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ABSTRACT 

 

The massive use of fossil fuels due to strong industrialization and exponential population 

growth is the cause of human-made climate change and its unprecedented devastating 

environment benign, necessitating an immediate energy transition to renewable energy 

technologies. In this context, green hydrogen, seen as a fuel and a means of storing energy, 

represents an important option for an effective energy shift. With the aim of large scale 

hydrogen production and storage, significant efforts have been made in the field of material 

science to enable the development of economically viable proton exchange membrane (PEM) 

electrolyzers. 

However, water electrolyzers suffer from performance loss due to the formation and 

accumulation of oxygen bubbles at the anodic side. Understanding the processes involving 

bubbles and their impact on transport and reaction properties is crucial for optimizing PEM 

electrolyzers. Manual analyses of bubble distributions turn out to be inefficient, unreliable and 

expensive. 

In this master science work, I have tackled the manual-analysis-related problem by making use 

of deep learning to develop reliable, less expensive  and rapid approach to analyse bubble area 

distributions. The work encompassed the training and evaluation of a Unet (2D) model on a 

collection of 35 manually annotated images (at a scale of 25 mm)  for semantic segmentation, 

followed by the analysis of bubble area distributions. The results obtained demonstrate good 

model performance and robustness.  

 

Keywords: Artificial intelligence, deep learning, oxygen bubble dynamics, autonomous 

analysis, proton exchange membrane electrolyzers. 

  



v 

 

RÉSUMÉ 

 

L'utilisation massive d'énergies fossiles due à une forte industrialisation et à une croissance 

démographique exponentielle est à la source du changement climatique d'origine humaine et 

de ses conséquences environnementales dévastatrices sans précédent, nécessitant une transition 

énergétique immédiate vers les technologies d'énergie renouvelable. Dans ce contexte, 

l'hydrogène vert, considéré à la fois comme un carburant et un moyen de stockage d'énergie, 

représente une option importante pour un changement énergétique efficace. Dans le but de 

produire et de stocker de l'hydrogène à grande échelle, d'importants efforts ont été déployés 

dans le domaine de la science des matériaux pour permettre le développement d'électrolyseurs 

à membrane échangeuse de protons (PEM) économiquement viables. 

 

Cependant, les électrolyseurs d'eau souffrent d'une perte de performance en raison de la 

formation et de l'accumulation de bulles d'oxygène du côté anodique. Comprendre les 

processus impliquant ces bulles et leur impact sur les propriétés de transport et de réaction est 

crucial pour optimiser les électrolyseurs PEM. Les analyses manuelles des distributions de 

bulles se révèlent inefficaces, peu fiables et coûteuses. 

 

Dans ce travail de master, j'ai abordé ce problème en utilisant l'apprentissage profond pour 

développer une approche fiable, moins coûteuse et rapide pour analyser les distributions de 

surface des bulles. Le travail a englobé l‘entraînement et l'évaluation d'un modèle UNet (2D) 

sur une collection de 35 images annotées manuellement (à une échelle de 25 mm) pour la 

segmentation sémantique, suivie de l'analyse des distributions de surface des bulles. Les 

résultats obtenus démontrent de bonnes performances et une robustesse du modèle. 

 

Mots-clés : Intelligence artificielle, apprentissage profond, dynamique des bulles d'oxygène, 

analyse autonome, électrolyseurs à membrane échangeuse de protons.  
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GENERAL INTRODUCTION  

The widespread use of fossil fuels such as coal, natural gas, and oil, coupled with the ever-

increasing world population since the industrial revolution, has led to climate change, depletion 

of fossil fuel reserves, health problems, and an increase in fossil fuel prices. The emission of 

greenhouse gases, particularly carbon dioxide, has several detrimental effects on human health, 

wildlife, trees, the environment, and the economy [1–2].  It is undeniable that the transportation 

sector is one of the primary industries responsible for  a substantial rise in carbon emissions. 

This sector contributes approximately 13.5% to global warming [3], making it a major source 

of pollution. The transition to cleaner energy conversion and storage technologies is crucial in 

addressing  the global challenges related to climate, health and economy.  

In recent decades, significant progress has been made in the development of solar and wind 

technologies for renewable energy production. Solar panels and wind turbines are primarily 

integrated into the power sector to promote green initiatives [4]. However, it should be noted 

that both  solar and wind technologies suffer from intermittency issues (solar panels do not 

generate electricity at night or on cloudy days, and wind turbines do not produce electricity 

during periods of no wind), which limit their reliability. A study conducted by Sarker et al. [5] 

suggests that hydrogen-based storage energy provides a viable solution to overcome the 

inconsistency associated with solar and wind energy. To achieve success in this endeavor, the 

successful deployment of proton exchange membrane (PEM) water electrolyzers is crucial. 

These electrolyzers offer rapid dynamic response and high energy efficiency enabling 

hydrogen production through water electrolysis [6].  

Recent research suggests that the efficiency of PEM water electrolysis, a sustainable process 

for converting electricity into hydrogen and oxygen, is adversely affected by the accumulation 

of oxygen bubbles on the anode electrocatalyst layer [7–8]. Understanding the behavior of 

oxygen bubbles is thus crucial for optimizing the performance of PEM water electrolyzers [8]. 

However,  the current method of analyzing bubble images manually is  time-consuming, 

unreliable, and expensive [9]. Continuous efforts are underway in the field of research and 

development to automate the image analysis.  

The primary goal of this thesis is to perform a deep learning-based analysis of images 

containing oxygen bubbles. The work encompasses two key aspects: training a UNet (2D) 

model to conduct semantic segmentation of bubbles in the provided images and extracting 

bubble areas for further distribution analysis. 
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This master’s thesis is divided into three main chapters. Chapter 1 provides  a comprehensive 

review of existing literature. Chapter 2 describes the materials and methods employed in this 

study. Lastly, chapter 3 focuses on presenting the results obtained and discussing their 

implication.
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CHAPTER 1: LITERATURE REVIEW 

In this chapter, we conduct a review on the existing literature pertaining to the historical 

development of PEM electrolyzers, their operational principles and the dynamics of the oxygen 

bubbles formed, their current status in the field, and the ongoing challenges they face. 

Additionally, we provide a comprehensive review of the conventional bubble analysis 

approach and the emerging deep learning-based methods. 

1. PROTON EXCHANGE MEMBRANE ELECTROLYZERS 

1.1. HISTORY  

PEM electrolyzers, also known as Proton Exchange Membrane electrolyzers or Polymer 

Electrolyte Membrane electrolyzers, are a type of electrolysis technology used to produce 

hydrogen gas through water splitting. The development of PEM electrolyzers can be attributed 

to  advancements in fuel cell technology and the growing demand for efficient and eco-friendly 

methods of hydrogen production. The history of electrolyzers dates back to the discovery of 

electrolysis phenomenon in 1789 by Troostwijk and Diemann. This led to the development and 

refinement  of alkaline electrolyzers [10]. However, alkaline electrolyzers faced limitations 

such as limited operational range at low loads, constrained current density, and low operating 

pressure [10].  

In 1967, General Electric initiated the development of solid polymer electrolyte (SPE) 

electrolysis cells (Fig. 1.1). At that time, the maximum achievable current density was around  

150 amps/ft2, with  a voltage exceeding 2.0 V [11]. General Electric’s  pioneering work in 

utilizing a solid polymer electrolyte (now known as polymer electrolyte membrane), 

represented  a significant advancement in addressing the drawbacks associated with alkaline 

electrolyzers.  
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Fig. 1.1. SPE electrolysis cell schematic. 

 

In 1973, Russell et al.[10] conducted pioneering research on PEM electrolysis as part of their 

work at General Electric. Figure 1.2 shows voltage-current curves obtained from 1967 to 1972 

[10]. In the early stages of PEM water electrolysis development (1967), higher cell voltages 

(1.8 to 2 V) were needed to achieve current densities ranging from 0.125 to 0.150 Acm-2. 

