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Abstract 

Heat waves (HW) pose significant threats as deadly natural disasters, leading to human casualties 

and crop damage. The warming trend attributed to climate change is particularly affecting tropical 

Africa, with further temperature increases expected in the future. Consequently, HW events are 

projected to become more frequent in this region. This study first provides a temporal investigation 

of HW occurrences in Abidjan from 2009 to 2022, shedding light on its trend during these past 

years. In this work, an approach is proposed to predict HWs over Abidjan. The approach is based 

on a deep learning (DL) model that is optimized through Bayesian optimization and trained with 

the fifth generation of European ReAnalysis (ERA5) and historical data from the Abidjan synoptic 

station. Furthermore, because of the scarcity of this event caused by its unusual occurrence, the 

proposed approach leverages the advantages of transfer learning (TL) and random under-sampling 

(RUS) techniques to effectively address the challenge of class imbalance in the available data. The 

model demonstrates a remarkable performance which is supported by an AUC metric value of 

99.4% for a RUS rate of 0.25% indicating high discriminatory power and predictive accuracy. This 

study gives important insights into HW prediction in West African capitals and highlights the 

effectiveness of artificial neural networks (ANNs) for effective mitigation of socio-economic 

impacts. 

Keywords: Heat wave, Climate change, Deep learning, class imbalance, prediction, Abidjan 
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Résumé 

Les vagues de chaleur (HW) constituent une menace importante en tant que catastrophes naturelles 

mortelles, entraînant des pertes humaines et des dommages aux cultures. La tendance au 

réchauffement attribuée au changement climatique affecte particulièrement l'Afrique tropicale, et 

des hausses de température sont prévues à l'avenir. Par conséquent, les HW devraient devenir plus 

fréquentes dans cette région. Cette étude fournit d'abord une étude temporelle des occurrences de 

HW à Abidjan de 2009 à 2022, mettant en lumière sa tendance au cours de ces dernières années. 

Dans cette étude, une approche est proposée pour prédire les HW sur Abidjan. Après quoi, une 

approche est proposée pour la prédiction des vagues de chaleur sur Abidjan. Cette approche repose 

sur l'utilisation d'un modèle d'apprentissage profond obtenu par application de l'optimisation 

bayésienne. Le modèle est entraîné en utilisant les données ERA5 ainsi que les données historiques 

de la station synoptique d'Abidjan. En raison de la rareté des vagues de chaleur, l'approche 

proposée exploite les avantages des techniques d'apprentissage par transfert et de RUS pour relever 

efficacement le défi du déséquilibre des classes dans les données disponibles. Le modèle démontre 

une performance remarquable qui est soutenue par une valeur de la métrique AUC de 99,4 % pour 

un taux de RUS de 0,25 % indiquant un pouvoir discriminatoire et une précision prédictive élevés. 

Cette étude donne un aperçu important sur la prévision des HW dans les capitales de l'Afrique de 

l'Ouest et souligne l'efficacité des réseaux de neuronaux artificiels (ANN) pour l'atténuation 

effective des impacts socio-économiques. 

Mots-clés: Vague de chaleur, changement climatique, apprentissage profond, déséquilibre des 

classes, prédiction, Abidjan. 
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Introduction 

1.Problem statement 

Climate extremes are a topic of tremendous interest around the world because of the significant 

monetary, human, and physical consequences (Coumou & Rahmstorf, 2012). Global warming 

leads to the rise of extreme events and reinforces their intensity (Engdaw et al., 2022; Fischer & 

Schär, 2010). In its fifth assessment report, the Intergovernmental Panel on Climate Change 

(IPCC) affirmed that human activities have been the primary cause of observed shifts in various 

weather and climate extremes dating back to around 1950. Human activities, especially the burning 

of fossil fuels in energy production, industry, agriculture, and related industries, have led to the 

discharge of significant amounts of greenhouse gases (carbon dioxide, methane, nitrous oxide, 

etc.) into the Earth's atmosphere. This leads to an overall increase in the Earth's average 

atmospheric temperature, thereby causing global warming and related climate change (Melillo et 

al., 2014). These changes cause more frequent occurrences of HW and extreme precipitation in 

diverse regions (Meyer et al., 2015). HWs are one of the deadliest natural disasters, as they can 

cause human casualties and crop damage (Fouillet et al., 2006; Michelozzi et al., 2009; 

Shaposhnikov et al., 2014; Stafoggia et al., 2006; Sung et al., 2013). Tropical Africa is 

experiencing warming as a result of climate change, and temperature is expected to further increase 

in the future (IPCC, 2014; Sylla et al., 2016). 

Thus, HW events are expected to become more frequent in tropical Africa (Giorgi et al., 2014; Liu 

et al., 2017; Russo et al., 2014).  A thorough analysis undertaken by Campbell et al. (2018) 

revealed that underdeveloped countries may face the most extreme HWs in the future, in addition 

to the instability of their economy. According to Engdaw et al. (2022), temperature increase and 

HWs are likely to raise the cost of energy in the future, exacerbating the socioeconomic issues 

encountered in Sub-Saharan Africa, where most of the population currently lacks access to 

electricity.  

Moreover, West Africa is facing unprecedented population growth and most of them live in the 

country's capital. An increase of at least 105% is expected by 2050 which means that this region 

will face a drastic increase in industrial, domestic, and energy consumption. The stress on energy 

production will be exacerbated in the next coming years. Therefore, it is of paramount importance 
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to accurately forecast HWs in West African capitals in order to mitigate their socio-economic 

impacts. 

Understanding HWs presents significant challenges since they are extreme events so infrequent 

and difficult to assess. The lack of suitable historical data for such extreme events, particularly in 

West Africa, further complicates their characterization. The challenge of constructing valid 

statistics for HWs is a significant obstacle in climate science, as gathering enough data to create 

accurate statistical models is numerically expensive and rare, making it difficult to assess model 

weather and climate biases for these extremes. This lack of understanding compromises the 

development of effective strategies to mitigate the effects of HWs on infrastructure and human 

health. However, the integration of Machine Learning (ML) with physical models offers a solution 

to address these challenges. By unlocking the potential of ML algorithms, it becomes possible to 

analyse large amounts of data and discover complex patterns in the mechanisms and life cycles of 

HWs. ML can also assist in detecting precursors and forecasting these events, which can help in 

developing early warning systems to mitigate their impact. Additionally, ML can help identify 

biases in climate models and improve their accuracy, leading to more accurate projections of future 

HWs (Jacques-Dumas et al., 2022). The complex nature of HWs and their infrequent occurrence 

highlights the need for innovative solutions to enable effective strategies for mitigating their 

impacts, and the integration of ML is one such solution. 

2. Research questions 

There have been fewer quantitative studies addressing the forecast of Heat waves in West Africa 

cities using model-based Machine Learning.  

The main research question behind this study is:  

How to enhance the short-term predictability of heat waves over Abidjan, the capital of Côte 

d'Ivoire using Machine Learning techniques? 

The other questions behind the main one can be enumerated as followed: 

• What is the temporal distribution of heat wave occurrences over Abidjan during the past 

years? 

• Which Machine Learning-based model is most suitable for predicting heat waves based on 

meteorological conditions? 
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3.Research hypothesis 

Heat waves occurrence will be more predictable through the complex understanding of Machine 

Learning-based models 

❖ The specific hypothesis: 

• Heatwave occurrences exhibit a specific temporal pattern. 

• Heat waves forecasting over Abidjan using Artificial neural network (ANN) delivers good 

results. 

4. Research objectives 

Examine the predictability of heat waves over Abidjan city by using ML-based models. 

❖ The specific objectives: 

• Analyse the historical meteorological data to determine the temporal distribution and 

frequency of HW occurrences over Abidjan during the past years. 

• Explore on the most suitable ANN architecture with relevant meteorological parameters as 

input for forecasting HWs over Abidjan 

 

The following part of the document is organized into three distinct chapters, each contributing 

significantly to a comprehensive analysis of the subject. The chapter 1 conducts an extensive 

literature review, exploring various heatwave definitions used in scientific studies as well as the 

HI impacts, and challenges. Furthermore, it provides definitions and explanations of Artificial 

Intelligence (AI), ML, and DL. In chapter 2, attention is directed toward the materials and methods 

employed in this study. This section focuses on localizing the study area, elucidating the 

methodology for data collection, and explaining the chosen research approach. Moving forward, 

the chapter 3 presents the outcomes of the study and initiates a subsequent discussion. Finally, the 

remaing part encapsulates the overall findings, drawing insightful conclusions based on the results 

and discussing future research directions and perspectives to guide further investigations in the 

field. 
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CHAPTER 1: LITERATURE REVIEW 

 

This section of the study begins with a review of the various definitions of HWs following by the 

potential repercussions of these catastrophic weather events on human health and livelihood. 

Furthermore, it provides specific definitions of AI, ML, and DL while emphasizing their 

interdependence. Moreover, the section also delves into a theoretical explanation of the Multi-

Layer Perceptron (MLP), a fundamental component of the ANN group, clarifying its structural 

characteristics and learning mechanism. 

