10°02'N and longitude 0°53'W to 1°25'W. The specific area of focus 

within the district was the community of Fihini (Fig. 1), where detailed field studies were 

conducted. In the Tolon District, the primary livelihood activities revolve around small-

scale food crop production and livestock keeping. The region experiences highly variable 

rainfall and temperature patterns. Rainfall distribution is generally irregular, intermittent, 

and characterized by heavy downpours. The average annual rainfall ranges from 900 mm 

to 1000 mm, following a unimodal pattern. The rainy season typically begins in April, peaks 

in August and September, and coincides with intensive farming activities. Rainfall 

gradually decreases from mid to late October, marking the onset of a long dry season that 

persists until late March. Average temperatures range from 25°C (minimum) to 36°C 

(maximum). The hottest temperatures are usually recorded in March, occasionally reaching 

up to 45°C. 

 

Tolon lies within the Guinea Savannah zone, characterized by tropical savannah woodland 

and the presence of perennial grass species. Key tree species in the area include dawadawa 
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(Parkia biglobosa), sheanut (Vitellaria paradoxaneem), acacia (Acacia nilotica), and neem 

(Azadirachta indica). The agro-ecological landscape is marked by a decreasing trend in 

fallow periods, with communal land ownership being replaced by family or individual 

ownership. Apart from fetish grooves, unallocated land is scarce, resulting in significant 

land degradation. The Tolon District is situated within the Volta basin, comprising Volta 

sandstone, mudstone, and shale. Notably, ironstone impregnations derived from degraded 

sandstone, shale, and philite formations are prominent geological features in the area. 

 

In terms of soils, 47% of the soils in northern Ghana are considered unsuitable for crop 

production, 25% are categorized as marginal, and only 28% are deemed suitable. Soil 

erosion and loss of vegetative cover are widespread causes of land degradation and 

decreased soil productivity. Sandy loam soils are predominant, except in lowland areas 

where alluvial soils can be found. The sandy loam soils are highly suitable for cultivating 

root and tuber crops. 

According to the 2010 census data, the total population of the Tolon District is 112,331, 

with a land area of 2,741 km². This translates to an estimated population density of 

approximately 40.9 individuals per square kilometer. Compared to the regional population 

density of 35 individuals per square kilometer, the district is slightly more populated but 

Figure 1:The location of the study area 
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falls below the national average of 102 individuals per square kilometer. Agriculture serves 

as the dominant livelihood activity, employing over 90% of the population. However, 

agricultural productivity is constrained by limited access to water resources. Despite this 

limitation, there is great potential for irrigated agriculture due to the presence of the Volta 

River, which drains the area. Livestock rearing is integrated with staple crop production in 

the farming system. Major staple crops include cereals (maize, rice, and sorghum), root and 

tubers (yam), and legumes (peanuts, cowpea, and soybean). Intercropping is common 

practice for most crops except rice and cotton. Women in the area are primarily engaged in 

shea butter and groundnut processing. An interesting demographic characteristic of the 

Tolon District is its significant rural-urban migration, particularly to Accra, the capital city 

of Ghana. Some of these migrations are seasonal, occurring during the extended dry season 

when farming activities are minimal.  

 

2.1.1 INPUT DATA 

Environmental predictors  

This study used environmental variables related to the key soil formation factors of climate, 

parent material, biota, topography, and age based on the ‘scorpan’ factors. The digital soil 

mapping approach follows the SCORPAN spatial prediction function Equation (1) 

(McBratney et al., 2003), as follows:  

 

S= f(S,C,O,R,P,A,N)         -equation 1 

 

This approach has begun to emerge in papers published lately. The Jenny-like formulation 

was used not for explanation but for empirical quantitative descriptions of relationships 

between soil and other spatially referenced factors with a view to using these as soil spatial 

prediction functions. 

 

The following seven factors were considered: 

s: soil, other properties of the soil at a point; 

c: climate, climatic properties of the environment at a point; 

o: organisms, vegetation or fauna or human activity; 

r: topography, landscape attributes; 

p: parent material, lithology; 

a: age, the time factor; 
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n: space, spatial position. 

 

2.1.2 FIELD SAMPLING 

Sample sites were located using global positioning system (GPS). Each data point 

represented a soil core divided into depths 10–30 cm. A total of 3 soil samples coming 

mainly from topsoil (0±30cm), were considered in this study. They were taken from the 

topsoil along with intensive auger sampling carried out from July to October 2021 and from 

July to October 2022. These cores were bulked and cooled in the field and then transported 

and processed in the lab. These samples were dried at at normal room temperature and 

sieved to 2mm. Because of high number of soil samples and the cost involved, only 3 

samples were analyzed conventionally for the soil properties under study (i.e. texture + 

sand, silt, clay; nitrogen(N), and our target variable SOC). 

2.1.3 CHEMICAL ANALYSIS 

Chemical analysis was conducted on soil samples to determine the respective carbon (C) 

fractions, with a 5% replication. The measurements were performed using a TOC-VCPN 

catalytic combustion oxidation instrument with an SSM-5000a solid sample module, 

following specific pre-processing methods. Total C (TC) was measured on ball-milled 

samples (80-700 mg) combusted at 900 °C. Inorganic C (IC) was derived by measuring 

CO2 evolution from ball-milled samples (20-250 mg) reacted with 42.5% phosphoric acid 

at 200 °C. Soil organic C (SOC) was calculated by subtracting IC from TC. The hot water 

extractable 'labile' C (hydrolysable carbon - HC) was determined by incubating 4 g of soil 

in 40 mL (1:10) of double de-ionized water at 80 °C for 16 hours, followed by filtration 

(0.22 μm). The non-hydrolysable 'recalcitrant' C (RC) was measured by digesting 2 g of 

ball-milled soil in 10 mL of 5 M HCL under reflux conditions for 16 hours. The soil digest 

was washed three times by centrifugation, dried, and the remaining undigested C was 

combusted at 900 °C. A Spearman's correlation analysis was conducted to examine the 

relationships between the different C fractions, providing a preliminary comparison to 

assess potential similarities in the derived chemometric models. 