However, as advancements were made in catalysts, membranes, and electrodes during 

subsequent years, the same current densities were achieved at lower cell voltages (1.45 to 1.55 

V in 1972), improving the performance of the PEM electrolyzers. 
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Fig. 1.2. Performances of PEM water electrolysis from 1967 to 1972. Cell at 48.8 degree 

Celsius and standard pressure [10]. 

Significant progress has been made in the development of PEM electrolyzers in recent years. 

In 2002, Onda and collaborators documented the first modeling of PEM electrolysis. They 

developed a two-dimensional simulation program to analyse PEM water electrolysis cells, 

incorporating conservation equations of mass, charge, and energy in both the water flow 

direction and perpendicular to the polymer film [12].  

As of 2022, Lin et al.[13] conducted an investigation into the performance of PEM 

electrolyzers with various flow field configurations. The best output performance was observed 

in a PEM electrolyzer utilizing a parallel flow field with a channel width of 1 mm. Operating 

at 60 °C and 0.1 bar anode pressure, this configuration achieved at a current density of 1 A/cm2 

a potential of 2.1 V [13]. 

Currently, PEM water electrolyzers find applications in various fields, including hydrogen 

generation for electricity storage, stationary power, and chemical production such as ammonia 

and methanol.  According to the International Energy Agency (IEA), the total installed capacity 

of PEM electrolyzers for the year 2023 is estimated to be 1,125 MW [14]. 
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1.2. Working Principle 

To gain a better understanding of the challenges associated with PEM electrolyzers, it is 

essential to familiarize oneself with the underlying working principle of this technology. A 

PEM water electrolyzer is an electrochemical device that utilizes an electrical current to split 

water molecules into hydrogen and oxygen molecules.  Fig. 1.1 provides a schematic 

illustration of a PEM water electrolysis cell.  

The electrolysis process in PEM electrolyzers is governed by two main reactions: the oxygen 

evolution reaction (OER), or water oxidation at the anode, and the hydrogen evolution reaction 

(HER) at the cathode. At the anode, water molecules decompose, resulting in the production 

of oxygen, protons, and electrons. The protons then migrate through the membrane and 

undergo reduction at the cathode, where they recombine with electrons to form hydrogen [15]. 

The formation of oxygen and hydrogen can be described by the following chemical equations,  

 

                           H2O (l)            ½ O2 (g) + 2H+ + 2e-     (anode)                                                      (1) 

 

                           2H+ + 2e-           H2 (g)                                 (cathode)                                                       (2)  

 

                           H2O (l)          H2 (g) + ½ O2 (g)          (overall)                                              (3) 

 

During operation of a PEM electrolyzer, the electrochemical process is irreversible, leading to 

electrode polarization and a deviation of the potential from equilibrium. This deviation, 

referred to as overpotential (η), added to the cell voltage, which is the sum of the thermoneutral 

(or equilibrium) voltage (Vth) and η. The overpotential (η) is composed of several contributions, 

including activation overpotential (ηact), ohmic overpotential (ηΩ), and mass transport 

overpotential (ηm), as depicted in Fig. 1.3.  
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Fig. 1.3. Description of the various losses associated with the operation of a PEM electrolysis 

cell [16].  

The processes underlying these contributions, collectively contribute to the complexity of the 

electrochemical device [15–17]. The ηact originates from contribution denoted as a specific step 

on a sequence of steps that control the overall reaction rate. ηact comprises two components: 

ηact,cath, which represents the activation at the cathode, and ηact,an, which represents the 

activation at the anode. On the other hand, ηΩ is due to the electrical resistance incurred by both 

electrons and ions, including the protonic resistance of the membrane. As the current density 

increases, ηΩ also increases, necessitating the minimization of the entire cell's resistance. 

Similarly, the ηm is closely linked to the current density as well. Furthermore, under high 

current density conditions, a large number of bubbles are generated in a short time span, which 

act as a shield over the active region and disrupt the contact between the electrode and 

electrolyte. As a consequence, the catalyst utilization rate decreases, resulting in an 

overpotential termed "bubble overpotential" (ηm,bub) [15]. 

A PEM water electrolysis cell consists of three essential components: the catalyst layer (CL), 

bipolar plate (BPP), and gas diffusion layer (GDL) [18], arranged in a sandwich configuration 

(Fig. 1.4). 
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Fig. 1.4. Main components of a PEM water electrolyzer [19].  

The bipolar plates and membrane electrode assembly enable the efficient conversion of 

electrical energy into hydrogen and oxygen gases within the PEM electrolysis cell. The 

followings provide additional details about these components. 

Bipolar Plates (BPPs) 

BPPs are an integral part of PEM water electrolyzer stacks, where multiple cells are connected 

in series. These plates serve several important functions, including facilitating mass transport, 

heat transfer, and electrical conductivity within the stack [20]. They provide structural support 

for the electrodes and membrane, ensuring uniform water distribution through flow fields. 

BPPs also conduct electrons between cells, establishing the electric circuit and connect adjacent 

cells in the stack.  They also contribute to thermal conduction for effective temperature 

management. Moreover, the cost for BPPs significantly impacts the overall manufacturing cost 

of PEM water electrolyzers. The term "bipolar plate" derives from its contact with the anode 

side of one cell and the cathode side of the adjacent cell [21]. Fig. 1.5 illustrates the positioning 

of the BPP within the PEM water electrolyzer stack. 
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Fig. 1.5. Stack structure of PEM water electrolyzer [21]. 

Membrane Electrode Assembly (MEA) 

The advancement of PEM water electrolysis technology relies on the continuous evolution of 

the device-level electrolyzer, which is heavily influenced by improvements in the smallest unit 

of the electrolysis cell called the membrane electrode assembly (MEA) [22]. The MEA is 

designed as a zero-gap cell, providing low ohmic resistance and efficient mass transport, 

resulting in higher energy efficiency at a reduced cost. However, for widespread 

commercialization, further enhancements are required in terms of MEA performance, cost, and 

durability [23–24]. As depicted in fig. 1.4, the MEA consists of three components: the gas 

diffusion layer (GDL), electrocatalyst layer (CL), and solid polymer electrolyte (SPE): 

The gas diffusion layer (GDL) serves as a vital component, positioned between the catalyst and 

flow field. Its main functions are to conduct heat and electrons, and facilitate the movement of 

reactants (liquid water) and products (oxygen and hydrogen) while minimizing activation, 

thermal, ohmic, interfacial, and fluidic losses. To achieve this, the GDL must offer 

Simultaneous gas and liquid permeability, enabling reactants access the reaction sites from 

flow fields, and products from reaction sites move into flow channels, which reduce their local 

concentration to improve the performance. It should also exhibit effective electrical and 
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thermal conductivity, facilitating electron flow away from the anodic reaction sites while 

providing a steady electron supply to cathodic reaction sites, ensuring optimal heat distribution. 

Additionally, the GDL requires robust interfacial and mechanical properties, including 

corrosion resistance and good contacts with the neighboring components like the bipolar plate 

and catalyst layer. All these requirements must be achieved without causing significant 

pressure drops in the flow channels [25]. 

The electrocatalyst layer (CL) serves as a site where multiple transport phenomena take place, 

including the transport of mass, electrons, and protons, all of these are essential for facilitating 

the electrochemical reactions. The CL is composed of a porous electrode structure that 

incorporates catalyst particles and an ionomer on the support material (Fig. 1.6). This ionomer 

not only functions as a binder to maintain the overall structure of the CL, but also forms a 

connected network for efficient proton transport. Additionally, the CL establishes stable 

interfaces between the solid catalyst particles and the liquid phase, creating active sites for 

electrocatalysis [26]. 