 

1.1 Review of Heat wave definition 

 

Investigating and debating a universally accepted definition of HW has been a subject of focus in 

the scientific community. However, quantitative definitions of HW differ in the heat measure used 

(Smith, Zaitchik, and Gohlke, 2013). Furthermore, most of the definitions employed in research 

highlighted various features, such as length, intensity, or suspended thresholds. Consequently, the 

lack of a uniform definition has resulted in disparities in the outcomes and findings of various 

investigations. The absence of a universally accepted scientific definition for a HW is attributed to 

its reliance on a wide range of factors, including the sector and region under examination. For 

instance, Smith, Zaitchik, and Gohlke (2013) assert that there is no singular, standardized 

definition for a HW. Moreover, experts hold differing opinions regarding the appropriate threshold 

values, duration, and supplementary variables to be included in HW definitions. Consequently, the 

comprehension of the frequency and magnitude of HW in each area or period is profoundly shaped 

by the HW definition chosen. In fact, varied definitions can lead to contrasting viewpoints 

regarding the occurrence and seriousness of such events. Supporting this, Tong, Wang, and Barnett 

(2010) agreed that even a minor adjustment in the definition of a HW had a significant influence 

on the anticipated health effects. Similarly, Barcena-Martin et al. (2019) reiterated that the reported 

frequency of HWs can be subject to change based on the chosen reference period and air 

temperature threshold in the definition. Notably, various definitions of HWs vary in their focus 

and inclusion of factors. In some cases, definitions exclusively focus on elevated temperatures that 

exceed a specific threshold for a designated period. In such cases, the emphasis is placed primarily 

on temperature levels. For example, Meehl and Tebaldi (2004), examine the impacts of HWs using 

two different definitions. The initial definition highlights the importance of the most severe heat 
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event happening every year. It also emphasizes the significance of consecutive nights with 

persistently high minimum temperatures during nighttime, as this has a significant impact on 

health. The second definition involves exceeding specific temperature thresholds, allowing for 

analysis of HW duration and frequency. Meehl and Tebaldi used the Parallel Climate Model 

(PCM) and the defined criteria to predict increased intensity, longer duration, and higher frequency 

of HWs. 

In the study conducted by Pascal et al. (2013), a significant evaluation of the relationship between 

meteorological conditions and mortality outcomes was carried out. Meteorological indicators were 

established by calculating the average temperatures over three days, which involved taking the 

mean of the minimum and maximum temperatures for each day. To estimate the impact of these 

indicators on mortality, a Generalized Additive Model (GAM) was employed. The GAM 

considered factors such as long-term trends, seasonality, and day of the week. Thresholds were 

determined by analysing percentiles of Meteorological Indicator (MI) about excess mortality, 

specifically focusing on points of inflection in the excess mortality response. On another hand, 

(Fontaine, Janicot, and Monerie, 2013), in a study covering North Africa, employed observed and 

reanalysis data to investigate temperature changes, analyse HWs, and explore their relationship 

with atmospheric variables and circulation patterns. They examined the long-term evolution of 

temperature, hot days (HDs), and HWs, considering the mean seasonal cycle, and further inspected 

composite anomalies to identify specific changes independently. 

In their study, HWs were defined by surpassing the 90th percentile of daily temperature variability, 

with a specific focus on durations of 4 days or longer to capture synoptic-scale events. (Russo et 

al., 2014) presented findings that highlighted the growing intensity of HWs worldwide. They 

introduced a metric called the Heat Wave Magnitude Index (HWMI), which includes both the 

intensity and duration of HWs by utilizing daily maximum temperatures and a threshold based on 

percentiles. The research encompassed three distinct periods and integrated climate model 

projections derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) across 

various Representative Concentration Pathways (RCPs). 

Déqué et al. (2017) in another hand conducted a study in which they analysed 12 regional climate 

simulations from the COordinated Regional Downscaling EXperiment (CORDEX) ensemble for 

tropical Africa. They examined elevated temperatures to determine the occurrence of HWs. They 
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also defined a HW as a consecutive period of at least 3 days surpassing a temperature threshold, 

specifically set at the 90th percentile of the temperature distribution. Later, in a study conducted 

over the Sahel region, Barbier et al. (2018) used an approach that aims to identify and characterize 

HWs based on the intra-seasonal temperature fluctuations on multiple datasets for daily minimum 

and maximum temperature. To detect intra-seasonal temperature changes, they used a 90-day high-

pass spectral filter to remove low-frequency components. Following that, the most significant 

temperature anomalies exceeding the 90th percentile for the period from March to July (1950-

2010) were selected. Afterward, the most significant temperature anomalies exceeding the 90th 

percentile for the period from March to July (1950-2010) were selected. By doing so, they hoped 

to focus on HW episodes with a vast spatial extent, recording and evaluating larger-scale trends 

and their possible regional or global effects. In their case, (Batté et al., 2018) characterized HWs 

in West Africa as consecutive days when temperatures exceed the 90th percentile of the daily range 

of temperature of the region. They only deemed the seasonal variation in temperatures, particularly 

the elevated levels experienced during spring. To measure the occurrence of HWs, two indices are 

employed: the Heat Wave Duration Index (HWDI), which tracks the number of HW days per 

spring, and the Heat Waves per Period (HWPP), which counts the separate instances of heatwave 

events within the same season. 

Lavaysse et al. (2018) on the other hand, defined HWs using a methodology that centers the 

transformation of daily minimum temperature and maximum temperature into quantiles, 

leveraging 21 years of climatological data. They divided each year into prolonged summer and 

winter periods to examine HWs and cold waves correspondingly. They then characterized HDs by 

both maximum temperature and minimum temperature surpassing the 90th quantile threshold, 

while cold days occur when temperatures for both variables dip below the 10th quantile threshold. 

HWs are characterized by a minimum of 3 consecutive HDs to account for the persistence of 

extreme temperatures and extreme waves. Heatwave duration and intensity are evaluated using 

three different calculation methods. Applying this methodology to the Sahel region reveals, an 

increase in the frequency and intensity of HWs, with a higher likelihood of occurrence during the 

extended summer period. Unlike the previous definitions, another group of scientists focused on 

the health aspect when defining HWs. Tong et al. (2015) investigated the possibility of developing 

a health risk-based definition for heatwaves and assessed the impact of heatwaves on mortality in 
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Brisbane, Melbourne, and Sydney three largest Australian cities. Furthermore, they defined HWs 

as periods of two or more consecutive days with daily mean temperatures above certain percentiles 

of the temperature distribution, where the relative risk of mortality starts to increase, sharpens, and 

rises alarmingly. 

Xu et al. (2016) conducted a systematic review and meta-analysis in which various HW definitions 

used in the literature are examined. The study emphasizes the importance of HW intensity 

compared to duration in determining HW-related deaths. 

Di Napoli, Pappenberger, and Cloke (2019) focus on proposing a health-based definition of HWs 

using the Universal Thermal Climate Index (UTCI). By examining UTCI values at different 

climatological percentiles, the research aims to identify correlations between specific UTCI 

thresholds and periods of excess mortality. 

Conversely, Heo, Bell, and Lee (2019) in the same year, investigated the impact of HWs on health 

outcomes and compares different HW definitions. The study explored definitions based on thermal 

comfort and air temperature, particularly focusing on the Wet-Bulb Globe Temperature (WBGT) 

and its associated thresholds. By examining the relationship between HWs defined by WBGT and 

heat-related diseases, the research highlighted the potential of using WBGT as a reliable indicator 

to link HWs with adverse health effects. 

 Yu et al., (2021) conducted a study to examine the spatial-temporal variation of wet HWs over 

Eurasia from 1979 to 2017. Wet HWs were defined as periods lasting three or more days, where 

the Wet-Bulb temperature (WBT) exceeded the 90th percentile of the summer distribution. A study 

conducted by (Guigma, Todd, and Wang, 2020) in the Sahel region utilized a two-step process to 

detect HWs. They employed thermal indices including Temperature, Heat Index (HI), Steadman 

non-radiant Apparent Temperature (AT), Net Effective Temperature (NET), and UTCI. Initially, 

HDs were identified by calculating the 75th percentile of the thermal index data. Subsequently, 

the thermal index values were converted into anomaly values and filtered using a high-pass filter 

to retain variability. HWs were defined as consecutive sequences of at least three days that 

exceeded specific thresholds. Another recent study conducted by (Ngoungue Langue et al., 2022) 

focused on detecting HWs in West Africa. They used various indexes such as the daily minimum 

and maximum values of the two-meter air temperature, WBT, AT, and the UTCI. HWs were 

identified as consecutive days with extremely high indicator values surpassing a threshold. Three 
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methods are proposed: one for daytime HWs based on maximum indicator value, one for nighttime 

HWs based on minimum indicator value, and one for HWs occurring both during the day and at 

night. These methods use relative thresholds and consider the climatic conditions of the region. 

They allow for the monitoring and assessment of HWs associated with factors such as solar 

radiation and moisture content, thereby providing a better understanding of human health risks.  

 

1.2 Impacts and challenges associated with heatwaves 

 

The first consequence that comes to mind is the impact on human health. Indeed, HWs have been 

termed the silent killer (Loughnan, 2014) because their consequences on human health are not 

always immediate. It typically worsens pre-existing medical issues, primarily affecting the old, 

children, and those who labour outside, with death happening after several days. Because hospital 

admissions are frequently triggered by worsening sickness, precisely attributing mortality to heat 

extremes can be extremely challenging. As a result, the real number of heat-related deaths is likely 

to be underestimated (Perkins, 2015). Sherwood, Huber, and Emanuel (2010) state that increased 

exposure to heat stress could have major repercussions for human health in communities 

worldwide. Furthermore, in Africa, the effects of a maximum temperature of 2 degrees Celsius 

above the current climate could be disastrous for human health, given that monthly maximum 

temperatures already exceed 40 degrees Celsius in some areas. The capacity of the body to cool 

itself is put to the test in extreme heat and humidity situations. Exposure to high temperatures and 

humidity creates thermal professional stress that can have a significant impact on anyone working 

outside in hot environments or performing physical activities (Lucas et al., 2014; Takahashi et al., 

2007). This may harm the productivity of people and health, having a negative influence on their 

well-being and, potentially, the national economy (Chen et al., 2017). 

The West African region spans several climate zones with contrasting seasonal cycles (Diallo et 

al., 2014); it is densely populated and home to numerous transitional economies. As a result, it 

may be more vulnerable to changes in thermal stress. Therefore, the information on thermal stress 

predictions can thus assist decision-makers in developing strategies for the most vulnerable areas 

to protect worker health and productivity through mitigation or adaptation measures. During the 

early 21st-century HWs, animals in both terrestrial and marine environments died in greater 

numbers. Summer HWs cause animal population death, making it a season of stress and survival, 
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affecting populations and ecosystems. Although HWs are only present for a brief length of time in 

an animal's life, they only need to occur once during the pre-reproductive development period to 

significantly affect reproductive success (Stillman, 2019). 

