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Resumo

Este  estudo  investiga  os  impactos  do  Dipolo  do  Oceano  Atlântico  Sul  (SAOD)  na

precipitação  sobre  as  áreas  continentais  adjacentes  à  região  do  Atlântico  Sul  durante  o

inverno  austral  (junho-julho-agosto),  utilizando  a  última  fase  6  do  Projeto  de

Intercomparação de Modelos Acoplados (CMIP6). Consideramos um período de referência

histórico (1950-2014) e alterações futuras no âmbito da Via Socioeconómica Partilhada 5-8.5

(SSP585) de 2015 a 2079. As análises históricas das observações revelaram quatro regiões

com correlações  espacialmente  coerentes  da  precipitação  com o  SAOD,  nomeadamente:

Norte da Amazónia, Costa da Guiné, África Central e Sudeste do Brasil - um resultado no

geral  consistente  com  análises  semelhantes  presentes  na  literatura  anterior.  A  média  do

conjunto  de  44  simulações  históricas  dos  modelos  CMIP6  subestimou  largamente  a

correlação entre  o SAOD e chuva nestas regiões,  enquanto o desempenho individual  dos

modelos  revelou  uma  dispersão  no  comportamento  em  cada  região.  O  desempenho  dos

modelos foi melhor na África Central, com 52% dos modelos a simularem uma correlação

positiva  estatisticamente significativa,  semelhante às observações.  O pior desempenho foi

registrado no Sudeste do Brasil, com apenas 7% dos modelos a terem um bom desempenho,

enquanto mais de 40% dos modelos simularam uma correlação de sinal contrário em relação

às observações. As observações mostraram que a influência da SAOD na precipitação variou

entre as regiões, sendo mais forte sobre a Costa da Guiné e mais fraca sobre o Sudeste do

Brasil. As simulações futuras de um conjunto dos modelos com melhor desempenho em cada

região indicaram uma diminuição da influência da SAOD na variabilidade da precipitação,

em todas  as  regiões  respectivas,  no  cenário  SSP585.  Os  nossos  resultados  sublinham os

impactos  significativos  do SAOD na variabilidade  regional  da precipitação e  salientam a

necessidade de melhorar a capacidade dos modelos CMIP6 para simular a relação SAOD-

precipitação. Além disso, um futuro com emissões ininterruptas de gases com efeito de estufa

poderá causar alterações significativas nos padrões de precipitação, conduzindo a impactos

imprevisíveis  nas  regiões  afectadas.  Globalmente,  estes  resultados  poderão  constituir  um

primeiro passo útil para melhorar a previsão da variabilidade climática regional e planear a

adaptação  dos  ecossistemas  regionais  e  das  actividades  socioeconómicas  humanas  às

alterações climáticas.

Palavra-chave: SAOD, Atlântico Sul, variabilidade da precipitação, modelos CMIP6
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Abstract

This study investigates the impacts of the South Atlantic Ocean Dipole (SAOD) on rainfall

over land areas of the South Atlantic region during austral winter (June-July-August), using

the latest Coupled Model Intercomparison Project phase 6 (CMIP6). We consider a historical

reference period (1950-2014) and, future changes under the Shared Socioeconomic Pathway

5-8.5 (SSP585) from 2015 to 2079. Our historical  analyses of observations revealed four

regions with spatially-coherent  correlations  of grid-point rainfall  with the SAOD namely;

Northern Amazon, Guinea Coast, Central Africa and South East Brazil – a result generally

consistent  with  similar  analyses  in  earlier  literature.  The  ensemble  mean  of  44  CMIP6

models’ historical simulations largely underestimated the SAOD-rainfall correlation in these

regions, while individual model performance revealed a spread in model behavior in each

region. Model performance was best in Central Africa with 52% of the models simulating

statistically significant positive correlations, similar to observations. The worst performance

was for  South East  Brazil  with only 7% of  the  models  performing well,  while  over  the

Guinea Coast and South East Brazil, more than 40% of the models simulated a negative sign

correlation  in  opposition  to  observations.  Observations  showed  that  SAOD influence  on

rainfall varied between the regions, being strongest over the Guinea Coast and weakest over

South East Brazil. Future simulations of an ensemble of the best-performing models in each

region indicated a decrease in SAOD influence on rainfall variability, in all the respective

regions, under the SSP585 scenario. Our results underscore the significant impacts of SAOD

on regional rainfall variability and highlights the need to enhance CMIP6 models' ability to

simulate the SAOD-rainfall relationship. Furthermore, a future with unabated greenhouse gas

emissions  could  cause  significant  changes  in  rainfall  patterns,  leading  to  unpredictable

impacts  on  the  affected  regions.  Overall,  these  results  could  be  a  useful  first  step  in

improving  the  prediction  of  regional  climate  variability  and  planning  adaptation  of  the

regional ecosystems and human socio-economic activities to climate change.

Keyword: SAOD, South Atlantic, Rainfall variability, CMIP6 models
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1. Introduction 

The South Atlantic region encompasses a vast area of the Atlantic Ocean located between the

equator and the southern tip of Africa and South America [45°S (latitude)]. It is characterized

by a unique geographic location and oceanic  features.  The South Atlantic  is  bounded by

South America to the west, Africa to the east, Antarctica to the south, and the North Atlantic

to the north. The basic state of the ocean and climate in this region are determined by several

factors.  These  include  ocean currents  and atmospheric  circulation  on local,  regional,  and

global  scales,  as  well  as  interactions  with  the  adjacent  continental  landmasses.  The  sea

surface temperatures (SST) in the South Atlantic region generally range from around 20°C in

the north to 10°C or lower in the south, with the warmest waters typically found near the

equator and along the eastern coast of South America1.

The mean atmospheric circulation is dominated by the St. Helena subtropical anticyclone: a

high-pressure system centered around 30°S over the South Atlantic1. This anticyclone is a

quasi-permanent high-pressure system that derives its name from its location near the island

of St.  Helena in the southeastern South Atlantic.  It  is  characterized  by an anti-clockwise

rotation of winds around the high-pressure center. These winds can be linked to the southeast

trade winds close to the equator, whereas a band of dominant westerlies stretches south of

about  40°S  over  the  Southern  Ocean.  The  St.  Helena  high-pressure  system  is  therefore

divided into  northern  and southern  sections  by the  trade  winds  and westerly  wind belts,

respectively.  Associated  with  the  westerlies  is  a  maximum  in  South  Atlantic's  wind

convergence (or Ekman forcing) in the area around 40°S. These patterns exhibit considerable

seasonality  (Muller-Karger,  et  al.,  2017). The large-scale winds set up the South Atlantic

Ocean gyre, the southern boundary of this gyre being the Antarctic Circumpolar Current, the

world’s largest ocean current.

The South Atlantic hosts several major Ocean currents. The South Equatorial Current moves

in a westerly direction in proximity to the equator. Simultaneously, the Brazil Current carries

warm  waters  towards  the  southern  regions  of  the  eastern  South  American  coastline.

Conversely, the Benguela Current travels northward along the southwestern shores of Africa,

delivering cold waters, abundant in nutrients to the surface. Another important current in the

region is the Malvinas Current (also known as the Falkland Current) which flows northward

along the eastern shoreline of Argentina.  It  brings cold and nutrient-rich waters from the

1 See Appendix, Figures A1 - A3
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Southern Ocean, contributing to the region's high biological productivity and supporting the

rich marine ecosystems. 

Superimposed on the atmospheric and oceanic circulations, rainfall in this region is largely

determined by the Intertropical Convergence Zone (ITCZ) (Nnamchi et al., 2021; Schlosser

et al., 2014) and the South Atlantic Convergence Zone (SACZ)  (Pezzi et al., 2022). These

zones are characterized by the convergence of trade winds that often result in large-scale

rainfall.  Overall,  the  South  Atlantic  region  goes  through  marked  seasonal  changes,  with

summer taking place between December and February, and winter spanning from June to

August.  The  peak  rainfall  associated  with  the  ITCZ  occurs  in  austral  winter  and  that

associated with SACZ is strongest in austral summer. 

The leading mode of the ocean-atmosphere coupled variability over the South Atlantic is the

South Atlantic Ocean dipole (SAOD), also referred to as the South Atlantic subtropical dipole

(SASD) (Morioka et al., 2011; Nnamchi et al., 2017; Sterl & Hazeleger, 2003; Trzaska et al.,

2007;  Venegas  et  al.,  1996,  1997),  South Atlantic  SST dipole  (Haarsma et  al.,  2003)  or

simply South Atlantic dipole (Bombardi et al.,  2014a). These definitions of the mode are

strongly related (Nnamchi et al., 2017), and here we adopt the term SAOD.

The SAOD peaks in the austral winter (that is June-July-August, JJA) and is characterized by

contrasting SST anomalies  between the northeastern and southwestern parts  of the South

Atlantic.  The  positive  (negative)  phase  occurs  when  the  northeast  South  Atlantic  is

anomalously  warm  (cold)  and  the  southwest  is  anomalously  cold  (warm).  The  SAOD

originates from oscillation in the strength of the St. Helena anticyclone (Venegas et al., 1996;

1997), which drives changes in the net heat flux (Santis et al., 2020; Sterl & Hazeleger, 2003;

Trzaska et al., 2007) and changes in the mixed layer depth (Sterl and Hazeleger, 2003; Santis

et  al.,  2020).  The SAOD is strongly related  to the Atlantic  Niño, the dominant  mode of

interannual variability over the tropical Atlantic (Foltz et al., 2019; Keenlyside & Latif, 2007;

Zebiak,  1993) through the interaction of the St.  Helena anticyclone and the southeasterly

trade winds (Nnamchi et al., 2016). The SAOD is also related to the Benguela Niño off the

coast of Angola, which itself is closely linked to the Atlantic Niño dynamics (Imbol Koungue

et al., 2021; Lübbecke et al., 2010; Richter et al., 2010).

The SAOD exerts significant influences on climate variability over the adjacent continental

land areas of Africa and South America. The characteristic SST patterns are associated with

shifts  in  atmospheric  circulation  that  modulate  regional  rainfall  patterns.  Specifically,  the

2



SAOD drives increased convergence in the Atlantic ITCZ region leading to increased rainfall

over the Guinea Coast and Central Africa and decreased rainfall  in the SACZ/South East

Brazil (Nnamchi et al., 2013; Wainer et al., 2021).

Large populations in regions such as West Africa, Central Africa, Southern Africa and South

America all rely on rain-fed agriculture  (Sultan & Gaetani, 2016; Wani et al., 2009). The

livelihoods of rural communities that depend on agriculture and livestock farming are greatly

impacted by rainfall as some of these regions lack adequate irrigation infrastructure (Boko et

al.,  2007). The industrial  regions are also impacted by rainfall  as it replenishes the water

sources used for Hydropower generation (Conway et al., 2017). Rainfall also influences the

health and productivity of ecosystems, supporting biodiversity and ecosystem services, most

notably the tropical rainforests of the Amazon, Guinea Coast, and Central Africa  (Bonal et

al., 2016). Rainfall variability, including events such as droughts, floods, or shifts in seasonal

patterns,  can have profound socio-economic  implications.  These include  impacts  on food

production,  water resources,  energy generation,  rural  livelihoods,  and ecosystem services.

Understanding and adapting to rainfall variability and change under increasing greenhouse

forcing are, therefore, critical for sustainable development and building resilience in these

socio-economic sectors. 