 

Fig. 1.6. A schematic illustration of a catalyst layer showing agglomerates of catalyst particles 

covered by Nafion ionomer, with primary pores inside the agglomerates and secondary pores 

between them [27].  
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The solid polymer electrolyte (SPE), also known as a polymer electrolyte membrane (PEM), 

is a polymeric film that facilitates the conduction of protons. It serves as an ionic conductive 

medium primarily in PEM water electrolyzers and PEM fuel cells. Perfluoro-sulfonated 

polymers, such as Nafion, are commonly utilized as the standard material for solid polymer 

electrolytes in conventional PEM systems, including the fuel cell technology [28]. Fig. 1.7 

illustrates the chemical formula of Nafion. 

 

 

Fig. 1. 7. Chemical structure of Nafion molecule with x= 6 and y= 1 [29]. 

 

1.3. Oxygen Bubble Formation and Dynamics 

Formation, growth and detachment of bubbles have received significant attention as 

researchers seek to unravel the complexities of two-phase flow phenomena occurring within 

PEM water electrolyzers. Inside a PEM water electrolyzer, oxygen bubbles form as a result of 

the oxygen evolution reaction (OER) taking place at the anode during the electrolysis process. 

Initially, the oxygen produced during OER dissolves in the water that covers the anode catalyst 

layer. However, due to substantial production of oxygen, the solubility limit of water is 

exceeded. This phenomenon, known as supersaturation, is responsible for the formation of 

oxygen bubbles [30]. 
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Nouri-Khorasani et al. [31] illustrated the dynamic formation of oxygen bubbles within the 

transport layer (PTL) and flow channel (Fig. 1.8). In this illustration, oxygen bubbles originate 

at the anode catalyst layer, progress through the pores of the PTL, and combine with 

neighboring bubbles at the interface where the PTL meets the flow channel. 

 

 

Fig. 1.8. Schematic of oxygen bubble growth in a PTL pore and flow channel [31]. 

 

The growth of oxygen bubbles within the pores of the PTL can be described in four sequential 

steps: 1. Oxygen bubble nucleation at the ACL-PTL interface. 2. The bubble undergoes 

spherical expansion within the pore of the PTL. 3. The bubble expands cylindrically along the 

PTL thickness. 4. Spherical expansion occurs through coalescence at the interface between the 

PTL and the flow channel [31]. The steps are illustrated in Fig. 1.9. At the cathode, the process 

of hydrogen bubble growth follows a similar mechanism to that observed for oxygen bubble 

growth on the anodic side.  
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Fig. 1.9. Schematic presenting the different steps of oxygen bubble growth inside PTL pores 

[31]. 

As the bubble size gradually increases, the forces exerted by the flowing water and the 

resistance encountered from the incoming flow become more pronounced. This dominance of 

flow-induced force and drag force eventually leads to the detachment of bubbles from the 

electrocatalyst surface. The growth rate of bubbles is influenced by both the current density 

and flow velocity. Higher current density results in larger bubble detachment diameters, while 

increased flow velocity results in smaller bubble detachment diameters [32].  

In contrast, the majority of hydrogen gas produced at cathode side can directly flow out the 

electrolysis cell without forming bubbles [7]. Hence, less emphasis is placed on the formation 

of hydrogen bubbles. Most of the bubbles are produced at the oxygen evolution reaction sites 

on the anode surface. 

1.4. State-Of-The-Art and Current Challenges 

In recent years, significant progress has been made in the development of PEM water 

electrolyzer technologies. These advancements have been characterized by the introduction of 

new cell components, configurations, and designs resulting in improved overall cell 

performance.  
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For instance, recently, Shi and colleagues developed a highly active and stable Ruthenium-

based OER catalyst (SnRuOx) which enables a cell voltage of 1.565 V at 1 A cm-2 and exhibits 

long-term stability over 1300 hours with a degradation rate of 53 μVh-1 [33]. 

In addition, the exploration of new types of electrocatalysts (such as nanostructured 

electrocatalysts, metal-free electrocatalysts, metal sulfide-based electrocatalysts, transition 

metal oxide-based electrocatalysts, noble metal oxide-based electrocatalysts, etc.) has revealed 

remarkable capabilities in terms of electrocatalytic activity [34].  

Despite tremendous efforts in advancing PEM water electrolyzers for large-scale 

implementation, there remain two major challenges that need to be addressed. The primary 

challenge is related to enhancing the oxygen evolution reaction [35]. The enhancement of OER 

leads to a substantial increase in the production of oxygen bubbles per unit volume and time, 

which accumulate and cover the surface of the anode catalyst layer. This bubble coverage 

results in several adverse effects, including low catalyst utilization as well as limitations in 

mass transport [7–31–36–37]. The second challenge pertains to the high cost of components 

used in PEM water electrolyzers such as bipolar plates or platinum-based and iridium-oxide-

based catalyst materials (currently at US$60,670 kg-1).  These expensive components 

contribute to the overall cost of the electrolyzer system [33–38–39]. Addressing these 

challenges is crucial for the further development and widespread commercialization of PEM 

water electrolyzer technology. 

2.  AUTOMATION OF IMAGE ANALYSIS 

2.1. Conventional Bubble Analysis Approach 

For many years, the analysis of bubbles has relied on established mathematical models and 

manual processing of a large number of images obtained from imaging modalities such as 

scanning electron microscopy (SEM), transmission electron microscopy (TEM), synchrotron 

radiography, X-ray tomography, and optical camera.  

While mathematical models provide valuable insights into bubble properties such as number 

of bubbles, bubble size, bubble distribution, and shape, they have their limitations. Firstly, these 

models often rely on simplified assumptions and idealized conditions [40–41], which may not 

fully capture the complexities of bubble behavior observed in real-world situations. Secondly, 
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mathematical modeling may struggle to accurately characterize merging bubbles, and may not 

adequately account for variations in bubble size and shape over time. 

Performing manual analysis on extensive imaging data presents significant challenges. It is a 

laborious and time-consuming task that often requires considerable effort to classify each 

image accurately. Furthermore, manual identification introduces the possibility of human error, 

leading to misidentification of bubbles. Lastly, the lack of reproducibility and consistency 

among different human inspectors results in varying outcomes [42]. 

2.2. Deep Learning-Based Approach  

The emergence of artificial intelligence (AI), particularly deep learning, has brought about 

significant disruption in various industries through the automation of complex and repetitive 

tasks. The field of materials science has embraced this transformative technology and made 

remarkable progress in utilizing deep learning models, notably in the detection and analysis of 

gas bubbles.  

In a study conducted by Sun et al. [43], a specially designed multi-task deep learning network 

that combined U-Net and ResNet models were employed to perform instance segmentation and 

extract fission gas bubbles on U-10Zr annular fuel. The proposed method demonstrated a 

notable improvement, obtaining an accuracy of 70%. 

The Faster R-CNN model has been employed to automate identification of helium bubbles in 

irradiated X-750 micrographs by adjusting its hyperparameters and image setup.  The primary 

goal of the proposed model was to determine the location, radii, and cumulative volumes of the 

bubbles. Accuracy levels of 93% were attained when analyzing micrographs captured at high 

magnifications, and reasonably accurate quantification of sample images at lower 

magnification was also achieved [42].  

Kim and Park [44] developed the Mask R-CNN to automatically detect and extract the actual 

shape of bubbles, making it applicable across different types of bubbly flows. The model 

showed excellent performance with an average precision (AP50) reaching 98%. 

More recently, Jacobs and collaborators [45] employed a comprehensive deep learning-based 

semantic segmentation approach, using the Mask R-CNN model, to identify and quantify 

nanoscale cavities in irradiated alloys. Through rigorous evaluation using random leave-out 
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cross-validation, the model provided precise assessments of material swelling, demonstrating 

an average mean absolute error of 0.30% swelling. 