1.3 Artificial intelligence, Machine Learning, and Deep Learning 

The field of AI has garnered significant attention and active discussion within the scientific 

community. Extensive studies have been conducted to explore the theoretical aspects of AI 

technologies and their practical applications across various domains of our society. AI, ML, and 

DL have particularly attracted heightened interest in recent years. This growing interest is reflected 

in the increasing number of publications found in scientific databases. Figure 1 demonstrates the 

expanding research efforts in this field. 

(Mukhamediev et al., 2022) 

Figure 1: Evolution of AI in scientific research 

 

1.4 Artificial intelligence 

AI, a subfield of applied computer science, has grown at an exponential rate and has been 

integrated into a wide range of fields. The adoption of modern technology to better human lives 

has resulted in the development of outstanding AI applications. Apple's Siri, Amazon's Alexa, 

Hanson Robotics' Sophia, IBM's Watson machine, and Tesla's driverless automobiles are all 

examples. Human-computer interaction, machine-machine communication, and the incorporation 
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of intelligence into devices and objects have all enabled the incorporation of intelligence into 

machines. As a result, machines such as Sophia, a humanoid robot, have begun to exhibit human-

like behavior. AI is a multidisciplinary discipline that includes computer science, electronics, 

communication, engineering, basic sciences, and even the humanities and social sciences. Its 

applications range from household science to environmental studies, linguistics to history, and 

more. Machines can perform cognitive processes similar to human capabilities using AI, such as 

perception, reasoning, learning, and interaction. Although AI has faced limitations such as 

restricted research and development, processing power, and data availability, the demand for 

automation of human situations has accelerated its growing commercial presence today. 

1.5 Machine learning 

ML is an area of AI that allows machines to learn from data and improve their prediction accuracy 

without requiring human intervention. In other words, it allows machines to learn on their own by 

following a set of instructions. The primary idea behind ML is to mimic how the human brain 

works. ML is frequently used to characterize developments in systems that perform AI-related 

tasks (Rasmussen & Williams, 2006).  

Apart from self and rote learnings of traditional learning modus operand, other learnings such as 

supervised, unsupervised, semi-supervised, reinforcement, DL, and TL come under the umbrella 

of ML. Let's briefly pass through these enumerated concepts. 

 Supervised Learning: Supervised Learning (SL), a type of ML, is a technique in which 

machines learn from algorithms that have been programmed and labelled data. It involves 

providing the machine’s input data and accompanying labels. The supplied data comprises 

model development features. Computers learn with guided instructions from algorithms in 

Supervised ML. The output can be in the form of instructions, formulas, algorithms, or 

diagrams. These models are critical for real-time data validation in a variety of applications 

(Madakam et al., 2022). 

 Unsupervised Learning: The second type of ML is unsupervised learning, which involves 

self-learning without explicit training. It is a time-consuming and sophisticated procedure 

that relies on computer device input data and built-in algorithms. Unlike supervised 

learning, unsupervised learning not require labelled output data. Instead, It focuses on 
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exploratory data analysis and detecting hidden patterns or data grouping. Wang (2016) 

emphasized its capacity to categorize data without explicit training. Programmers support 

a seamless procedure to attain the desired output in unsupervised learning by utilizing pre-

developed algorithms. 

 Reinforcement Learning: Another variant of ML is reinforcement learning, which 

focuses on how software agents should behave in a virtual environment to optimize the 

concept of cumulative reward. In other words, reinforcement learning is a learning 

paradigm that aims to educate a system how to regulate itself in order to maximize a 

numerical performance measure that communicates a long-term goal (Madakam et al., 

2022). Instead of accurately labelled instances, as is typically the case in other ML 

scenarios, the reinforcement learning paradigm is a popular technique for handling issues 

with little environmental feedback (Taylor and Stone, 2009). Reinforcement learning 

provides a framework and a collection of tools for building complex and difficult-to-design 

behaviours in robots (Kober, Bagnell, and Peters, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

(Madakam et al., 2022) 

Figure 2: Machine Learning Categories 
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 Deep Learning: DL is a set of methods that employ the so-called deep neural networks 

(DNNs), in other words, the networks containing two or more hidden layers. The main 

advantage of deep architectures is related to the ability to solve tasks using the end-to-end 

method. This approach reduces the requirements for preliminary data processing since a 

signal or image vector is used as an input to the network, and the network independently 

identifies the regularities relating the input vector to the target variable. The network selects 

the significant characteristic, which is a time-consuming and complex procedure 

(Mukhamediev et al., 2022). 

 Transfer learning: TL has emerged as a new paradigm shift in DL, gaining popularity for 

its ability to train DNN with limited data (Zhu et al., 2011). By leveraging auxiliary source 

data from related domains, TL enables the utilization of previously acquired knowledge to 

solve new but similar problems, resulting in significant time and resource savings while 

reducing costs (Lu et al., 2015). Torrey and Shavlik (2010) define TL as the improvement 

of learning in a new task through the transfer of knowledge from a related task that has 

already been learned. Additionally, TL addresses the challenge of effectively utilizing 

labelled data from a source domain to tackle different problems in a target domain, even 

when the distributions or features of the training and testing data differ (Fachantidis et al., 

2013; Pan et al., 2008). 

1.6 Artificial neural networks: theory 

 ANN is a supervised learning strategy in DL that is an approximation of the biological neural 

network in the human brain (Do Carmo Nicoletti & Jain, 2009). It is composed of three layers: 

input, hidden, and output, and each layer contains an array of artificial neurons (perceptron). A 

completely connected neural network is one in which every neuron in any given layer is connected 

to every neuron in the next or previous layer. An artificial neuron is a mathematical model with 

components that are similar to those of a real neuron (Figure 3). The input layer stores the array of 

input parameters, and each input variable is represented by a neuron. Each of these inputs is 

changed by a weight (also known as a synaptic weight) whose function is akin to that of a synaptic 

junction of a biological neuron. 
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(HITZIGER, 2015)  

Figure 3: The simple structural map of a biological neuron 

1.6.1 Perceptron 

The perceptron is one of the fundamental building blocks of ANNs. Invented by Franck Rosenblatt, 

(1957), it is a type of binary classifier that takes in multiple input values and produces a single 

output value that is either equal to 0 or 1. Figure 4 illustrates the workflow of a perceptron with 

two input values (X1, X2), each with its weights (W1, W2) and a bias (b) with a rule to adjust the 

boundary. 
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(HITZIGER, 2015) 

 

The process of this perceptron can be described using the following set of equations: 

                                               Z = (W1  W2) (X1
X2

) + b                                            (Eq 1) 

 

                         Z =  W1 ∙ X1  + W2 ∙ X2 + b                                           (Eq 2) 

    

Z is the linear aggregation of the input values and their corresponding weights 

               Y = f(Z)                                                         (Eq 3) 

           

Y is the activation function, which introduces non-linearity into the decision-making process of 

the perceptron. The possible value of  Y are either 0 or 1, depending on the value of  Z 

Y = {
1,      if      Z >  0
0,      otherwise

                (Eq 4) 

In the case of a general perceptron, with multiple input (X1, X2, …, Xn), the equation (Eq 4) 

becomes:                

                                                     Y =  {
 1,      if      ∑ WiXii

0,      otherwise
                                                 (Eq 5)  

 

Figure 4: The algorithm of a synthetic neuron that mimics a human neuron 
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The perceptron starts off with randomly initialized weights for the initial stage of the training 

process. These weights are the starting points for the learning algorithm of the perceptron, which 

seeks to optimize them to get the desired output, this algorithm is called the gradient descent. 

 

                                                       ϵ =  Ytrue –  Yi                  (Eq 6) 

 

                     Wi
́ =  Wi  −  α ∙ ϵ ∙ Xi                                         (Eq 7)                                 

 ϵ : The error calculation for the current input sample 𝑋𝑖. 

 α : The learning rate is a hyperparameter that regulates the step size or amplitude of weight. 

Changes during training. It controls how fast or slow the model learns from training data. 

Wi
́  : The updated parameter.  

The purpose of the perceptron is to minimize classification error by adjusting the weights and bias. 

This fundamental premise is shared by all ANNs (Staudemeyer & Morris, 2019). 

1.6.2 Perceptron constraint 

When shown graphically, the aggregation function of a perceptron creates a straight line that 

depends on the values 𝑊1, 𝑊2, and b. Because of this linearity, the perceptron can divide data into 

two classes based on a decision boundary. As a result, when confronted with a nonlinear situation, 

this approach has limitations (Figure 5). 

 

 

 

 

 

 

 
Figure 5: Illustration of the limitation of a perceptron for a nonlinear problem 
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1.6.3 Multi-Layer Perceptron 

The MLP architecture is a feedforward neural network (Figure 6), which is one of the most basic 

and extensively used neural network architectures. It is made up of three kinds of layers: the input 

layer, the hidden layer(s), and the output layer. 

Input Layer: The input layer is the initial layer in the MLP architecture and serves as the data 

entering point. Each neuron (perceptron) in the input layer represents a different aspect or feature 

of the input data. The number of neurons in the input layer depend on the dimension of the input 

data. 

Hidden Layer(s): The hidden layer(s) are layers that sit between the input and output layers. Their 

neurons are called hidden because they are not directly exposed. Depending on the complexity of 

the problem and the required network capacity, the number of hidden layers and neurons in each 

hidden layer can be altered. Each neuron in the hidden layer(s) gets input from all neurons in the 

preceding layer (either the input layer or the preceding hidden layer) and applies a mathematical 

adjustment to these inputs. 

Output Layer: The output layer is the last layer in the MLP design and is responsible for 

producing the predictions of the network. The nature of the task determines the number of neurons 

in the output layer.  In a binary classification problem, for example, the output layer will typically 

consist of one neuron representing the likelihood of belonging to one class. The output layer in a 

multi-class classification issue will include several neurons, each reflecting the likelihood of 

belonging to a certain class. The output layer in regression tasks consists of a single neuron that 

predicts a continuous value. 

