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Abstract

Abstract
This study proposes to predict rainfall on a Sub-seasonal to seasonal (S2S) time scale over

six (6) locations (Dori, Ouahigouya, Ouagadougou, Fada N’Gourma, Bobo-Dioulasso and

Gaoua) in Burkina Faso, using a specific architecture of Deep Learning called LSTM.

Historical monthly and daily climate parameters from different sources are used to cal-

ibrate the LSTM model. After data preprocessing, the model is set and run for each

location. Afterwards, the model is evaluated using some statistical metrics such as R2,

NSE, RMSE and MAE. The performance evaluation of the model using these metrics

shows that LSTM model is effective and performs well in predicting rainfall at monthly

timescales. For instance, forecasting at monthly timescale exibits a R2 ranging from 0.66

to 0.83, NSE ranging from 0.62 to 0.80, RMSE ranging from 32.9 to 59.9mm and MAE

ranging from 21.1 to 39.7mm. Regarding the bimonthly rainfall prediction, R2 ranges

from 0.63 to 0.83, NSE ranges from 0.6 to 0.82, RMSE ranges from 34.0 to 62.8mm and

MAE ranges from 21.8 to 42.8mm. These results allow to highlight the impact of cli-

matic zones and topography. Indeed, the models have better results on slightly humid

plateaus than on very rainy and elevated areas of the country. However, trying to bring

these monthly forecasts down to daily scales, the models struggle to capture daily rain-

fall for all locations. This requires more investigations to be done as part of future studies.

Keywords: Sub-seasonal to seasonal (S2S), Burkina Faso, Deep learning, Long Short

Term Memory (LSTM), model.
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Résumé

Résumé
Cette étude se propose de prédire les précipitations sur une échelle de temps sub-saisonnière

à saisonnière (S2S) au niveau de six (6) localités (Dori, Ouahigouya, Ouagadougou, Fada

N’Gourma, Bobo-Dioulasso et Gaoua) au Burkina Faso, en utilisant une architecture

spécifique de Deep Learning appelée LSTM. Des paramètres climatiques historiques men-

suelles et journalières obtenues de différentes sources sont utilisées pour calibrer le modèle

LSTM. Après le prétraitement des données, les modèles sont calibrés et implémentés pour

chaque localité. Ensuite, le modèle est évalué à l’aide de mesures statistiques telles que R2,

NSE, RMSE et MAE. L’évaluation des performances du modèle à l’aide de ces métriques

montre qu’il est efficace pour prédire les précipitations à des échelles de temps mensu-

elles. Par exemple, les prévisions à l’échelle mensuelle présentent un R2 variant de 0,66

à 0,83, NSE variant de 0,62 à 0,80, RMSE variant de 32,9 à 59,9mm et MAE variant

de 21,1 à 39,7mm. En ce qui concerne la prévision bimensuelle des précipitations, les

résultats montrent que R2 varie de 0,63 à 0,83, NSE varie de 0,6 à 0,82, RMSE varie de

34,0 à 62,8 mm et MAE varie de 21,8 à 42,8 mm. Ces résultats permettent de mettre en

évidence l’impact des zones climatiques et de la topographie. En effet, les modèles ont

de meilleurs résultats sur les plateaux peu humides que sur les zones très pluvieuses et

montagneuses du pays. Cependant, en essayant de ramener ces prévisions mensuelles à

des échelles quotidiennes, les modèles ne parviennent pas à reproduire les précipitations

quotidiennes pour tous les sites. Cela nécessite plus d’investigations à faire dans le cadre

d’études futures.

Mots clés: Sub-saisonnier à saisonnier (S2S), Burkina Faso, Deep learning, Long Short

Term Memory (LSTM), modèle.
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Introduction

Introduction

Context and justification

Climate change is already affecting every region on Earth, in multiple ways, increasing

the need for reliable weather and climate forecasts with a view to cope, in particular, with

the high frequency and intensity of extreme weather events (flood, drought, heatwaves,

major hurricanes. . . ) [1]. Even though there are various levels of certainty associated

with the linkages between climate change and extreme weather events, there is no doubt

that these climate related events are exacerbated by climate change [2].

Due to the low adaptive capacity of Sub-Saharan African countries, climate related events

are undermining decision makers’ efforts toward socioeconomic development. The case

of the Sahel in West Africa is quite illustrative. Indeed, this region is known to be very

sensitive to climatic fluctuations. Inter-annual variability of precipitation has immediate

and strong consequences on agriculture, food security, water resources, biodiversity and

energy. The region has faced series of extreme climatic events through the past. Recently,

a long period of persistent drought jeopardized the ecosystems equilibrium. Indeed, from

the 1970’s to the mid 1990’s, precipitations were strongly and repeatedly below average

[3]. Conversely, during the last decade, several floods have severely hit the Sahel. Oua-

gadougou, in Burkina Faso, for instance, experienced its most severe floods on the 1st of

September, 2009. According to the World Bank, this flood affected more than 150,000

people, and resulted in estimated damages and losses to the economy of more than USD

130 million. In terms of rainfall projection, the region is not yet out of the rut because

climate change is going to affect rainfall patterns. Precipitation is likely to decrease over

large parts of the subtropics and changes to monsoon precipitation are expected [1].

From above, there is an urgent need to provide decision makers with accurate weather

forecasts and climate predictions so that climate events don’t annihilate their economical

development, which is already weak.

Unfortunately, meteorological services in the Sahel are being issued forecasts for the

timescales that range from short range (1–5 days), to medium range (7–15 days), and

long range (3–12 months) [4]. Specifically, the two first are being issued as daily to
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weekly outlooks of the weather while the last one is being provided and updated through

Seasonal forecasts of Agro-climatic characteristics of the rainy season for the Sudanese and

Sahelian zones (PRESASS). It means that, these meteorological services are not dealing

so much with the gap between the medium range and the long range. To achieve this, it’s

critical to bridge the gap between daily weather forecasts and seasonal climate outlooks.

Indeed, many management decisions in agriculture and food security, water, disaster risk

reduction, and health fall into this gap in prediction capabilities [4]. Therefore, developing

forecast capabilities for this time range would be of considerable societal value.

Problem statement

For the past several decades, forecasts of weather, ocean and other environmental phe-

nomena made on short and medium range timescales have yielded invaluable information

to improve decision making across many socio-economic sectors [5]. It worth pointing out

that these improvements in weather and climate forecasts have to do with the advent of

Numerical Weather Prediction (NWP) and computational facilities. Climate and weather

information has gain in importance as a decision-making tool and for climate adaptation

in the context of climate change. Unfortunateley, several fundamental issues are hindering

the production and use of these forecasts. Firstly, the medium range timescales appear

too short for any meaningful mitigating action to be taken. Secondly, there exists a gap,

referred to as the “predictability desert”, between the medium and long-range timescale

forecasts [6]. This gap is also called Subseasonal to Seasonal (S2S) range.