 

For each soil core, SOC stock for each soil layer was calculated using SOC concentration, 

gravel % and BD (Eq. (1)). To obtain the SOC stock to 30 cm soil depth, we summed SOC 

stocks for all layers 0–30 cm  
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SOCstock(th−1) = C ∗ BD ∗ D ∗ (1 −
(gravel[%])

100
)    equation 2 

 

where C is the concentration of soil carbon(gC)(100g)−1 sieved soil); BD is bulk density 

of the whole soil (g CM−3); D is the thickness of the corresponding soil layer(cm); 

gravel[%] is the percentage of gravel in the soil sample. 

 

2.1.4 AUXILIARY VARIABLES 

In this study, the SCORPAN model (McBratney et al., 2003)was utilized for predicting soil 

organic carbon stocks (SOCS) using nine auxiliary variables or independent data. These 

variables were derived following the approach outlined by (Hengl et al., 2017) and 

encompassed a variety of topographic variables generated by a specific software package. 

The objective was to explore a diverse set of topographic variables to determine the most 

effective ones for the prediction task. Furthermore, these selected auxiliary variables have 

demonstrated successful utilization in predicting SOC in other studies, such as the work 

conducted by Liu et al. (2013). The selection process for these variables is detailed below.  

 

All predictors used are listed in Table 1 and outlined in more detail below.  

Theme Variable Description Reference 

Vegetation NDVI Normalized 

Difference Vegetation 

PROB-V FAPAR 

2014–2017 

Biomes Living organisms BIOMES 6000 

data set current 

biomes 

Climate Temperature  Mean annual 

minimum temperature 

(◦C) 

MODIS 

MOD11A2  

Precipitation Mean annual rainfall 

(mm) 

WorldClim v2 

Relief/Geology/Terrain Rock Type Degree of weathering 

of parent materials, 

regolith and soil, 

based on gamma 

radiometric data 

GLiM, Hartmann 

and Moosdorf, 

2012 
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Roughness Sand Content Amatulli et al 

SAGA Wetness 

Index 

Ratio of local 

catchment area to 

slope 

Yamazaki et al. 

2017 

Soil Properties Bulk Density Soil Weight Per Unit 

Volume 

Lab analysis 

Soil Organic 

Matter 

Organic matter 

content 

Lab analysis 

Table 1:Climate attributes used in the prediction of SOC in the study area 
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2.1.5 ENVIRONMENTAL COVARIATES 

To model the spatial distribution of SOC stocks we used environmental covariates related 

to the scorpan factors (Table 1). A set of 9 maps was generated. These maps were generated 

using the RSAGA package. The maps include precipitation, roughness, SAGA,  

 

Land Surface Temperature (LST), Soil Bulk Density, rock, soil organic matter, Biomes, 

and NDVI. 

To process the covariates, a combination of Open Source GIS software was employed, with 

a primary focus on QGIS. R packages such as raster, SP, GSIF, and GDAL were utilized 

for tasks such as reprojection, mosaicking, and merging of tiles. QGIS and GDAL proved 

to be exceptionally suitable for handling large datasets, as they facilitated the 

implementation of parallel computing methods. 

All auxiliary variables obtained from the three sites were resampled to 1km*1km spatial 

resolution and then used as auxiliary variables for the development of quantitative spatial 

models. All the data were in raster format and coordinates were converted to UTM WGS84 

Zone 4326. All auxiliary data that have been described were registered to a common grid 

Figure 2:Spatial distribution of environmental variables in the Tolon District, Ghana 
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of 1km *1km cell size. The original spatial maps/layers from various sources were 

resampled into raster format with the same 1 km resolution using bilinear resampling 

method, and all layers were re-projected to a common coordinate reference system for 

future analyses.  

 

2.2 SOFTWARE AND MODELLING TOOLS 

2.2.1 QGIS 

QGIS, which stands for Quantum Geographic Information System, is an open-source, 

cross-platform desktop geographic information system (GIS) software. It allows users to 

visualize, analyze, and manage geospatial data. QGIS supports a wide range of vector, 

raster, and database formats, making it a versatile tool for working with geospatial data. 

 

2.2.2 STEPS IN QGIS PROCESSING 

Buffer: A buffer of 9 km was created around 

the vector layer containing the sample points 

of the study area. This is helpful if you want 

to analyze the mean values within specific 

buffer zones. 

 

Grid: A grid was created to cover the extent 

of the study area. The grid was defined with 

a cell size of 1km*1km.The grid cells will 

serve as the spatial units for calculating 

mean values. 

 

Clip: Since the continuous raster extends 

beyond the boundaries of the study area or 

buffer zones, the raster was clipped to the 

desired extent. This ensures you are working 

with the relevant data for the your analysis.  

 

Join Layer: The join layer was utilized to 

join the 9 auxiliary variables using the “Join Layer” function in QGIS. This allows you to 

Figure 3: Covariates preparation in QGIS 
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combine the attribute data with the raster data based on a shared attribute or spatial 

relationship. 

 

Raster Statistics: QGIS provides built-in tools for calculating various statistics, including 

the mean, average, minimum, maximum for raster layers. To obtain mean values, the 

“Raster Layer Statistics” tool was used. This tool calculates statistics for the pixels within 

each grid cell or buffer zone, providing the mean value as one of the output results. 

 

By applying these methods in QGIS, the resultant values for each variable was exported 

into a Comma Separated Values file for- further analysis. 

R Statistical Software 

R is a popular choice for machine learning tasks due to its extensive collection of packages 

and libraries specifically designed for this purpose. Here are some key aspects of using R 

for machine learning: 

 

Machine Learning Libraries: R offers a wide range of machine learning libraries that 

provide implementations of various algorithms. Some popular libraries include caret, mlr, 

randomForest, xgboost, Naïve Bayes, Support Vector Machine, tensorflow, and keras. 

These libraries cover a broad spectrum of machine learning techniques, including 

classification, regression, clustering, dimensionality reduction, and more. 

 

Algorithm Implementation: R provides implementations of numerous machine learning 

algorithms, making it easy to apply these techniques to your data. From classic algorithms 

like linear regression, decision trees, and support vector machines to more advanced 

methods such as random forests, gradient boosting, and deep learning models, R has you 

covered. 