The use of climate models can help us better understand how regional rainfall will change in

the future in relation to the SAOD. The Coupled Model Intercomparison Project phase 6

(CMIP6; Eyring et al., 2016) is the latest internationally coordinated ensemble of state-of-the-

art global climate models. However, it remains unclear how well the CMIP6 models represent

the SAOD-regional rainfall variability, and how this relationship will change under future

greenhouse emissions. This is an important first step in planning adaptation of the regional

ecosystems and human socio-economic activities to climate change. 

1.1 Objectives of the Study

The aim of this study is to evaluate the simulated and projected impacts of the SAOD on the

regional rainfall variability using CMIP6 multi-model ensemble. This study focuses on the

austral winter (June-August) when the SAOD variability is most pronounced. To achieve this

aim, the specific objectives are as follows:

    • To analyze the SAOD-regional rainfall relationship in observations and CMIP6 multi-

model ensemble of historical simulation.
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    • To evaluate the CMIP6 ensemble for the land regions where the observed SAOD impact

on regional rainfall is particularly strong.

    • To quantify the future SAOD-regional rainfall relationship under increasing greenhouse

forcing. 
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2. Literature Review

2.1 Modes of Variability in the South Atlantic

The South Atlantic Ocean (SAO) exhibits several modes of variability that are expressed as

anomalous  oceanic  and atmospheric  conditions.  These  modes  serve  a  crucial  function  of

influencing the regional climate patterns, atmospheric pressure, rainfall, and wind circulation

over the continental landmasses of Africa and South America. 

Venegas  et  al.  (1997) used  Empirical  Orthogonal  Function  (EOF)  and  Singular  Value

Decomposition analyses to investigate  the independent  and coupled variability  of the Sea

Level Pressure (SLP) and SST of the South Atlantic region (defined as 0° - 50°S, 70°W –

20°E). Their results identified three modes of coupled atmosphere-ocean variability in the

South Atlantic with time periods of 14-16 years, 6-7 years and 4 years, respectively. The first

mode of coupled variability was marked by an oscillation in the strength of the St. Helena

anticyclone, followed by a dipole structure with north-south orientation in the SST anomalies,

representing  the  SAOD.  This  dipole  structure  was  said  to  originate  from  wind-related

processes triggered by changes in the anticyclone and was found to be strongest in the austral

summer  (Morioka et al., 2011; Venegas et al., 1997). The second mode was defined by a

zonal  (east-west)  displacement  of  the  anticyclone  after  which  large  fluctuations  of  SST

occurred over a broad area of the South Atlantic, off the coast of Africa. The authors noted

that the SLP-SST coupling in this mode was weaker even though the SST changes seemed to

trigger responses in the atmospheric circulation. The third mode identified by Venegas et al.

(1997) was characterized by a relatively higher frequency (occurring at inter-annual scales - 4

years), marked by a north-south displacement of the anticyclone. This had a 1-2months lead

on latitudinal fluctuations of SST over the central South Atlantic Ocean. This mode was also

found  to  be  strongly  associated  with  the  El  Niño-Southern  Pacific  Oscillation  (ENSO)

(Venegas et al., 1997). 

Sterl & Hazeleger (2003) described how modes of variability in the SAO form and decay.

They implicated atmospheric variability as the main mechanism generating large-scale SST

anomalies  in  the  South  Atlantic.  Atmospheric  pressure  anomalies  (i.e.  changes  in  the

anticyclone)  trigger  anomalous  winds which in  turn generate  the  SST anomalies  through

latent  heat  flux and mixed layer  deepening  (Sterl  & Hazeleger,  2003).  In  another  study,

focusing on interannual scales,  Trzaska  et al., (2007) expanded their domain of analysis to
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include the equatorial Atlantic. They identified a leading mode of zonal SST anomaly in the

equatorial Atlantic. A second mode of SST anomalies representing a dipole in the subtropical

Atlantic was also identified – similar to the findings of Venegas et al. (1997). The leading

mode of zonal SST anomalies in the equatorial Atlantic is the dominant mode of tropical

Atlantic variability in the austral winter (JJA) known as the Atlantic  Niño  (Keenlyside &

Latif, 2007; Okumura & Xie, 2004; Xie & Carton, 2004; Zebiak, 1993). Its peak phase is

marked by a relaxation of the southeast trade winds and zonally oriented anomalous warming

along the Atlantic cold tongue region (3°S – 3°N, 20°W - 0°E). 

The Benguela Niño is another mode of variability that manifests itself as anomalous warming

off the coast of Angola [20°S – 10°S, 8°E – 15°E] and peaks in austral fall (March-April-

May; MAM). Lübbecke et al. (2010) examined the Atlantic Niño and the Benguela Niño and

found a robust linkage between the two modes. Specifically, the formation of positive SST

anomalies off the coast of Angola leads the Atlantic Niño by 1– 3 months. They concluded

that both events were results of the same processes; however, the Benguela Niño usually

occurred before the Atlantic Niño due to differences in the seasonal changes of thermocline

depth in the two regions. The authors therefore suggested that both events be treated as one,

and called it the Eastern Tropical Atlantic Niño (Lübbecke et al., 2010). 

The EOF analyses of SST in the South Atlantic carried out by  Venegas et al., (1997) and

Sterl & Hazeleger (2003) identified two SST EOF modes consisting of a monopole (first

mode) and a dipole (second mode). Sterl & Hazeleger (2003) pointed out that this dipole

mode in the second EOF was likely an artifact of the EOF technique and merged it with the

first mode for their analyses. Nnamchi & Li (2011) argues that this dipole mode is actually a

real occurrence and a major mode of variability in the South Atlantic, with the northeastern

and southwestern parts of the basin significantly negatively correlated. This anti-correlation

peaks in the austral winter irrespective of the dipole index (Morioka et al., 2011; Nnamchi et

al.,  2011)  used so that  the various  definitions  may indeed represent  aspects  of  the same

phenomenon (Nnamchi et al., 2017).

2.2 SAOD versus SASD

SAOD is the leading mode of coupled ocean-atmosphere variability in the South Atlantic

with a domain within 5°N - 45°S (latitude) and 60°W – 20°E (longitude). It occurs when

sharply  contrasting  SST  anomalies  persist  between  the  northeastern  (equatorial)  and

southwestern regions of the SAO. The centres of action of this opposite polarity in the SAO
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appear off the coast of central equatorial Africa/West Africa and off the coast of Argentina–

Uruguay-Brazil (see Fig 1) (Nnamchi et al., 2016; Nnamchi & Li, 2011). During the positive

(negative) phase, there is above-the-average warming (cooling) in the northeast and below-

the-average cooling (warming) in the southwest. The SAOD peaks in the austral winter (JJA)

and tends to occur every 3-5 years (Nnamchi et al., 2016). 

Another major dipole mode of SST variability in the SAO is the SASD. It  has a similar

northeast-southwest  orientation  as  the  SAOD  but  exists  in  the  more  southwards  and

subtropical region (10° - 50°S; 60°W – 20°E).  The northern arm of the SASD is generally

positioned away from the equator, approximately within the range of 15-25°S (Morioka et al.,

2011, 2014) but its southern arm falls within the domain of the SAOD. The SASD peaks in

austral summer (Morioka et al., 2011; Nnamchi et al., 2017; Trzaska et al., 2007; Venegas et

al., 1997) and is associated with a strengthening of the anticyclone. Notably, the SASD does

not align with the Atlantic Niño in terms of seasonality and spatial distribution (Nnamchi et

al., 2016).

The  SAOD and  SASD have  been  shown to  be  closely  correlated;  both  indices  are  also

strongly  correlated  with  the  Atlantic  Niño  (Nnamchi  et  al.,  2017).  A  strong  correlation

between the SASD and ENSO has been detected in austral summer while this was not found
7
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(from (Nnamchi et al., 2011).



for the SAOD during the satellite era (Morioka et al., 2011; Nnamchi et al., 2017). Therefore,

despite  the  robust  correlation  between  the  two modes,  each  may  better  capture  different

aspects  of  climate  variability  and  teleconnections  in  the  South  Atlantic  (Nnamchi  et  al.,

2017).

2.3 Impacts of South Atlantic variability on Regional Climate 
A strong  correlation  between  the  SAOD and  rainfall  over  West  Africa,  particularly  the

Guinea coast, has been identified in the literature  (Camberlin et al., 2001; Nnamchi et al.,

2013; Nnamchi & Li, 2016). Nnamchi and Li (2011) found the positive (negative) phase of

the SAOD to be associated with an increase (decrease) in rainfall  over the Guinea Coast

(Nnamchi  & Li,  2011,  2016).  In  a  study that  involved  the  use  of  satellite-derived  daily

rainfall data and climate model experiments, Williams et al. (2008) show that anomalous cold

SSTs in the central South Atlantic and warm SSTs off the coast of southwestern Africa were

statistically related to rainfall extremes in southern Africa. They attributed the connection to

local effects (such as increased convection) and remote effects (such as adjustment of the

Walker-type circulation) (Williams et al., 2008).

Bombardi et al. (2014b) examined the relationship between the South Atlantic Dipole (SAD)

and rainfall over eastern South America. Their analyses reveal that variations of SST in the

South  Atlantic,  related  to  the  SAD,  impacts  daily  rainfall  over  eastern  South  America,

through its influence on the positioning and movement of extratropical cyclones. These in

turn  influence  the  organization  of  the  SACZ  such  that  negative  (positive)  SAD  events

resulted in an increase (decrease)  of rainfall  over the southeast  coast of Brazil.  SASD is

known to be a good indicator of rainfall variability in South America (Wainer et al., 2021),

and Southern Africa  (Morioka et al., 2011). Wainer et al. (2021) averred that while SASD

plays a crucial role in rainfall variability in South America, meltwater forcing from retreating

North  Atlantic  ice  sheets  and from Southern and Northern  Hemisphere sources  were the

dominant drivers of SASD variability. 

The foregoing is  evident  that  a  coupled  ocean-atmosphere anomalous event  in the South

Atlantic has considerable influence on regional climate, particularly rainfall. 

2.4 Modeling of the South Atlantic modes of variability and their impacts

Robertson et al. (2003) forced an atmospheric global circulation model (UCLA-AGCM) with

boundary  conditions  that  included  SST anomalies  from the  South  Atlantic.  Their  results

demonstrated  that  both  cold  and  warm SST anomalies  in  the  SAO can  have  significant
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impacts  on  atmospheric  circulation  and  rainfall  patterns.  In  particular,  cold  anomalies

occurring in austral summers result in dipolar anomalies that bear resemblance to the SACZ.

Conversely,  warm  anomalies  on  a  basin-wide  scale  exert  the  most  significant  influence

during austral winters, giving rise to equatorial baroclinic responses and fostering positive

rainfall anomalies over the equatorial Atlantic Ocean. They also pointed out that the South

Atlantic SST dipole pattern observed by  Robertson & Mechoso (2000)  did not affect the

simulated SACZ and related circulation and rainfall anomalies 

On the other hand, Haarsma et al. (2003) conducted simulations using the SPEEDY general

circulation model. They introduced prescribed positive SST anomalies in the tropical regions

and negative SST anomalies in the extratropics. Their results showed a southward shift of the

ITCZ in northeast Brazil, accompanied by a notable increase in rainfall. This is inline with

several  observational  studies  (e.g,  Bombardi & Carvalho,  2011; Moura & Shukla,  1981).

They also found an increase in rainfall over the marine SACZ region, which is inconsistent

with  observational  results  (Bombardi  &  Carvalho,  2011;  Robertson  &  Mechoso,  2000).