The connections between neurons in the MLP are usually fully linked, which means that each 

neuron in one layer is connected to every neuron in the next layer. Each link has a weight that 

determines the strength or relevance of the connection. These weights are learned during the 

training phase to improve the performance of the network. 
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Xi
 : Input data 

Wij: Weights of the ANN 

Ii and Hj: The neurons in the input and hidden layers, respectively 

y(i): The output of the model 

1.6.4 Activation functions and their role in MLP 

Activation functions play a crucial role in MLP and ANN architectures in general by introducing 

non-linearity into the network. They are applied to the outputs of individual neurons in the hidden 

layers and the output layer of the network. The choice of activation function affects the network's 

ability to learn complex patterns and make accurate predictions (Kiliçarslan et al., 2021; 

Rasamoelina et al., 2020). 

Some commonly used activation functions are: 

Sigmoid (𝛔) Function: The sigmoid function, also known as the logistic function, takes a real-

valued input and maps it to a range between 0 and 1. The sigmoid function is useful in MLPs for 

binary classification problems where the output represents the probability of belonging to a certain 

class, and it can also be used in the hidden layers. 

Rectified Linear Unit (ReLU): ReLU is a popular activation function in DL. It returns the input 

as the output if it is positive, and 0 otherwise. ReLU is computationally efficient and helps the 

network learn faster during training. 

Figure 6: Artificial neural network architechture 



Using model based AI to improve operational predictability of heat waves in developing 

countries: case study of Abidjan. 

   

Page | 18 
Dedi Yoris Etienne GADOU – EDICC | UJKZ - Academic year 2022-2023 

Hyperbolic Tangent (Tanh) Function: The hyperbolic tangent function is similar to the sigmoid 

function, but maps the input to a range between -1 and 1. Like the sigmoid function, the tanh 

function is useful for binary classification and can be used in hidden layers. 

The sigmoid activation function :               σ(x) =
1

1+ e−x                                          (Eq 8) 

The ReLU activation function :   ReLU(x) = max(0, x)                                 (Eq 9) 

The Hyperbolic tangent activation function :  Tanh(x) =
ex−e−x

ex+e−x                                        (Eq 10) 

 

 

1.6.5 Theory of the backpropagation technique in MLP training 

The backpropagation algorithm is a fundamental technique used to train MLP neural networks. It 

is an efficient way to compute the gradients of the specific loss function with respect to the 

Figure 7: Sigmoid, ReLU and tanh activation functions. 
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network's weights. By iteratively adjusting the weights based on these gradients, the 

backpropagation algorithm enables the network to learn and improve its performance over time. 

The main steps involve are: 

Forward Propagation: During forward propagation, the input data is fed through the network, 

and the output is computed. Each neuron in the network receives inputs from the previous layer, 

applies a weighted sum operation, and passes the result through an activation function. This 

process is repeated layer by layer until the output is obtained. 

Loss Calculation: After obtaining the network's output, the difference between the predicted 

output and the true output (target value) is computed using a loss function. Common loss functions 

include mean squared error (MSE) for regression problems and cross-entropy for classification 

problems. 

Backward Propagation: The main step of the backpropagation algorithm is to propagate the error 

gradient backwards through the network. Starting from the output layer, the algorithm calculates 

the gradient of the loss function with respect to the weights and biases of each neuron in the 

network. 

Weight Update: Once the gradients have been computed, the weights and biases are updated to 

minimize the loss function. This is typically done using an optimization algorithm like gradient 

descent or one of its variants. The weights are adjusted in the opposite direction of the gradient, 

scaled by a learning rate that controls the step size of the updates. 

1.7 Case Studies and Research on Heatwave Prediction Using AI and ML 

ML has greatly improved the interpretation and performance of General Circulation Models 

(GCMs). As proven by Kurth et al. (2018) and (Lagerquist et al., 2019) studies, DNNs in particular 

have been successfully employed to identify extreme weather and climate trends in both actual 

and modeled atmospheric states. Furthermore, as demontrated by Herman & Schumacher, (2018), 

ML algorithms are effective in predicting extreme weather events. For example, in a study where 

a random forest model was developed by (Park et al., 2020) for weekly heat damage prediction 

based on four years (2015-2018) of statistical, meteorological, and floating population data in 

South Korea. According to the results, the suggested model surpasses existing models. Shi et al. 
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(2021) in an article present a method for investigating the spatial heterogeneity of HW conditions 

using ML and geospatial mapping approaches. Indeed, they used a spacial buffer analysis and 

random forest ML technique to identify important influential HW variables, providing valuable 

information for appropriate urban planning to improve resilience against HW events and heat-

related disasters. Using open urban data, their approach directly maps the spatial distribution of 

HW conditions, incorporating spatial variability into HW estimation. Jacques-Dumas et al. (2022) 

used DL techniques to forecast future instances of long-lasting intense HWs in a study 

concentrating on the application of ML technology to analyse unusual HWs and evaluate their 

prediction. The researchers used data from 1000 years of climate models to develop an algorithm 

capable of forecasting HW occurrences using surface temperature and geopotential height data. 

1.8 Host institut 

 

Acronym:  SODEXAM 

Institute Name: Société d'Exploitation et de Développement 

Aéroportuaire, Aéronautique et Météorologique 

Official Website: https://www.sodexam.com/ 

Established: 1997 

Location: Abidjan, Côte d'Ivoire 

Areas of expertise: Air navigation, airfields, airport security 

and facilitation, aviation and airport medicine, meteorology, 

and other related sectors. 

Mandate: The management, operation, and development of 

airports, meteorology, and aeronautical activities in Côte 

d'Ivoire. 

Main missions: 
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• Management of air traffic control, fire safety, aeronautical meteorology, and aeronautical 

telecommunications services at Ivorian airports open to public air traffic. 

• Management of airport, aeronautical, and meteorological infrastructures on behalf of the 

State. 

• Management of the commercial facilities and movement areas at Ivorian airports open to 

public air traffic, excluding licensed airports. 

• Conduction and coordination of observation, study, and forecasting activities in 

meteorology and specialized sectors. 

• Undertake the implementation and oversight of aeronautical, airport, and meteorological 

investments and projects funded by the State, utilizing its available resources and under the 

supervision of governing ministers. 

• Management of ground handling activities at airports, subject to existing agreements. They 

also monitor and control airport concessions and establish master plans for airports open 

to public air traffic. 

• Coordination of the activities of all public and private services related to airport operations. 

• Representation of the State in its field of competence and maintains relations with 

international organizations involved in aviation and meteorology. 

• Engagement in industrial, commercial, securities, real estate, and financial operations that 

contribute to the development of airports and meteorological stations within the country, 

directly or indirectly related to its activities. 

In conclusion, this literature review section has emphasized the persistent challenge associated 

with defining HWs and the significant impact of this infrequent yet extreme climatic phenomenon 

on human well-being and livelihood. Moreover, the scarcity of studies employing AI-based models 

to address HWs has been identified as a notable gap in the existing research landscape. To bridge 

this gap, the present study aims to employ the MLP and TL techniques as innovative approaches 

to predict this rare meteorological event. By leveraging these computational methods, this research 

endeavours to contribute to the development of accurate and effective predictive models for HWs, 

ultimately aiding in the mitigation of their adverse consequences on human health and societal 

systems. 
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Chapter 2: Material and Method 

The present section attempts to provide detailed insights into the area of study, the research tools 

used, and the methodology used to effectively answer the objectives of this research. 

2.1 Study area 

Firstly, the present section will present the location of the study area, elucidating its geographical 

coordinates, topographical features, and surrounding environment. Secondly, the section will delve 

into a detailed description of the climate within, encompassing factors such as temperature 

patterns, precipitation levels, and vegetation characteristics. By examining these crucial elements, 

the study aims to establish a robust understanding of the environmental dynamics within the 

specified region. 

2.1.1 Location 

Located in the south-eastern part of Côte d'Ivoire between Latitudes 5°10 and 5°38 North and 

Longitudes 3°45 and 4°21 West in geographic coordinate system (WGS 84, zone 30 N) 

(KOUAKOU, 2020), Abidjan, the capital of Côte d'Ivoire, is the most populated city in French-

speaking West Africa, accounting for 20% of the entire population of the country of around 

6,351,086 people. Located between this bustling economic capital covers an area of 422 km2, 

resulting in a population density of roughly, 15050 people per square kilometre. Abidjan's urban 

landscape is diversified and active, with over 280 separate neighbourhoods. The city of Abidjan is 

separated into two sections: Abidjan North and Abidjan South. Plateau, Adjamé, Attécoubé, 

Cocody, Yopougon, and Abobo are in the northern region, while Treichville, Marcory, Koumassi, 

and Port-Bout are in the southern region. The gorgeous Ebrié Lagoon separates these two sections, 

with Abidjan North representing the city's mainland and Abidjan South encompassing the territory 

between the lagoon and the sea. Abidjan is located in a climatic zone that extends from the 8th 

parallel to the coast and covers the lower part of Côte d'Ivoire. The city has a sub-equatorial climate 

with four distinct seasonal episodes, including two rainy seasons and two dry seasons. This 

meteorological pattern, along with considerable human activity, adds to the city's lack of 

significant greenery (Sylvain Gnamien, 2022; Ymba, 2022).  
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2.1.2 Climate 

Abidjan has an equatorial-sub-equatorial transition climate (Attieen Climate). This climate has 

four distinct seasons that occur throughout the year: a long dry season from December to May, 

followed by a long wet season from May to July. Following that, there is a brief dry season from 

August to September, followed by a brief wet season from October to November (Tapsoba, 1995). 

The total annual rainfall ranges from 1718.38 mm to 1169.42 mm (1982-2018), with higher 

maxima at 29.54 ° C and lower minimum at 23.84 ° C. Throughout the year, the region experiences 

stable thermal patterns and is impacted by a southwest monsoon breeze. Temperatures stay largely 

steady regardless of whether the month has substantial rainfall or less rainfall (Ahoussi et al., 2013; 

KOUAKOU, 2020). 