Model Evaluation and Selection: R offers comprehensive tools for evaluating and 

comparing machine learning models. The caret package, for example, provides 

functionality for model training, cross-validation, hyperparameter tuning, and performance 

evaluation. It simplifies the process of comparing different algorithms and selecting the 

best-performing model for your specific task. 

 



  

ERNEST KWAME BAYAH | ED-ICC | U-JKZ | BURKINA FASO 28 

 

Overall, R provides a powerful and flexible environment for machine learning tasks. Its 

extensive range of packages, visualization capabilities, and data manipulation tools make 

it a versatile choice for developing and deploying machine learning models. 

 

2.2.3 SPATIAL PREDICTION FRAMEWORK 

Spatial prediction, i.e. fitting of models and generation of maps, was fully implemented via 

the R environment for statistical computing. The process of generating SOC predictions 

consists of four main steps (see Fig 4) overlay points and covariates and prepare training 

and test data, fit spatial prediction models;apply spatial prediction models using tiled raster 

stacks (covariates), assess accuracy using cross-validation. 
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Figure 4: Framework of procedure used. 
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2.3 MODELLING TECHNIQUES 

In this study, three supervised ML models (RF, XGBoost and Naïve Bayes were selected 

for SOC prediction. The first two models allow estimating the relative importance of the 

predictor variables based on how much worse the prediction would be if the data for that 

predictor were permuted randomly(Prasad et al., 2006) . Each of these methods can model 

complex nonlinear relationships between SOC stocks and environmental variables. They 

showed good performance for the prediction of SOC stock in various climatic areas (Yang 

et al., 2016) In this study, input covariates were selected based on their relationships 

between soil and environmental factors. Each type of machine learning model has specific 

and different required parameters (referred to as tuning parameters) to control how the 

relationship between input predictors and response is defined. These parameters must be 

optimised to generate the best “fit” possible between covariates and outcomes. 

 

2.3.1 DEVELOPMENT OF RANDOM FOREST MACHINE LEARNING MODEL  

RF has been used in various DSM studies over the past decade (Wiesmeier et al., 2011c) 

and for many other environmental problems. A random forest algorithm (Breiman, 2001) 

was used to develop prediction models. Unlike most common methods based on machine 

learning, RF only needs three parameters to generate a prediction model: (1) the number of 

trees to grow (ntree), (2) the minimum number of points in each terminal node (nodesize), 

and (3) the number of features or predictors tried at each node (mtry). These parameters 

were set to 1000, 5, and one-third of the total number of predictors, respectively. To allow 

the random forest algorithm to run more efficiently, the recursive feature elimination (RFE) 

technique was used to remove irrelevant input features. RFE is a wrapper-type feature 

selection algorithm that works by searching for a subset of features in the original training 

data and removing redundant features. An additional feature of RF is the capacity to rank 

the relative importance of the variables in the prediction.  

In short, the variable importance of each feature is first measured by fitting a given machine 

learning algorithm. Then, the least important features are discarded. Finally, the model is 

refitted using the remaining features. This process is repeated to automatically select the 

most important features until the best results are achieved. Here, a random forest algorithm 

was used to evaluate the model. RFE analysis was performed on a dataset that included 

static, dynamic and temporal variables and on a dataset that included only static and 

dynamic variables. Unlike most common methods based on machine learning, RF only 

needs two parameters to generate a prediction model: (i) the number of regression trees to 
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grow in the forest (ntree), (ii) the number of randomly selected evidential features at each 

node (mtry). 

 

2.3.2 DEVELOPMENT OF GRADIENT BOOSTING MACHINE LEARNING MODEL 

GBM, intended for robustness, is principally an ensemble model made of multiple 

execution of another model called Classification and Regression Tress (CART). CART 

(Hastie et al., 2001) is a rule-based algorithm that recursively splits the input space into 

smaller sections which is used for classification and regression tasks. In a forward  

manner, the GBM constructs new trees on the basis of the primary tree and adjusts the 

weights of data aimed at boosting the cases poorly predicted by the previous trees (Schillaci 

et al., 2017) . Indeed, observations with lower accuracy in the previous selection, acquire a 

greater chance of being selected for the new tree construction. The algorithm accepts 

different types of predictors, handles missing values, is insensitive to the outliers, and is 

capable of considering interaction between the predictor variables (Leathwick et al., 2006). 

However, main parameters requiring to be set in advance are the learning rate, a parameter 

controlling how each tree contributes in the growing model, and tree complexity (or 

interaction depth) for considering the variable interactions.  

To run GBM, the learning rate and tree complexity were set to 0.03 to determine the 

optimum number of trees (Elith et al., 2008). Based on the error rate, the number of trees 

was set to 200. For model construction and assessing the model performance, ten-fold cross 

validation was used, in that, the entire dataset is partitioned into 3 equal folds, so that at 

each run, three folds are used for model fitting and the remaining fold is held for the model 

validation. Then, Receiver Operating Characteristics (ROC) for each fold was obtained, 

and the average error of all the folds was calculated as the model accuracy. To add more 

variation in the model, GBM, in a stochastic manner, only uses a random fraction of the 

data to grow each tree (it is called “bag fraction”). To make the results reproducible, a seed 

for random number generator is set in advance, nevertheless, it is arbitrary, and selection 

of different seed numbers do not yield identical results. To fix this variability, providing an 

uncertainty map for such models is quite helpful, particularly when the maps are going to 

be used by decision makers. Bootstrapping is a method commonly used to account for this 

variability. A bootstrap is a random sampling with replacement in which the size of the 

bootstrap is equal to the original data size where some points will be selected several times 

and some will not be selected at all. In each iteration using bootstrap sampling, the model 

is built based on the selected samples and tested using 10-fold cross validation. Modelling 
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procedure was executed 200 times and the average of all outputs was considered as final 

predictionn. Modelling process was conducted in R using “xgboost” library in the caret 

package. 

 

2.3.3 DEVELOPMENT OF NAÏVE BAYES MACHINE LEARNING MODEL 

The naïve Bayes classifier (naïve Bayes estimator) is a machine learning technique based 

on the Bayes theorem. It belongs to the category of supervised machine learning techniques 

with a categorical response variable.   