PARTIAL CONCLUSION 

The introduction of PEM electrolyzer technology in 1967 by General Electric aimed to address 

the limitations of alkaline electrolyzers: limited operational range at low loads, constrained 

current density, and low operating pressure. The PEM electrolysis cell is made of key 

components such as SPE (Solid Polymer Electrolyte), CLs (Catalyst Layers), GDLs (Gas 

Diffusion Layers), and BPPs (Bipolar Plates). Its working principal is based on two main types 

of reactions: the hydrogen evolution reaction (HER) at the cathode, which generates hydrogen 

gas, and the oxygen evolution reaction (OER) at the anode, producing oxygen gas. The OER 

poses a challenge as the formation and accumulation of oxygen bubbles on the anode catalyst 

layer (CL) surface reduces the active reaction area between the reactant (water) and the CL 

leading to an increase in overpotential, and thereby reducing the overall efficiency of the PEM 

electrolyzer. Conventional and deep learning-based approaches are utilized to study the 

evolution of bubbles. However, the deep learning-based methods have shown to be more 

efficient in terms of reliability, time, and model execution speed. 
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CHAPTER 2: METHODS AND MATERIALS 

This chaper gives a general understanding of deep learning, UNet model, as well as the 

explanation of the evaluation metrics and the data acquisition. Moreover, it places particular 

focus on detailing the methodological pipeline followed in this study. 

1.  FUNDAMENTALS OF DEEP LEARNING 

1.1. Overview of Artificial Intelligence, Machine Learning and Deep Learning 

In order to gain a comprehensive grasp of Deep Learning (DL), it is essential to begin with an 

exploration of the concepts of Artificial Intelligence (AI) and Machine Learning (ML). DL, as 

a subfield of ML, inherently lies within the broader domain of AI, as depicted in Fig 2.1. 

 

Fig. 2.1. Schematic representing the branches of artificial intelligence. 

 

Artificial Intelligence (AI) 

AI is a discipline in Computer Science that revolves around the automation of intelligent 

behavior [46]. It entails employing computational techniques to mimic human cognitive 

activities, encompassing tasks such as interpretation, inference, decision-making, estimation, 

classification, and possessing the capacity to understand languages, learn, reason, and resolve 

problems [47–48]. The primary aim of AI research is to enhance the ability of computers to 
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rapidly and effectively execute cognitive tasks, mirroring human capabilities with high 

accuracy and efficiency. AI-based problem-solving approaches can be categorized as strong 

AI, which seeks to imitate human mental processes for thinking and reasoning, and weak AI, 

which involves specific task-oriented computational software without involving human-like 

intuitive processes [47].  

Machine Learning (ML) 

ML is a subset of AI that comprises algorithms, which learn from datasets provided to make 

predictions and inferences without the need for explicit programming. A subset of machine 

learning algorithms relies on statistical learning techniques to comprehend and interpret data. 

These statistical methods are particularly effective for solving problems with linear 

relationships between input data and output, like in the cases of linear and logistic regression. 

The concept of machine learning involves three main learning categories: supervised, 

unsupervised, and reinforcement learning [47], as illustrated in Fig. 2.2.  

 

Fig. 2.2. Illustration ML’s learning categories [47]. 

 

In supervised learning, every set of data used for model training is associated with a 

corresponding label. Through this process, the model learns to establish a relationship between 

input data and its corresponding output, allowing for the creation of a mapping between the 

two. Unsupervised learning, in contrast, involves working with unlabeled training data, making 

it difficult to assess the model's accuracy. In this type of learning, the model learns by extracting 
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features from the training data in order to classify them in different categories. Lastly, 

reinforcement learning is a ML training approach where an agent (learning system) learns 

through a process of receiving rewards for exhibiting desirable actions and penalties for 

undesirable ones. In reinforcement learning tasks, the agent interacts with an environment, 

observing its current state, and takes actions to optimize its cumulative long-term rewards, 

which are represented by numerical signals [49–50]. 

Deep Learning (DL) 

DL is a branch of machine learning (ML) that uses algorithms, the designs of which are based 

on the structure and function of the brain’s neural networks. Consequently, deep learning 

networks are usually referred to as artificial neural networks (ANNs), which will be further 

discussed in the following section. Like ML, DL utilizes algorithms to analyze data, learn from 

them, and subsequently make predictions or determinations about new data. Numerous 

research studies have demonstrated that deep learning is essential for solving artificial 

intelligence tasks such as target recognition, speech perception, and language understanding, 

as it enables the learning of complex functions that capture high-order abstract concepts [51].  

Artificial neural networks (ANNs) are nested functions made of units called perceptrons or 

neurons which are interconnected [52]. The neurons are organized in input layer, hidden 

layer(s), and output layer as illustrated in Fig. 2.3. 

1.2. Basics of Artificial Neural Networks  

Artificial neural networks (ANNs) are essentially nested functions made of units called 

perceptrons or neurons [52]. In a graph representation of ANNs, the neurons are organized in 

input layer, hidden layer(s), and output layer as illustrated in Fig. 2.3. 
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Fig. 2.3. Schematic of an ANN showing the organization of the perceptrons. 

 

The input layer is the first layer of the neural network, responsible for receiving the input data 

and forwarding it through the network for further processing. A hidden layer, on the other hand, 

acts as an intermediary layer between the input and output layers. Its main function is to capture 

patterns from the input data to facilitate learning. Lastly, the output layer serves as the final 

layer of the neural network, generating predictions based on the knowledge acquired from the 

input data and processed through the hidden layer (s). We refer to a deep neural network (DNN) 

when the number of hidden layers within an ANN is greater than 1. This concept also explains 

the adjective "deep" in deep learning (DL). 

In an ANN, a receiving perceptron processes the signal, and signals the downstream 

perceptrons connected to it. The processing involved within the perceptron's structure is 

depicted in Fig. 2.4. The perceptron's output, denoted as y, is determined by its activation 

function, which takes as input the weighted sum of the input signals (x1, x2, ..., xN) along with 

an additional bias term (denoted b). The activation function processes this input to produce the 

final output of the perceptron. 
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Fig. 2.4. Schematic of a perceptron describing a signal processing. 

 

The learning within a neural network is commonly executed through the processing of input, 

which is also referred to as "training." This training process involves iteratively adjusting the 

connection weights and biases of the nested function [51]. In a specified order, an iteration 

comprises 3 steps: feedforward, loss computation, and back propagation. A neural network that 

includes a feedforward mechanism is commonly known as a multilayer perceptron (MLP) [53]. 

Fig. 2.5 illustrates a simple representation of a MLP and is used to explain these 3 steps. 

 

 

Fig. 2.5. Simplified representation scheme of a multi-layer perceptron. 
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The explanation is also based on a given set of samples xi, its corresponding labels 𝑦̂i, and a 

standard multi-layer perceptron (MLP),   

                                                                 𝑦 = 𝑓MLP(x; 𝜃),                                                                    (4) 

with 

                                                                   𝜃 = {𝑓, w, b}.                                                                 (5) 

where y is output, 𝑓 the activation function, w the weight, b the bias, and 𝜃 the model’s 

parameters  

 Step 1) Feedforward 

The original data is passed through the MLP, which has its weights initialized randomly. This 

forward pass is done by applying a series of nested equations (6) to each perceptron in the 

forward layers of the network.  

                                         

                                                                    a1 = w1 . x1 + b1                                                                               (6a) 

     

                                                                 a2 = w2 . 𝑓1(w1 . x1 + b1)                                                    (6b) 

 

                                                             y = 𝑓2(w2 . 𝑓1(w1 . x1 + b1))                                                (6c) 

Here, ai represents weighted sum of a perceptron’s input signal (wi . xi) plus, the bias b1.  