In addition, the NWP models themselves have some inherent limits that lead to uncertain-

ties in forecasts. These models can be referred to as bottom-up approaches because they

forecast climate using physical boundary conditions. Although the performance of Earth

System Models (ESMs) is improving, these models still suffer from significant forecast

uncertainties. Such uncertainties in future climate may delay mitigation and adaptation

to climate change [1]. Then, there is a need to pave the way toward building our own

strategy to issues weather and climate predictions.

Therefore, in the Sahel, it appears necessary to explore others alternative to these NWP

techniques which are highly computational costly. Moreover, with the discovery of non-

linearity in weather data, the focus has shifted towards the nonlinear prediction of the

weather [7].
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For the particular case of the parameter rainfall, several issues still prevent its accurate

predictions, including the high variability of rainfall pattern in Sub-saharian Africa and

the lack of mastery of the West African Monsoon (WAM), which is the main driver of

rainfall in this region. To overcome all these challenges, several machine learning methods

and models have been used to make reliable and timely rainfall predictions to overcome

this ambiguity [19]. Deep Learning, in particular Long Short-Term Memory (LSTM),

appears to be well suited to bring out the structural relationship between the various cli-

mate entities which are taken into account in the rainfall prediction. LSTMs are effective

in solving many time series tasks which other feedforward networks could not solve [8].

Research questions

This work aims at answering this main question:

• Q1: How well does a LSTM model capture S2S rainfall over Burkina Faso?

Research hypotheses

The main hypothesis of this work is:

• H1: LSTM model used to predict S2S rainfall over Burkina Faso gives good scores.

Research objectives

The main objective of this research is to develop a LSTM model that is capable to predict

S2S rainfall over Burkina Faso. Specifically, it is about to:

• O1: Determine the performances and efficiency of this LSTM model.

Thesis structure

This document is structured in 3 chapters:

• the first chapter highlights the knowledge acquired as well as related works and their

limits in the field of the use of Artificial Intelligence in rainfall predictions;

• the second chapter is dedicated to the description of the data used and the methods

adopted to obtain the results;
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• these results will be analyzed and discussed in the third chapter.

The conclusion includes a reminder of the purpose of the study, a summary of the impor-

tant results obtained, recommendations and some strong areas for further studies.
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Literature review

In this study, a DL based Long Short-Term Memory (LSTM) will be used to predict

rainfall from the timeseries weather data seen in section 2.2. First and foremost, we

need to define clearly what we’re talking about when we mention Deep Learning and

LSTM, and more broadly the concepts of Artificial Intelligence and Machine Learning.

Furthermore, the West African Monsoon (WAM) system is the main source of rainfall

in the agriculturally based region of the Sahel [24]. Understanding transport across the

WAM as well as the dynamics behind the WAM is of crucial importance in this study.

1.1 Artificial Intelligence, Machine Learning, and Deep

Learning

The figure 1 suggests that Deep Learning (DL) is a subset of Machine Learning (ML)

which in turn is a subset of Artificial Intelligence (AI). Let’s have a look to what is

behind these three (3) concepts.

Figure 1: Subsets of Artificial Intelligence. Source: Wikipedia

• Artificial Intelligence (AI):

AI was born in the 1950s, when a handful of pioneers from the nascent field of

computer science started asking whether computers could be made to “think”; a

question whose ramifications we’re still exploring today.

Concisely, AI can be described as the effort to automate intellectual tasks normally

performed by humans. As such, AI is a general field that encompasses ML and DL,
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but that also includes many more approaches that may not involve any learning.

Consider that until the 1980s, most AI textbooks didn’t mention “learning” at

all! Early chess programs, for instance, only involved hardcoded rules crafted by

programmers, and didn’t qualify as ML. In fact, for a fairly long time, most experts

believed that human-level AI could be achieved by having programmers handcraft

a sufficiently large set of explicit rules for manipulating knowledge stored in explicit

databases. This approach is known as symbolic AI. It was the dominant paradigm

in AI from the 1950s to the late 1980s [9], and it reached its peak popularity during

the expert systems boom of the 1980s.

Although symbolic AI proved suitable to solve well-defined, logical problems, such

as playing chess, it turned out to be intractable to figure out explicit rules for solving

more complex, fuzzy problems, such as image classification, speech recognition, or

natural language translation. A new approach arose to take symbolic AI’s place:

Machine Learning;

• Machine Learning (ML):

The usual way to make a computer do useful work is to have a human program-

mer write down rules -a computer program- to be followed to turn input data into

appropriate answers, just like Lady Lovelace (who criticized the invention of the

Analytical Engine in 1843 [9]) writing down step-by-step instructions for the Ana-

lytical Engine to perform. Machine learning turns this around: the machine looks

at the input data and the corresponding answers, and figures out what the rules

should be (see figure 2). A ML system is trained rather than explicitly programmed.

It’s presented with many examples relevant to a task, and it finds statistical struc-

ture in these examples that eventually allows the system to come up with rules for

automating the task. For instance, if you wished to automate the task of tagging

your vacation pictures, you could present a ML system with many examples of pic-

tures already tagged by humans, and the system would learn statistical rules for

associating specific pictures to specific tags.

Abderahim TOGUYENI 7 Master thesis
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Figure 2: Machine Learning: a new programming paradigm.

Although ML only started to flourish in the 1990s, it has quickly become the most

popular and most successful subfield of AI [9], a trend driven by the availability of

faster hardware and larger datasets. ML is related to mathematical statistics, but

it differs from statistics in several important ways, in the same sense that medicine

is related to chemistry but cannot be reduced to chemistry, as medicine deals with

its own distinct systems with their own distinct properties. Unlike statistics, ML

tends to deal with large, complex datasets (such as a dataset of millions of images,

each consisting of tens of thousands of pixels) for which classical statistical analysis

such as Bayesian analysis would be impractical. As a result, ML, and especially deep

learning, exhibits comparatively little mathematical theory - maybe too little -and is

fundamentally an engineering discipline. Unlike theoretical physics or mathematics,

ML is a very hands-on field driven by empirical findings and deeply reliant on

advances in software and hardware.

• Deep Learning (DL):

DL is a specific subfield of ML: a new take on learning representations from data

that puts an emphasis on learning successive layers of increasingly meaningful rep-

resentations. The “deep” in “deep learning” isn’t a reference to any kind of deeper

understanding achieved by the approach; rather, it stands for this idea of successive

layers of representations. How many layers contribute to a model of the data is

called the depth of the model. Other appropriate names for the field could have

been layered representations learning or hierarchical representations learning [9].