• Temperature 

According to the data, the minimum temperature follows a wave throughout the year, with 

maximums in March and April (on average of 25.84 °C for April) and the coolest month in August 

(on average of 22.66 °C). Maximum temperatures follow the trend of minimum temperatures, with 

maximums in February (29.54 °C, warmer months) and minimums in August (26.48 °C). The mean 

temperature follows the same trend as the maximum temperature, with the maximum in the same 

month (27.64 °C) and the minimum in August (24.22 °C), so February and August are the extreme 

months for temperature (27.64 °C-24.22 °C) (KOUAKOU, 2020). 

• Precipitation 

The rainfall pattern has two modes. The average monthly rainfall varies greatly throughout the 

year. The long rainy season lasts from May to July, with a peak of 269 mm in June, whereas the 

short rainy season lasts from October to November, with a peak of 142.8 mm in October. The 

average yearly precipitation during the previous 36 years (1982-2018) has been 1410.07 mm/year. 

The long dry season lasts from December to April, and the short dry season lasts from August to 

September (KOUAKOU, 2020; Kouassi, 2021). 
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• Vegetation 

Turraeanthus Africanus, which thrived in relatively nutrient-deficient clayey soils, was the main 

flora in the Abidjan region. This forest, however, was destroyed to enable the expansion of Abidjan 

city and to facilitate agricultural activity. The Banco National Park currently contains only a little 

remnant of the forest. The pre-lagoon savannas have distinct ecological characteristics due to their 

location on sandy soils generated from the Continental Terminal (Tastet, 1979). Mangrove forests 

and saline hydromorphic alluvial soils are both small. They are located on the flat shores of 

estuaries and lagoons, and their wood and bark are highly valued (BNETD, 2008). Swamp woods 

dominate the coastal stretch. 
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2.2 Data collection  

Two ensembles of data have been used in order to achieve the aim of this study. The first dataset 

used for this work is the ERA5-Land, available on the Copernicus website. ERA5-Land is a 

reanalysis dataset that provides a more comprehensive and expanded perspective of land variable 

evolution over multiple decades than ERA5 (Muñoz-Sabater et al., 2021). The ERA5-Land dataset 

have been downloaded in the netCDf format with a horizontal resolution of 0.1° x 0.1°, which 

translates to a native resolution of approximately 9 km. In terms of vertical coverage, ERA5-Land 

spans from 2 meters above the surface level down to a soil depth of 289 cm. The variables 

Map of the Autonomous District of Abidjan 

Figure 8: Study area 
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concerned by our study are the 2-meter temperature, the 2-meter dew point temperature and the 

surface pressure. This dataset also covers the period from 1961 to 2022, either 61 years of data. 

The second dataset used in this work is a three hourly historical observation data collected from 

the synoptic station in Abidjan. The dataset covers the period from 2009 to 2022 which is 

equivalent to 13 years of data. The variables are also the same with those inside the ERA5 data. 

2.2.1 Justification of the variables 

Temperature: Temperature is a key characteristic that is directly related to HWs. HWs are defined 

by protracted periods of extremely high temperatures. The magnitude and intensity of HW 

episodes can be captured by introducing temperature as a variable. Tracking temperature changes 

over time can provide useful information about the occurrence of HWs (Jacques-Dumas et al., 

2022; Meehl & Tebaldi, 2004; Pascal et al., 2013).  

The dewpoint temperature: The dewpoint temperature is the temperature at which air becomes 

saturated with water vapor, resulting in condensation and, potentially, cloud or precipitation 

development. This measure aids in determining the moisture content of the air. HWs can include 

not just high temperatures, but also high humidity levels, which can aggravate the discomfort and 

health hazards connected with HWs (Lucas et al., 2014). The availability of this component in the 

dataset gives humidity information, which appears to be a crucial characteristic to consider when 

determining the consequences of HWs on health. 

The atmospheric pressure: The atmospheric pressure exerted at the Earth's surface is referred to 

as surface pressure. It has a significant impact on weather patterns and can influence the genesis 

and duration of HWs (Hirsch et al., 2019). Variations in surface pressure can have an impact on 

the movement of air masses, the creation of high-pressure systems associated with HWs, and the 

atmospheric stability. The addition of surface pressure as a variable provides for a more complete 

understanding of the meteorological circumstances that contribute to HW episodes. 
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2.3 Tools 

The main programming language utilized throughout the entirety of this work is Python. Python 

was chosen as the primary language because of its versatility, wide library support, and syntax 

simplicity. Python implementation has been made possible by the use of two major platforms: 

Spyder from the Anaconda environment and Google Colab.  

The Anaconda environment, specifically the Spyder Integrated Development Environment (IDE), 

was critical all along this work. Anaconda is a comprehensive platform for scientific computing 

and data analysis, with numerous libraries and tools pre-installed. Spyder, in particular, has aided 

in the processing and interpretation of climate data by allowing for rapid data editing, visualization, 

and statistical computations. Its user-friendly interface and sophisticated capabilities have 

substantially expedited the research's data processing phase. 

In addition to the Anaconda environment, Google Colab was useful in the creation of the DL 

model. Google Colab, a cloud-based Jupyter Notebook environment, integrates seamlessly with 

other Google services and provides access to computational resources such as GPUs and TPUs. 

The DL models were effectively trained and assessed using the power of Colab 

The libraries used all along the work are: 

Pandas: An open-source data analysis and manipulation tool that is fast, powerful, flexible, and 

simple to use. It was used in the management of data structures. 

Numpy: A fundamental Python library for scientific computing. It has been used for the 

management of multidimensional arrays. 

Xarray: A Python library for manipulating labelled multidimensional arrays. It was used to 

manage the netCDF files. 

Metpy: A Python library that contains utilities for reading, displaying, and calculating weather 

data. It has been used to compute weather parameters. 

Matplotlib and Seaborn: Versatile libraries allowing effective produce static, animated, and 

interactive visualizations. They have both been for data visualization. 
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Keras: An open-source DL framework written in Python. It has been used for building training 

validation and validating the DL model. 

KerasTuner: A scalable, user-friendly hyperparameter optimization system. It has been used to 

ease the difficulties associated with hyperparameter search. 

Scikit-learn: A simple and efficient tool for predictive data analysis built upon SciPy. It has mostly 

been used for model evaluation. 

2.4 Method 

The section will firstly delve into the specific definition employed for characterizing HWs in Abidjan. 

Subsequently, an in-depth explanation of the model implementation will be provided, elucidating the 

technical details and methodologies employed. Lastly, the evaluation metrics utilized to assess the 

performance and accuracy of the model will be detailed. 

2.4.1 Heat index  

Before delving into the subject of HWs, let us first explore the index used to characterize them. 

The HI parameter has been used in some research to investigate HWs (Guigma et al., 2020; Rome 

et al., 2019). Developed by R. G. STEADMAN (1979), the HI determines an apparent temperature 

by combining air temperature and relative humidity (RH). Indeed, the evaporation rate of water is 

lowered when the RH is high. This means that heat is evacuated from the body at a slower rate, 

allowing it to retain more heat than in dry air (McGregor et al., 2015). 

The following formula was used to calculate the HI: 

HI = C1  +  C2 × T + C3 × RH + C4 × T × RH + C5 × T2 + C6 × RH2                           (Eq 11) 

           + C7 × T2  ×  RH + C8 × T × RH2 + C9 × T2 × RH2                                                                                                                                             

(R. G. STEADMAN, 1979) 

 C1 = -42. 379, C2 = 2,04901523, C3 = 10,14333127, C4= − 0,22475541, C5 = −6,83783 × 10−3, 

C6=− 5,481717× 10−2,  C7= 1,22874× 10−3, C8 = 8,5282× 10−4, C9 = −1,99× 10−6 

HI (in degrees Fahrenheit), T (ambient temperature in Fahrenheit), RH (relative humidity from 0 

to 100%) 
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2.4.2 Heat wave definition 

As pointed out in Chapter 1, precisely quantifying HW is quite challenging. Various definitions of 

HW exist depending on the context and area of study. The methodology used to determine HW in 

this study is based on the study conducted by Rome et al. (2019). Given the ongoing trend of global 

warming, it is important to either raise the absolute threshold or use a relative threshold. 

Accordingly, HW refers to a situation in which the daily maximum HI reachs or surpasses the 90th 

percentile value of its distribution for at least three consecutive days.  

Based on the dataset, the establishment of the HW detection threshold has been done differently. 

Era5 data case: A subset of ERA5 data was extracted from a grid point near the Abidjan synoptic 

station using nearest neighbour interpolation, ensuring that the analysis captures the localized 

weather conditions in that area. By narrowing down the analysis to the data near the synoptic 

station, it focuses on the relevant information for that specific location. This subset contains 

observations geographically close to the synoptic station, ensuring the analysis captures the 

localized weather conditions in that area.  

The ERA5 data was divided into two parts, spanning the periods of 1961 to 1990 and 1991 to 

2022, respectively. The initial step involved applying the 90th percentile to the daily maximum HI 

values from 1961 to 1990. Subsequently, the same 90th percentile value derived from the earlier 

period (1961 to 1990) was utilized to identify HDs within the daily maximum HI data from 1991 

to 2022. 

Abidjan synoptic station data case: The calculation of the HD's threshold involved utilizing the 

available data period, which extended from 2009 to 2022. The threshold for detecting HDs using 

the Abidjan synoptic data was determined based on the obtained value as the 90th percentile of the 

daily maximum HI. 

2.4.3 Heat wave prediction dataset 

In the context of supervised learning, the acquisition of a pertinent dataset is imperative for a model 

to acquire the necessary knowledge and generalize it toward accurate predictions on novel 

instances. In our case study, The model takes as input the daily average specific humidity, average 

potential temperature, and maximum WBT. 
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The computation of these variables have been possible using the MetPy package following the 

formulas below: 

• Potential temperature 

                                                        θ =  T × (
P0

P
)

k

                   (Eq 12) 

P0 = 1000hPa,  

k = R/cp  

cp = 1005 J/(kg·K) the specific heat capacity at constant pressure of the dry air 

R = 287 J/(kg·K) the gas constant. 