The prediction process of a neural network on data can be understood through equations 6a-6c. 

In the hidden layer, the input x1 is multiplied by a weight w1, and the bias of the network, 𝑏1, 

is added to the result. This value is then passed through a nonlinear activation function, 𝑓1, and 

forwarded to the next layer which represents in our case the output layer. The same process is 

repeated for the perceptron in the output layer, where the final prediction, y, is obtained, 

representing the network’s final output.  
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If the network was designed with multiple hidden layers, the initial process would be repeated 

for each neuron in subsequent layers, with the transformed value from each neuron being 

passed to the next layer until the final output is obtained. 

Step 2) Loss calculation 

After the forward propagation process, the predicted value, yi, is compared to the true value, ŷi, 

to determine the loss. This is done by calculating the difference between each individual true 

value, ŷi, and its corresponding prediction value, yi. At the end of each iteration, the loss of 

each input is accumulated and passed through a loss function (L). The commonly used loss 

function is called Mean Squared Error (MSE).  Equation (7) provides a mathematical 

representation of this function.     

                                                    

                                                                 𝐿 =
1

𝑁
∑ (𝑦𝑖  −  �̂�𝑖)

2𝑁
𝑖=1                                                  (7) 

with L being the loss function, 𝑦𝑖 the predicted value, �̂�𝑖 the true value, and N the total number 

of data points being used for training. 

Step 3) Backpropagation  

The objective of backpropagation is to optimize the learnable parameters, such as weights and 

biases, within a neural network by making adjustments to them. Once the loss is known, the 

optimization process typically involves using the stochastic gradient descent (SGD) optimizer 

[54]. SGD works towards minimizing the loss by calculating the derivative of the loss with 

respect to each weight in the network (as depicted in Fig. 2.6). This derivative is then utilized 

to update the weights. The weight update is performed by incorporating a learning rate, which 

determines the magnitude of the adjustment made to the weights. By iteratively updating the 

weights based on the loss derivative and learning rate, the network parameters are optimized 

to minimize the overall loss. 
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Fig. 2.6. descriptive scheme of SGD approach [55]. 

 

The whole process is called “backpropagation” because it updates the network's learnable 

parameters in a backward direction, from the output layer to the input layer (as illustrated in 

Fig. 2.7). This means that during the training process, the error or loss calculated at the output 

layer is propagated back through the network to adjust the weights and biases of the perceptrons 

in the hidden layer(s) and ultimately the input layer. By iteratively updating these parameters 

in the opposite direction of the data flow during the feedforward process, the network learns to 

minimize the error and improve its predictions over time. 
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Fig. 2.7. Illustrative scheme of backward propagation showing the dependencies between the 

output, the activation functions, the weighted sums, and the weights. 

By referring to fig. 2.7, it becomes evident that the output of each perceptron relies on the 

output generated by the perceptrons in the preceding layer. Hence, the determination of the loss 

gradient (𝛻w) for each weight (w1 and w2) in the MLP is done by initially computing the 

chained partial derivatives 𝛻w2, and subsequently calculating 𝛻w1 using the chain rule, as 

shown in equations (8): 

 

                                                      ∇𝑤2=
𝜕𝐿

𝜕𝑤2
=

𝜕𝐿

𝜕𝑓2

𝜕𝑓2

𝜕𝑎2

𝜕𝑎2

𝜕𝑤2
                                                                 (8a) 

 

                                                   ∇𝑤1=
𝜕𝐿

𝜕𝑤1
=

𝜕𝐿

𝜕𝑓2

𝜕𝑓2

𝜕𝑎2

𝜕𝑎2

𝜕𝑓1

𝜕𝑓1

𝜕𝑤1
                                                  (8b) 

It is important to note that 𝜕𝑤2 equals 𝜕𝑓1. A simplification of ∇𝑤1 gives,  

                                                    ∇𝑤1=
𝜕𝐿

𝜕𝑤1
=

𝜕𝑓1

𝜕𝑤1
× ∇𝑤2                                                 (8c) 

The weight update is carried out by using the equation (9): 

                                                              𝑤𝑛𝑒𝑤 =  𝑤𝑖 −  𝜂𝛻𝑤𝑖                                                    (9) 

where 𝜂 is the learning rate, and 𝑤𝑛𝑒𝑤 represents the updated weight. 
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1.3. Convolutional Neural Networks  

Convolutional neural networks (CNNs), also known as ConvNets, are AI systems that employ 

deep learning to identify, recognize and classify objects, and perform detection and 

segmentation tasks for images and videos [56]. Furthermore, they are a class of artificial neural 

networks inspired by the concept that neurons in the visual cortex of the brain detect and 

identify features [57]. In a typical CNN for image classification, there are three main types of 

layers: convolutional layers that apply filters by convolving them across the input data; pooling 

layers that reduce the data dimensions by combining cluster outputs; and a single fully-

connected layer that performs the final classification task [58]. A general architecture of a CNN 

is given in Fig. 2.8. 

 

 

Fig. 2.8. Schematic of a convolutional neural network [58]. 

 

Convolution Operation 

A convolutional layer consists of a collection of filters, or kernels (each kernel is a set discrete 

values or integers) that are applied to the input data. These kernels are characterized by their 

widths, heights, and weights, and they are used to extract features from the input data. The 

kernel weights start as random values but are gradually refined during training based on the 

data [56]. Convolution consists of performing a sliding motion of a filter, initially moving 
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horizontally and then vertically over the entire image. An example using a filter of 2×2 pixels 

with a stride of 1 (step size of the horizontal and vertical slide) on an input image of dimension 

4×4 pixels, is illustrated in Fig. 2.9 

 

Fig. 2.9. Illustration of a convolution operation. 

 

Pooling Operation 

The pooling layer, referred to as the down-sampling layer, reduces the size of feature maps 

while preserving essential information contained within the input data [56]. The pooling 

operation consists of applying the filter by sliding it over the pooling layer, which results in 

obtaining either the maximum value from each window of the layer, the average value from 

each window of the layer, or the global average value from the entire layer, as depicted in Fig. 

2.10.   
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Fig. 2.10. Illustration of maximum, average, and global pooling operation. 

 

The CNN architecture involves the convolution layer and pooling layer working in tandem 

(operate together in a coordinated and complementary manner). This arrangement serves to 

decrease computation time and enhance the network's ability to handle translation, scaling, and 

other types of deformations. The core concepts behind CNNs are the utilization of shared 

weights and local connections. By employing shared weights, the network avoids overfitting, 

while local connections reduce the number of parameters and simplify the computational 

complexity [59]. Two popular adaptations of the CNN architecture for image classification and 

object detection are the Fully Convolutional Network (FCN) and the Region-based 

Convolutional Neural Network (R-CNN). Fig. 2.11 illustrates the structure of FCN and R-

CNN. 
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Fig. 2.11. Representations of FCN and R-CNN architectures with image segmentation with 

concatenated multi-scale features [60]. 

 

The Fully Convolutional Network (FCN) served as the foundational model from which the 

most successful, and advanced deep learning models for semantic segmentation have emerged 

[61]. A semantic image segmentation (as shown in Fig. 2.12) consists of assigning a 

corresponding class label to each pixel in an image. The desired output in semantic 

segmentation is a high-resolution image, typically of the same size as the input image, where 

each pixel is assigned to a specific class based on its representation [62]. 

 

Fig. 2.12. Semantic image segmentation illustration [62]. 

 

UNet (2D) model is among these state-of-the-art deep learning models that have evolved from 

the FCN, and represents the considered model in our study.  
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2. UNET (2D) MODEL  

The initial development of the UNet model took place in 2015 at the computer science 

department of the University of Freiburg in Germany, with the vision of analysing biomedical 

images. The original UNet architecture is depicted in Fig. 2.13. It is basically divided into two 

distinct sections: the encoder referred to as the contracting path on the left side, and the 

decoder known as the expansive path on the right side [63]. These sections are structured in a 

U shape, collectively forming the overall framework. The encoder section, consisting of five 

blocks, is responsible for downsampling the input feature maps to extract low-level features. 