Modern deep learning often involves tens or even hundreds of successive layers of

representations, and they’re all learned automatically from exposure to training
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data. Meanwhile, other approaches to ML tend to focus on learning only one or two

layers of representations of the data (taking a pixel histogram and then applying a

classification rule); hence, they’re sometimes called shallow learning.

In DL, these layered representations are learned via models called neural networks,

structured in literal layers stacked on top of each other. The term “neural net-

work” refers to neurobiology, but although some of the central concepts in DL were

developed in part by drawing inspiration from our understanding of the brain (in

particular, the visual cortex), DL models are not models of the brain. There’s no

evidence that the brain implements anything like the learning mechanisms used in

modern DL models. You may come across pop-science articles proclaiming that DL

works like the brain or was modeled after the brain, but that isn’t the case. It would

be confusing and counterproductive for newcomers to the field to think of DL as

being in any way related to neurobiology; you don’t need that shroud of “just like

our minds” mystique and mystery, and you may as well forget anything you may

have read about hypothetical links between DL and biology. For our purposes, deep

learning is a mathematical framework for learning representations from data.

What do the representations learned by a DL algorithm look like? Let’s examine

how a network several layers deep (see figure 3) transforms an image of a digit in

order to recognize what digit it is.

Figure 3: A deep neural network for digit classification. Source: Chollet (2021).

As you can see in figure 4, the network transforms the digit image into repre-

sentations that are increasingly different from the original image and increasingly

informative about the final result. You can think of a deep network as a multistage
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information-distillation process, where information goes through successive filters

and comes out increasingly purified (that is, useful with regard to some task).

Figure 4: Data representations learned by a digit-classification model. Source: Chollet (2021).

So that’s what deep learning is, technically: a multistage way to learn data represen-

tations. It’s a simple idea—but, as it turns out, very simple mechanisms, sufficiently

scaled, can end up looking like magic. The figure 5 shows how DL actually works.

Figure 5: How Deep Learning works: the loss score as a feedback to adjust the weights

Initially, the weights of the network are assigned random values, so the network

merely implements a series of random transformations. Naturally, its output is far

Abderahim TOGUYENI 10 Master thesis
ED-ICC/MRP/2020-2022



Literature review

from what it should ideally be, and the loss score is accordingly very high. But with

every example the network processes, the weights are adjusted a little in the correct

direction, and the loss score decreases. This is the training loop, which, repeated a

sufficient number of times (typically tens of iterations over thousands of examples),

yields weight values that minimize the loss function. A network with a minimal loss

is one for which the outputs are as close as they can be to the targets: a trained

network. Once again, it’s a simple mechanism that, once scaled, ends up looking

like magic.

1.2 LSTM Model

There’s a family of neural network architectures designed specifically for the type of

data we are dealing with in this study (timeseries or sequence data, where causality and

order matter): Recurrent Neural Networks (RNN). Among them, the Long Short-Term

Memory (LSTM) algorithm, which is fundamental to deep learning for timeseries [9],

was developed by Hochreiter and Schmidhuber in 1997 and has long been very popular.

It was the culmination of their research on the vanishing gradient problem: allow past

information to be reinjected at a later time, thus fighting the vanishing-gradient problem.

This is essentially what LSTM does: it saves information for later, thus preventing older

signals from gradually vanishing during processing. Let’s index the W and U matrices in

the cell, with the letter o ( Wo and Uo ) for output. The data flow that carries information

across timesteps. Call its values at different timesteps ct , where C stands for carry. This

information will have the following impact on the cell: it will be combined with the input

connection and the recurrent connection (via a dense transformation: a dot product with

a weight matrix followed by a bias add and the application of an activation function),

and it will affect the state being sent to the next timestep (via an activation function and

a multiplication operation). Conceptually, the carry dataflow is a way to modulate the

next output and the next state.

Now the subtlety, the way the next value of the carry dataflow is computed. It involves

three (3) distinct transformations. All three have the form of a Simple RNN cell [9]:

y = activation(dot(statet, U) + dot(inputt,W ) + b) (1)

Abderahim TOGUYENI 11 Master thesis
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But all three transformations have their own weight matrices, which we’ll index with the

letters i , f , and k .

• Pseudocode details of the LSTM architecture (1/2) [9]:



outputt = activation(dot(statet, Uo) + dot(inputt,Wo) + dot(ct, V o) + bo)

it = activation(dot(statet, Ui) + dot(inputt,Wi) + bi) (2)

ft = activation(dot(statet, Uf) + dot(inputt,Wf) + bf)

kt = activation(dot(statet, Uk) + dot(inputt,Wk) + bk)

• Pseudocode details of the LSTM architecture (2/2) [9]:

ct + 1 = it ∗ kt + ct ∗ ft (3)

Add this as shown in figure 6, and that’s it.

Figure 6: Anatomy of an LSTM architecture. Source: Chollet (2021)

1.3 Dynamics of the West African Monsoon (WAM)

The WAM is a coupled land-ocean-atmosphere system involving many spatial and tem-

poral scales. It is a dynamic and hydrous response of the atmosphere to the differential

between the ocean and the continent and therefore to the horizontal energy gradients in
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the lower layers on a regional scale. Its sensitivity to surface conditions is accentuated

by geography: low latitudes, absence of significant relief, quasi-zonal distribution of veg-

etation, soil humidity and albedos. The African monsoon circulation is organized on a

regional scale, as shown in figure 7, around key elements of the zonal movement in the

upper and middle troposphere (the African Easterly Jet (AEJ) and the Tropical Easterly

Jet (TEJ)), as well as in the lower troposphere (the monsoon and harmattan flow). It also

involves a convergence zone in the lower layers known as the Inter-Tropical Front (FIT)

and two main convective structures: the ITCZ characterized by a maximum equivalent

potential temperature θe and the Saharan thermal depression associated with a maximum

potential temperature θ.

Figure 7: Conceptual diagram representing, in zonal average, the key elements of the African

monsoon during the boreal summer. Source: Beucher (2010)

Its seasonal cycle arouses great interest for the scientific community because the date of

arrival and the intensity of the monsoon constitute the first concerns of the West African

populations. Indeed, the movement of the ZCIT follows the apparent position of the sun

with a lag of 6 to 8 weeks. The first rainy season corresponds to the first jump of the

ITCZ which migrates from 2°N to 5°N at the beginning of May: this is the pre-monsoon

phase called "pre-onset" (figure 8). During this period, the FIT rises up to 15°N, the AEJ

strengthens (10m/s monthly average) and migrates towards 10°N while the TEJ (7-8m/s)

and the West Jet Subtropical (WJS) remain positioned at the equator [10].