T: the temperature in kelvin (K) 

• Specific humidity 

            q =  
0.622 × e

P − e
               (Eq 13) 

With q the specific humidity and p the surface pressure 

With (e) the saturation vapour pressure which is computed from the following formula:  

                                           e =  6.1094 × e(
17.625×T

T + 243.04
)
                                                (Eq 14) 

(Tetens, 1930) 

• Wet bulb temperature 

Tw = T × atan [0.151977 × (RH + 8.313659)
1

2] + atan(T +  RH) − atan(RH −

            1.676331) + 0.00391838 × (RH)
3

2 × atan(0.023101 × RH) − 46860335        (Eq 15) 

(Stull, 2011) 

These parameters were chosen for their inherent relationship with both humidity and pressure 

rather than for the variables in the dataset.  
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It is essential to underscore that rather than predicting the complete temporal extent of a HW, the 

methodology prioritizes the identification of individual days that are likely to be hot. 

2.4.4 Methodology to implement the model 

To accomplish the objectives of this study, two distinct models have been constructed utilizing 

separate methodologies and dataset. Firstly, an optimized Multiple Linear Perceptron (MLP) 

model was meticulously trained on a comprehensive dataset spanning 31 years of daily ERA5 data. 

Subsequently, the acquired knowledge and capabilities of the pre-trained model were leveraged by 

the final MLP model to discern intricate patterns within synoptic data. This approach was 

undertaken to address the challenge associated with the infrequent incidence of HD events in the 

synoptic data specific to Abidjan city. 

The figures below presents a brief overview of the methodology used to implement the MLP 

models. The text in blue represent the package used for the specific step of the methodology, and 

those in orange represent the main methods used during this step. 

The core elements of the process will be covered in detail in the next subsections, which will also 

ensure its reproducibility by meticulously presenting all necessary information. 
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Figure 9: Methodology to implement the MLP model with ERA5 data. 
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2.4.4.1 Hyperparameter Optimisation 

The performance of ML or DL algorithms largely relies on selecting a good collection of 

hyperparameters. However, with the vast range of possible hyperparameter combinations, it 

becomes challenging and time-consuming for human experts to manually tune them.  

The goal of optimisation in ML is to find the optimal combination of hyperparameters that 

maximizes performance on a given task.  Employing optimisation methods enable to efficiently 

explore the hyperparameter space of an ML model, thereby improving its performance and 

reducing the manual effort required in hyperparameter tuning. One strong argument for employing 

Bayesian optimisation in this study for our MLP optimisation is due to its ability to outperform 

human expertise and lead to significant improvements in model performance (Snoek et al., 2012). 

There are numerous approaches to optimizing an ML model. KerasTuner, a scalable and user-

friendly hyperparameter optimisation framework, was used in our case. KerasTuner is an open-

source Python library that is useful because it helps in setting hyperparameters in a sensible and 

practical way. Figure 11 illustrates the fundamental principle of hyperparameter optimisation. 
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In our study framework, the hyperparameters include units representing the number of neurons in 

each dense layer, regularization rates for controlling overfitting, dropout rates for regularization 

and preventing overfitting, and the learning rate which is for controlling the step size during 

optimisation. Each hyperparameter is defined within a specific range and step size, allowing the 

search algorithm to explore different combinations and find the best configuration for the model. 

The tables below provide an overview of the hyperparameters and their corresponding search 

spaces. They show the possible values that were explored during the hyperparameter tuning 

process to optimize the MLP models. 
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Figure 11: Fundamental principle of Bayesian optimization 



Using model based AI to improve operational predictability of heat waves in developing 

countries: case study of Abidjan. 

   

Page | 36 
Dedi Yoris Etienne GADOU – EDICC | UJKZ - Academic year 2022-2023 

Table 1: Hyperparameter space of the pretrained MLP model 

Hyperparameter Range Step Distribution 

unit_1 256 - 512 16 Integer 

unit_2 128-256 16 Integer 

unit_3 64-128 16 Integer 

reg_rate_3 [0.001, 0.002, 0.003] - Categorical 

unit_4 32-64 8 Integer 

reg_rate_4 [0.01, 0.02, 0.03] - Categorical 

drop_rate_1 0.0 - 0.5 0.1 Float 

unit_5 8 - 32 2 Integer 

reg_rate_5 [0.001, 0.002, 0.003] - Categorical 

drop_rate_2 0.0 - 0.5 0.1 Float 

Learning rate [1e-4, 1e-1] (log scale 

sampling) 

 Float 

 

Table 2: Hyperparameter space of the final MLP model 

Hyperparameter Range Step Distribution 

unit_1 129-256 4 Integer 

unit_2 64-128 4 Integer 

unit_3 30-62 2 Integer 

unit_4 16-28 2 Integer 

unit_5 8-14 2 Integer 

Learning_rate [1e-4, 1e-1] (log scale 

sampling) 

- Float 

 

Let us proceed with an overview of the tables and provide a detailed explanation of each 

component. 

Hyperparameter: This column denotes the name assigned to the hyperparameter under 

consideration within the hyperparameter search space. It serves as an identifier for the specific 

parameter being optimized. 

Range: The range column specifies the boundaries of values that the hyperparameter is allowed to 

take. It defines the lower and upper limits within which the hyperparameter can vary during the 

optimization process. 
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Step: The step column denotes the increment or step size between consecutive values within the 

defined range. It determines the granularity of the hyperparameter search space by specifying the 

magnitude of change between each value. 

Distribution: The distribution column provides information about the nature of values that the 

hyperparameter can assume. This table distinguishes between three types of distributions: 

• Integer: If the hyperparameter is labelled as an integer distribution, it signifies that only 

whole number values within the specified range are considered.  

 

• Categorical: Categorical distributions refer to hyperparameters that can only take specific 

pre-defined categorical values mentioned in the table. These values are explicitly listed and 

serve as the options to be explored. 

 

• Float: When a hyperparameter is categorized as a float distribution, it implies that the 

parameter can assume continuous floating-point values within the defined range. 

By exploring different values within the defined ranges, the hyperparameter tuning process aims 

to find the optimal combination of hyperparameter values that maximizes the desired metric. 

2.4.4.2 Presentation of the data 

Table 3: MLP Input and Output Data Presentation 

 

 

According to the Table 3, the dataset utilized for constructing the MLP models can be categorized 

into three distinct sections. 

The first section pertains to the timeframe encompassing the entire dataset, denoted as the Period 

section. This section defines the temporal scope of the data in terms of daily data, which, as 
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indicated before in this section, varies depending on the dataset used. Specifically, for this study, 

the ERA5 dataset spans from January 1, 1991, to December 31, 2022, while the Synoptic data 

covers the period from January 1, 2009, to December 31, 2022. 

The subsequent section concerns the input characteristics of the MLP model. This section of the 

dataset assumes paramount importance within the MLP model framework, as it serves as the 

fundamental element for analysis and prediction purposes. The features encompassed in this 

segment of the data encapsulate pertinent attributes that exert significant influence on the target 

variable under consideration. These input features are systematically organized in a tabular format, 

wherein each row denotes an individual instance or sample for each day, and each column 

corresponds to a distinct feature as shown in Table 3. This structured arrangement enables the MLP 

model to effectively process and scrutinize the provided data. 

The last section is about the output or target of the MLP model. In the context of this supervised 

learning task, the labelled target variable signifies the intended output or true value corresponding 

to each input instance. It comprises discrete categories or labels denoted as q1 and q2 in Table 3. 

These categories possess a binary characteristic, implying that each category can take on one of 

two distinct values, namely 0 or 1. In our specific case, the value [1 0] signifies the occurrence of 

an HD, while [0 1] corresponds to a normal day. 

2.4.4.3 Data processing 

Data processing is a crucial and indispensable step in building any machine or DL model. It plays 

a vital role in transforming raw data into a suitable format that can be effectively utilized as input 

for the model. Proper data processing significantly impacts the model's performance and 

generalization capabilities. The data processing step encompasses several crucial tasks, starting 

with data cleaning, where missing values, outliers, and inconsistencies are addressed to prevent 

potential distortions in the learning process. Next, the dataset is split into training, validation, and 

testing sets. The training set is used to optimize the model's parameters, while the validation set 

aids in tuning hyperparameters and assessing the model's performance during training. Finally, the 

testing set serves as an independent evaluation to estimate the model's true performance on unseen 

data. By using different sets for training and testing, data processing ensures that the model 



Using model based AI to improve operational predictability of heat waves in developing 

countries: case study of Abidjan. 

   

Page | 39 
Dedi Yoris Etienne GADOU – EDICC | UJKZ - Academic year 2022-2023 

generalizes well to new, unseen samples. Another crucial aspect of data processing is 

normalization, which standardizes the numerical features to a common scale.  

2.4.4.3.1 Data splitting 

The data splitting process in this study was conducted using sklearn.model_selection module from 

the scikit-learn library. This module offers an efficient and scientifically rigorous approach to 

dividing the dataset into training, validation, and testing subsets. For the MLP built using the ERA5 

dataset (pre-trained model), the dataset was partitioned into 6934 samples for training, which 

corresponds to an approximate duration of 19 years, 2973 samples for validation, approximately 

representing 8 years, and finally 1749 samples, corresponding to approximately 4 years, for testing 

purposes. On the other hand, for the MLP built using the Synoptic data, the dataset was divided 

into 2475 training samples, equivalent to a span of 7 years of data. Additionally, 1062 validation 

samples were used, representing a duration of 3 years of daily data. Furthermore, 625 samples 

were allocated for testing, which encompassed a period of 2 years of data. 

2.4.4.3.2 Data normalization 

Additionally, the normalization technique employed to preprocess the data was the min-max 

scaling method. The min-max scaling transforms the values of each feature in the dataset to a range 

between 0 and 1, preserving the original relationships between data points while ensuring that all 

features have a uniform scale. By applying this technique, the model is less likely to be influenced 

by features with larger magnitude values, preventing potential biases and instabilities during 

training. The sklearn.preprocessing module of the scikit-learn library was utilized to implement 

the min-max scaling method, ensuring consistency and efficiency in the normalization process 

across both the ERA5 and Synoptic datasets. 