 

The naïve Bayes technique assumes that all predictors are independent, i.e. all the pairs of 

predictors are uncorrelated. This is a very strong assumption; this is why the method is 

called “naïve”. Another strong assumption for the naïve Bayes classifier is that the numeric 

predictors are normally distributed. 

 

The Naive Bayes algorithm, being a relatively simple algorithm, has few hyperparameters 

that can be tuned during the modeling process. The key hyperparameters for Naive Bayes 

include: Smoothing Parameter (alpha or lambda): This hyperparameter determines the 

strength of smoothing applied to the feature probabilities. It helps handle the issue of zero 

probabilities for unseen or rare feature values. A higher value of the smoothing parameter 

results in stronger smoothing, reducing the impact of individual features. Conversely, a 

lower value gives more weight to individual feature occurrences. 

Feature Distribution Assumptions: Naive Bayes assumes specific probability distributions 

for the features, such as Gaussian (for continuous features), Bernoulli (for binary features), 

or Multinomial (for count-based or categorical features). These assumptions affect how the 

likelihood probabilities are estimated. In some implementations, you may have the option 

to specify the distribution assumption explicitly. 

 

2.3.4 OPTIMIZING THE HYPER-PARAMETERS OF MACHINE LEARNING MODELS 

We applied a grid-learning method to estimate the best model-parameter by testing different 

ranges of the model parameters listed in Table 2. Importantly, these hyper-parameters are 

the most likely parameters to have the largest effect on the performance of the ML models. 

All other hyper-parameters were set to their defaults. Based on the most relevant 

parameters, we tuned each model individually and evaluated the prediction performance. 

Additionally, we combined the grid-learning method with a spatial block cross-validation 
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strategy with the aim to reduce the spatial autocorrelation effect of close neighbors and to 

choose the optimal model parameter. In this study, we constructed 10 folds for our block 

cross-validation using R package blockCV. in which several spatial blocks can be assigned 

to a fold CV. The block-to-fold assignment in this package was done by a repeated random 

approach that tries to find the most evenly distributed number of observations in each fold. 

Thus, the observations are separated spatially and in each fold as close as possible to the 

typical 10-fold cross-validation approach. 

 

Table 2. Hyper-parameters of ML models tuned in this study. 

ML Models Hyper-Parameters Definition Defined 

Parameters 

Random Forest mtry The number of input 

variables 

9 

 ntree The number of trees 200 

 nodesize  14 

XGB max_depth the depth of tree 6 

 min_child_weight the minimum sum of 

weights of all observations 

1 

 subsample the number of samples 

supplied to a tree 

1 

 eta Learning rate 0.3 

 gamma Minimum loss reduction 

required  

0 

NB Expand.grid Laplace correction 0 

 Use kernel Distribution type T 

 adjust Bandwidth adjustment 0.5 

Table 2:Hyper-parameters of ML models tuned in this study 

2.3.5 HYPERPARAMETER OPTIMIZATION 

To understand the hyperparameters (model performance and consistency under different 

settings) and their functions in each setting, in ML, the training application works with two 

categories of data during model training: 

1) Input data or training data: used to configure the model to correctly make predictions 

about new cases of similar data. 
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2) Hyperparameters: define the external configuration to the model and whose values 

cannot be estimated from the input data. 

 

A good alternative to time-consuming manual tuning of a model is to let the machine find 

the best combination of hyperparameters search, like  

(a) grid search, run with different sets of hyperparameters, and select the best; and  

(b) random search, like a grid search, but users basically only choose the parameter 

boundaries, and the routine randomly tries different sets of hyperparameters. The 

hyperparameters used in the XGBOOST modeling tend to have both recommended and 

default values.  

 

The parameters, with their roles and values are as follows, nrounds; max_depth; eta;  

gamma; colsample_bytree; min_child_weight. 

It is recommended to group the parameters for tuning purposes into  

(1) controlling the model complexity using max_depth, min_child, and gamma; and  

(2) robust to noise using subsample and colsample_bytree; and  

(3) to reduce overfitting by reduction of eta and increasing nrounds at the same time. 

 

In RF, model tuning uses the parameters mtry, maxnodes, nodesize, and ntree. The number 

of variables selected at each split i.e., the number of variables (x) randomly sampled as 

candidates at each split, is denoted by mtry. For classification, the default value is the square 

root of p (where p is number of variables in x), and in regression, the default value is p/3. 

The current study used a loop testing between 9 possible variables. The number of trees to 

grow (ntree) should not be set too small to ensure that every input row gets predicted at 

least a few times. Maxnodes is the maximum number of terminal node trees the forest can 

have. If not given, trees are grown to the maximum size possible, and are subject to limits 

defined by nodesize. Eventually, probability maps are produced for each SOC or target 

variable.  

 

2.4 ACCURACY ASSESSMENT 

The area under the receiver operating characteristic curve (AUC of ROC) was calculated 

using the pROC package. Prediction intervals will always be wider than the corresponding 

confidence intervals. Cohen’s kappa coefficient (κ) was used to measure interrater 

reliability for qualitative items, as a more robust measure than simple percent agreement, 
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as κ considers the possibility of the agreement occurring by chance. Kappa value of 1.0 

signifies perfect agreement, and lower values indicate less agreement. The resultant maps 

were based on optimization of drop-off variables, and determination of the best model was 

based on primary tests that included a confusion matrix of overall accuracy and the kappa 

index. Four criteria should be considered by users, to decide the best model after testing for 

model fit: 

 

1- number of variables included in model, lower is better 

2- processing delay, lower is better 

3- overfitting in the importance distribution, a smooth distribution is better than a rigid one 

4- AUC value of ROC, higher is better 

After applying the above criteria, the chosen models produced nine probability maps and 

three classification maps. 

In literature, the best model fit can be considered based on high accuracy of AUC of ROC 

values or a rigid relationship line between false positive rate and true positive rate. 

However, good performance on seen data does not necessarily mean good performance on 

unseen data. A common technique in ML that deals with modelling error in relation to 

capacity is called regularization or generalization. This technique avoids the overfitting of 

the models with large learning capacity and focuses on maintaining the bias amount and 

reducing the variance.  