Bombardi et al. (2014b) used the RAMS regional atmospheric model (Pielke et al., 1992) to

perform numerical  simulations  of  the  SACZ forced with  the  SAD SST and atmospheric

anomalies. They found that SACZ rainfall variability associated with SAD largely depended

on atmospheric variability rather than on SST variability. 

Nnamchi et al.  (2017) found that the CMIP3/5 coupled models were able to replicate the

strong  association  between  the  SASD and  SAOD indices  that  had  been  observed.  They

reported  that  in  all  seasons,  54  of  the  63 different  CMIP3/5  models  examined  exhibited

significant  coefficients  at  the  99% confidence  level.  The authors  however  noted that  the

observed amplitudes in the Benguela-equatorial Niño region were better represented by the

multi-model mean SST anomalies linked with the SAOD index. 

The preceding section highlights numerous studies that apply global climate models, as well

as regional climate models, to understand the dynamics and processes of the South Atlantic

modes of variability and consequent impacts on climate.  So far, we are not aware of any

assessment of the CMIP6 simulation of the SAOD and its impacts on regional rainfall. This

study aims to bridge this gap by considering historical and future simulations of the SAOD-

regional rainfall relationship.
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3. Materials and Methods

3.1 Study Region

The study site is the South Atlantic and the adjacent continents of Africa and South America.

We further delineated the study areas over the continents on the basis of spatially-coherent

correlations of grid-point rainfall  with the SAOD index in observations (section 4.2). We

have two delineated regions in Africa namely the Guinea Coast [13° - 5°N, 10°W-10°E], and

Central Africa [5°N – 5°S, 10°-16°E] and two regions in South America namely the Northern

Amazon [7°N –  5°S,  70°-50°W],  and  South  East  Brazil  [12°  -  27°S,  56°-40°W].  These

regions are marked in Figure 2. 

The SAO is defined as the oceanic area between 60°W and 20°E of longitude and 5°N and

45°S of latitude (Nnamchi et al., 2011; Sterl & Hazeleger, 2003). It covers an area of 30-40

million km2 depending on where the southern boundary is set (Muller-Karger, et al., 2017).

The SAO is characterized by the presence of ocean currents and the subtropical high-pressure

system. These systems play a crucial role in shaping the ocean and climate conditions of the

basin and the adjacent continental regions. 

The four continental regions analyzed are briefly described below.

  Guinea Coast

The Guinean Coast encompasses the coast of West Africa northwards to the fringes of the

Sahel. Parts of the region receives rainfall throughout the year with two seasonal peaks in

June and September. The Guinea Coast climate is influenced by the presence of the Atlantic

Ocean,  and the  ITCZ,  a  low-pressure  belt  near  the  equator  where  trade  winds  from the

northern  and  southern  hemispheres  converge.  Locations  to  the  south  of  the  ITCZ mean

position  generally  receive  rainfall  whereas  locations  to  its  north experience  dryness.  The

West  African Monsoon,  which brings  rainfall  to  the Guinea  Coast  during JJA season, is

modulated by the ITCZ. Its beginning is marked by the rapid northward movement of the

ITCZ, usually in May/June (Sultan & Janicot, 2003). The ITCZ moving across West Africa

results in the replacement of dry, warm, and dusty Harmattan winds with moisture-laden cold

south-westerlies from the tropical Atlantic (Raj et al., 2019).

The rainy season typically occurs from April to October. Average monthly rainfall can range

from 50 to 300 mm depending on the location (Tano et al., 2023). Temperatures during the
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rainy season generally range from 25 to 32 °C coupled with high humidity. The dry season

typically  spans  from  November  to  March,  characterized  by  reduced  rainfall  and  lower

humidity levels.  The dry season is associated with the influence of the Harmattan winds,

which blow from the northeast and carry dry air from the Sahara Desert. These winds can

bring dust and haze to the Guinea Coast region, impacting visibility. Temperatures during the

dry season range from 24 to 30 °C (USAID, 2018).

The  Guinea  Coast  region  experiences  relatively  high  humidity  throughout  the  year,

influenced by its proximity to the tropical Atlantic Ocean. As a result, the region is able to

support the presence of rainforests and mangroves along the coast. This contributes to the

lush vegetation and diverse ecosystems found in the region.

 Central Africa

Central  Africa  generally  experiences  a  tropical  climate  with  high  temperatures  and  high

humidity  throughout  the  year.  The region  is  characterized  by  two main  seasons:  a  rainy

season and a dry season. During the rainy season, which typically lasts from November to

April,  Central  Africa  receives  abundant  rainfall.  The  rain  is  often  heavy  and  frequent,

contributing to the dense rainforests and lush vegetation that are characteristic of the region.

Temperatures  remain  relatively  high,  ranging  from  24  to  32  °C,  accompanied  by  high

humidity. In the dry season, which usually spans from May to October, rainfall decreases

significantly,  and the region experiences  drier conditions.  However,  some areas  may still

receive sporadic showers. Temperatures remain warm, ranging from 20 to 30 °C with slightly

lower humidity compared to the rainy season (USAID, 2018).

 Northern Amazon

Tropical  rainforest  climate  is  typical  of  the  Northern  Amazon region of  South  America,

which  covers  portions  of  Venezuela,  Colombia,  Guyana,  Brazil,  northern  Ecuador,  and

northern Peru.  The proximity of this  location to the equator,  the Amazon Basin,  and the

Atlantic Ocean all have an impact on its climate. The Northern Amazon experiences high

temperatures throughout the year. Seasonal variation of temperature is relatively low with

average temperatures ranging from 25 to 28 °C. However, temperatures can be slightly cooler

at higher elevations.

The Northern Amazon has a distinct wet and dry season pattern. The wet season typically

lasts  from around November  to  April,  coinciding  with the austral  summer.  The Amazon
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rainforest receives rainfall throughout the year, which contributes to its lush vegetation and

immense  biodiversity.  Monthly  rainfall  totals  can  range  from 170  to  325  mm or  more,

depending on the specific location (Ronchail et al., 2002). Even during the dry season, some

areas may still receive sporadic showers. Humidity is consequently lower in the dry season. 

The rainforest and the Amazon River as well as its tributaries, are beneficial to the Northern

Amazon region because  they  help  control  local  climates  and add  to  the  region's  overall

wetness.  Additionally,  these  rivers  are  essential  in  shaping  the  region's  topography  and

sustaining its many different ecosystems (Foley et al., 2002).

 South East Brazil 

A diverse range of climatic conditions characterize the Southeast region of Brazil. This is due

to its  extensive  territory  and varied  topography.  The region predominantly  experiences  a

humid subtropical climate, with some areas transitioning into a tropical savanna climate in

the northernmost parts. The climate is influenced by factors such as latitude, elevation, ocean

currents, prevailing winds and the SACZ. The South East Brazil generally has four distinct

seasons: summer, autumn, winter, and spring (Wiederhecker et al., 2002). 

The summer generally lasts from December to February and is characterized by warm to hot

temperatures and atmospheric high humidity levels. Average temperatures range from 25 to

30 °C in most areas, although some inland locations may experience higher temperatures. It

is the wettest season, with frequent afternoon thunderstorms and periods of heavy rainfall.

The  autumn  (March  to  May)  brings  milder  temperatures  as  the  summer  heat  begins  to

dissipate.  Average temperatures  range from 20 to 25 °C. Rainfall  decreases  compared to

summer, but showers and occasional storms can still occur. The winter season lasts from June

to August. Temperatures can vary widely depending on the specific location and elevation,

ranging from 10 to 20 °C. Some areas at higher elevations or in the southernmost parts of the

region may experience near-freezing temperatures. Winter is drier compared to other seasons,

with lower rainfall totals and clearer skies. Spring (September to November) brings a gradual

increase in temperatures as the region transitions into summer,  with average temperatures

range from 20 to 25 °C (Wiederhecker et al., 2002).

It is worth noting that the South East Brazil is known for its microclimates and localized

variations due to its diverse topography. Maritime influence is strong in coastal areas, with

milder temperatures and higher humidity levels, while greater temperature fluctuations and

lower humidity, persist in the inland areas.
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Figure 2: Map of study area indicating the four (4) regions in the South Atlantic considered (black boxes). [CA
= Central Africa, SE_Brazil = South East Brazil]. Oceanic region of the South Atlantic is enclosed in dashed
box.      

3.2 Data collection and description 

 Sea Surface Temperature (SST) Observations

For the historical analyses, global SST data from 1940 to the present was obtained from the

Hadley  Centre  Global  Sea Ice  and Sea Surface  Temperature  (HadISST)  analysis  archive

(Rayner, 2003; Rayner et al., 2006) available at 1° longitude by 1° latitude resolution. The

dataset consists of monthly mean SST, the unit is °C. The data file was downloaded from the

UK Met Office Hadley Centre website2. 

2  https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. 
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 Rainfall data Observations

Observations rainfall  data was obtained from the Global Precipitation Climatology Centre

(GPCC, version 2022), a full data monthly product containing global land-surface rainfall

based on the ~86,000 stations world-wide that feature record durations of 10 years or longer.

Rainfall  anomalies  at  the  stations  are  interpolated  and then  superimposed  on  the  GPCC

Climatology V2022 in the corresponding resolution. The temporal coverage of the dataset

ranges from January 1891 until December 2020. Although this data is available at various

resolutions, we selected the 1º × 1º spatial resolution for this study. The Full Data Monthly

Product  is  updated  at  irregular  time  intervals  subsequent  to  significant  database

improvements  (Schneider  et  al.,  2022).  The  data  was  obtained  from  the  Deutscher

Wetterdienst (DWD, National Meteorological Service of Germany) website3. 

 CMIP6 Ensemble

This  study analyzed  historical  SST and rainfall  simulated  datasets  from CMIP6 models’

simulations. We simply selected 44 models that have both variables in the historical archive.

Out  of  this  number,  35  of  the  models  that  archived  the  two  variables  for  the  Shared

Socioeconomic Pathway (SSP585) were selected for the analysis of the projected SAOD-

regional rainfall variability. 

The future simulation scenario considered (SSP585) refers to a high-emission pathway where

greenhouse  gas  emissions  continue  to  increase  throughout  the  21st  century  without

significant  efforts  to  mitigate  climate  change.  In  this  scenario,  fossil  fuels  continue  to

dominate the global energy mix, and little progress is made in adopting sustainable practices

or reducing greenhouse gas emissions (Riahi et al., 2017). This scenario is chosen because it

represents a situation where there are high challenges to mitigation and adaptation, which is

similar to current trends where global Green House Gas (GHG) emissions have been steadily

increasing over the last decade (Bergquist et al., 2019; Ritchie et al., 2020).

The CMIP6 outputs were obtained from the German Climate Computing Centre (DKRZ)

supercomputer database4. The list of models analyzed is shown in the table below (Table 1).

The models are from different countries with varying spatial resolutions; hence they were re-

mapped to a common grid of 1º × 1º spatial resolution. 

3 https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html 

4 https://esgf-data.dkrz.de/projects/cmip6-dkrz/
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The CMIP6 is the latest phase of an ongoing international effort to improve climate modeling

and understand Earth's climate system organized under the auspices of the World Climate

Research  Programme’s  Working  Group  on  Coupled  Modelling.  CMIP6  involves  a

collaborative endeavor by climate modeling centers worldwide to develop and run state-of-

the-art climate models to simulate past, present, and future climate conditions. Each modeling

group contributes their own model, which is based on a set of equations that describe various

components of the Earth system, including the atmosphere, oceans, land surface, sea ice, and

biogeochemical  cycles  (Eyring  et  al.,  2016).  CMIP6  models  generally  feature  enhanced

representations  of  Earth  system  processes,  improved  spatial  resolutions,  and  updated

parameterizations.  The outputs of these models are made freely available to the scientific

community and the public through data portals like the Earth System Grid Federation (Eyring

et  al.,  2016).  This  open  access  policy  encourages  collaboration  and  enables  researchers

worldwide  to  analyze  the  model  outputs,  validate  the  models,  and  contribute  to  climate

research. 

