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Modeling runoff with satellite-based rainfall 
estimates in the Niger basin
Ganiyu Titilope Oyerinde1*, Ibukunoluwa O. Fademi2 and Olubunmi A. Denton2

Abstract: Effective runoff modeling in the Niger basin has been hampered by inad-
equate and deteriorating amount of reliable observation stations. Satellite-based 
rainfall products have increasingly been considered an important component in ad-
dressing these data gaps. We compared the Global Precipitation Climatology Project 
(GPCP) one degree daily estimate and interim reanalysis data of the European 
Centre for Medium-Range Weather Forecasts (ECMWF) named ERA-Interim rain-
fall estimates with observed rainfall. The suitability of the two rainfall products for 
runoff modeling was also assessed. Rainfall data were averaged over a well gauged 
catchment (Sota) and compared. They were subsequently used to calibrate a hydro-
logical model and their modeling efficiencies were evaluated. The better of the two 
datasets was subsequently used in regional simulation on 10 Niger basin catch-
ments. GPCP rainfall estimates had good fit to observed rainfall with Nash values 
of 0.93, 0.94 and 0.84 for monthly, seasonal and daily climatological comparisons. 
River discharge simulated with the GPCP showed closer correlation with observed 
than the ERA-Interim. GPCP appropriately simulate river discharge in all 10 evalu-
ated Niger basin catchments. Based on our findings, we proposed the integration of 
GPCP rainfall estimates in runoff modeling, especially in data scarce river basins.
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1. Introduction
The Niger River Basin, home to over 100 million people, is a vital and complex asset for West Africa 
which has highly variable water resources. In the past 50 years, a 10 to 30% decrease in mean an-
nual rainfall in the basin has led to a reduction of 20 to 60% in river discharge (Oyebande & Odunuga, 
2010). Even with no change in precipitation, the availability of per capita renewable water resources 
in the basin is declining as a result of a large population growth; the population in the basin is ex-
pected to double from 94 million in 2005 to over 150 million by the year 2050, and competing de-
mands have led to challenges in water allocation among different users and countries (Ogilvie et al., 
2010). The recently identified “Sahelian paradox” which is an observed runoff increase in some of 
the basin’s Sahelian catchments such as in Nakanbe (Burkina Faso), Sirba (Niger) and Mekrou (Benin) 
despite a decrease in rainfall (Descroix et al., 2009) is also an important challenge for modeling wa-
ter availability in the basin. Amogu et al. (2010) attributed the sahelian paradox to soil crusting and 
land degradation as a result of unsustainable land use in the basin. A sustainable management 
strategy is therefore needed to cope with challenges arising from increases in water demand and 
changes in the variability of supply in the basin.

Effective evaluation of water resources requires availability of high quality hydro-meteorological 
data which are inadequate in the Niger basin and 70% of available rainguage have deteriorated 
between 1985–2004 (Lebel & Ali, 2009). With the advent and progress of remote data collection and 
development of complex earth system models, satellite rainfall estimates is becoming readily avail-
able for end-users offsetting the limitations posed by data scarcity. A number of algorithms and 
mathematical approaches have been developed to model rainfall process with varying complexity in 
representations of the natural process, theoretical concepts and assumptions, temporal and spatial 
scale, computational efficiency, data requirement, etc. Their application ranges from simple daily 
rainfall estimation/forecast to simulation of complex hydrological processes that supplement deci-
sion (Dessu & Melesse, 2013).

Several authors have investigated the potential of these datasets from the global to regional 
scales. Wada, Wisser, and Bierkens (2013) found a non substantial deviation between ERA-Interim 
and MERRA global simulated irrigation water requirements and the FAO AQUASTAT database. Ricko, 
Carton, and Birkett (2011) reported the superiority of the Global Precipitation Climatology Project 
(GPCP) over ERA-Interim reanalysis and TRMM in the estimation of water level for 12 tropical lakes 
and reservoirs. Also, other authors such as (Dessu & Melesse, 2013; Negrón Juárez, Li, Fu, Fernandes, 
& de Oliveira Cardoso, 2009; Romilly & Gebremichael, 2011) reported good potentials for the utiliza-
tion of satellite rainfall estimates in several parts of Africa. However, the potential of these rainfall 
products in effective catchment runoff simulation is still a great research challenge in the region. In 
west Africa, Gosset and Viarre (2013) reported good correlation between satellite modeled rainfall 
and observed but witnessed large bias in simulated outflow due to weak capacity of the Gr4j hydro-
logical model utilized in the study. In view of this, this study aim at evaluating two prominent rainfall 
estimates in the Niger River basin. The objectives are to evaluate the accuracies of GPCP and ERA-
Interim rainfall estimates and conduct local and regional scale evaluation of the hydrological mod-
eling potentials of the two rainfall datasets in the Niger basin.