 

When the model and data have low bias but high variance (fit line is passing through the 

points but is not sufficiently flexible to stay near to points), this results in a big 

generalization gap. This is called overfitting and the model performs well on seen data but 

poorly on unseen data. To avoid underfitting and overfitting, the process separated the 

limited collected records into 2 parts: training (to teach the model about what to predict) 

and validation (to test the prediction error). If the prediction errors were high, the process 

optimized the hyperparameters to reduce the validation error. When the prediction error 

was acceptable, testing data were used for the final assessment of model performance. This 

included deciding whether the process had over tuned the model and lost the ability to 

predict unseen (testing) data. For drop-off variable optimization, the validation data were 

used to monitor the prediction error of the model, gradually decreasing the quantity of 

variables and stopping the iteration once it reached an unacceptable error value. The longer 

the model is trained, the larger the explored parameter space. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1.1 ENVIRONMENTAL COVARIATES PREDICTORS 

Environmental factors play a significant role in the process of natural soil formation, either 

directly or indirectly. Over the past decade, there has been a surge in the availability of 

diverse data sources that capture variables associated with climate, vegetation, topography, 

parent materials, human activities, and time, all at suitable spatial scales. These variables 

have been extensively tested in conjunction with digital mapping techniques to enhance the 

prediction accuracy of specific soil properties. When considering the digital mapping of 

SOC, it is essential to evaluate these factors while taking into account the concepts of 

mapping scales, including resolution, extent, and support, which are critical for accurate 

SOC prediction.  

 

3.1.2 RELATIVE IMPORTANCE OF COVARIATES 

The relative importance of different variables for SOC prediction obtained by sensitivity 

analysis is shown in fig 5, 6 and 7. The most considerable positive contribution of any 

variable to SOC prediction was precipitation. The importance of precipitation and other 

attributes could be related to the 

fact that SOC is highly affected 

by climate and topography in 

the study area. Based on fig. 2, 

the covariates of the study area 

indicates that Northern parts of 

the study area have high 

precipitation and vegetative 

cover while southern parts have 

low precipitation and low 

vegetative cover. Basically, 

high NDVI values is positively 

influenced by high 

precipitation. In contrast, rock 

with less than 1%, was the least important one. These results were to be expected because 

the study area in the northern parts of Ghana has almost flat terrain.  

Figure 5: Correlation plots of predictor variables 
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All models showed precipitation as the most important variable for explaining the spatial 

variations of SOC. Precipitation was categorized as the most significant variable that 

influenced the spatial distribution of SOC for a RF, NV and XGB models at 0–30 cm. 

Similar to the results of this study, Davy and Koen (2014) observed precipitation as the 

most important variable influencing SOCS in eastern Australia and Wang et al. (2018) 

showed that the relationship between climate variables (precipitation and temperature) and 

soil moisture, is a main driver of plant growth and net primary productivity, and therefore 

SOC dynamics. The effect of valley depth, terrain surface texture and catchment slope are 

complicated and maybe indirect. For example, there was an association between these 

attributes and climatic parameters such as precipitation and temperature, soil erosion and 

solar radiation.  

 

The rankings of predictor variables ordered by relative importance are shown in figures 6, 

7, 8 depicts the importance of variables in the RF and NV models was slightly different, 

revealing different dominating environmental features in these models. For both RF and 

NV models, Socc derivatives were the second explanatory variables for SOC predictions, 

followed by SBD and Biomes variables. Although the two models exhibited different 

ranking characteristics of importance, among all predictors, rock was the least important in 

SOC predictions. For instance, we found NDVI as an important predictor for SOC content 

at surface layers of soils. The remote-sensed vegetation parameters and NDVI are 

commonly considered as good indicators of primary and ecological productivity. The 

importance of precipitation in all models ranked first, with a relative importance of over 

75%. In addition, NDVI in the XGB, RF, and NB models explained 10%, 200%  and 30 % 

of SOC variation respectively. This result reveals the potential application of NDVI images 

for predicting SOC in this study area. 
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The figures above summarises the relative importance of 9 predictors in predicting SOC 

stocks based on 10 runs of RF, XGB and NB models with three repetitions. The covariates 

used to predict SOC content showed a varying level of importance in the models. Mean 

annual rainfall or precipitation was found to be the most important predictor variable 

influencing SOC stocks across the study area. In contrast, the topographic variables SAGA, 

LST, Rock and Roughness showed a very low contribution to the modelled SOC stocks 

Figure 6: XGB Variables Importance 

Figure 7: RF Variables Importance 

Figure 6:NB Variables Importance 
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across the modelling algorithms. Based on the final classification from the the three models, 

SOC stocks had a significantly positive relationship with precipitation and a significantly 

negative relationship with rock. 

 

3.1.3 MODEL EVALUATION  

Model evaluation consists of two main aspects: internal validation and external validation. 

Internal validation entails assessing the model's performance by utilizing test datasets from 

the same time period. On the other hand, external validation involves validating the model's 

predictions over time by employing independent validation data from a distinct time period. 

To perform internal validation, 20% of the data was retained for each model run. 

 

The performance of the three models RF, XGB, NV in predicting the soil properties was 

assessed by using 80% of the detailed soil samples in the study area (which was the focus 

of the sampling) as indicated in Table 3 for cross validation. A 10-fold cross-validation 

scheme with 3 repetitions was applied to ensure model stability and reliability using the 

caret R Package. The remaining 20% served as an independent validation dataset. ROC and 

AUC were calculated to evaluate the model performance. There are several statistical 

methods for evaluating the accuracy and performance of supervised machine learning 

models, however in this study, ROC and AUC were used to determine the performance of 

the models across the three sampling sites of the study area. This is because the final 

classification of the models were converted to vectors because of the parameters to the 

target variable, “ SOC”. Default parameters of the models were applied because an over-

fitted model could also lead to poor predictions. Hyperparameter adjustment is needed 

whenever the default settings are unable to produce satisfactory results or take too much 

time. Furthermore, tree size might need to be reduced for interpretation purposes. It is, 

therefore, important to evaluate the models with other performance statistics, preferably 

based on an independent set of observations, to provide additional information on the 

prediction accuracy of the models.  