Table 1: Information of the 44 CMIP6 models used to construct the analyzed ensemble

S/N Model name Modeling institution

Horizontal 
resolution 
(Atmosphere, 
Ocean km)

Reference(s)

1
2

ACCESS-CM2
ACCESS-ESM1-5

CSIRO Commonwealth
Scientific and Industrial Research 
Organisation
Australia

140, 70 km
140, 70 km (Bi  et  al.,  2020;

Ziehn  et  al.,
2020)

3

4

AWI-CM-1-1-MR

AWI-ESM-1-1-LR

AWI Alfred Wegener Institute
Germany

80, 20 km

170, 50 km

(Sidorenko et al.,
2015)

(Semmler  et  al.,
2020)

5

6

BCC-CSM2-MR

BCC-ESM1
BCC Beijing Climate Centre, China

100, 80 km

250, 80 km

(T.  Wu  et  al.,
2019)

(T.  Wu  et  al.,
2020)

 7 CAMS-CSM1-0 CAMS Chinese Academy of 
Meteorological Sciences, China 100, 90 km (Rong  et  al.,

2018)

 8 CAS-ESM2 CAS Chinese Academy of Sciences 100, 100 km (Chai, 2020)
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9 CanESM5 CCCMa Canadian Centre for Climate 
Modelling and Analysis Canada 250, 70 km (Swart  et  al.,

2019)

10
11

CESM2
CESM2-WACCM

NCAR National Center for 
Atmospheric Research USA

100, 60 km
100, 60 km

(Danabasoglu  et
al., 2020)

12
13

14

CMCC-CM2-SR5
CMCC-CM2-HR4
CMCC-ESM2

CMCC Centro Euro-Mediterraneo
sui Cambiamenti Climatici Italy

100, 70 km
100, 70 km
100, 70 km

(Cherchi  et  al.,
2018)

(Scoccimarro  et
al., 2020)

 15
16
17

E3SM-1-0
E3SM-1-1-ECA
E3SM-1-1

E3SM National Laboratories 
Consortium, USA

100, 40 km
100, 40 km
100, 40 km

(Golaz  et  al.,
2019)

18
19
20

EC-Earth3-AerChem
EC-Earth3
EC-Earth3-CC

EC-Earth Consortium Europe
80, 70 km
120, 70 km
80, 70 km

(Döscher  et  al.,
2022)

21

22

FGOALS-f3-L

FGOALS-g3

CAS Chinese Academy of Sciences 
China

90, 80 km

190, 80 km

(He et al., 2020)

(L. Li, 2020)

 23 FIO-ESM-2-0

FIO-QNLM First Institute of 
Oceanography and Plot National 
Laboratory for Marine Science and 
Technology (Qingdao), China

100, 60 km (Bao et al., 2020)

 24

25

26

GISS-E2-1-G-CC

GISS-E2-1-G

GISS-E2-1-H

NASA-GISS
Goddard Institute for Space Studies, 
USA

200, 100 km

200, 100 km

200, 100 km

(Kelley  et  al.,
2020)

27 GFDL-ESM4

NOAA-GFDL National Oceanic
and Atmospheric Administration,
Geophysical Fluid Dynamics
Laboratory USA

100, 20 km (Dunne  et  al.,
2020)

 28 IITM-ESM CCCR-IITM Centre for Climate 
Change Research, Indian institute of 
Tropical Meteorology, India

170, 90 km (Swapna  et  al.,
2018)

29

30

INM-CM4-8

INM-CM5-0

INM Institute for Numerical
Mathematics Russian Federation

150, 70 km

150, 30 km
(Volodin  et  al.,
2017, 2018)
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31 IPSL-CM6A-LR IPSL Institut Pierre-Simon Laplace 
France 160, 70 km (Boucher  et  al.,

2019)

32 KACE-1-0-G
NIMS-KMA National Institute
of Meteorological Sciences, Korea 
Meteorological
Administration Republic of Korea

140, 90 km (J.  Lee  et  al.,
2020)

 33
MCM-UA-1-0 University of Arizona, USA

260, 190 km (Delworth. et al.,
2002)

34 MIROC6 MIROC Consortium JAMSTEC, 
AORI, NIES, R-CCS Japan 120, 80 km (Tatebe  et  al.,

2019)

35

36

MPI-ESM1-2-HR

MPI-ESM1-2-LR

MPI-M Max Planck Institute for
Meteorology Germany

80, 40 km

170, 100 km

(Mauritsen et al.,
2019;  Müller  et
al., 2018)

 37 MPI-ESM-1-2-HAM HAMMOZ- Consortium Switzerland, 
Germany, UK, Finland 170, 100 km

(Neubauer  et  al.,
2019)

38 MRI-ESM2-0 MRI Meteorological Research 
Institute Japan 100, 60 km (Mizuta  et  al.,

2012;  Yukimoto
et al., 2019)

 39 NESM3
NUIST Nanjing University of 
Information Science and Technology, 
China

170, 70 km (Cao et al., 2018)

40
41
42

NorCPM1
NorESM2-LM
NorESM2-MM

NCC NorESM Climate Modelling
Consortium Norway

190, 60 km
190, 60 km
100, 60 km

(Guo et al., 2019;
Seland  et  al.,
2020)

 43 SAM0-UNICON SNU Seoul National University, 
Republic of Korea 100, 60 km (Park  &  Shin,

2019)

44 TaiESM1

AS-RCEC Research Center
for Environmental Changes,
Academia Sinica
Taiwan, China

100, 60 km (W.-L.  Lee  &
Liang, 2020)

(source:  https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_AnnexII.pdf)
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3.3 Data analyses 

 The Analysis periods

Two time periods are considered in this study – the historical and SSP585 projection periods.

The  historical  period  (1950  –  2014)  spans  65  years.  Data  coverage  of  the  ocean  and

atmosphere,  particularly  for  the  South  Atlantic,  improved  after  the  second  World  War

(Woodruff et al., 1987, 2005). Hence 1950 has been widely used as a suitable starting point

for historical simulations  (Ajibola et al., 2020; Gulev et al., 2021). 2014 is the last year for

historical  simulations  in  CMIP6 models  hence  its  adoption  here  (Eyring et  al.,  2016).  A

similar 65 years is considered for the SSP585, starting from 2015 to 2079. This was done to

ensure the analyses in both periods were adequately comparable.

 Calculation of the SST and rainfall anomalies

All the datasets analysed consist of monthly means. To define the monthly anomalies, firstly

for each dataset, the monthly climatology was computed. The period used for the climatology

is  65 years;  1950 -  2014 period  for  the  historical  simulations,  and 2015 –  2079 for  the

SSP585  scenario.  Then,  the  monthly  anomaly  was  computed  for  each  grid-point  as  the

difference between the climatology and the monthly value for each year in both scenarios

(see Equation 1).  Prior to subsequent  analyses,  the anomalies  for the austral  winter were

calculated by averaging the monthly means for JJA, the season during which the SAOD

exhibits maximum variability.

                                      x´=x i − x̄                                                        (Eq. 1)

Where;

 x´ is the anomaly  

 xi represents the monthly values for January to December 

 x̄ is the climatological-mean for each month.

The anomalies were then detrended – that is the long-term trends were removed in order to

focus  on  the  interannual  variability.  Detrending  is  performed  to  distinguish  between  the

natural variability of a climate signal and any underlying trend caused by factors such as

climate change or external forcings  (Z. Wu et al., 2007). By removing the trend, we could

analyze the anomalies and patterns of variability.
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 Definition of the SAOD Index 

The SAOD index (SAODI) is  defined as the normalized  difference between the domain-

averaged SST anomalies  over  the  North East  Pole  (NEP)  and the  domain-averaged  SST

anomalies over the South West Pole (SWP) of the South Atlantic as follows: 

                 SAODI= [SSTA ]NEP − [ SSTA ]SWP                         (Eq. 2)

Where;

 NEP is defined as the region [10°E–20°W, 0°–15°S]

 SWP is defined as the region [10°– 40°W, 25°– 40°S]

 the square brackets denote area-averages, and the subscripts (NEP and SWP) denote

the domains over which the averages were computed. These regions are shown in Fig.

3.

Figure  3: Geographical location of the North East Pole (black solid box) [NEP; 10°E–20°W, 0°–15°S] and
South West Pole (blue dashed box) [SWP; 10°– 40°W, 25°– 40°S] used to calculate the SAOD index.

This index serves as an appropriate numerical representation of SAOD events for each year

under consideration. Positive (negative) values of the SAODI indicate warming (cooling) in

the  NEP and cooling  (warming)  in  the  SWP. The SAODI was  calculated  from the  SST

observations and the CMIP6 models, respectively.  It was calculated for the austral  winter
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season of the years under consideration for both the historical (1950 – 2014) and future (2015

– 2079) scenarios.

 Regional rainfall indices

First, correlation analysis was performed between the SAOD index and global rainfall map

during JJA using the observational datasets. Statistically significant correlations were found

over parts of Africa and South America. Thus, we defined four regions of spatially-coherent

significant SAOD-rainfall correlations viz: Guinea Coast, Central Africa, Northern Amazon

and South East Brazil. Rainfall indices were calculated for these four regions as the domain-

averaged rainfall anomalies for the periods under consideration - historical (1950 – 2014) and

SSP585 (2015 – 2079).

 Correlation Analyses

The observations and modeled SAOD-rainfall relationship was analyzed using the Pearson

correlation analysis. The correlations were performed between the SAOD index and rainfall

in two phases. Firstly, the SAODI was correlated with global rainfall anomalies to identify

regions  of  significant  correlation  (p  ≤  0.05)  within  the  adjacent  land  areas  of  the  South

Atlantic.  This  was  done  for  both  observations  and  the  CMIP6  outputs.  Secondly,  we

performed correlations between the SAODI and rainfall indices in these regions.

This analysis allows us to quantify the strength of the relationship or association between the

SAOD and rainfall.  The correlation coefficients (r) show how much variability in rainfall

over parts of Africa and South America is related to variability in the SAOD and is given by;

                                r=1−
∑
i=1

n

(xi − x̄ ) ( yi − ȳ )

√∑
i=1

n

(x i − x̄ )2 ∑
i=1

n

( y i − ȳ )2
                                  (Eq. 3)

Where;

 x is the SAOD and y is the rainfall anomaly

  ̄x and ȳ are arithmetic means of both variables.

Correlating atmospheric  variables  with SST is  a convenient  method of demonstrating the

impacts of SAOD on rainfall anomalies. The correlation coefficient generally ranges between

-1 and +1, indicating the strength and direction of the relationship. A positive correlation (r >
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0) shows that as the SAOD increases, the rainfall anomalies also increase over the continents.

A negative correlation (r < 0) implies that as SAOD increases, rainfall decreases indicating

an inverse relationship between the two variables. Where  r = 0, it means there is no linear

relationship  between  the  two variables.  This  method has  been used  in  several  studies  to

investigate the relationship between ocean patterns and climate variability (Alhamshry et al.,

2019; Nnamchi et al., 2017; Polo et al., 2008).

We conducted hypothesis testing to determine the statistical significance of the correlations.