The second rainy season marks the second jump of the ITCZ which goes from 5°N to
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10°N: this is the monsoon phase called "onset" or Sahelian regime. During this phase,

the sea surface temperature in the Gulf of Guinea drops sharply from 26°C to 24°C and

the surface pressure increases by a few hPa [10]. Meanwhile, over the Sahara, the surface

temperature continues to increase, which reinforces the thermal depression towards 25°N.

Consequently, the horizontal gradients of pressure, temperature and humidity increase

between the Sahara and the Gulf of Guinea, which favors the acceleration of the monsoon

flow and its extension towards the North during this phase (20°N on average). Still, during

this phase, the AEJ migrates from 10°N to 15°N while maintaining the same intensity and

the TEJ rises towards 10°N while intensifying and the Tropical West Jet shifts towards

40°N [10].

Finally, from the end of August, the rain zone retreats towards the south: this is the

period of withdrawal of the monsoon.

Figure 8: Average daily rainfall (in mm/day) between 10°E and 10°W. Source: Beucher (2010).

1.4 Related studies

This chapter presents a review of some of the recent works in rainfall prediction that are

relevant to our work. Even though S2S rainfall prediction is at a relatively early stage of

development, many studies focused on the performances of Machine Learning models in

this timescale. However very few are related to Western African particularly to the Sahel

region. Here are some conclusions from these studies.
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Michael Scheuerer et al. used Artificial Neural Network (ANN) to establish relationships

between NWP ensemble forecast and gridded observed 7-day precipitation accumulations,

and to model the increase or decrease of the probabilities for different precipitation cate-

gories relative to their climatological frequencies over California. A Convolutional Neural

Network (CNN) framework is proposed that extends the basic ANN and takes images

of large-scale predictors as inputs that inform local increase or decrease of precipitation

probabilities relative to climatology. The forecast skill relative to climatology is positive

everywhere within the domain. The magnitude of skill, however, is low for week-3 and

week-4, and suggests that additional sources of predictability need to be explored [11].

Guoxing Chen and Wei-Chyung Wang performed Short-term precipitation prediction us-

ing deep learning. They showed that a 3D convolutional neural network using a single

frame of meteorology fields as input is capable of predicting the precipitation spatial dis-

tribution. The network is developed based on 39-years (1980–2018) data of meteorology

and daily precipitation over the contiguous United States. The results bring fundamental

advancements in weather prediction. First, the trained network alone outperforms the

state-of-the-art weather models in predicting daily total precipitation, and the superiority

of the network extends to forecast leads up to 5 days. Second, combining the network

predictions with the weather-model forecasts significantly improves the accuracy of model

forecasts, especially for heavy-precipitation events. Third, the millisecond-scale inference

time of the network facilitates large ensemble predictions for further accuracy improve-

ment. These findings strongly support the use of deep-learning in short-term weather

predictions. Although the results above are based on next-day total precipitation, the

scope of deep learning approach is much broader, applicable to other weather parameters

(e.g., temperature and wind), at different regions, and for shorter or longer forecast leads,

as long as sufficient data are readily available for training [12].

Sijie He et al. investigated ten (10) Machine Learning (ML) approaches to sub-seasonal

temperature forecasting over the U.S. The results indicate that suitable ML models, e.g.,

XGBoost, to some extent, capture the predictability on sub-seasonal timescales and can

outperform the climatological baselines, while DL models barely manage to match the

best results with carefully designed architecture [13].

Hamada S. Badr et al. implement CNN using observed data and dynamical forecasts at

S2S timescales for different countries in the Middle East and North Africa (MENA). Train-
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ing is performed using predictors from historical observations and the North American

Multi-Model Ensemble (NMME) forecasts along with gridded 5-km resolution CHIRPS

precipitation as predictant. A custom loss function is defined to minimize the root mean

squared error (RMSE) of the regional average for each defined climate region. They use

CNN to generate high-resolution gridded precipitation predictions at monthly timescale.

The proposed CNN workflow has been successfully applied to improve the skill and reso-

lution of dynamically-based S2S precipitation forecasts for MENA [21].

Sanam Narejo et al. tried Multi-step rainfall forecasting using deep learning approach in

a specific site in Italy. The focus of their work is direct prediction of multistep forecasting,

where a separate time series model for each forecasting horizon is considered and fore-

casts are computed using observed data samples. Forecasting in this method is performed

by proposing a deep learning approach, i.e, Temporal Deep Belief Network (DBN). The

best model is selected from several baseline models on the basis of performance analysis

metrics. The results suggest that the temporal DBN model outperforms the conventional

Convolutional Neural Network (CNN) specifically on rainfall time series forecasting. How-

ever, it turned out that training DBN is more exhaustive and computationally intensive

than other deep learning architectures [14].

Yashon O. Ouma et al. did rainfall and runoff time-series trend analysis using LSTM

recurrent neural network and wavelet neural network in Nzoia hydrologic basin. They

used long-term in situ observed data for 30 years (1980–2009) from ten (10) rain gauge

stations and three discharge measurement stations, the rainfall and runoff trends in the

Nzoia River basin are predicted through satellite-based meteorological data comprising of:

precipitation, mean temperature, relative humidity, wind speed and solar radiation. Even

though both models performed well, the study shows that in hydrologic basins with scarce

meteorological and hydrological monitoring networks, the use satellite-based meteorolog-

ical data in deep learning neural network models are suitable for spatial and temporal

analysis of rainfall and runoff trends [15].

Chengcheng Chen et al. forecasted monthly rainfall distribution based on fixed sliding

window long short-term memory. To this end, monthly rainfall data for a period of 41years

(1980–2020) from two meteorological stations in Turkey, namely Rize and Konya, with

different climatic conditions, were used. The results revealed that the LSTM model, as a

more efficient tool, outperforms the RF model in forecasting rainfall at both stations. The
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LSTM-based approach proposed could be adopted over any global climatic conditions to

forecast the monthly rainfall with reasonable accuracy [16].

Ari YairBarrera-Animas et al. made rainfall prediction by making a comparative analy-

sis of modern machine learning algorithms for time-series forecasting. Specifically, they

presented a comparative analysis using simplified rainfall estimation models based on con-

ventional Machine Learning algorithms and Deep Learning architectures that are efficient

for these downstream applications. The evaluation metrics of Loss, Root Mean Squared

Error, Mean Absolute Error, and Root Mean Squared Logarithmic Error were used to

evaluate the models’ performance. It ended up suggesting that models based on LSTM-

Networks with fewer hidden layers perform better for this approach; denoting its ability

to be applied as an approach for budget-wise rainfall forecast applications [17].

Demeke Endalie et al. developed a Deep learning model for daily rainfall prediction in

Jimma, Ethiopia. They used daily records of weather parameters such as maximum tem-

perature (tmax), minimum temperature (tmin), relative humidity, solar radiation, wind

speed, and precipitation from 1985 to 2017. On this dataset, several experiments and

comparisons with the existing machine-learning-based model are performed to validate

the performance of the proposed predictive model. As a result, the proposed LSTM-

based rainfall predictive model is suitable for use in a variety of applications requiring

rainfall prediction, such as smart agriculture [18].