 

 

3.1.4 VALIDATION 

No map is flawless. Whether it's a soil map or any other type of map, it serves as a 

representation of reality based on an underlying model. As a result, there will always be a 

disparity between what is depicted on the map and what is observed in the real world. This 
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disparity implies that maps inherently contain errors, and the extent of these errors 

determines their quality. A map with minimal deviation from reality indicates high 

accuracy, while a map that diverges significantly from reality indicates low accuracy. 

 

Soil maps serve various purposes, such as reporting on soil organic carbon stocks, 

providing input for agro-environmental models, assessing land use suitability, and 

informing decision-making processes. Therefore, it is crucial to assess and quantify the 

quality of a map. This is accomplished through the process of validation, which involves 

comparing the predictions made by the soil map with observed values. By evaluating this 

comparison, we can quantify and summarize the map's quality using measures of map 

quality. These measures indicate the average accuracy of the map within the mapping area, 

i.e., the expected error at a randomly selected location in that area. Validation results 

provide global measures of map quality, while uncertainty assessment offers local estimates 

of map quality for each individual grid cell. 

 

It's important to note that validation differs from uncertainty assessment in several ways. 

Validation can be performed without relying on a specific model, making it model-agnostic 

and free from assumptions. On the other hand, uncertainty assessment adopts a model-

based approach by defining a geostatistical model for the soil property of interest, 

generating an interpolated map and associated uncertainty, or constructing a geostatistical 

model for the error in an existing map. While uncertainty assessment provides a 

comprehensive probabilistic characterization of map uncertainty, it is only valid under the 

assumptions made, such as stationarity assumptions required for kriging. Validation, when 

conducted properly, avoids assumptions of a geostatistical model of the error, ensuring 

objectivity and validity of the results. 

 

When assessing map accuracy, we distinguish between internal and external accuracy. 

Internal accuracy measures, such as kriging variance or the coefficient of determination 

(R2) in a linear regression model, are typically derived from statistical methods and rely on 

model assumptions. These measures are computed using data used for model calibration, 

hence termed internal accuracy. Ideally, validation is performed using an independent 

dataset that was not utilized in creating the map. This independent dataset provides external 

map accuracy. It is common to observe poorer external accuracy compared to internal 

accuracy. 
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3.1.5 CONFUSION MATRIX 

A Confusion matrix is a square matrix of size N x N, utilized to assess the effectiveness of 

a classification model. N represents the total number of target classes. This matrix allows 

us to compare the actual target values with the predictions made by the machine learning 

model. By analyzing the Confusion matrix, we gain a comprehensive understanding of the 

classification model's performance and the types of errors it generates. 

 

Important Terms in Confusion Matrix 

True Positive (TP): The predicted value matches the actual value, or the predicted class 

matches the actual class. The actual value was positive, and the model predicted a positive 

value. 

True Negative (TN): The predicted value matches the actual value, or the predicted class 

matches the actual class. The actual value was negative, and the model predicted a negative 

value. 

False Positive (FP) – Type I Error The predicted value was falsely predicted. 

The actual value was negative, but the model predicted a positive value. Also known as the 

type I error. 

False Negative (FN) – Type II Error. Based on the accuracy assessment, the three models 

produced three-dimensional confusion matrix as follows: 

 

Matrix Random Forest XGBOOST Naïve Bayes 

Prediction High Medium Low High Medium Low High Medium Low 

High 47 0 0 47 0 0 46 3 0 

Medium 0 49 0 0 49 0 0 36 1 

Low 0 0 49 0 0 49 1 10 48 

Table 3: Confusion Matrix of the Three Models 

 

3.1.6 RANDOM FOREST CONFUSION MATRIX METRICS 

High 

 Sensitivity Specificity 

High 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

47

47+0+0
= 1 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

49+0+0+49

49+0+0+49+0+0
= 1 
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Medium 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

49

49+0+0
= 1 

 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

47+0+0+49

47+0+0+49+0+0
= 1 

 

Low 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

49

49+0+0
= 1 

 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

47+0+0+49

47+0+0+49+0+0
= 1 

 

Table 4: Random Forest Model Output Statistics 

Overall RF Model Output Statistics                 

Accuracy : 1           

95% CI : (0.9749, 1) 

No Information Rate : 0.3379      

P-Value [Acc > NIR] : < 2.2e-16                                

Kappa : 1                              

Mcnemar's Test P-Value : NA   

 

Sensitivity: TP: The model predicted 47 correctly as the class of high SOC value in Random 

Forest. FN: It again classified 0,0 as FN as a class that belongs to High Soc but were 

predicted to belong to the class of Medium and Low SOC values. 

In all the Sensitivity tells us that 100 percent of the SOC content were correctly classified 

by the model 

 

Specificity: TN: The model correctly predicted (49+0+0+49) as value of SOCs that belongs 

to Medium and Low SOC values in the RF model. 

FP: The model predicted (0,0) as levels of SOC that belongs to Medium and Low class but 

were classified to belong to High carbon content.  

Sensitivity tells us that 100 % of the SOC content that belongs to Medium and Low carbon 

content or SOC were other than High SOC content was correctly identified.  

 

3.1.7 XGB CONFUSION MATRIX METRICS 

The Xtreme Gradient Boost produced the same output as the RF. The metrics of the 

outcome of the XGB is outlined in the table below. 

 

 Sensitivity Specificity 

High 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

47

47+0+0
= 1 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

49+0+0+49

49+0+0+49+0+0
= 1 
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Medium 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

49

49+0+0
= 1 

 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

47+0+0+49

47+0+0+49+0+0
= 1 

 

Low 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

49

49+0+0
= 1 

 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

47+0+0+49

47+0+0+49+0+0
= 1 

 

Table 5: XGB Model Output Statistics 

Overall XGB Model output Statistics 

Accuracy : 1           

95% CI : (0.9749, 1) 

No Information Rate : 0.3379      

P-Value [Acc > NIR] : < 2.2e-16                        

Kappa : 1                               

Mcnemar's Test P-Value : NA          

 

3.1.8 NAÏVE BAYES CONFUSION MATRIX METRICS 

Unlike RF and XGB, NB model deviated from the norm. In terms of decision making, the 

NV had the lowest performance however, making decisions based on the high SOC values 

from NV, if we should chose SOC values of high classes, both sensitivity and specify would 

be ideal for decision making.  