The null hypothesis for these tests (H0) is that there is no correlation between the SAOD and

rainfall anomalies over the adjacent land areas of Africa and South America. The alternative

hypothesis (H1) is that a correlation exists between the SAOD and rainfall  in the regions

under  consideration.  We set  the  p-value  at  0.05  (95% confidence  level)  therefore  where

p<0.05, the null hypothesis is rejected and the alternative hypothesis is accepted.

 Regression Analyses

We also used regression analysis to determine the response of rainfall anomalies over the

adjacent continents to SAOD variability. The regression analysis was performed with the two

indices (SAODI and rainfall), with the normalized SAODI as the independent (explanatory)

variable and the rainfall indices as the dependent (response) variable. The resulting regression

coefficients show how much the rainfall changes in mm/day over the four regions selected

(Guinea Coast, Amazon, Central Africa, and South East Brazil) in response to a unit standard

deviation in the SAOD. The regression equation is given as:

                                                   ŷ=α+βx                                                           (Eq. 4)

Where; 

 x is the SAOD, ŷ is the predicted rainfall anomaly for a unit standard deviation of x; 

 β is the slope (the amount by which rainfall  (y) changes for every unit  change in

SAOD (x)) given as:

                                   β=
n (∑ x i y i )− (∑ x i ) (∑ y i )

n (∑ xi
2 )− (∑ xi )2

                                 (Eq. 5)
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 α is the intercept (the value of y when x = 0); given as:

                       α=
(∑ y i ) (∑ x i

2)− (∑ x i ) (∑ xi yi )
n (∑ x i

2) − (∑ x i )2
                         (Eq. 6)

here n represents number of observations/datapoints.

 Data Analysis Tool (NCAR Command Language and Python)

The data analysis and visualization in this study was done using a combination of the NCAR

Command  Language  (version  6.6.2)  and  Python  programming  language.  The  NCL  is  a

powerful scripting language developed by the United States National Center for Atmospheric

Research (NCAR) for data analysis and visualization in the field of atmospheric and oceanic

sciences.  NCL provides  researchers  and  scientists  with  a  comprehensive  set  of  tools  for

processing, analyzing, and displaying large and complex atmospheric and oceanic datasets

(Brown et al., 2012)

All the analyses and most of the visualization in this work was done by writing and running

NCL  scripts  (the  programming  language  only  runs  on  Linux  operating  system)  which

combined data manipulation, statistical analysis, and visualization tasks into reproducible and

efficient procedures in order to streamline the data analyses workflow. The Seaborn package

in Python  (Waskom, 2021) was also used for some of the visualization due to its intuitive

procedure for producing scatter plots and other similar graphics.
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4. Results
In this section we present the results of our analyses. The first segment shows the results of

the SAOD-rainfall correlation for the historical period, comparing observations to the CMIP6

model simulations. The second segment presents the future projections of the SAOD-rainfall

relationship using regression analyses with the historical and SSP585 ensemble. 

4.1  Evaluation of the SAOD-rainfall relationship in CMIP6 historical ensemble 1950-

2014 

4.1.1 SAOD Timeseries from Observations and CMIP6 historical ensemble
Figure 4 shows the observations and CMIP6 ensemble mean normalized SAODI timeseries

for  the  historical  period  under  consideration  (1950  –  2014).  The  index  is  constructed

according to the descriptions in section 3.3. n observations, positive SAODI events are more

pronounced for about 14 years (between 1962 and 1976), then negative SAODI events persist

for about 8 years until the mid-1980s. A regular oscillation between positive and negative

SAOD events is  observed post mid-1980s, although there is  generally  a tendency for the

index to be persistent in one phase for a few years. Post 2000s show a positive phase bounded

by two negative phases (Fig. 4(a)). This multi-year variability may be explained by the fact

that  the  SAOD index represents  a  difference  in  SST anomalies  (over  large  areas  of  the

northeast and southwest South Atlantic) so that high frequency variability has been partly

filtered  out.  The  ensemble  mean  SAODI  timeseries  indicates  an  underestimation  of  the

positive phase of SAOD in the late 1960’s in comparison to observations. Also, in contrast to

observations, during the 2000s a negative phase is bounded by two positive phases in the

model ensemble depiction (Fig. 4(b)). However, the model ensemble seems to capture the

observed dominance of a negative phase from 1980 to 1990 and the dominance of a positive

phase during the transition period of 1960 to 1970 (Fig. 4(b)). 

The  normalized  SAOD  timeseries  for  each  CMIP6  model  was  also  constructed  for  the

historical period under consideration.  The model depiction of the SAOD timeseries varies

across each model (Fig. 5). 
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Figure 4: Normalized SAODI time series for JJA from observations (HadISST) data (a) and CMIP6 ensemble 
mean (b). Red troughs indicate positive phase of SAOD while blue troughs indicate negative phase of SAOD. 
Standard deviations in (°C)
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Figure 5: Normalized SAODI timeseries from CMIP6 model ensemble for the JJA season.
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4.1.2 Relationship between the SAOD and Rainfall map in Observations and CMIP6

historical ensemble

The correlation between the SAODI and regional rainfall map using the observations dataset

is shown in Figure 6. The pattern depicts statistically significant positive correlations over the

Guinea  Coast,  Central  Africa,  and  Northern  Amazon,  as  well  as  significant  negative

correlations over South East and South of Brazil. This implies that the positive phase of the

SAOD, with warm SST anomalies over the NEP, is associated with large-scale convergence

and rainfall  linked to the Atlantic ITCZ over the adjacent continental  areas. On the other

hand, the cold SST anomalies over the SWP off the Brazil-Uruguay-Argentina is associated

with a significant reduction in rainfall over the SACZ, including South East and South of

Brazil. 

The spatial correlation maps for each of the 44 CMIP6 models analyzed for the historical

period are also presented (Fig. 7). The models’ depictions exhibit large variations from one

another.  Nonetheless,  the  multi-model  mean  bear  some  remarkable  resemblance  to  the

observed correlation  map (Fig.  8).  Specifically,  the  signs of the correlations  similar  over

Central  Africa,  and  Amazon;  although  the  CMIP6  ensemble  depicts  overall  weaker

correlations than observations. The spatial extent of the simulated rainfall over the Guinea

Coast is confined to the coastal  fringes,  while  the observed negative correlation over the

South East and South of Brazil is practically non-existent in the CMIP6 ensemble (Fig. 8).
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Figure  6: Spatial correlation (historical) of SAODI and rainfall  anomalies (from observations data) in land
regions adjacent to the South Atlantic. White contours represent areas with significant correlation (p < 0.05).
Black boxes delineate regions of statistically significant correlation; 1 – Amazon, 2 – Guinea Coast, 3 – Central
Africa, 4 – South East Brazil (SE_Brazil).
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Figure 7: Spatial correlation of (historical) of SAODI and rainfall anomalies for individual CMIP6 models. 
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Figure 8: Correlation of SAODI and rainfall anomalies in JJA from observations (a) and multi-model mean
(b).  White  contours  indicate  areas  of  statistically  significant  correlation  while  black  boxes  delineate  the
domains. 1 – Northern Amazon, 2 – Guinea Coast, 3 – Central Africa, 4 – South East Brazil (SE_Brazil).



4.1.3  Relationship  between  the  SAODI and rainfall  indices  in  the  CMIP6 historical

ensemble

Next,  we  assess  the  individual  model  performance  in  simulating  the  SAOD–rainfall

correlation in each region delineated in section 4.1.2. Here we plot the correlation for each

model against its p-value (Figures 10-13). The 95% confidence limit, ensemble-mean, and

observational values are also indicated for reference. Here the ensemble mean was calculated

in two ways for comparison: (i) an average of the correlation values of all models (mmm –

green circle), and (ii) correlating the ensemble means of the SAODI, and rainfall anomaly

time series (mmm2 – blue circle). 

Northern Amazon

For Northern Amazon, the correlation in observation is positive (r = 0.48) and statistically

significant (p < 0.05). 33 of the 44 models have the same sign of correlations as observations,

whereas 11 models have a different sign (Figure 9). Of the 33 models that have the same sign

as observations, only 15 models (34%) (MRI-ESM2-0, CMCC-CM2-SR5, IPSL-CM6A-LR,

CanESM5,  CMCC-ESM2,  MPI-ESM1-2-HR,  NorESM2-MM,  INM-CM5-0,  NorCPM1,

FIO-ESM-2-0,  EC-Earth3-CC,  ACCESS-ESM1-5,  EC-Earth3,  MIROC6,  GISS-E2-1-H)

exhibit  statistically  significant  correlations.  Each  multi-model  means  showed  similar

correlation signs to observations (positive) although not statistically significant (p > 0.05). 

Guinea Coast

For  Guinea  Coast,  the  observation  shows  strong  positive  and  statistically  significant

correlation (r = 0.59, p < 0.05). Seven of the 25 models that also have positive correlation are

statistically significant – (FIO-ESM-2-0, CMCC-ESM2, NorESM2-LM, CMCC-CM2-SR5,

ACCESS-ESM1-5, SAM0-UNICON, and NorESM2-MM). The second multi-model mean

(mmm2) also shows statistically significant positive correlations. Notably, 19 models (43%)

simulate  a  negative correlation  (r < 0).  The first  multi-model  mean had a weak positive

correlation (Figure 10).
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Figure 9: Scatterplot of correlation values (x – axis) against the significance level [p – value] (y – axis) of
individual model simulation of SAODI-rainfall correlation in Northern Amazon region. Observation = Red
circle, Multi-Model Mean; (mmm = green circle, mmm2 = blue circle). Horizontal dotted line is where p =
0.05. Data points at or below the horizontal line are statistically significant at 95% confidence level (p ≤
0.05).



32

Figure 10: Scatterplot of correlation values (x – axis) against the significance level [p – value] (y – axis) of
individual model simulation of SAODI-rainfall correlation in Guinea Coast region. Observation = Red circle,
Multi-Model Mean; (mmm = green circle, mmm2 = blue circle). Horizontal dotted line is where  p = 0.05.
Data points at or below the horizontal line are statistically significant at 95% confidence level (p ≤ 0.05).



Central Africa

For Central Africa, 23 of the 44 models (52%) and the second multi-model mean (mmm2)

showed a statistically significant positive correlation (r > 0, p < 0.05) similar to observations

(r = 0.37). However, 16 of them (E3SM-1-1, E3SM-1-1-ECA, ACCESS-CM2, E3SM-1-0,

EC-Earth3-AerChem, INM-CM4-8, FGOALS-g3, KACE-1-0-G, EC-Earth3, FIO-ESM-2-0,

CMCC-CM2-SR5,  EC-Earth3-CC,  CMCC-ESM2,  SAM0-UNICON,  ACCESS-ESM1-5,

NorESM2-MM) overestimated the correlation (r > 0.37[Obs]) while the rest underestimate it.

Of the six models that have an opposite sign of correlation, three of them (CanESM5, GISS-

E2-1-G-CC, GISS-E2-1-H) are statistically significant (p < 0.05, r < 0) (Fig. 11). 