Juliana Aparecida Anochi et al. have evaluated different machine learning models for

precipitation prediction over South America. They stressed that currently, NWP mod-

els are unable to precisely reproduce the precipitation patterns in South America due to

many factors such as the lack of region-specific parametrizations and data availability.

It turned out that machine learning models are able to produce predictions with errors

under 2 mm in most of the continent in comparison to satellite-observed precipitation

patterns for different climate seasons, and also outperform INPE’s (Instituto Nacional de

Pesquisas Espaciais) model for some regions (e.g., reduction of errors from 8 to 2 mm in

central South America in winter). Another advantage is the computational performance

from machine learning models, running faster with much lower computer resources than

models based on differential equations currently used in operational centers [19].

Getachew Mehabie Mulualem et al. developed seven (7) ANN predictive models incor-

porating hydro-meteorological, climate, sea surface temperatures, and topographic at-
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tributes to forecast the standardized precipitation evapotranspiration index (SPEI) for

seven (7) stations in the Upper Blue Nile basin (UBN) of Ethiopia from 1986 to 2015.

It was found that the coefficient of determination and the root-mean-square error of the

best architecture ranged from 0.820 to 0.949 and 0.263 to 0.428, respectively. In terms

of statistical achievement, they concluded that ANNs offer an alternative framework for

forecasting the SPEI drought index [20].

Charity Oseiwah Adjei et al. used a LSTM Deep Learning Approach for rainfall forecast-

ing in Sub-Sahara Africa-Ghana. They studied the predictive capacity of deep learning

and built an Artificial Neural Network (ANN) model by using the Long Short-Term

Memory (LSTM) algorithm and the Spearman coefficient based on selected parameters

(precipitation, humidity, temperature, mean sea level pressure, wind speed, dew point,

wind direction) reported by the weather station. They made hourly rainfall predictions

about Axim, in the western region of Ghana. The model did very well because it ended up

with a MSE result of 0.002 and a MAE result of 0.021. But some limitations have affected

the quality of the study. Firstly, the authors didn’t get historical data from the weather

station located in the area of interest of the study. Secondly, the study focussed on a

single site which did not allow to investigate the impact of climatic zones and topography

of Ghana. It would be better to explore the performance of the model in several locations

in the country to see how well it performs across the country [22].

Arsène Aizansi developed ANN models to predict monthly rainfall for six(6) geographi-

cally diverse weather stations across Benin Republic. He used data that cover January

1979 to December 2018. Eight (8) predictors have been selected including Minimum Rel-

ative Humidity, Maximum Relative Humidity, Minimum Air Temperature, Maximum Air

Temperature, Evaporation, Zonal and Meridional wind at 850 hPa, Sea Surface temper-

ature (SST). The ANN models performed well while highlighting that SST, zonal and

meridional winds were relevant variables that contribute to rainfall. The importance of

geography was stressed as well. Indeed the predictions were more accurate in higher alti-

tudes. However, the study didn’t embrace actually the entire country due to the limited

number of weather stations; in addition there is a need to increase the predictors in order

to covers the majority of climate parameters as well as relevant factors on which rainfall

depends. Besides, it would be better to assess the ANN models over a large space scale

such as Sahel, Savannah and Gulf of Guinea in west Africa [23].
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It’s clear that there is a need to take advantage of all those results to move forward by

implementing a deep learning technique in Burkina Faso. By doing so, we will see how to

improve the overall weather forecast in the country and in particular the S2S prediction of

precipitation; while keeping in mind that issuing accurate rainfall forecasts is a perpetual

process initiated since 1904 by Vilhelm Bjerknes (the precursor of the first deterministic

models) and carried out so far by the scientific community. This study will attempt to

make its modest contribution to this effort.
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2.1 Study area

Burkina Faso is the area of interest of this study. Specifically, the study covers six (6)

meteorological stations of this country. These stations were choosen at the rate of two

(2) stations per climatic zone.

A landlocked country in West Africa, Burkina Faso covers an area of 274200Km2. It

is limited to the North and West by Mali, to the South by Côte d’Ivoire, Ghana, Togo,

Benin and to the east by Niger. The country covers 625 km from North to South and

850km from East to West (figure 9).

Like other West African countries, the climate in Burkina Faso is under the influence

of large-scale atmospheric circulation, controlled by the interaction of two air masses.

Warm, dry continental air masses from the Sahara desert give rise to dusty winds called

"Harmattan" which sweeps across West Africa from November to February. In summer,

moist equatorial air masses from the Atlantic Ocean bring monsoon rains [25]. Thus,

the variation of the influence of these air masses throughout the year is characterized

by the north-south movement of the intertropical convergence zone (ITCZ). Due to the

influence of these air masses, the precipitation regime in Burkina Faso makes it possible

to distinguish three climatic zones [26]:

• Sahelian zone cumulating an average annual rainfall between 300 and 600 mm. In

this area, the rainy season lasts on average of 3 to 4 months;

• Sudano-Sahelian zone recording annual rainfall from 600 to 900 mm for an average

duration of rains of 4 to 5 months;

• Sudanian zone receiving a rainfall of between 900 and 1200 mm for a rainy season

of about 5 to 6 months.
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Figure 9: Map of Burkina Faso with the climatic zones (the stations in red). Source: ANAM

Table 1 summarises the main features of the six (6) weather stations.

Table 1: Features of the six (6) weather stations.

Station name WMO code Latitude Longitude Elevation (m)

Dori 65501 14°02’N 000°02’W 276

Ouahigouya 65502 13°34’N 002°25’W 337

Ouagadougou 65503 12°21’N 001°31’W 316

Fada N’Gourma 65507 12°02’N 000°22’E 308

Bobo-Dioulasso 65510 11°10’N 004°19’W 460

Gaoua 65522 10°20’N 003°11’W 333

2.2 Data

As part of this study, we only used historical meteorological data from three (3) sources.

Most of the data was directly recorded in the six (6) meteorological stations. The data

we got are on a daily and monthly scale and covers the period 1979-2020. More precisely,

we got:
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• daily weather data from National Meteorological Agency (ANAM) of Burkina Faso.

These data are related to six (6) weather parameters namely Precipitation, Evapo-

ration, Pressure, Minimum temperature, Maximum temperature and Wind speed.

