SITE SELECTION FOR URBAN FORESTRY DEVELOPMENT AS A MITIGANT OF CLIMATE CHANGE IN ILORIN AREA, SOUTHERN GUINEA SAVANNAH OF NIGERIA

BY

ASONIBARE, Femi Oluwatosin MTECH/SNAS/2013/4210

THESIS SUBMITTED TO THE POSGRADUATE SCHOOL, FEDERALUNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA, IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER OF TECHNOLOGY (MTECH) DEGREE IN CLIMATE CHANGE AND ADAPTED LANDUSE

JUNE, 2015

DECLARATION

I, hereby declare that this thesis titled: "Site Selection for Urban Forestry Development as a Mitigant of Climate Change in Ilorin Area, Southern Guinea Savannah of Nigeria" is a collection of my original research work and it has not been presented for any other qualification anywhere. Information from other sources (published or unpublished) has been duly acknowledged.

ASONIBARE, Femi Oluwatosin MTECH/SNAS/2013/4210 FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA, NIGERIA

SIGNATURE AND DATE

iii

CERTIFICATION

This thesis titled: Site Selection for Urban Forestry Development as a Mitigant of Climate Change in Ilorin Area, Southern Guinea Savannah of Nigeria. carried out by ASONIBARE, Femi Oluwatosin (MTech/SNAS/2013/4210) meets the regulations governing the award of Degree of Master of Technology of the Federal University of Technology Minna, and it is approved for its contribution to scientific knowledge and literacy presentation.

Dr. A. A Okhimamhe Supervisor

.....

Signature & Date

Dr. A. A Okhimamhe Director, WASCAL

.....

Signature & Date

Dean Postgraduate School Prof. M. G. M. Kolo

Signature & Date

DEDICATION

This study is dedicated to my parents for their love, prayers, support and encouragement; may God continue to keep them.

ACKNOWLEDGEMENTS

My deepest thanks goes to God for the successful completion of the program.

This work was fully funded by the German Ministry of Education and Research (BMBF) through the West Africa Science Service Center on Climate change and Adapted Land use (WASCAL) programme.

I would like to express my sincere gratitude to my director and supervisor Dr. A. A. Okhimamhe, for her guidance, encouragement and support throughout this study, Thank you ma.

I am grateful to my mentor Miss Julia, Mama Saratu, the entire members of the academic and non-academic staff of WASCAL and Department of Geography, Federal University of Technology, Minna, for their support. A special acknowledgement to Dr. Umaru Emmanuel, Dr. Mansir Aminu and Director, GIS department, Office of the Surveyor General for their immersed assistance in my GIS analysis.

I am thankful to Mr. Olumoh Abdulrahman of the Federal Ministry of Forestry and Environment, Ilorin, Kwara State, who helped me with my forest inventory information. To my colleagues, thank you for your encourages during the course of this study. I am indeed grateful.

ABSTRACT

This study describes a site selection process for urban forestry development as a mitigant of climate change in Ilorin Area, Southern guinea savannah of Nigeria. Based on actual conditions of the study area and other related studies, constrains and factors were considered for the site suitability analysis for afforestation. Slope, elevation, roads, rivers and water bodies, settlements, land price/value and land use were considered. Criteria weights were calculated using the analytical hierarchy process (AHP) using pair-wise Comparism. The consistency ratio for the AHP of this study was 0.07, which was acceptable. A geographic information system (GIS) was used for analysis and presentation of the spatial data. The maps were prepared, reclassified and standardized within the GIS environment. Image classification was used to generate land use, land cover map of the study area for 2015 from Landsat 8 image. The classes generated for the classification are; bare surface 198,350.80 hectares (87.3%), water body 513.41 hectare (0.2%), settlement 7,858.79 hectare (3.6%) and vegetation 18,798.63 (8.9%). Land suitability map for afforestation location was generated using Weight Linear Combination method and the results of the analytical hierarchy process. The resultant map displayed four classes of suitability; high suitability, moderate suitability, low suitability and not suitable. The result of the suitability analysis showed that about 45,654.75 hectares (20.2%) fall under the category of high suitability. Moderate and low suitability covered an area of 74,559.73 hectares (33.1) and 66,869.07 hectares (29.7%) respectively while, not suitable areas accounted for 38.438.05 hectares, about 17.0% of the study area for afforestation. By using the stated criteria, the suitable areas for afforestation site fall majorly on the North western part of the study area. Analyzing the results of the identified afforestation sites for carbon sequestration potentials, local species like Azadirachta indica, Gmelina arborea, Parkia biglobosa and Anacardium occidentale were used to estimate the amount of carbon dioxide that can be sequestered for the study area. The average numbers of trees was estimated to be 400 trees per hectare. Azadirachta indica and Gmelina arborea was estimated to sequester about 1,102.32 and 1,084.04 metric tons of carbon dioxide per hectare respectively The average carbon sequestration potential for a medium sized coniferous tree planted within the identified sites and allowed to grow for 10 years was estimated to be about 15.6 metric ton carbon dioxide. This study shows the ability of GIS, remote sensing and AHP as a veritable tool for analyzing criteria for land suitability. It highlights the potentials of abundance of land available for climate change mitigation by carbon sequestration through afforestation and reforestation.