South East Brazil

Observations showed a statistically significant negative correlation in this region (r = -0.38, p

< 0.05). Only three models have a similar correlation, albeit underestimated (ACCESS-CM2,

GFDL-ESM4, ACCESS-ESM1-5) (Fig. 12). 21 models (47%) and the second multi model

mean (mmm2) show positive correlation signs in contrast to the observation, with three of

these models (GISS-E2-1-G, MCM-UA-1-0, GISS-E2-1-G-CC) being statistically significant

(that  is  r >  0  and  p <  0.05).  The  first  multi-model  mean  (mmm)  has  a  weak  negative

correlation.
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Figure  11: Scatterplot of correlation values (x – axis) against the significance level [p – value] (y – axis) of
individual model simulation of SAODI-rainfall correlation in Central Africa region. Observation = Red circle,
Multi-Model Mean; (mmm = green circle, mmm2 = blue circle). Horizontal dotted line is where p = 0.05. Data
points at or below the horizontal line are statistically significant at 95% confidence level (p ≤ 0.05).
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Figure 12: Scatterplot of correlation values (x – axis) against the significance level [p – value] (y – axis) of
individual model simulation of SAODI-rainfall correlation in South East Brazil region. Observation = Red
circle, Multi-Model Mean; (mmm = green circle, mmm2 = blue circle). Horizontal dotted line is where p =
0.05. Data points at or below the horizontal line are statistically significant at 95% confidence level (p ≤
0.05).



4.2 Projections of the SAOD-Rainfall relationship in CMIP6 SSP585 ensemble (2015-

2079)

4.2.1 Spatial pattern of the projected SAOD-rainfall relationship 

Next,  we  investigate  the  projections  of  the  SST-rainfall  relationship  under  SSP585.  We

choose this  emission  scenario  because  observations  suggest  that  the  current  trajectory  of

greenhouse emission is consistent with the SSP585. Here we use 65 years (2015-2079) to

allow a comparison with observations which also covers 65 years (1950-2014). 

Regression analysis was performed to elucidate the influence of the SAOD on rainfall over

Africa and South America. We used the SAOD as the explanatory variable and the rainfall

anomalies as the response variable. For a comparison with the historical period, a similar

analysis was also done using the CMIP6 historical ensemble. Here we use CMIP6 models

that archived SST and rainfall for both the historical and SSP585 scenario. 

The ensemble mean depiction of SAOD influence on rainfall  is shown in Figure 13. The

historical  and  SSP585  scenarios  have  striking  similarities  –  SAOD  has  strong  positive

influence on rainfall  anomalies over Northern Amazon, Guinea Coast and Central  Africa.

Notably, the positive influence of SAOD on rainfall in the Guinea Coast is confined to the

coastal  fringes.  For  South  East  Brazil,  the  ensemble  mean  simulation  shows that  SAOD

influence over rainfall  changes from negative,  in the historical,  to positive in the SSP585

scenario  (Fig.  13  (b)).  SAOD influence  in  this  region  is  however  much weaker  in  both

scenarios. The difference map (Fig. 13 (c)) shows the models’ depiction of future changes in

the SAOD-rainfall relationship under the SSP585 scenario. Models simulate an increase of

SAOD influence on rainfall over most parts of South America, while over Africa a decrease

is prominent over Central Africa, however the Guinea Coast shows a slight increase over its

western fringes.

Following is the analysis of individual model performance, comparing both scenarios with

observations, in each region.
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Figure  13: Regression of rainfall anomalies on SAODI from CMIP6 models for JJA in historical
(top [a]) and SSP585 projection (middle [b]). Map of the difference between [a] and [b] is shown in
[c]. Dashed boxes delineate the domains: 1 – Amazon, 2 – Guinea Coast, 3 – Central Africa, 4 –
South East Brazil (SE_Brazil)



4.2.2 Projections of SAOD impact on the regionally-averaged rainfall
Northern Amazon

For Northern Amazon, the observed regression coefficient is β = 0.31 mm/day which denotes

the magnitude of rainfall anomaly response to a unit standard deviation of the SAOD (Fig.

14). The historic simulations of MIROC6, NorESM-MM, ACCESS-ESM1-5, and CanESM5

are closest to observation however their future projections indicate a reduction in the rainfall

anomaly forced by SAOD. Notably, two of the aforementioned models (ACCESS ESM1-5

and CanESM5), as well as MRI-ESM2-0, overestimate the rainfall response to SAOD in their

historic simulations. On the other hand, the model future projections that come closest to

observations (CESM2, CMCC-ESM2, GFDL-ESM4, MPI-ESM1-2-HR) all have historical

simulations that underestimate the SAODI-rainfall relationship. Ten models (NorESM2-LM,

CAS-ESM2-0, E3SM-1-1-ECA, AWI-CM-1-1-MR, MP-ESM1-2-LR, FGOALS-f3-L, IITM-

ESM, E3SM-1-0, E3SM-1-1, GISS-E2-1-G) have a negative rainfall response in their historic

simulations, while all but two models (AWI-CM-1-1-MR and MPI-ESM1-2-LR) have future

projections with a positive sign (Fig. 14). Notably, the two multi-model means (mmm and

mmm2) simulated an increase in rainfall response to SAOD under SSP585 scenario.

Guinea Coast

The observed magnitude of Guinea Coast rainfall response to the SAOD in this region is β =

0.38  mm/day.  The  models  with  historic  simulations  that  come  closest  to  observation

(NorESM2-LM,  CMCC-ESM2 and  FIO-ESM-2-0)  show an  increase  in  rainfall  anomaly

forced by SAOD in their projected simulations (Fig. 15). Only one model (NorESM2-LM)

overestimates its historic simulation of rainfall response to SAOD influence. 13 models show

an  inverse  SAOD-rainfall  relationship  (negative  coefficient,  β<0)  in  their  historical

simulation; GISS-E2-1-G, FGOALS-f3-L, IITM-ESM, ACCESS-CM2, FGOALS-g3, MRI-

ESM2-0,  CanESM5,  GISS-E2-1-H,  INM-CM5-0,  IPSL-CM6A-LR,  GFDL-ESM4,  INM-

CM4-8, and TaiESM1. Of these,  the first  six show a similar  negative  regression in their

projections while the last seven have future projections with positive sign albeit to varying

degrees. Here the model ensemble mean (mmm) indicated an increase of SAOD influence on

rainfall under SSP585 (Fig. 15).
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Figure 15: Regression of rainfall anomalies on normalized SAOD for Guinea Coast showing historical (blue
bars) and projected (red bars) simulations. Observations is represented as the dotted horizontal line. Obs stde
= Standard error of observations. The black error bars indicate the model standard error.

Figure 14: Regression of rainfall anomalies on normalized SAOD for Northern Amazon showing historical
(blue bars) and projected (red bars) simulations. Observations is represented as the dotted horizontal line.
Obs stde = Standard error of observations. The black error bars indicate the model standard error.



Central Africa

For Central  Africa,  the observed regression coefficient β = 0.19. Eight models’ historical

simulations  are  closest  to  observation;  CESM2,  FIO-ESM-2-0,  KACE-1-0-G,  E3SM-1-1,

INM-CM4-8, CMCC-CM2-SR5, MIROC6, and MPI-ESMI-2-HR. The first four in this list

have projections that indicate reduced rainfall response to SAOD in the future. On the other

hand, two of the models (INM-CM4-8 and CMCC-CM2-SR5) have future simulations that

show an increase in rainfall anomaly response to SAOD, while the last two on the list have

projected simulations that show an opposite sign (negative coefficients).  Notably,  the two

multi-model  means  (mmm  and  mmm2)  also  have  historical  simulations  close  to  the

observation, with both showing future decrease in rainfall anomaly response to SAOD (Fig.

16). 15 models’ historical simulations overestimate the observed rainfall response to SAOD.

They  include  CESM2,  FIO-ESM-2-0,  KACE-1-0-G,  CMCC-CM2-SR5,  E3SM-1-1,  EC-

Earth3,  E3SM-1-0,  BCC-CSM2-MR,  CMCC-ESM2,  E3SM-1-1-ECA,  ACCESS-CM2,

NorESM2-MM,  FGOALS-g3,  EC-Earth3-CC,  ACCESS-ESM1-5  (Fig.  16).  For  most  of

these models, however, their projected simulations indicate a decrease in rainfall response to

SAOD – notably CMCC-ESM2, ESM-1-1, EC-Earth3 have projections almost equal to the

observed value. Only four models (GISS-E2-1-G, GFDL-ESM4, GISS-E2-1-H, CanESM5)

indicate  a  negative-sign  coefficient  in  their  historical  simulations  while  there  are  six

projection simulations with the negative sign (AWI-CM-1-1-MR, GISS-E2-1-G, GISS-E2-1-

H, MIROC6, MPI-ESM1-2-HR, and NESM3).

South East Brazil

SAOD has an observed inverse influence on rainfall anomaly in this region ( β = -0.12) (Fig.

17).  Most  of  the  models’  historical  simulations  significantly  underestimate  this  observed

inverse  SAOD-rainfall  relationship.  Moreover,  14  models  (CanESM5,  E3SM-1-1-ECA,

INM-CM4-8,  E3SM-1-1,  MPI-ESM1-2-HR,  IPSL-CM6A-LR,  GISS-E2-1-H,  EC-Earth3,

FGOALS-f3-L,  CAS-ESM2-0,  KACE-1-0-G,  TaiESM1,  GISS-E2-1-G,  and  IITM-ESM)

have  historic  simulations  with  an  opposite  sign  to  observations.  Two  models’  historic

simulations are closest to observation namely ACCESS-CM2 and ACCESS-ESM1-5. While

the former overestimates its historical simulation, with its projection indicating a reduction in

the rainfall  response to SAOD, the latter  underestimates  its historic  simulation and has a

projection with a positive sign in contrast to observations (Fig. 17). The projected simulations

show a spread in model behaviour. Some model projections are very close to observations
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(MPI-ESM1-2-HR, EC-Earth3-CC), while other models (NESM3, ACCESS-ESM1-5, IPSL-

CM6A-LR, FIO-ESM-2-0, NorESM2-0, KACE-1-0-G, MPI-ESM1-2-LR, E3SM-1-1, INM-

CM5-0, TaiESM1, CAS-ESM2-0, FGOALS-f3-L, GISS-E2-1-H, NorESM2-MM, CESM2-

WACCM, GISS-E2-1-G, CESM2, MIROC6, IITM-ESM), and the two multi-model means

(mmm and mmm2) have positive sign coefficients in the future (Fig. 17). Generally speaking,

models’ performance is poorest in this region. 
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Figure  16: Regression of rainfall anomalies on normalized SAOD for Central Africa showing historical
(blue bars) and projected (red bars) simulations. Observations is represented as the dotted horizontal line.
Obs stde = Standard error of observations. The black error bars indicate the model standard error.



4.2.3 A weakening of the SAOD impacts on regional rainfall under SSP585
Here  we  grouped  the  CMIP6  ensemble  according  to  their  performance,  relative  to

observations, in simulating the historical SAODI–rainfall relationship in each region. Three

categories were defined;

 Category  1:  Models  with  the  same  sign  of  correlation  as  observations  and  also

statistically significant (p < 0.05). The Category 1 models are considered the best performing

and most realistic models in simulating the SAOD–rainfall relationship in a region.

 Category 2: Models with same sign of correlation as observations but not statistically

significant. These models are in the intermediate performance category.

 Category  3:  Models  with  an  opposite  sign  of  correlation  from  observations,

representing the worst performing models for the respective regions.

First, we categorized the models using the historical ensemble. Second, we used the models

in each category to construct the ensemble mean in historical simulation. Finally, we matched

this  historical  ensemble mean with the SSP585 ensemble  mean for  each region.  In what

follows, we present an assessment of the projections of the SAOD-regional rainfall in the
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Figure 17: Regression of rainfall anomalies on normalized SAOD for South East Brazil showing historical
(blue bars) and projected (red bars) simulations. Observations is represented as the dotted horizontal line. Obs
stde = Standard error of observations. The black error bars indicate the model standard error.



realistic models (that is, Category 1 models). The unrealistic models (Categories 2 and 3) are

shown in the Appendix section for reference5.