These data are available for each of the 6 weather stations. To have an overview of

these data, Appendix A gives a visualization of all these weather parameters by

station;

• daily reanalysis data, ERA5, on Sea Surface Temperature (SST) and wind speed

at 700hPa, 850hPA and 925hPA. These data have been downloaded from Climate

Data Store (CDS) https://cds.climate.copernicus.eu. The data cover the

Earth on a 30km grid (0.25×0.25) and resolve the atmosphere using 137 levels from

the surface up to a height of 80km;

• monthly SST anomalies (NINO3.4) data from the National Oceanic and Atmo-

spheric Administration (NOAA). The NINO3.4 index is one of the several El Niño/Southern

Oscillation (ENSO) indicators based on sea surface temperatures. NINO3.4 is the

average sea surface temperature anomaly in the region bounded by 5°N to 5°S, from

170°W to 120°W with an impact on rainfall in the sahel [27]. This region has large

variability on El Niño time scales, and is close to the region where changes in local

sea-surface temperature are important for shifting the large region of rainfall typ-

ically located in the far western Pacific. The data are available through this link

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/.

Table 2 summarizes essential characteristics of the data used in this study.
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Table 2: Characteristics of the data used

N° Parameters Unit Level Step Period Source

1 Precipitation (RR) mm 1.05m

daily
1979-2020

ANAM

2 Relative humidity (UDM) % 1.5m

3 Maximum air temperature (TMAX) °C 1.5m

4 Minimum air temperature (TMIN) °C 1.5m

5 Evaporation (EVA) mm surface

6 Wind speed (WFM) m/s 10m

7 Pressure (PSEAD) hPA sea

8 SST °C sea

ERA5
9 Wind speed at 700hPa (W700) m/s 700hPA

10 Wind speed at 850hPa (W850) m/s 850hPA

11 Wind speed at 925hPa (W925) m/s 925hPA

12 Anomaly SST (NINO3.4) - sea monthly NOAA

2.3 Processing tools

The processing of these data required the utilization of three (03) software that are run

on command lines in a Linux environment:

• Python as a programming language on Ubuntu 20.04 64 bits operation system.

Jupyter Notebook is the open document format for interactive computing that was

used as a programming interface. Python supports several libraries designed for

data analysis and machine learning in general. We used Keras module as a machine

learning library. Keras is a deep learning API (created by François CHOLLET in

March 2015) for Python, built on top of TensorFlow, that provides a convenient way

to define and train any kind of Deep Learning model. Keras was initially developed

for research, with the aim of enabling fast deep learning experimentation;

• Ferret is an interactive visualization and analysis tool developed by the National

Oceanic and Atmospheric Administration (NOAA) to meet the needs of oceanogra-

phers and meteorologists who analyze large and complex data at grid points. It is
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therefore a software well suited for reading data in NetCDF format. Ferret is free and

can be downloaded from http://ferret.pmel.noaa.gov/Ferret/downloads;

• Climate Data Operators (CDO) is a software developed by IFM (Institute Für

Meteorologie); it allows a standard processing of outputs from climate models and

weather forecasts. It is a very powerful tool with more than 400 operators which

include simple statistical and arithmetic functions, data selection, and tools of sub

sampling and spatial interpolation. CDO is free and it can be downloaded on

https://code.zmaw.de.

2.4 Methods

This section describes the approach adopted to achieve the objectives of this thesis. It

consists of a first phase called data preprocessing in which raw data format is prepared to

feed the model. Then comes the second phase, LSTM model calibration where the opti-

mized set of hyperparameters were selected. Finally, the last phase deals with validation

and testing of the model. The following figure (figure 10) summarizes the methods used

in study.

Figure 10: Summary of the methods.
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2.4.1 Data preprocessing

Since this study deals with timeseries forecasting, we have to get a dataset (ideally in .csv

file) which contains the predictant (precipitation) as well as the predictors (other weather

parameters). To achieve this goal:

• we computed the correlation between the rainfall of each weather station and the

SST in order to identify the relevant basins that have an influence on the corre-

sponding rainfall patterns. Then we averaged the SST accordingly over the selected

basin to get a single timeseries for this parameter;

• then we merged the daily data from all sources (ANAM, ERA5 and NOAA) to get

a first dataset made of daily data (15341 rows and 12 columns);

• afterwards, we resampled this first dataset in order to get the second dataset made of

monthly data (504 rows and 13 columns). The latter datased was used to perform

monthly (with a lead time of 0) and bimonthly (with a lead time of 1

month) forecasts of rainfall over the six (6) weather stations. These monthly and

bimonthly timescales correspond to the S2S timescale. As far as the first dataset is

concerned, we used it to perform multisteps forecastings 30 days ahead. Indeed, even

though we can get the accumulated rainfall through the monthly forecast it’s also

of crucial importance to have the daily distribution in the month; that’s important

to help, for instance, farmers to properly manage the development of their crops;

• finally, before feeding the model, we performed features selection to discard re-

dundant predictors. This step was done through heat maps which displays all the

correlation between different features (all the predictors).

2.4.2 LSTM model calibration

Before running the model, some steps are required:

• Data normalization:

Since every feature has values with varying ranges, we do normalization to confine

feature values to a range of [0, 1] before training a neural network. We do this by

using equation 4.
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Xn = X −Xmin

Xmax −Xmin

(4)

With:

– X: the value to be scaled or normalized;

– Xmax: the maximum of X;

– Xmin: the minimum of X;

– Xn: the normalized value of X.

• Data splitting:

We are tracking weather data from past 42 years (1979-2020) corresponding to a

dataset of 15341 rows, on a daily basis, and 504 rows, on a monthly basis. This

data will be used to predict the rainfall after one (1) to two(2) months ahead.

80% of the data will be used to train and 10% to validate the model, then 10% is

reserved for the testing purpose [18].

• Model implementation:

We were inspired by the official site of Kera (https://keras.io) to set up our

model. It consisted of:

– a process called hyperparameter optimization. This is done through a mini-

mization function called optimizer. The optimizer used here is the Adaptive

Moment Estimation (Adam) optimizer. Adam optimization is a stochastic gra-

dient descent method that is based on the adaptive estimation of first-order

and second-order moments;

– as far as the activation function is concerned, the Rectified Linear Unit (ReLU)

was used. In Artificial Neural Networks (ANNs), the activation function is a

mathematical “gate” in between the input feeding the current neuron and its

output going to the next layer [9]. The ReLU is the most commonly used

activation function in DL. The function returns 0 if the input is negative, but

for any positive input, it returns that value back;
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– the rests of parameters like, the learning rate, the numbers of epoch and the

loss function (also called training and validation curves) were determined be-

fore compiling the model. Figure 11 displays the qualities of a training and

validation curves.

Figure 11: Description of validation and training loss curves. Source: Baeldung (2020)

The compilation was done for each weather station (Appendix B presents a summary

of LSTM model per station) and the results are presented in the next chapter.

2.4.3 Performance measures of LSTM model

After training the model, it is ready to be used but before we have to test its performance.