 

Alternatively, in the medium class of SOC classifications, we would choose specificity 

which is 0.99 if correctly identifying samples with low SOC values were more important 

than soil samples with high SOC values. 

 

At the low level of SOC classification in the NB model, we would choose sensitivity if 

correctly identifying soil samples with high soc values were more important than soil 

samples without soc or with low soc contents.  

 Sensitivity Specificity 

High 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

46

46+0+1
= 0.97 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

36+1+10+48

36+1+10+48+3+0
= 0.97 

Medium 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

36

36+3+10
= 0.73 

𝑇𝑁

𝑇𝑁+𝐹𝑃
    

46+0+1+48

46+0+1+48+0+1
= 0.99 

Low 𝑇𝑃

𝑇𝑃+𝐹𝑁
    

48

48+1+0
= 0.97 46 + 3 + 0 + 36

46 + 3 + 0 + 36 + 1 + 10
= 0.99 

Table 6: Naive Bayes Model Output Statistics 

Overall NV Model output Statistics                    
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Accuracy : 0.8966           

95% CI : (0.8351, 0.9409) 

No Information Rate : 0.3379           

P-Value [Acc > NIR] : < 2.2e-16        

Kappa : 0.8448           

Mcnemar's Test P-Value : 0.009914         

 

McNemar’s test P value for statistical significance was less than 2.2 e−16 for the three 

algorithms. The no information rate (the error rate when the input and output are 

independent, also called a naïve classifier) was equal to 0.33 under the three algorithms. 

Model accuracies were compared with the no information rate; higher values indicate 

model significance. In this case, the accuracies were higher than 0.33, confirming that the 

results are significant. High accuracy, in both models, is achieved with all the 9 independent 

variables.  

Overall, RF and XGB showed good power of generalization indicated by the similar 

accuracy results between cross-validation and holdout for all soil depths. 

 

3.1.9 RECEIVER OPERATING CHARACTERISTICS AND AREA UNDER CURVE 

 

The ROC and AUC is a tradeoff between TP and TN values. The higher the curve, the 

better the model. The area under the receiver operating characteristic curve (AUC of ROC) 

was calculated using the pROC package. Prediction intervals will always be wider than the 

corresponding confidence intervals. Cohen’s kappa coefficient (κ) was used to measure 

interrater reliability for qualitative items, as a more robust measure than simple percent 

agreement, as κ considers the possibility of the agreement occurring by chance. Kappa 

value of 1.0 signifies perfect agreement, and lower values indicate less agreement. Hence, 

both RF and XGB yielded higher Kappa values of 1 each with an overall accuracy of 100% 

respectively. whilst the NB model yielded a low Kappa value of 0.08448 with an accuracy 

of 0.896 with the RF and XGB yielding even and equal accuracies.  In terms of predicting 

SOC content, the RF and XGB models outperformed NB model demonstrating the highest 

level of performance. The SOC maps generated by the three machine learning techniques 

exhibited comparable spatial distribution patterns. These maps exhibited substantial spatial 

variability, featuring areas with high SOC concentrations. 

Figure 8 shows the scattered plots of RF, XGB, NB as predicted versus observed. 
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The red lines in Fig.9 shows the results for a perfect model and indicates the measured  

 

 

SOC. In the figures, the central lines (1:1 line in red color) represented (predicted = 

measured). Figure 9 reveals that RF and XGB scattered plots were more closed to the 

measured line than others., indicating RF and XGB as the best models predicting SOC at 

point scale for both calibration and test datasets using independent variables. 

From the Confusion matrix or NB algorithm, the outliers or the values the model failed to 

predict correctly can be interpreted as Low High Medium Low, Low medium and High 

Medium. Fig.9 Measured vs. predicted of soil organic carbon using three machine learning 

algorithms:(A) RF, (B) XGB, and (C) NB 

Figure 7:ROC vs AUC Curves 

Figure 8: Predicted Versus Observed SOC 
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3.2 DISCUSSION 

3.2.1 XGB PROBABILITY MAPS 

The XGB produced three outcome of probability maps which could be utilized in place of 

XGB classification maps. The High, the Medium and the Low concentration of SOC stocks 

maps over the same study area and spatial extent. At the high side of the probability map, 

there is high concentration of SOC stock in the northern parts of the map whereas high 

concentration of SOC stock around the middle belt of the map and marginal concentration 

of SOC stock at the lower belt of Low probability map. SOC values ranges between 0-1 

across the three probability maps with 0 indicating absence of SOC stock and 1 indicating 

high presence of SOC stock. The high probability map produced by XGB shows that apart 

from the high values of SOC stock concentrated at the high side, all other areas had 0 stock 

of SOC stock. The XGB medium probability map was able to produce significant 

concentrations of SOC stock as compared with the Low and the High probability maps of 

XGB. 

 

Figure 9: Probability Maps of SOC using XGB 
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3.2.2 RANDOM FOREST PROBABILITY MAP 

The random forest probability maps produced high concentration of stocks in the northern 

for XGB High, the middle for XGB medium and very little for XGB low parts of the study 

area. It could be deduced from the random forest probility map that, almost all the three 

maps had very low or absence of SOC stock across the study area with values of 0. Absence 

of sock stocks is nearly unvaliable for the three mapsc low. These high values of SOC with 

a value of 1 could be derived from areas with high concentration of rainfall which directly 

influenced decomposition of environmental values for carbon sinks.  

 

3.2.3 NAIVE BAYES PROBABILITY MAP 

The spatial distribution of High, Medium and Lower limits of SOC stock for the NV model 

is depicted in the figure below. A decreasing trend in SOC content is shown in the northern 

part of the NB Medium and NB Low Map however the content of SOC is much higher in 

the NB higher map. The map of the spatial distribution of SOC content in the NB Low map 

revealed less SOC accumulation than other sections. The high SOC with values of one 

across the three maps makes these areas favorable for more water accumulation which 

promotes retainment of SOC. SOC content is more accumulated and less decomposed in 

poorly drained soils. Between the three maps produced by the NB algorithm, the NB High 

and the NB Low will be suitable for policy and decision making since it correlates with 

areas of high availability of NDVI values in the covariates selection. 