 

                                                              m =  
X − Xmin

Xmax− Xmin
                (Eq 16) 

 

m is our new value 

X is the original cell value 

Xmin is the column's minimum value 
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Xmax is the maximum value of the column 
 

2.4.4.4 Class-size imbalance and undersampling 

Classes are imbalanced by construction for the prediction of unusual events. Class imbalance is a 

prevalent issue for machine and DL models. It arises when the distribution of examples within a 

dataset is heavily skewed or biased toward one class. This situation creates considerable issues for 

predictive modeling since algorithms are affected by the majority class and fail to appropriately 

represent the minority class. The decrease in model performance is one of the key consequences 

of class imbalance (Miroslav & Matwin, 1997). When the majority class dominates the dataset, 

machine and DL algorithms tend to prioritize accuracy over capturing the minority class. As a 

result, the model may be biased toward the majority class, resulting in a poor predicted 

performance for the minority class (Longadge et al., 2013). This can be particularly problematic 

in applications where the minority class is of significant interest, such as the prediction of unusual 

events.  

In our study, we propose to address the issue of class imbalance in the training of our Multilayer 

Perceptron (MLP) model by utilizing the Random Under-Sampling (RUS) method. The objective 

is to mitigate the impact of class imbalance by reducing the disproportionate representation of the 

minority class during the model training process. By employing RUS, we aim to create a more 

balanced dataset, which can improve the ability of the model to learn from both classes effectively. 

The RUS method works by randomly selecting a subset of instances from the majority class (the 

overrepresented class) to match the size of the minority class (the underrepresented class). This 

approach involves removing instances from the majority class until the desired balance between 

the classes is achieved. This way, the training dataset becomes more balanced, allowing the MLP 

model to learn from both classes more accurately. The goal of RUS is not to discard all instances 

of the majority class, but to create a more equitable representation that mitigates the dominance of 

the majority class during training. The concept of the RUS rate refers to the percentage of examples 

from the majority class that will be eliminated during the under-sampling process. This rate 

determines the degree to which the class imbalance is mitigated. For example, a RUS rate of 0.10 

implies that 10% of the instances from the majority class will be removed, whereas a rate of 1 
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indicates the complete elimination of excessive instances from the majority class. By adjusting the 

RUS rate, we can explore different levels of class imbalance reduction and examine their impact 

on the model's prediction performance. In our study, we have explored the impact of different RUS 

ratios on the prediction performance of the MLP model. Initially, the MLP model was optimized 

using the normal training dataset without any RUS method applied. Subsequently, four additional 

MLP models were trained after applying RUS rates of 0.25, 0.5, 0.75, and 1 to the training dataset. 

This approach allowed us to investigate how different levels of class imbalance reduction affect 

the model's predictive capabilities. By systematically varying the RUS rate, we aimed to identify 

the optimal balance between class representation and prediction performance for our specific 

problem. By utilizing the RUS method and evaluating different RUS ratios, our study aims to 

provide insights into the impact of class imbalance mitigation techniques on MLP model training 

and prediction performance. This approach contributes to the understanding of how to address the 

challenges posed by imbalanced datasets and enhance the effectiveness of the MLP model in 

handling such scenarios. The figure below shows the class proportion after applying the different 

RUS rate. 
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Figure 12: Visualizing Different Random Undersampling Rates Applied to Synoptic Training Data. 
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2.4.4.5 Performance assessment 

A performance assessment approach based on the confusion matrix for two classes was employed 

to evaluate the effectiveness of the predictive model for HD occurrences (see Table 4). The primary 

objective of this assessment is to determine the ability of the MLP to accurately classify instances 

of HDs based on the provided input features. 

A set of carefully defined evaluation metrics was used to assess the performance of the model. 

Given the imbalanced nature of the problem, where HDs are scarce compared to non-HDs, 

exploration was conducted regarding the utilization of the Area Under the Curve (AUC) metric. 

The AUC metric is widely recognized as a robust measure for assessing binary classification 

models in imbalanced scenarios (Branco et al., 2015), as it takes into account both true positive 

rates (TPR) and false positive rates (FPR) across varying classification thresholds. The TPR, also 

known as sensitivity or recall, represents the proportion of correctly identified HDs out of the total 

actual HDs. By incorporating TPR into our performance assessment, we were able to evaluate the 

ability of the model to capture and correctly classify instances of HDs. In addition to TPR, we also 

considered the FPR, which quantifies the proportion of falsely identified non-HDs among the total 

actual non-HDs. The inclusion of FPR allowed us to assess the specificity of the model and its 

potential for false alarms when predicting HD occurrences. 

                                                          TPR =  
TP

TP + FN
                 (Eq 17) 

FPR =  
FP

TN + FP
                (Eq 18) 

 

TP:  the number of True Positives  

TN: the number of True Negatives 

FP: the number of False Positives 

FN: the number of False Negatives  
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Table 4: Confusion matrix for two class problem. 

 

 

 

 

 

 

The choice of only commenting on the TPR and FPR is justified by the relationship between these 

metrics and their complement counterparts, the False Negative Rate (FNR) and the True Negative 

Rate (TNR) respectively.  As TPR + FNR = 1 and FPR + TNR = 1, these pairs of metrics are 

inversely related and provide redundant information. Therefore, by focusing solely on the TPR and 

FPR, we can efficiently examine the model's performance without repeating information and 

maintaining a simple and focused analysis. 
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Chapter 3: Results and Discussion 

This section serves to present the principal findings derived from our study. Firstly, an analysis of 

the temporal distribution of HWs in Abidjan, categorized by month, will be provided, along with 

the prediction results obtained from both the pre-trained and final Multilayer Perceptron (MLP) 

models. Each individual result will be subject to a comprehensive discussion aimed at elucidating 

the extent to which the obtained findings conform to or deviate from the existing body of research. 

3.1 Temporal analysis of hot days and heat waves over Abidjan based on the heat index 

indicator 

 

 

 

 

 

 

 

 

 

The examination of HW occurrences in Abidjan, capital of Côte d'Ivoire, based on the HI computed 

with synoptic data from 2009 until 2022, showed in Figure 13 reveals interesting trends and 

variations. The result focuses on the monthly distribution of HWs, revealing patterns and 

characteristics of these extreme weather phenomena. Examining the general trend, it is clear that 

HWs in Abidjan city exhibit seasonal fluctuations throughout the year. The months with most HWs 

are March, February, and April, with 37, 29, and 26 occurrences, respectively during the past 13 

years. These findings align with the research conducted by RINGARD J et al., (2014), which 

emphasizes that the period between January and March constitutes the hottest season in Abidjan, 

further substantiating the validity and reliability of our respective investigations. When compared 

Figure 13: Frequency of HW occurrences per month in Abidjan during the last past 13 years 
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to other months, these months have a higher frequency of HWs. In Abidjan, March looks to be the 

most active month for HW occurrences. In contrast, HWs were absent in June, July, August, 

September, and October, with zero occurrences over the 13-year period. These months consistently 

show a lower probability of HWs occurrences. This result implies that HW occurrences in Abidjan 

has a distinct seasonal pattern, with the summer months having a reduced risk. 

The observed trends in HW occurrences in Abidjan city can be attributed to several factors. First 

and foremost, the geographical location of Abidjan within the tropical climate zone plays a crucial 

role. The city is situated close to the equator, which results in relatively high temperatures 

throughout the year. This, combined with the presence of the Atlantic Ocean, leads to increased 

moisture availability and influences local weather patterns (Guigma et al., 2020). The months with 

the highest occurrences of HWs (March, February, and April) coincide with the transition from the 

dry season to the rainy season in Abidjan. During this period, the region experiences a buil-dup of 

heat, as solar radiation intensifies and the moisture content gradually increases. These conditions 

create a conducive environment for the formation of HWs. Furthermore, the urban heat island 

effect may contribute to the higher occurrences of HWs in Abidjan. As a rapidly growing urban 

centre, Abidjan experiences significant urbanization, resulting in increased impervious surfaces 

and reduced vegetation cover. These changes lead to enhanced heat absorption and limited natural 

cooling mechanisms, amplifying the intensity and duration of HWs within the city (Li et al., 2022). 
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3.2 Evaluating the Performance of the Pre-trained MLP Model with ERA5 Data. 

In this section, we will dive into the full presentation of the results obtained from the pre-trained 

optimal MLP model. This model has undergone thorough training, validation, and testing 

processes using daily ERA5 data covering the period from 1991 to 2022. By analysing these 

results, we aim to provide insight into the model's performance, its ability to capture patterns and 

trends in the data, and its overall effectiveness in handling HDs prediction. 

3.2.1 Evolution of the training and validation step 

 

 

 

 

 

 

 

 

 

 

 

  

Based on the training and validation curves (Figure 14), it is evident that the binary cross entropy 

chosen as loss function for this model consistently exhibited convergence over the entire duration 

of 150 epochs. This indicates a robust training process, where the model effectively learned 

complex patterns and features associated with HD classification. The closed nature of both curves 

signifies the ability of the model to generalize well to unseen data, as the validation curve closely 

tracks the training curve without evidence of overfitting (Jeff Heaton, 2018). This result underscore 

the effectiveness of the chosen loss function in guiding the training process, yielding refined 

predictions, and improved overall performance. 
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Figure 14: Evaluation of Pre-trained MLP loss Function during the training and validation 
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3.2.2 Analysis of Hot Day Prediction Results using Pre-trained MLP Model over the ERA5 

data 

 

 

 

 

 

 

 

 

 

 

 

 

The obtained TPR score of 85.38% indicates that the model accurately detected a portion of the 

actual HDs over the 4-year period (Figure 15). This high TPR demonstrates the model's 

effectiveness in identifying true positive cases, which is valuable for applications like HW 

prediction and resource allocation. However, it is worth noting that there may still be instances 

where the model fails to identify HDs, resulting in false negatives. False negatives occur when 

positive instances (e.g., HDs) are incorrectly classified as negatives (e.g., non-HDs). Such 

misclassifications can have consequences, potentially leading to inadequate actions or measures 

for warm weather conditions. 