Focusing on Category 1, Central  Africa had 23 models (52%) in Category 1, the highest

among the regions, including E3SM-1-1, CMCC-CM2-HR4, E3SM-1-1-ECA, BCC-CSM2-

MR, ACCESS-CM2, E3SM-1-0, EC-Earth3-AerChem, CESM2, INM-CM4-8, FGOALS-g3,

MIROC6,  IITM-ESM,  INM-CM5-  0,  MPI-ESM1-2-HR,  KACE-1-0-G,  EC-Earth3,  FIO-

ESM-2-0,  CMCC-CM2-SR5,  EC-Earth3-CC,  CMCC-ESM2,  SAM0-UNICON,  ACCESS-

ESM1-5, and NorESM2-MM. This was followed by the Northern Amazon which had 15

models  (34%)  (MRI-ESM2-0,  CMCC-CM2-SR5,  IPSL-CM6A-LR,  CanESM5,  CMCC-

ESM2,  MPI-ESM1-2-HR,  NorESM2-MM,  INM-CM5-0,  NorCPM1,  FIO-ESM-2-0,  EC-

Earth3-CC, ACCESS-ESM1-5, EC-Earth3,  MIROC6, and GISS-E2-1-H) and then Guinea

Coast  with  seven  models  (16%)  (FIO-ESM-2-0,  CMCC-ESM2,  NorESM2-LM,  CMCC-

CM2-SR5, ACCESS-ESM1-5, SAM0-UNICON, and NorESM2-MM). On the other  hand,

South East Brazil exhibited the overall worst performance with only three models (7%) in

Category  1 (ACCESS-CM2, GFDL-ESM4, ACCESS-ESM1-5).  Notably,  only  one  model

(ACCESS-ESM1-5)  performs well  in  all  regions,  while  three  models  (CMCC-CM2-SR5,

CMCC-ESM2, NorESM-MM) perform well  in three of the regions with the exception of

South East Brazil.

Figure 18 shows the ensemble mean of the historical and SSP585 projected simulations of

Category 1 (best performing) models (Cat1EnsMean) in each region. For Northern Amazon,

the Cat1EnsMean for the historical period (0.25 mm/day) underestimates the rainfall response

to SAOD when compared with observations (0.31 mm/day). For Central Africa, historical

Cat1EnsMean simulates a stronger influence of SAOD on rainfall anomaly (0.22 mm/day)

when  compared  to  observations  (0.188  mm/day),  while  the  historical  Cat1EnsMean  of

Guinea  Coast  (0.32  mm/day)  and  South  East  Brazil  (-0.10  mm/day)  is  lower  than  the

observed  rainfall  response  to  SAOD  (0.38  mm/day  [Obs]  and  -0.12  mm/day  [Obs],

respectively). Notably, only the historical simulation for Guinea Coast falls outside the 95%

confidence  level  when  compared  to  observations,  suggesting  a  statistically  significant

underestimation.  The SSP585 Cat1EnsMean’s  indicate  a  decrease  of SAOD influence  on

rainfall anomaly in all the regions - Northern Amazon (0.19 mm/day), Central Africa (0.15

mm/day),  Guinea  Coast  (0.29  mm/day),  and  South  East  Brazil  (-0.03  mm/day)  –  when

5 See ensemble mean of Category 2 & 3 with full list of models in each category in Appendix – figs. A4,
A5 and Table 2.
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compared  to  their  respective  observations  and  historical  simulations.  This  decrease  is

statistically significant (compared to Observations) in all the regions except in Central Africa

(Fig. 18). The future scenario considered in this study (SSP585) connotes high GHG forcing.

Hence the best performing models  in each region show a future where increase in GHG

forcing would result in a weakening of SAOD influence on rainfall over land areas adjacent

to the South Atlantic region.
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Figure 18: Ensemble mean of Category 1 models in each region. Blue error bars on Observations indicate the
standard error for Observations at 95% confidence level. Historical and SSP585 bars that overlap with the error
bars are not significantly different from Observations, while bars that fall beyond the error bars are significantly
different from Observations. 



5. Discussion
Our study evaluated the impact of SAOD on rainfall over adjacent continental areas in the

South Atlantic  region during the austral  winter,  and assessed the performance of CMIP6

models  in  representing  this  SAOD-rainfall  relationship  in  the  region.  Correlation  and

regression  analyses  were  performed  between  normalized  SAODI  and  regional  rainfall

anomalies using data from observations and outputs from 44 CMIP6 models. We considered

two scenarios – historical (1950 - 2014) and SSP585 projections (2015 – 2079) – in order to

glean the model projections of future changes in the SAOD-rainfall relationship. Results from

observations point to a strong statistically significant influence of SAOD on rainfall over four

regions in Africa – Guinea Coast and Central Africa, and South America – Northern Amazon

and South East Brazil – with Guinea Coast showing the strongest rainfall response to SAOD

(β = 0.38 mm/day), while the weakest rainfall response was over South East Brazil (β = -0.12

mm/day).  The correlation and regression analysis of individual models revealed a spread in

model behavior across the regions. SAODI-rainfall regression analyses for the SSP585 future

scenario using the ensemble of best performing models in each region indicated a reduction

in rainfall response to SAOD influence across all the regions. 

The observed SAODI-rainfall relationship here is consistent with previous studies that used

different periods including Nana et al. (2023); based on 1981 - 2018, Nnamchi et al. (2013);

based on 1950 - 2010, and Nnamchi & Li (2016); based on 1959 - 2009. Nnamchi et al.

(2013) demonstrated the significant impact of SAOD on rainfall anomalies over the Guinea

Coast, while Nana et al. (2023) identified statistically significant correlations between SAOD

and rainfall in southwestern Central Africa, which coincides with the Central Africa domain

defined in our study. During positive SAOD events,  increased  rainfall  is  associated  with

increased moisture convergence in the lower layers of the troposphere over the NEP which

strengthens the upward motion occurring over the equatorial Atlantic region leading to the

convergence of mass on a large scale that extends towards the coastal areas  (Nana et al.,

2023; Nnamchi et al., 2013).

Rainfall variability in the Amazon region is known to be primarily influenced by the ENSO

(Espinoza et al., 2011; Latif & Keenlyside, 2009; Liebmann & Marengo, 2001), while SST

anomalies in the tropical Atlantic also play a role (Baker et al., 2001; Marengo, 2004). The

observed  correlation  between  the  SAOD and  rainfall  over  the  Northern  Amazon  during
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austral  winter  in  our study is  r  = 0.48 [Obs].  This translates  to 23% explained variance,

suggesting the roles of other influences including ENSO, which is not explicitly accounted

for in our analysis. 

Model simulations of the SAOD-rainfall correlation in our study reveals variations in model

behavior across the different regions. While the model performance was generally acceptable

for  Central  Africa  and  Northern  Amazon  (52%  and  34%  of  models  perform  well,

respectively), it was less satisfactory for the Guinea Coast (16%) and South East Brazil (7%),

where more than 40% of the models simulated a correlation sign opposite to observations in

both regions. 

Previous research by  Yang & Huang (2023) has suggested that CMIP6 models' ability to

simulate better rainfall-SST correlations in the tropics depends on accurate representation of

climatological  precipitation  in  the  region.  Nonetheless,  several  studies  evaluating  CMIP6

model  performance  in  various  regions  have  pointed  to  deficiencies  in  simulating  rainfall

variability  (Almazroui, 2020; Firpo et al., 2022; James et al., 2018; Yang et al., 2021). In

Africa, this deficiency has been attributed to an erroneous southward shift of the ITCZ during

the MAM season (James et al., 2018; Richter & Tokinaga, 2020), which could explain the

generally poor performance of the CMIP6 models over the Guinea Coast in our study. While

increasing spatial resolution has shown some improvement in rainfall simulations over West

Africa  (Ajibola et al., 2020), it has not led to a significant breakthrough  (Exarchou et al.,

2018; Richter & Tokinaga, 2020).  Lyon (2022) even found that CMIP6 models' ability to

represent rainfall in the Greater Horn of Africa depended more on the adequate simulation of

climatological SST than spatial resolution.

CMIP6 models generally provide adequate simulations of SST variability in the tropical and

subtropical  Atlantic  (Nnamchi et  al.,  2017; Richter  & Tokinaga,  2020), despite persisting

biases, notably the eastern tropical  Atlantic  warm bias  (Exarchou et  al.,  2018; Richter  &

Tokinaga, 2020; Wang et al., 2022). Weber et al. (2023) studied the influence of the regional

atmosphere–ocean  coupling  on  simulated  rainfall  and  its  characteristics  over  Africa  and

showed that reduced SST warm biases in the eastern tropical Atlantic Ocean contributes to a

more  realistic  simulation  of  rainfall  over  most  coastal  regions  of  West  Africa  and  over

southern Africa. Persistent SST biases in many CMIP6 models over the central equatorial and

northern Pacific have been shown to impair their ability to simulate teleconnections between

the Indo-Western Pacific Ocean Capacitor mode and the Indian summer monsoon (Darshana
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et al., 2022), emphasizing the profound impact of SST biases on CMIP6 models' ability to

simulate air-sea interactions. 

In regions like the Guinea Coast and South East Brazil, the fact that many models exhibit

erroneous representations of rainfall response to SAOD could be attributed to a variety of

factors.  Over  the Guinea Coast,  inadequate  simulation  of  convective  processes may be a

major contributing factor. On the other hand, over South East Brazil, convective processes

are not important during JJA as this is the dry season of the region. In this case, poor model

performance could be attributed to a deficiency in simulating the frequency, intensity and

trajectory of extratropical processes that are known to have substantial influence on rainfall

variability  in  South  East  Brazil  during  JJA  (Reboita  et  al.,  2021).  Further  analyses  and

experiments  are  required  to  confirm  these  hypotheses.  Nevertheless,  our  study  shows  a

diverse behavior of CMIP6 models in representing the impacts of SAOD on regional rainfall

variability,  and  it  is  recommended  to  improve  the  parametrization  of  local  convective

processes and extratropical factors influencing rainfall in these models (James et al., 2018;

Richter & Tokinaga, 2020).

While  the  ensemble  mean of  all  the  models  showed an  increase  in  SAOD influence  on

rainfall under SSP585 in three of the four regions – Northern Amazon, Guinea Coast and

South East Brazil (Fig 13(c)), the simulations of the best performing models in each region

indicated a weakening of SAOD influence on rainfall variability in all regions under the high

GHG emission. This weakening is statistically significant in all the regions except in Central

Africa  (see  Fig.  18).  Notably  some  of  the  best  performing  models  in  each  region  also

simulate  an increase in rainfall  response to SAOD under SSP585 (see Figs.  14-17). This

diversity in model behavior further highlights the deficiencies of CMIP6 models, but also

suggests a change in rainfall patterns over the regions. This, in turn, can have substantial

implications for the already stressed socio-ecological landscape in the considered regions,

affecting  agricultural  practices  (Hansen,  2005),  water  and  energy  resource  management

(Conway et al., 2017), and even health (Thomson et al., 2017). Although our study does not

consider  other  projection  scenarios  (e.g.,  SSP126,  SSP245,  SSP370),  lower  emission

trajectories  have  been  shown  to  result  in  reduced  future  changes  in  rainfall  patterns

(Almazroui  et  al.,  2021). Hence,  our results  underscore the importance of reducing GHG

emissions to mitigate the impacts of climate change.