Each block in the encoder contains two 3 × 3 convolutional layers with rectified linear unit 

(ReLU) activations, followed by a 2 × 2 max-pooling layer. The fifth block in the encoder does 

not include a pooling layer. On the other hand, the decoder section, also comprised of five 

blocks, functions as the inverse of the downsampling path. Each decoder block includes a 2 × 

2 up-convolution (which performs upsampling of the features), followed by two 3 × 3 

convolutions with ReLU activations. The fifth decoder block additionally incorporates a 1 × 1 

convolution [64].  

 

Fig. 2. 13. Original scheme of the UNet architecture [63]. 
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3. EVALUATION METRICS  

In the context of deep learning, an evaluation metric is a quantitative measure used to assess 

the performance, or quality of a model. The common evaluation metrics used in the literature 

are intersection over union (IoU), accuracy, precision, recall, and F1-score.  

The classification of an object is primarily based on the intersection over union (IoU) measure 

along with a predefined threshold value. The IoU is determined by computing the ratio of the 

overlap area between two bounding boxes to the union area of these boxes, as depicted in Fig. 

2.14. The IoU value ranges from 0 to 1. Therefore, the closer to 1, the better the performance. 

The model considers a prediction as correct when the IoU is greater than the defined threshold 

value. A good prediction is considered when the detection overpasses an IoU of 0.5. 

 

Fig. 2.14. Computing illustration of IoU metric [65]. 

 

Estimating performance involves making predictions about how well a model will perform or 

the loss it will experience when predicting on unseen data. This estimation is typically based 

on performance metrics derived from the confusion matrix [58]. In the context of a bubble 

detection problem, as depicted in table 2.1, the confusion matrix illustrates the predicted class 

(the classification made by the model) and the actual class (the true values of the data, known 

as ground-truth). 
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For the purpose of this project, the explanation of the metrics is based on the specific addressed 

problem. The primary goal is to detect bubbles, so bubble is considered as positive class, while 

non-bubble referred to negative class. TP (True Positives) indicates the number of semantic 

entities accurately identified as bubbles. On the other hand, FP (False Positives) represents the 

number of semantic entities incorrectly classified as bubbles. TN (True Negatives) refers to the 

number of semantic entities correctly classified as non-bubbles. Lastly, FN (False Negatives) 

represents the number of semantic entities wrongly classified as non-bubbles. Knowing these 

metrics, it is possible to calculate evaluation metrics such as accuracy, precision, recall, and F1 

score. 

Accuracy 

Accuracy indicates the percentage of cases in which the model's predictions are correct out of 

the total number of cases evaluated (Eq. 10). 

                                                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                             (10) 

Evaluating models only based on accuracy can be problematic, especially when dealing with 

imbalanced ground truth components. High accuracy does not necessarily indicate effective 

model performance and can be misleading.  

Recall 

Recall, referred to as the true positive rate, measures the probability of correctly detecting 

ground truth objects (Eq. 11). For instance, a recall value of 0.9 tells that there is an 90% chance 

                     Actual Value  

Bubbles Non-bubbles Total 

Predicted Value 

Bubbles TP FP All predicted as 

bubbles 

Non-bubbles FN TN All predicted as non-

bubbles 

 Total All bubbles All non-bubbles All 

Table 2.1. Illustration of confusion matrix in the case of bubble identification.  
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that the model accurately identifies the relevant objects out of the total number of ground truth 

objects. 

                           𝑅𝑒𝑐𝑎𝑙𝑙/𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  or 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
                                              (11) 

Precision 

Precision the proportion of true positive results among all instances predicted as positive. (Eq. 

12). Like recall, precision scores also fall within the range of 0 to 1. For example, a precision 

value of 0.75 indicates that when the model detects an object, it is correct 75% of the time.  

                                           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 or 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
                                           (12) 

F1- score 

The F1 score takes into account both recall and precision metrics to calculate its value. It is 

calculated as the harmonic mean of these two metrics (Eq. 13), and ranges from 0 to 1. In other 

words, the F1 score provides a comprehensive assessment of the model's performance by 

considering both the model's ability to correctly identify relevant instances (recall) and the 

accuracy of those identifications (precision). 

                                            𝐹1 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                                  (13) 

 

4. DATA ACQUISITION  

As part of this master thesis project, a total of 15,795 images depicting oxygen bubbles were 

collected by the experimental team led by Dr. Rodenbuecher at the Juelich research center, 

IEK-14.  

In the electrolysis mode of a reversible PEM fuel cell, operating at a voltage of 1.5V, a standard 

camera captured images at the anodic side (Fig. 2.15). These images have a resolution of 640 

× 630 pixels and were recorded with an interval of 33 milliseconds. The electrolysis experiment 

was conducted under standard conditions of room temperature (25℃) and atmospheric 

pressure of 1 atm. 
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Fig. 2.15. a) reversible fuel cell experimental setup,  b) polarization curves in electrolyzer and 

fuel cell modes, and  c) oxygen bubble image at 1.5 V. 

5. EXPERIMENTAL PART 

The approach employed in this project to enable automated image analysis of oxygen bubbles 

at the anode side of PEM water electrolyzers is structured into four primary steps, as visually 

represented in the developed software pipeline in Fig. 2.16. The basis of this image analysis 

relies on evaluating the distribution of oxygen bubble areas on the anodic plate. 

 

   Fig. 2.16. Methodical pipeline illustration of the automated bubble image analysis. 

 

 

 

1. bubble annotation using Label Studio, 2. model training for bubble semantic                                 

segmentation via UNet 2D, 3. Calibration followed by individual bubble area extraction 

using   OpenCV, 4. Lastly, distribution of the extracted bubble areas via Matplotlib library. 
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5.1 Dataset Annotation and preprocessing 

The annotation of data represents the first step and delicate task to efficiently train a deep 

learning model. Data annotation consists of manually assigning labels to the objects of interest 

or regions of interests (ROIs) inside the data for training purpose, enabling the model to predict 

on unseen data having relatively the same patterns or features. It is crucial to execute the data 

annotation process with precision to avoid incorrect labeling, which can cause confusion for 

the model being trained and ultimately lead to a poor performance of the model. Moreover, the 

process of data annotation, being a manual and precision-driven task, requires more time to be 

completed.  

To carry out the annotation of the bubble images, we employed the use of "Label Studio" 

version 1.8.0, an advanced open-source annotation software that offers a user-friendly interface 

(Fig. 2.17). This software simplifies the manual annotation task and facilitates the data 

management. 

 

Fig. 2.17. Illustration of Label Studio interface. 

A set of 35 images, each having a resolution of 640 × 630 pixels and a scale of 25 mm, were 

annotated. Emphasis was placed on bubbles exhibiting complex shapes and a high degree of 

blurriness to minimize the chances of overlooking the bubbles or inaccurately annotating them.   

After performing the manual annotation task, the original bubble images used for the 

annotation, along with their resultant masks were pre-processed to be conformed to the data 

type specifications of the UNet 2D model used in this project. The original bubble images were 
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converted to grayscale, resized to dimensions of 512 × 512 pixels, and saved in "tif format". 

Similarly, the masks associated with these were binarized with pixel values of 0 and 255, 

resized to 512 × 512 pixels, and saved in "tif format" as well.  

5.2. Semantic Segmentation Model Training 

A UNet (2D) model was trained from scratch for 150 epochs on 28 paired image patches (image 

dimensions: (512, 512), patch size: (512,512)) with a batch size of 4 and a weighted binary 

crossentropy loss function, using the U-Net (2D) ZeroCostDL4Mic notebook (version 2) [66]. 