TABLE OF CONTENTS

Content	Page
Cover page	
Title page	ii
Declaration	iii
Certification	iv
Dedication	v
Acknowledgements	vi
Abstract	vii
List of Tables	xiii
List of Figures	xiv
List of Abbreviations/ Glossaries	xvi

CHAPTER ONE

1.0	INTRODUCTION	1
1.1	Background to the Study	1
1.2	Statement of the Problem	3
1.3	Justification of the Study	5
1.4	Aim and Objectives	6
1.5	Description of the Study Area	7

1.5.1	Location	7
1.5.2	Climate	9
1.5.3	Geology	9
1.5.4	Soil and Vegetation	9
1.5.5	Settlement	10
1.5.6	Population	10
1.6	Scope and Limitation of the Study	11

CHAPTER TWO

2.0	LITERATURE REVIEW	12
2.1	Conceptual Framework	12
2.1.1	Land Evaluation for Forestry	12
2.1.2	Land Suitability Classification	13
2.1.3	Land Cover and Land Use	14
2.1.4	Urban Forests and Carbon Sequestration	15
2.1.5	Carbon Sequestration	16

		Page
2.1.6	United Nations Framework Convention on Climate Change	
	And Carbon Sequestration	17
2.1.7	Other benefits of Urban Forest	20
2.2	Review of Relates Studies	22
CHAI	PTER THREE	
3.0	MATERIALS AND METHODS	34
3.1	Description of data Collected	34
3.1.1	Topographic Criteria	35
3.1.2	Socio-economic criteria	36
3.1.3	Environmental Criteria	37
3.1.4	Geological Criteria	38
3.1.5	Land use map	38
3.1.6	Experts Opinion	40
3.1.7	Carbon Sequestration Potentials	41
3.2	Data Analysis	42

3.2.1	Land use map	42
3.2.2	Extraction of Criteria Maps	45
3.2.3	Determination And Assessment Of Criteria Weights	49
3.2.4	Generation Of Suitability Map	53
3.3	Carbon Sequestration Potential	53

CHAPTER FOUR

4.0	RESULTS AND DISCUSSION	56
4.1	Land Use and Land Cover	56
4.2	Thematic Maps and Reclassification	62
4.2.1	Buffering of thematic maps	62
4.3	Analytical Hierarchy process	88
4.4	Weighted overlay Analysis	89
4.4.1	Final Site Selection For Urban Forestry Development	90
4.5	Carbon Sequestration Potentials	92
4.5.1	Planting and Maintaining Trees	98

CHAPTER FIVE

5.0	SUMMARY, CONCLUSION AND RECOMMENDATION	99
5.1	Summary of findings	99
5.2	Conclusion	101
5.3	Recommendations	102
REFERENCE		105
APPENDICES		117

LIST OF TABLES

2.1	Benefits and uses of Urban Forests and Trees	20
3.1	List of Equipment and Tools	35
3.2	Landsat Data Used for the Study	39
3.3	Pair-wise Comparison Matrix	41
3.4	Classification for Land Suitability Analysis for Afforestation	49
4.1	Percentage Coverage of Land use and Cover Categories	57
4.2	Confusion Matrix for the Landsat Image 2015 Classification	60
4.3	Criteria, Buffers and Suitability Scores for the Overlay	63
4.4	Criteria Rank and Percentage Weights	89
4.5	Final suitability and percentages	92
4.6	Tree species and Carbon Sequestration Potential	95

LIST OF FIGURES

page

1.1	Map of Nigeria Showing Kwara State and the Study Area	8
4.1	Land Use and Land Cover Map of Ilorin using 2015	59
4.2	Reclassified Land Use Map	61
4.3	Slope Map of the Study Area	65
4.4	Reclassified Slope Map	66
4.5	Elevation Map of the Study Area	68
4.6	Reclassified Elevation Map	69
4.7	Road Map of the Study Area	71
4.8	Buffer road map	72
4.9	Reclassified Road Map	73
4.10	Settlement Map of the Study Area	75
4.11	Buffer settlement map	76
4.12	Reclassified Settlement Map	77
4.13	Land value Map of the Study Area	79
4.14	Reclassified Land Value Map	80

4.15	River map of the Study Area	82
4.16	Buffered River map	83
4.17	Reclassified River Map	84
4.18	Soil Map of the Study Area	86
4.19	Reclassified Soil Map of the Study Area	87
4.20	Final Site Selection For Urban Forestry Development	91
4.21	Suitable Areas for Urban Forests	97

LIST OF ABBREVIATION/GLOSSARIES

FAO	Food and Agriculture Organization of the United Nations
GIS	Geographic Information System
GPS	Global Positioning Systems
IPCC	Intergovernmental Panel on Climate Change
LULC	Land Use Land Cover
WASCAL	West Africa Science Service Centre on Climate change and Adapted
	Land use
RS	Remote Sensing
UN	United Nations
REDD	Reducing Emissions from Deforestation and Forest Degradation
CDM-AR	Clean Development Mechanism-afforestation/reforestation
UNFCCC	United Nations Framework Convention on Climate Change
USGS	Unite State Geological Survey
USEPA	United Nations Environmental Protection Agency
AHP	Analytical Hierarchy Process
MCA	Multi-criteria Analysis
SRTM	Shuttle Radar Topographic Mission

DEM Digital Elevation Model