To achieve this, the test dataset was used in order to compare the observations and

the model’s predictions. Four (4) metrics were used to evaluate the models [28]: Mean

Absolute Error (MAE), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE)

and coefficient of determination (R2).

Let’s assume Yi the model prediction at time i, Ȳi its average; Xi, the observation at the

same time, X̄i its average and n the number of observations. Then we have the following

definitions:

• The MAE is the average of the absolute errors between model predictions and target

values. It can be computed with the following equation 5 and ranges from 0 to ∞.

MAE =
∑n

i=1 |Yi −Xi|
n

, (5)
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• The RMSE represents the error between model predictions and target values. It can

be computed with the following equation 6 and ranges from 0 to∞ too. The RMSE

is frequently used to evaluate how closely the predicted values match the observed

values, based on the relative range of the data.

RMSE =
√√√√ 1
n

n∑
i=1

(Yi −Xi)2, (6)

• The NSE was proposed by Nash and Sutcliffe in 1970. It can be defined as a measure

of how the observed variance is simulated. It can be computed with the following

equation 7. The NSE can range from −∞ to 1. An efficiency NSE = 1 means

a perfect prediction. An efficiency of 0 means that the model predictions are as

reliable as the observed mean, while an efficiency −∞ < NSE < 0 indicates that

the observed data mean is a better predictor than the model predictions.

NSE = 1−
∑n

i=1(Xi − Yi)2∑n
i=1(Xi − X̄i)2

, (7)

• The R2 is the proportion of the variance in the dependent variable that is pre-

dictable from the independent variables. It gives information about the length of

the relationship between the models’ predicted data and the observed data, and

ranges from 0 to 1, with 1 being the best fit between predictions and actual data.

It is computed with the equation 8.

R2 = 1−
∑n

i=1(Xi − Yi)2∑n
i=1(Xi − Ȳi)2

, (8)
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This chapter presents the important findings of our study. These are, first of all, the

results from the selection of relevant basins that are well correlated with SST. Then it

will be about the result of the features selection which will make it possible to discard

certain predictors that are redundant. Afterwards the results of the monthly, bimonthly

and daily prediction of rainfall will be presented. Finally, the influence of topography and

climatic zones on models’ performances will be discussed.

3.1 Identification of relevant basins for SST selection

Since SST are oceanic data, if we want to use it as a predictor it worth identifying the

different basins that influence the rainfall patterns over Burkina Faso. This identification

was done through the correlation between each station rainfall and the SST. This made

it possible to retain the basins which have a high correlation with the rainfall of the

corresponding station (figure 12).

Figure 12: Correlation between rainfall of the six (6) weather stations and SST
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The coordinates of the selected area for each stations are presented in table 3. Only

high correlations of Golf of Guinea basins was considered [29] in order to take advantage

of the southwesterly monsoon flux that convey moisture from the Atlantic Ocean to west

Africa.

Table 3: Best correlated basins per station

Stations Selected basins

Dori 5°S-6°N/025°W-010°E

Ouahigouya 5°S-6°N/025°W-010°E

Ouagadougou 8°S-6°N/025°W-010°E

Fada N’Gourma 8°S-6°N/025°W-010°E

Bobo-Dioulasso 5°S-6°N/025°W-010°E

Gaoua 5°S-6°N/025°W-010°E

Finally, the SST timeseries for each station were obtained by averaging the raw SST

over these selected basins.

3.2 Features selection

We are trying to predict rainfall for each weather station based on historical (1979-2020)

information of rainfall as well as eleven (11) others weather parameters. To avoid using

redundant information, features selection is performed to discard some parameters that

are highly correleted with the others. This is done through heat map (figure 13) which

shows the correlation between all the features per station.
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Figure 13: Feature correlation Heatmaps of the six (6) stations

We can see from the correlation heatmaps that few parameters like Minimum Tem-

perature and wind speeds (surface and altitude) are redundant for almost all the stations.

Since the parameter temperature is represented by the maximum temperature (Tmax)

and the minimum temperature (Tmin), then we decided to do without the minimum

temperature to avoid this redundancy revealed by this heat maps

3.3 Monthly rainfall prediction

The optimum numbers of hidden layers, numbers of epochs, and learning rates are de-

termined by conducting a series of trials. Numerous combinations of varying numbers of

these parameters are tested until a stable Training and Validation Loss (the loss function

over the number of epochs as shown in figure 14) curve is obtained for each station. The

training loss indicates how well the model is fitting the training data, while the validation

loss indicates how well the model fits new data.
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Figure 14: Training and validation loss of monthly rainfall prediction per station

The analysis of these training and validation loss curves reveals that the models are

neither overfitting nor underfitting. However we wish we could have lessen the losses

(errors) for example under 0.5 for all the stations.

Afterwards, the models are evaluated by comparing predictions from the models and

observations over the test period (2016-2020) as featured in figure 15. We can see that

the models predictions reasonably follow the series patterns at all locations even though

the magnitudes are not well captured.
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Figure 15: Observed rainfall vs. model prediction (in millimeter) per station

To go further in the evaluation, the regression plots or scattergrams (figure 16) were

used to determine the correlation between the predicted rainfall and the observed rainfall,

always based on the test dataset.
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Figure 16: Scattergram per station

We can see that the coefficient of determination R2 is greater than 0.65 for all the

stations; which is not bad. For instance, Dori and Fada have the best coefficient of

determination (more than 0.8). Table 5 summarizes all the prediction performances of

the models.
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Table 4: Models’ prediction performances on test set (Period 2016-2020)

Stations NSE R2 RMSE (mm) MAE (mm)

Dori 0.710 0.817 46.5 24.1

Ouahigouya 0.758 0.783 44.6 24.5

Ouagadougou 0.800 0.809 43.9 24.2

Fada N’Gourma 0.831 0.832 32.9 21.1

Bobo-Dioulasso 0.776 0.777 50.2 33.4

Gaoua 0.624 0.655 59.9 39.7

3.4 Bimonthly rainfall prediction

After one (1) month ahead rainfall prediction, we performed a multi-step prediction to

get rainfall two (2) months ahead. For this case again, several trials were conducted to

get the optimized hyperparameters (numbers of hidden layers, numbers of epochs, and

learning rates) that provide a stable training and validation loss curve for each station

(as shown in figure 17).
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Figure 17: Training and validation loss of bimonthly rainfall prediction per station

From these training and validation loss curves, one can notice that, for this case too,

the models are neither overfitting nor underfitting.