The dataset was augmented by applying rotation, random zoom magnification, and shifting. 

The training was completed in 19 minutes 10 seconds, and was accelerated using a Tesla T4 

GPU provided by Google. Table 2.2 shows the parameters used for training. 

Table 2.2.  UNet (2D) training parameters and their corresponding values 

Parameter value 

number of epochs 150 

patch size 512 × 512  

batch size 4 

number of steps 7 

percentage validation 10 

initial learning rate 0.0001 

pooling steps 3 

minimum fraction 0.02 

 

Number of epochs: represent the total number of complete cycles of forward and backward 

propagation that the model undergoes during training on the training set. 

Patch size: refer to the specified width and height of rectangular or square regions used for 

analysis within an image. It determines the size of the areas considered for localized processing 

or feature extraction. 
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Batch size: refer to the number of images that are loaded into the network per step. Smaller 

batch sizes may improve training performance slightly but may increase training time.   

Number of steps: correspond to the number of images in the training set divided by the batch 

size. 

Percentage Validation: indicate the percentage of images selected from the training set that 

is allocated for validation during the training process. 

Initial learning rate: correspond to the value set at the start of the training process, which 

signifies the speed at which the model learns. 

Pooling steps: refer to the stride or step size used in the pooling operation, determining the 

amount of displacement between neighboring pooling regions during downsampling 

(contraction path). 

Minimum fraction: refer to the smallest proportion of foreground pixels required within a 

chosen patch for it to be considered as a valid patch. 

5.3. Model Evaluation: Quality Control 

To assess the effectiveness of the trained UNet (2D) model for semantic image segmentation, 

an unseen dataset consisting of 7 image pairs was generated. Each pair includes a raw image 

and its corresponding ground truth mask. The trained model is applied to these images, 

generating predicted masks. The evaluation process involves measuring the Intersection over 

Union (IoU) metric for each predicted mask at various threshold values ranging from 0 to 255. 

Furthermore, a confusion matrix is constructed to categorize the predicted pixels as true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). These 

metrics are then utilized to compute the recall, precision, and F1-score, providing insights into 

the model's performance. 

5.4. Computer Vision-Based Bubble Area Extraction 

Computer Vision is a scientific field that involves programming computers to process and 

comprehend images and videos [67]
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We employed the use of OpenCV, an open-source computer vision library, to extract individual 

bubbles from a mask and accurately calculate their respective areas. To determine the area of 

a bubble, we made use of the cv2.findContours() function to detect its contour, followed by the 

application of the cv2.contourArea() function. The calculated area is then calibrated to the 

original scale, which is 25 mm, with a resolution of 640 × 630 pixels. 

5.5. Bubble Area Distribution 

To analyze the distribution of bubble areas in individual image, we utilized Matplotlib, a 

Python library for 2D and 3D data visualization. Matplotlib enables the creation of high-quality 

figures suitable for scientific publications and interactive environments across different 

platforms [68]. By employing Matplotlib, we were able to visualize the bubble area distribution 

through histograms, as well as extract important statistical metrics such as the mean area and 

standard deviation. 

PARTIAL CONCLUSION 

Deep Learning is subfield of machine learning (with machine learning which is part of the 

broader domain of artificial intelligence) that mimics the human brain’s neural networks to 

process data. The data processing is executed through a trained artificial neural network which 

is a UNet (2D) model in this present study. Furthermore, to enable automated image analysis 

of oxygen bubbles at the anode side of PEM water electrolyzers, a methodological pipeline was 

developed and structured into four primary steps: 1. bubble annotation using Label Studio, 2. 

model training for bubble semantic segmentation via UNet 2D, 3. Calibration followed by 

individual bubble area extraction using   OpenCV, 4. Lastly, distribution of the extracted bubble 

areas via Matplotlib library.        
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CHAPTER 3: RESULTS AND DISCUSSION 

In this chapter, we present and discuss the findings achieved at every stage of our  

methodological approach. 

1. DATASET ANNOTATION 

The process of manual annotation using Label Studio (version 1.8.0) involved meticulously 

labeling the bubbles present within the 35 images selected for this task, creating a 

comprehensible dataset for training the UNet model and assessing the quality of the model’s 

prediction. During the annotation phase, review sessions were conducted to address any 

ambiguities or uncertainties, ensuring the accuracy and consistency of the annotations. The 

annotation process results are depicted in Fig. 3.1, showcasing three representative examples. 

 

Fig. 3.1. Illustration of the resulting annotated images obtained from their corresponding 

original images using Label Studio. 

In the annotated images, the bubbles (ROIs) are represented by the color white, with a 

corresponding pixel value of 255. On the other hand, the background is depicted in black with 

a pixel value of 0. However, a limitation arises in Label studio when saving the annotated 

images, as the border of labeled bubbles exhibits varying pixel values (ranging from 1 to 255), 
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which fails to clearly define the border of these bubbles. To address this, a binarization process 

is applied to the images using a threshold value of 127, ensuring a well-defined border. 

2. SEMANTIC SEGMENTATION MODEL TRAINING 

The training from scratch of the UNet (2D) model on a dataset of 28 paired images (on which 

was applied data augmentation techniques) was performed with a computational power of a 

Tesla T4 GPU. After 150 epochs, the training process was concluded within a time frame of 

19 minutes and 10 seconds, resulting in the generation of two plots showing the evolution of 

the training loss as well as the validation loss (Fig. 3.2). 

 

Fig. 3.2. Training loss (black curve) and validation loss (red curve) curves at a) linear scale, 

and b) logarithmic scale. 

Training loss refers to the measure of error between the model’s prediction on the training 

image and its actual ground-truth, which is calculated after each epoch. While, Validation loss 

refers to the measure of error between the model's prediction on a validation image and the 

corresponding ground-truth, which is also calculated after each epoch. A model's performance 

is considered better when both the training loss and validation loss values approach zero. 

Both plots depict identical evolution of the training loss and validation loss over the epochs, 

but represented at different scale. Plot (a) adopts a linear scale, which allows for a clearer 

visualization of how closely these curves approach zero. On the other hand, plot (b) employs a 

logarithmic scale, which helps highlight the subtle variations between the training loss and 

validation loss, making it easier to discern small differences between the two. 
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The training loss and validation loss demonstrate a noticeable overall decrease, both indicating 

approximatively the same downward trends over the observed epochs. However, within these 

downward trends, there are intermittent fluctuations where the training loss and validation loss 

curves exhibit a periodic upward and downward movements (zig-zag tendency). The similarity 

in the trends of the training loss and validation loss (training loss and validation loss being 

close to each other) indicates that the trained UNet (2D) model is not overfitted. Furthermore, 

the convergence towards zero (0.11 for training loss and 0.14 for validation loss at epoch 150) 

demonstrates the good performance of the model.  

At the end of the training process, the UNet (2D) model is saved at two different epochs. Firstly, 

at epoch number 150, which is the final epoch. At this stage, the model has a training loss value 

of 0.11 and a validation loss value of 0.14. Secondly at epoch number 125, where the model 

demonstrates its best performance. At this epoch, the model achieves a training loss value of 

0.11 and a validation loss value of 0.10, corresponding to the best weights obtained in the entire 

training process. Thus, the considered trained UNet (2D) model is the one recorded at the epoch 

125 since it offers the best weight values.   

3. MODEL EVALUATION: QUALITY CONTROL 

The application of the trained UNet (2D) model on the 7 unseen raw images (inputs) gives 7 

prediction masks which are not binarized yet. These prediction masks are overlaid on their 

corresponding ground-truth masks to determine the IoU value of each predicted image, 

considering threshold values varying from 0 to 255, as illustrated in Fig. 3.3. 
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Fig. 3.3. Determination of the IoU of each prediction mask in function of different threshold 

values. 