Furthermore, the model exhibited a low FPR of 1.50%, indicating its ability to minimize false 

alarms characterised by predicting HDs when they did not occur. A lower FPR is desirable as it 

reduces the number of false positive predictions, thereby minimizing unnecessary actions or 

resource allocation triggered by false alarms. The low FPR of 1.50% of the model reflects its good 

specificity and proficiency in distinguishing between hot and non-HDs. 

Figure 15: Confusion matrice showing the pre-trained MLP model performance 
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These metrics indicate the potential of the model as a pre-trained model for TL. Trained and 

validated on 19 years and 8 years of data respectively, the model has acquired extensive experience 

in detecting HD occurrences. This accumulated knowledge can be leveraged to develop a final 

model capable of adapting to the synoptic data environments, which potentially have fewer HD 

occurrences (Lu et al., 2015). The proficiency of the pre-trained model in recognizing patterns may 

be used to improve performance adaptation. Harnessing its extensive training, the final model is 

may demonstrate enhanced accuracy and generalization in detecting HDs, even with limited 

occurrences (Zhu et al., 2011). 

3.3  Analysis of Hot Day Prediction Results Using Optimal MLP Models and Various  

Random Under-Sampling Strategies 

As previously discussed in the methodology part, different random under-sampling (RUS) 

strategies have been applied to the imbalance dataset to attain the desired ratio or proportion 

between the minority and majority classes. Following the different RUS scenarios characterized 

by the class rate, a succession of predictions by the optimized final MLP models were performed.  

This section is attended to present the results obtained from predicting HDs using various 

optimized MLP models on the different under-sampling scenarios previously discussed. 

The graphs below represent the confusion matrix from the HD’s prediction with the optimal MLP 

models on the test synoptic station dataset. 
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RUS (𝛼 = 0.75) 

RUS (𝛼 = 0.25) Without RUS 

RUS (𝛼 = 0.5) 

RUS (𝛼 = 1) 

Figure 16: Performance of the models with respect to the RUS rate. 
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By analyzing the result displayed in the figure above (Figure 16), it becomes evident that as the 

count of non-HDs diminishes in the training data, which result from an increase in the RUS rate, 

the MLP model adjusts its predictions accordingly. As the RUS increases from 0.25 to 1, the TPR 

exhibits an increasing trend. This observation suggests that reducing the presence of HDs in the 

training data enhances the model's ability to accurately detect occurrences of HDs. This is 

manifested by TPR values ranging from 90.32% without resorting to under-sampling of training 

data up to 100% which corresponds to an under-sampling rate value of 1. 

Similarly, as the rate of under-sampling increases, so does the false positive rate (FPR). This is 

justified by the different increasing values of the false positive rate in the results, from 3.74% 

without any under-sampling method to 9.96% with an under-sampling rate of 1 (Figure 16). This 

result signifies that as the number of non-HDs is reduced in the training set, the MLP (Multilayer 

Perceptron) increases its predictions of false occurrences of HDs. 

As depicted in Figure 17 above, the AUC values for each scenario of the under-sampling method 

do not display a clear correlation with the under-sampling rate. However, It is worth noting that 

Figure 17: AUC metric for the different under-sampling rate 
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the values of the AUC metric vary slightly across the scenarios, but all consistently indicate the 

good overall ability of the models to discriminate between hot and cold days. Also, the AUC metric 

of the scenario without any under-sampling method yields a value of 98.85% which is greater than 

the scenario with the under-sampling rate of 0.75 which instead yield an AUC value of 98.39%. 

The other under-sampling rate scenario all provide AUC values above 98.50% with the highest 

AUC value appearing for the under-sampling rate scenario of 0.25 which obtained a value of 

99.4%. 

The observation that the True Positive Rate (TPR) increases as the under-sampling rate increases 

can be explained by the impact of under-sampling on the class distribution within the training 

dataset. When the under-sampling rate is low, the majority class instances far outweigh the 

minority class instances, resulting in a data imbalance. This then results in a lower TPR as the 

model may struggle to effectively learn the patterns and characteristics of the minority class, 

leading to a higher number of false negatives (Johnson & Khoshgoftaar, 2020). 

Under-sampling involves reducing the number of instances from the majority class to balance it 

with the number of instances from the minority class. By increasing the under-sampling rate, we 

are essentially reducing the dominance of the majority class in the training dataset, resulting in a 

more balanced dataset where the positive instances (HDs) are adequately represented (Branco et 

al., 2015). 

The advantage of this approach is that it allows the model to capture and learn from a greater 

number of positive instances. By having more HD instances in the training dataset, the model has 

a higher chance of encountering a variety of scenarios and conditions that lead to HDs. This 

exposure allows the model to capture the diverse range of patterns and correlations associated with 

HDs. For example, the model has more chances to learn that specific combinations of the input 

features tend to coincide with HDs, such as the potential temperature, specific humidity, and WBT. 

Additionally, with a larger representation of HDs, the model can uncover rare or uncommon 

patterns that might have been overlooked when the positive instances were scarce in the training 

dataset without any under-sampling method. The increased exposure helps the model identify 

nuanced relationships and interactions among features that might have a significant impact on the 
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occurrence of HDs. These insights can enhance the model's ability to accurately predict HDs by 

recognizing the complex interplay between the input feature values and their combined influence 

on the occurrence of HDs. Consequently, the model's ability to identify and predict HDs is 

enhanced. 

On the other hand, when analysing the impact of increasing the under-sampling rate on model 

performance, it is crucial to consider its implications for the False Positive Rate (FPR) and overall 

accuracy. Figure 16 clearly demonstrates that as the under-sampling ratio increases across different 

scenarios, the FPR exhibits an increasing trend. This happens because diminishing the dominance 

of the majority class through under-sampling reduces the amount of instances from that class, 

which might lead to misclassifying instances as positive and affecting the model's overall 

performance.   

The distribution of the AUC metric in Figure 17 further emphasizes this trend. The scenario with 

an under-sampling rate of 0.25 achieves the highest AUC (Area Under the Curve) score compared 

to other scenarios, indicating excellent predictive capability. In this scenario, the TPR is 91.94% 

while the FPR remains constant at 3.74%, reflecting a successful capture of positive instances with 

a relatively low rate of falsely labelling negative instances as positive. As the under-sampling rate 

increases to 0.5, 0.75, and 1, the TPR continues to improve, reaching 93.55%, 98.39%, and 100% 

respectively. However, with this increase, the FPR also rises. The scenarios with under-sampling 

rates of 0.75 and 1 exhibit higher FPR values of 7.83% and 9.96% respectively, indicating a higher 

proportion of falsely labelled negative instances. Consequently, there is a slight decrease in AUC 

compared to the scenario with an under-sampling rate of 0.25.  

This investigation aligns with the outcomes reported by (Jacques-Dumas et al., 2022), highlighting 

the vulnerability of the model to misclassifying non-HDs as HDs when exposed to an elevated 

under-sampling rate in the training data, consequently hindering its overall performance. 
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Conclusion and perspectives 

Finally, this study makes an important contribution to the use of AI in HW prediction in West 

Africa, notably in the setting of Abidjan, the capital of Cote d'Ivoire. It is one of the first research 

over this specific area that leverages AI approaches for HWs prediction.   

The study conducted a temporal investigation of HW occurrences in Abidjan from 2009 to 2022, 

shedding light on the seasonal beheviour observed during this period by this extreme event. 

Notably, the month of March emerged as the month with the highest frequency of HW occurrences, 

while June, July, August, September and October exhibited a lower probability of HW events. This 

result confirms that HW occurrences exhibit a specific temporal pattern. 

Furthermore, the potential of using ANNs, specifically the Multilayer Perceptron (MLP) model, 

for predicting HW occurrences in Abidjan has been explored. Our analysis primarily utilized 

potential temperature, specific humidity, and wet bulb temperature as input variables. To address 

the imbalanced datasets resulting from the scarcity of Hot Days (HDs) in the training dataset, TL 

and RUS techniques were employed. The findings revealed that the MLP model, in conjunction 

with TL and under-sampling, achieved remarkable performance in predicting HWs thereby 

predicting the individual hot days. The performance of the MLP models was evaluated using the 

Area Under the Curve (AUC) metric, and all models trained with different under-sampling rates 

demonstrated good AUC performance. 

Overall, this study contributes to HW prediction in West Africa and provides useful information 

for policymakers and stakeholders in effectively managing HW events in Abidjan and other similar 

regions. While our research has provided valuable insights into improving the operational 

predictability of HWs in Abidjan, it is important to acknowledge the limitations of our study. These 

limitations serve as avenues for future research and improvement: 

➢ Data Availability: The effectiveness of our MLP model heavily relies on the availability 

and quality of the input data. In our case, the availability and accessibility of 

comprehensive datasets, including geographical information, were limited. Future studies 

should focus on acquiring more extensive and accurate datasets to enhance the accuracy 

and reliability of the predictions. 
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➢ Generalizability: Our study focused specifically on the case study of Abidjan, and the 

applicability of our findings to other developing countries and cities may be limited. It is 

crucial to conduct similar investigations in various geographical locations and climates to 

validate the robustness and generalizability of such developed models. 

➢ Model Optimization: Although our MLP model demonstrated promising results, there is 

always room for improvement in terms of model architecture, hyperparameter tuning, and 

optimization techniques. Further exploration of advanced neural network architectures, 

such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), may 

yield more accurate and efficient predictions and also allow to extend the leadtime for the 

prediction. 

By addressing these limitations and pursuing these future perspectives, researchers, and 

policymakers can further advance the operational predictability of HWs in developing countries, 

ultimately contributing to the protection of vulnerable populations and the development of 

effective climate resilience strategies. 
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