The models were then evaluated by comparing predictions and observations over the test

period (2016-2020) as shown in figure 18. Here again one can see the models predictions

reasonably follow the series patterns; the problem lies in the magnitude that are not well

captured as well.
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Figure 18: Observed rainfall vs. model prediction (in millimeter) per station (bimonthly pre-

diction)

Here again, the regression plots (figure 19) were used to determine the correlation

between the predicted rainfall and the observed rainfall, always based on the test dataset.
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Figure 19: Scattergram per station (bimonthly prediction)

For this case again, one can notice that the coefficient of determination R2 is greater

than 0.6 for all the stations. For instance, Dori and Fada have the best coefficient of de-

termination (more than 0.8) as well. Table 5 summarizes all the prediction performances

of the models.

Table 5: Models’ prediction performances on test set (Period 2016-2020)

Stations NSE R2 RMSE (mm) MAE (mm)

Dori 0.729 0.823 45.7 21.8

Ouahigouya 0.759 0.767 45.2 26.1

Ouagadougou 0.780 0.784 46.6 27.7

Fada N’Gourma 0.823 0.829 34.0 22.2

Bobo-Dioulasso 0.742 0.744 54.2 40.8

Gaoua 0.591 0.638 62.8 42.8
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3.5 Daily rainfall prediction

In the previous sections, we saw how well the models were capable to predict rainfall one

(1) month and two (2) months ahead. In this section, we will see how the models behave

when it comes to discretize these monthly accumulations into 30 daily rainfalls. As said

in the methods section, it is good to have the accumulated monthly prediction, but it is

better to know the distribution of this monthly amount of rainfall in daily timescale. The

figure 20 shows the models attempts to capture daily rainfalls within a specific month.

Figure 20: Thirty (30) days multi-step rainfall prediction per station

By analyzing the figure above, the models are not doing well. Unlike the monthly

timescale, the models struggled to reproduce daily rainfall in all locations. This may

reflect the limits between statistical models and dynamic models. To solve this problem,

many authors [30],[31] suggest the combination of NWP and AI. This requires more time

as well as more resources to investigate this matter as part of future studies.
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3.6 Impact of climatic zones and topography on

models’ performances

By analyzing the performance of the models at the monthly and bimonthly scale, one can

notice that the best results of the models were obtained in the Sudano-Sahelian zone (cf.

table 6 obtained by averaging performance measures for the 2 stations of each climatic

zone). Then comes, in terms of good results, the Sahelian zone and finally the Sudanian

zone. It should be noted that this last zone, in terms of topography, is the highest of the

country with several elevations including the highest peak, Mount Tenakourou. These

results are in agreement with those obtained by Arsène Aizansi [23] who had shown that

ANN had problems in very rainy and mountainous areas in Benin republic. However, this

requires more investigation to find out why the models are good in the plateaus than in

the elevated regions. But as we know, elevated areas are very rainy areas and we have

seen that most models have problems capturing the magnitudes of rainfall.

Table 6: Models’ performances regarding the climatic zones and topography

Forecast ranges Zones NSE R2 RMSE (mm) MAE (mm)

Monthly

Sahelian 0.734 0.800 45.5 24.3

Sudano-Sahelian 0.815 0.820 38.4 22.6

Sudanian 0.700 0.716 55.0 36.5

Bimonthly

Sahelian 0.744 0.795 45.5 23.9

Sudano-Sahelian 0.801 0.806 40.3 24.9

Sudanian 0.666 0.691 58.5 41.8
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Conclusion and perspectives
This study aimed to provide, at the sub-seasonal to seasonal (S2S) time scale, a prediction

of rainfall over Burkina Faso using Deep Learning techniques. Specifically, it investigated

the potential of using Long Short Term Memory (LSTM) networks to simulate rainfall at

six (6) meteorological stations (Dori, Ouahigouya, Ouagadougou, Fada N’Gourma, Bobo-

Dioulasso and Gaoua) at this time scale, which is not yet covered by traditional weather

forecasts in the country. The LSTM model has been fed with historical data from the

six (6) location, including precipitation, evaporation, pressure, wind speed, minimum and

maximum temperatures, sea surface temperature.

To achieve this, the first step consisted in data preparation to meet the model require-

ments. This was done through "data pre-processing" starting by feature selections and

ending up by data normalization. Afterwards, the optimal hyperparameters (learning

rate, number of units, number of epochs and batch size) were selected for each location.

Finally, the model was run and evaluated per location using some statistical metrics.

The results showed that LSTM model was effective and performed well with acceptable

scores. For instance, forecasting at monthly timescale exibited a R2 ranging from 0.66

to 0.83, NSE ranging from 0.62 to 0.80, RMSE ranging from 32.9 to 59.9mm and MAE

ranging from 21.1 to 39.7mm. Regarding the bimonthly rainfall prediction, R2 ranged

from 0.63 to 0.83, NSE ranged from 0.6 to 0.82, RMSE ranged from 34.0 to 62.8mm and

MAE ranged from 21.8 to 42.8mm.

Indeed, it turned out that the models reasonably followed the rainfall patterns at all lo-

cations. However, the model struggled to capture the magnitude of rainfall both monthly

and bimonthly. Still at this monthly and bimonthly scale, we have seen the impact that

the climatic zone and the topography have on the performance of the models. Indeed,

the models had better results on slightly wet plateaus than on rainy and elevated areas.

We have also tried to bring these monthly forecasts down to the daily time scale; however

the model was not able to capture daily rainfall pattern which turned out to be the most

important information for some end users (farmers for instance). To solve this problem,

it may require to investigate further, for instance, toward the combination between the

state of the art of weather forecasting (Numerical Weather Prediction) and Deep Learning
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techniques. However, this investigation goes beyond the scoop of this work.

Before finishing, Let us recall the main hypothesis of this work: LSTM model used to

predict S2S rainfall over Burkina Faso gives good scores.

In the light of the results of this study, we could assert that these hypothesis have been

confirmed although there is room for improvement. Nevertheless, we think we have paved

the way allowing other students to continue this work (why not as part of a PhD), the

usefulness of which is no longer to be demonstrated, given that the Artificial Intelligence,

in general, and Deep Learning, in particular, is a topic of the hour backed currently by

the World Meteorological Organization (WMO) [32]. This work could help the scientific

community as well as the services competent in climate matters (ANAM, ASECNA) of

Burkina Faso to gradually integrate this technique into their sovereign weather forecasting

activities.
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Appendix A: Raw data visualization per station

Figure 21: Raw data visualization of Dori
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Figure 22: Raw data visualization of Ouahigouya
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Figure 23: Raw data visualization of Ouagadougou
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Figure 24: Raw data visualization of Fada
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Figure 25: Raw data visualization of Bodo
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Figure 26: Raw data visualization of Gaoua
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Appendix B: Model summary per station

Dori

Ouahigouya

Ouagadougou

Abderahim TOGUYENI VIII Master thesis
ED-ICC/MRP/2020-2022



Appendix

Fada N’Gourma
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