For each prediction mask, corresponds a best IoU obtained at an optimum threshold value, as 

shown in table 3.1. 
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Table 3.1. Value of the IoU of each prediction mask and its corresponding IoU-optimized 

binary threshold value. 

 

 

 

 

 

 

 

 

 

 

By examining the table, we can see that the IoU values are predominantly close to 1, suggesting 

that the model's predictions are accurate. Fig. 3.4 presents a visual representation of the quality 

control process for a single image (prediction 1).  

 

 

Fig. 3.4. Quality control visualization corresponding to prediction 1. The input is passed 

through the trained model, resulting in a prediction that is overlaid on the ground-truth. 

We notice (in Fig.3.4) that while the trained UNet (2D) model successfully predicts the 

majority of bubbles accurately there are a few instances where some bubbles appear slightly 

larger in size, merged, and have rougher borders compared to the ground-truth. Additionally, 

there are cases where the model predicts bubbles that do not exist in the ground-truth (FP), as 

well as missing the prediction of some bubbles that are present in the ground-truth (FN). 

Prediction mask IoU IoU-optimized threshold 

prediction 1 0.794 162 

prediction 2 0.727 192 

prediction 3 0.754 137 

prediction 4 0.854 165 

prediction 5 0.819 168 

prediction 6 0.755 145 

prediction 7 0.752 160 
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Furthermore, this trained model struggles to accurately predict the intersections of the bubbles, 

resulting in numerous partial and inaccurate intersections, as also demonstrated by 

Hessenkemper et al. [69]. These prediction defects highlight the limitation of the model.  

By categorizing the prediction pixels according to the ground-truth pixels, the confusion matrix 

displayed in Table 3.2 is obtained. The categorization includes the 7 prediction masks. 

 

 

 

 

 

The determination of TP, TN, FP, and FN values allowed for the computation of recall, 

precision, and F1-score. The resulting metrics revealed a recall of 0.89, indicating that the 

trained model correctly identifies 89% of the actual bubbles out of the total ground-truth 

bubbles, a precision of 0.81, signifying 81% of the time, the actual bubble is accurately 

identified, and an F1-score of 0.85, demonstrating a balanced measure of both precision and 

recall and which indicates a relatively good overall performance of the trained model. 

4. BUBBLE AREA EXTRACTION 

OpenCV2 enables the extraction of the bubble areas by isolating individually the bubbles. Fig. 

3.5 illustrates the results of the isolation of two bubbles, and indicates their corresponding 

areas. 

 Actual Value 

Bubbles Pixels Non-bubbles Pixels 

Predicted Value 

Bubble Pixels 331,616 (TP) 73,227 (FP) 

Non-bubbles 

Pixels 

37,792 (FN) 1,392,373 (TN) 

Table 3.2. Confusion matrix of bubble pixels identification.  
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Fig. 3.5. Illustration of bubble area extraction using OpenCV2. a) Obtained segmentation mask 

after prediction with the UNet (2D) model and binarization. b) Computer vision-driven bubble 

area extraction after resizing and calibration. 

The total area of bubbles was determined for each of the predicted images ( predicted masks), 

as well as their corresponding manual annotated images (ground-truth masks). These 

calculations were conducted to enable a comparative analysis. The results of these 

computations are summarized in Fig. 3.6. 
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Fig. 3.6. Polydispersity plot comparing the total bubble area of each manual annotated image 

and their associated predicted image. 

The comparison reveals a smaller disparity in the overall bubble area between the manually 

annotated images and their corresponding predicted images, providing further evidence of the 

model's achieved performance values.  

5. BUBBLE AREA DISTRIBUTION  

After utilizing OpenCV2 to extract the bubble areas from individual images, Matplotlib is 

employed to analyze their distribution. The obtained results, including the average area and 

standard deviation, are visualized in fig. 3.7. This figure illustrates the bubble area distribution 

for 3 predicted images. 
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Fig. 3.7. Illustration of 3 predicted images at a 25 mm scale, along with their corresponding 

histograms showing the distribution of bubble areas, the mean area, and the standard deviation. 

The mean bubble area obtained from each predicted image offers a central measure that 

represents the typical area of bubbles in those images. This information allows us to understand 

the overall scale of bubbles present in each predicted. A higher mean area suggests the 

prevalence of larger bubbles. Conversely, a lower average area indicates the dominance of 

smaller bubbles. For instance in prediction 1 (fig. 3.6), the mean bubble area of 3.06 mm2 

indicates that, on average, the predicted image contain bubbles with an area of approximately 

3.06 mm2. 

Futhermore, The standard deviation of bubble areas provides essential information about the 

spread or dispersion of bubble sizes. A larger standard deviation suggests a wide range of 

bubble areas, indicating a diverse distribution. This could arise from various factors influencing 

bubble formation and growth, resulting in bubbles of different areas. On the other hand, a 

smaller standard deviation implies a more tightly clustered distribution of bubble areas, 

indicating a more uniform bubble population in the predicted image. The example in prediction 

1 (fig. 3.2) depicts a standard deviation of 6.98 mm2. This means that, on average, individual 

bubble areas in the predicted image differ from the mean area (3.06 mm2) by approximately 

6.98 mm2. 
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PARTIAL CONCLUSION 

UNet (2D) model was trained and evaluated on a total of 35 images (28 images for model 

training and 7 images for model evaluation) which were firstly manually annotated using Label 

Studio. The trained UNet model showed a relatively good performance: a recall of 0.89, a 

precision of 0.81, and a F1-score of 0.85 depicting how well the model is able to predict on 

data that have not been seen before. Moreover, the statistical distribution analysis conducted 

on the predicted bubbles after being extracted from the prediction images, revealed a dominant 

presence of small bubbles with only a slight variation in standard deviation. 
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GENERAL CONCLUSION AND PERSPECTIVES 

The application of deep learning technique to automate image analysis of oxygen bubble 

dynamics in PEM electrolyzers marks a significant milestone in the field of renewable energy 

research. Throughout this study, we have demonstrated the potential of harnessing cutting-edge 

deep learning and computer vision algorithms to unlock valuable insights into the area 

distribution of oxygen bubbles on the anodic plate of a PEM water electrolyzer under a voltage 

of 1.5 V.  

In our approach to perform automated image analysis of oxygen bubbles, we developped a 

multi-step pipeline from the bubble image to the bubble area distribution as followed: 1. manual 

annotation of 35 oxygen bubble images with label studio as dataset for training and model 

quality control, 2. training of UNet (2D) model on 28 annotated data for semantic segmentation 

of bubbles, 3. individual bubble area measurements using a computer vision algoritm, and 

finally 4. statistical distribution of bubble areas using matplotlib library.  

Despite the small number of training data, and the complexity of the bubbles‘ shapes, the results 

of our deep learning model training exhibit good performance, as indicated by a recall of 0.89, 

precision of 0.81, and an F1-score of 0.85. Moreover, the approximate area similarities between 

the predicted and actual images demonstrate the model's robustness. Additionally, when 

evaluating at 1.5 V, we observed a dominant presence of small bubbles with only a slight 

variation in standard deviation. 

While the results of our study are indeed promising, we acknowledge that there is still room 

for improvement. As the field of deep learning continues to evolve, integrating novel neural 

network architecture and exploring diverse data augmentation techniques could enhance the 

model's performance even further. 

The future work, extending beyond the scope of this master thesis study, will focus on the 

following aspects: firstly, training of a more advanced model, like YOLO-V8, to carry out real-

time instance  segmentation in videos captured at various cell voltages. Secondly,  real-time 

extraction and statistical analysis of  bubble parameters, including area, diameter, aspect ratio, 

solidity, orientation, extent, perimeter, and roundness. lastly, establishing correlations between 

these extracted parameters and validating them against the physical model.
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