It is essential to acknowledge that this study is limited by its focus on the simulation of the

SAOD-rainfall relationship over the adjacent continental areas and does not delve into the
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causes of the observed deficiencies. Also, other oceanic modes of variability that influence

rainfall,  such as the ENSO, are not considered here in terms of their  connection with the

SAOD-rainfall relationship. Further research should therefore involve process analysis that

would  shed  more  light  on  the  mechanisms  underlying  the  varying  individual  model

performances observed in each region, and the possible impacts of other modes of variability

on the SAOD influence on rainfall, particularly in the SSP585 scenario. 
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6. Conclusion
The South Atlantic region experiences various modes of climate variability, which are shifts

from the average conditions and occurring at different timescales. Among these modes, the

SAOD stands out as the leading mode of variability with profound impacts on the climatic

conditions of the region, particularly on rainfall patterns over the land areas (Bombardi et al.,

2014b; Nana et  al.,  2023;  Nnamchi  et  al.,  2013).  The land regions in  the South Atlantic

considered in this study are highly sensitive to rainfall fluctuations, as changes in rainfall can

evidently affect the livelihoods of the local populations and critical ecosystems. Hence, it is

crucial to use models that can accurately simulate and predict the interannual variations in

rainfall for these regions. In light of the observed influence of SAOD on regional rainfall, our

study evaluated the performance of CMIP6 models in capturing the significant interannual

fluctuations  between  SAOD and  rainfall  during  the  austral  winter  in  the  South  Atlantic

region.

Analyses of SAOD-regional rainfall relationship in observations revealed that the SAOD has

strong influence on rainfall  over four regions; two in  Africa – Guinea Coast and Central

Africa, and two in South America – Northern Amazon and South East Brazil.  The CMIP6

ensemble historical simulations of the SAOD-rainfall correlation was better in some regions

(Central  Africa  and  Northern  Amazon)  than  in  the  others  (Guinea  Coast  and  Southeast

Brazil). Correlation analysis of individual models showed a spread in performance across the

regions.  We  then  categorized  the  model  performance  into  three  groups:  Category  1

represented  the  best-performing  and  realistic  models,  Category  2  included  intermediate

models, and Category 3 encompassed the least performing models with significant deviations

from observations.  Regression  analyses  for  a  future  scenario  with  increasing  greenhouse

forcing  showed  mixed  results:  the  multimodel  ensemble  mean  indicated  an  increase  of

rainfall  response  to  SAOD in  three  of  the  regions  while  the  ensemble  mean  of  the  best

performing models indicated a reduction in rainfall response to SAOD influence. 

In conclusion, this study reaffirms the significant impact of SAOD on rainfall variability in

adjacent land areas of the South Atlantic and emphasizes the need to enhance CMIP6 models'

capability to simulate this relationship. Furthermore, our results suggest that if greenhouse

gas  emissions  remain  uncontrolled,  future  rainfall  patterns  could  be  altered  with

unpredictable consequences for the affected regions.
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7. Recommendations
Based on the findings of this study, the following recommendations are proposed:

1. Conduct further studies focusing on the process analyses of each model to identify possible

reasons for their varied performance relative to observations.

2. The SAOD has strong influence on rainfall in parts of Africa and South America and this

connection  demands  more  attention  particularly  with  respect  to  improving  the  seasonal

rainfall predictions in the regions.

3. Strengthen ongoing global efforts to mitigate greenhouse gas emissions and, especially in

West  and  Central  Africa,  increase  awareness  and  promote  adaptation  measures  where

changes  in  rainfall  patterns  have  already  resulted  in  catastrophic  events  such as  extreme

droughts and floods.

4. Carry out further investigations into the implications of the reduced rainfall response to

SAOD and its impacts on seasonal rainfall predictability over the affected countries.
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Figure  A1: Mean  Sea  Surface  Temperature  (SST)  in  the  South  Atlantic  for  the  historical  period  under
consideration (1950 – 2014). Map is generated from global HadISST data.

Figure A2: Mean Sea Level Pressure (SLP) in the South Atlantic region for the period of 1950 – 2014. The
mean position of the St. Helena Anticyclone is indicated (Box).
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Figure A3: Schematic of major current systems in the South Atlantic region. Red arrows indicate generally
warmer water currents; blue arrows indicate generally cooler water currents. (source: Muller-Karger et al., 2017)

Figure A4: Ensemble mean of Category 2 models in each region. Standard error for observations are indicated.



Table A6:  Models Categorized according to performance in each region

CATEGORY 1

Northern_Amazon Central_Africa Guinea_Coast SE_Brazil

1 MRI-ESM2-0 E3SM-1-1 FIO-ESM-2-0 ACCESS-CM2

2 CMCC-CM2-SR5 CMCC-CM2-HR4 CMCC-ESM2 GFDL-ESM4

3 IPSL-CM6A-LR E3SM-1-1-ECA NorESM2-LM ACCESS-ESM1-5

4 CanESM5 BCC-CSM2-MR CMCC-CM2-SR5

5 CMCC-ESM2 ACCESS-CM2 ACCESS-ESM1-5

6 MPI-ESM1-2-HR E3SM-1-0 SAM0-UNICON

7 NorESM2-MM EC-Earth3-AerChem NorESM2-MM

8 INM-CM5-0 CESM2

9 NorCPM1 INM-CM4-8

10 FIO-ESM-2-0 FGOALS-g3

11 EC-Earth3-CC MIROC6

12 ACCESS-ESM1-5 IITM-ESM
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Figure A5: Ensemble mean of Category 3 models in each region. Standard error for observations are indicated.



13 EC-Earth3 INM-CM5-0

14 MIROC6 MPI-ESM1-2-HR

15 GISS-E2-1-H KACE-1-0-G

16 EC-Earth3

17 FIO-ESM-2-0

18 CMCC-CM2-SR5

19 EC-Earth3-CC

20 CMCC-ESM2

21 SAM0-UNICON

22 ACCESS-ESM1-5

23 NorESM2-MM

CATEGORY 2

Northern_Amazon Central_Africa Guinea_Coast SE_Brazil

1 SAM0-UNICON MPI-ESM-1-2-HAM E3SM-1-1-ECA MESM3

2 FGOALS-g3 CESM2-WACCM EC-Earth3-CC FIO-ESM-2-0

3 CESM2-WACCM CAS-ESM2-0 MCM-UA-1-0 CMCC-ESM2

4 KACE-1-0-G MRI-ESM2-0 BCC-CSM2-MR CESM

5 TaiESM1 MCM-UA-1-0 E3SM-1-1 EC-Earth3-AerChem

6 GISS-E2-1-G-CC NESM3 CAS-ESM2-0 EC-Earth3-CC

7 CESM2 IPSL-CM6A-LR MPI-ESM1-2-HR MRI-ESM2-0

8 GFDL-ESM4 FGOALS-f3-L CMCC-CM2-HR4 CMCC-CM2-SR5

9 AWI-ESM-1-1-LR NorCPM1 NESM3 MPI-ESM-1-2-HAM

10 EC-Earth3-AerChem MPI-ESM1-2-LR CESM2 NorESM2-MM

11 MPI-ESM-1-2-HAM AWI-CM-1-1-MR MIROC6 AWI-CM-1-1-MR

12 BCC-CSM2-MR BCC-ESM1 CESM2-WACCM CAMS-CSM1-0

13 CMCC-CM2-HR4 NorESM2-LM MPI-ESM1-2-LR INM-CM5-0

14 BCC-ESM1 TaiESM1 AWI-CM-1-1-MR BCC-CSM2-MR

15 CAMS-CSM1-0 CAMS-CSM1-0 EC-Earth3 FGOALS-g3

16 INM-CM4-8 KACE-1-0-G CESM2-WACCM
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17 NESM3 E3SM-1-0 E3SM-1-0

18 ACCESS-CM2 CAMS-CSM1-0 MIROC6

19 NorESM2-LM

20 MPI-ESM1-2-LR

CATEGORY 3

Northern_Amazon Central_Africa Guinea_Coast SE_Brazil

1 GISS-E2-1-G GFDL-ESM4 TaiESM1 CanESM5

2 E3SM-1-1 AWI-ESM-1-1-LR INM-CM4-8 CMCC-CM2-HR4

3 E3SM-1-0 GISS-E2-1-G MPI-ESM-1-2-
HAM AWI-ESM-1-1-LR

4 MCM-UA-1-0 GISS-E2-1-H MRI-ESM2-0 E3SM-1-1-ECA

5 IITM-ESM GISS-E2-1-G-CC BCC-ESM1 INM-CM4-8

6 E3SM-1-1-ECA CanESM5 GFDL-ESM4 MPI-ESM1-2-HR

7 AWI-CM-1-1-MR GFOALS-g3 EC-Earth3

8 FGOALS-f3-L IPSL-CM6A-LR CAS-ESM2-0

9 MPI-ESM1-2-LR CanESM5 BCC-ESM1

10 NorESM2-LM INM-CM5-0 SAM0-UNICON

11 CAS-ESM2-0 GISS-E2-1-G-CC IPSL-CM6A-LR

12 EC-
Earth3_AerChem KACE-1-0-G

13 GISS-E2-1-H E3SM-1-1-ECA

14 FGOALS-f3-L FGOALS-f3-L

15 ACCESS-CM2 IITM-ESM

16 IITM-ESM GISS-E2-1-H

17 NorCPM1 NorCPM1

18 GISS-E2-1-G TaiESM1

19 AWI-ESM-1-1-LR GISS-E2-1-G

20 MCM-UA-1-0

21 GISS-E2-1-G-CC
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Data availability 

Observations datasets for SST and rainfall were obtained from the UK Met Office Hadley

Centre  website  (https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html)  and  the

Deutscher  Wetterdienst  (DWD,  National  Meteorological  Service  of  Germany)  website

(https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-

monthly_v2022_doi_download.html),  respectively  while  CMIP6  model  outputs  were

obtained  from  the  German  Climate  Computing  Centre  (DKRZ)  supercomputer  database

(https://esgf-data.dkrz.de/projects/cmip6-dkrz/).

All data files used in this work are freely available via their respective websites.

66

https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html


www.uta.cv


	Publications list
	Financial support
	Dedication
	Acknowledgements
	Resumo
	Abstract
	Abbreviations and acronyms
	List Of Contents
	Figure index
	Tables index
	1. Introduction
	1.1 Objectives of the Study

	2. Literature Review
	2.1 Modes of Variability in the South Atlantic
	2.2 SAOD versus SASD
	2.3 Impacts of South Atlantic variability on Regional Climate
	2.4 Modeling of the South Atlantic modes of variability and their impacts

	3. Materials and Methods
	3.1 Study Region
	3.2 Data collection and description
	3.3 Data analyses

	4. Results
	4.1 Evaluation of the SAOD-rainfall relationship in CMIP6 historical ensemble 1950-2014
	4.1.1 SAOD Timeseries from Observations and CMIP6 historical ensemble
	4.1.2 Relationship between the SAOD and Rainfall map in Observations and CMIP6 historical ensemble
	4.1.3 Relationship between the SAODI and rainfall indices in the CMIP6 historical ensemble

	4.2 Projections of the SAOD-Rainfall relationship in CMIP6 SSP585 ensemble (2015-2079)
	4.2.1 Spatial pattern of the projected SAOD-rainfall relationship
	4.2.2 Projections of SAOD impact on the regionally-averaged rainfall
	4.2.3 A weakening of the SAOD impacts on regional rainfall under SSP585


	5. Discussion
	6. Conclusion
	7. Recommendations
	8. References
	Appendix
	Data availability