Figure 10: Probability map of SOC using RF 
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3.2.4 SPATIAL DISTRIBUTION OF SOCS- A COMPARISON OF MACHINE LEARNING 

MODELS 

There is no universally superior method for statistical modeling, and it is important to 

consider different evaluation strategies to realistically assess the overall performance of the 

models. The objective is to demonstrate a model evaluation example by comparing 

observed Soil Organic Carbon (SOC) values with modelled SOC estimates obtained using 

the geomatching approach (GM). The evaluation methods used in this study were adapted 

from (Carslaw & Ropkins, 2012) work on air quality assessments and their R package 

called openair. This package proved to be a valuable resource for evaluating different 

prediction algorithms when comparing digital soil maps. We recommend using these 

functions to assess and compare the performance of different modeling approaches. The 

study analyzed the simple correlation and highlighted significant differences in the 

generated SOC maps produced by the three models. Furthermore, the probability 

distribution functions for the three algorithms were overlapped to assess the similarities in 

their predictions across the entire range of data values. 

Figure 11: Probability map of SOC using NB 
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The spatial distribution of soil organic carbon (SOC) content at the study area, specifically 

focusing on High, Medium, and Lower limits limit of SOC contents at 0-30cm depths- is 

shown in fig. 14. The study observed a decreasing trend in SOC content between the RF 

and XGB classification maps indicating that the southern part of the study area had lower 

SOC stock compared to NB algorithm which where the low content of SOC is sparsely 

distributed. 

 

The northern parts of the area, characterized by flat topography exhibited the highest 

amounts of SOC content among the RF and XGB algorithms. These areas were 

predominantly under cultivation, the northern area also depicted the highest amount of 

precipitation during the covariates selection for SOC modelling which has a direct 

correlation with the outcome from both algorithms. The favorable topographic attributes in 

the north of the study area promoted the growth of vegetation and facilitated the 

accumulation of organic matter in the soil. 

 

In addition, the NB algorithm predicted mixture of low and high SOC content over the 

southern part of the study area. These areas were more prone to erosion and had increased 

water discharge. Additionally, due to water scarcity, these areas did not benefit from 

seasonal irrigation practices. As a result, the lack of vegetation cover and limited water 

availability contributed to lower SOC content in these communities. 

Figure 13: Comparision of DSM model correlations 

(RF,XGB,NB) and statical distributions 
Figure 12: Density plot of the prediction for three models 
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Overall, the study highlights the relationship between SOC content, land use, topography, 

and agricultural practices in the territory. It emphasizes the importance of irrigation in 

promoting vegetation growth and organic matter accumulation in the soil, while also noting 

the detrimental effects of erosion and water scarcity on SOC content in certain areas. 

 

The spatial patterns of SOC across all models exhibit logical trends, with higher values 

observed in the northern part of the study area. The highest concentrations of SOC are found 

in Northern district of Tolon, which experiences relatively higher rainfall and the major 

river for irrigation and major dam is situated in the area. On the other hand, the lowest SOC 

values are observed in the southern areas, characterized by over cultivation and grazing of 

cattle. SOC levels in the soil are influenced by a balance between carbon inputs and outputs, 

with various factors affecting this equilibrium. Environmental conditions, such as 

precipitation and terrain, play significant roles in shaping SOC distribution, as supported 

by previous studies (Davidson and Janssens, 2006; Jobbágy and Jackson, 2000; Tang et al., 

2017; Gomes et al., 2019). 

 

The maps generated by the RF, XGB and NB models are presented in Figure 13 above 

which highlight the high and low values in all the geographical positions of the maps. 

Compared with the RF and XGB models, the map of Naïve Bayes more strongly manifested 

low SOC values in all the parts with high values at the northern part of the study area. 

Figure 14: Predicted soil organic stocks classifications maps using RF, XGB and NB Algorithms 
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Moreover, the map obtained by Random Forest is much similar to that of the Xtreme 

Gradient Boosting model. 
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CHAPTER 4: CONCLUSION 

With advancements in remote sensing (RS) technology, the significance of soil organic 

carbon (SOC) mapping has reached unprecedented levels. The advantages of RS, such as 

time and cost savings and extensive coverage of satellite imagery, underscore its role in the 

field of soil sciences. Furthermore, the calibration of established machine learning (ML) 

models like Random Forest (RF), Extreme Gradient Boosting (XGB), and Naive Bayes 

(NB) enhances the precision of SOC mapping and improves our understanding of the 

factors influencing SOC variation. 

 

In this study, a combination of soil properties obtained from field surveys and a set of 

topographic, and RS covariates were considered. By employing a RF, XGB and NB ML 

algorithms, the variations of SOC was predicted. The results indicated that the RF and XGB 

models slightly outperformed the NB model, which is deemed reasonable given the high 

variability observed. The resulting SOC map generated from RF and XGB predictions 

revealed high SOC levels in the northern region and low SOC levels in the southern region 

of the study area. Among the various environmental predictors examined, precipitation 

exerted a significant influence on SOC distribution. 

 

The accuracies achieved in this study are promising for future efforts in local-scale digital 

soil mapping, especially in data-limited regions like West Africa, considering the 

increasing availability of free high-resolution remote sensing data. Leveraging remote 

sensing data can reduce the need for extensive soil sampling efforts and, consequently, 

lower soil mapping costs. This research highlights the substantial role of RS covariates in 

SOC mapping. However, further investigations are necessary to explore the impact of the 

high variability in farm management practices and environmental variables on the accuracy 

of digital soil maps. Additionally, it is worthwhile to explore the potential of land surface 

stratification and multi or hyper-scale analysis approaches in enhancing prediction 

accuracy. 

 

Given the importance of SOC in regional carbon cycling and environmental management, 

precise spatial mapping of SOC can assist policymakers in making informed decisions 

regarding land use and management for ecological restoration and rehabilitation. Therefore, 

it is crucial to explore the capabilities of remote sensing techniques and methods, as they 

have the potential to overcome the limitations associated with field surveys. 
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