2. Materials and methods

2.1. Study area
The Niger River Basin covers 2.27 million km2 (Ogilvie et al., 2010) and with 4,200 km in length the 
Niger is the third longest river in Africa. The basin consists of ten countries which are Algeria, Benin, 
Burkina Faso, Cameroon, Chad, Coted’Ivoire, Guinea, Mali, Niger and Nigeria with a source located 
close to the Fouta Djallon Mountains in the South of Guinea (Oguntunde & Abiodun, 2013). 
Precipitation ranges from 250 to 1,000 mm/year from the sahelian/desert zone to over 2,000 mm/
year close to the river mouth in the Guinean/coaster zone (Oguntunde & Abiodun, 2013). The river 
flows Northeast through the Upper Niger basin and enters the Inner Delta in Mali. During the rainy 
season, the delta forms a large flood plain of 20,000–30,000 km2, facilitating the cultivation of rice, 
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cotton and wheat as well as cattle herding and fishing (KfW, 2010). The size of the flooded area is 
subject to strong annual variations, depending on the discharge of the Upper basin. A large part of 
the water is lost in the delta due to evaporation and seepage. Its main tributary, the Benue River, 
flows from highlands of Cameroon and joins the Niger at Lokoja, Nigeria, before reaching the Atlantic 
Ocean at the Gulf of Guinea (Oguntunde & Abiodun, 2013). Average annual river discharge in the 
Niger Basin, based on observations from 1980–2013, at the Lokoja station is about 5000 m3/s.

2.2. Model description
The model used in the present study, is a lumped parameter, conceptual rainfall-runoff model, 
based on unit hydrograph (Jakeman, Littlewood, & Whitehead, 1990) which was implemented on 
the R package Hydromad (Andrews, Croke, & Jakeman, 2011). The model consists of two modules, a 
non-linear IHACRES loss module, where losses of water occur, to convert rainfall to effective rainfall. 
Generally the best configuration of, IHACRES model in semi-arid regions or for ephemeral streams is 
a one store loss module with a linear routing model (Ye, Bates, Viney, & Sivapalan, 1997). Here, we 
replaced the linear routing module with the auto-regressive, moving average, with exogenous in-
puts (ARMAX) model (Andrews et al., 2011; Dutta, Welsh, Vaze, Kim, & Nicholls, 2011) to route the 
effective rainfall to streamflow. This model structure was identified as the most appropriate for use 
in this study region (Oyerinde et al., 2017, 2016). The loss module is defined by just five 
parameters(Table 1), which together predict daily effective rainfall (Jakeman & Hornberger, 1993) 
while the ARMAX routing module has an additional four parameters (Dutta et al., 2011). The loss 
module involves calculation of an index of catchment storage sk, at each time step k (daily in this 
paper) based upon an exponentially decreasing weighting of precipitation and evapotranspiration 
(or temperature) conditions (Jakeman & Hornberger, 1993; Ye et al., 1997). The effective rainfall uk 
was computed from incidence precipitation rk, the storage index sk, moisture threshold (l) and power 
on soil moisture (p) (Equation (1)).
 

During a model calibration, four of the nine model parameters are determined directly from the raw 
rainfall, streamflow and temperature data, while the remaining are calibrated using a trial and error 
search procedure, optimising the model fit to the observed daily streamflow record. The equations 
underlying the loss module are to be found in (Jakeman & Hornberger, 1993; Ye et al., 1997) while 
the ARMAX routing module are well described in (Dutta et al., 2011). In this study, the optimum 
model parameters were obtained by an automatic calibration with the “fitByOptim” algorithm on R 
which selects the optimum parameters that gives the best preferred model performance statistics 
(here taken as Nash Coefficient) (Andrews et al., 2011).

2.3. Data
The model requires daily precipitation, evapotranspiration and river discharge. GPCP (1° × 1°) and 
ERA-Interim (0.5° × 0.5°) daily precipitation were evaluated in the Niger basin (Figure 1). GPCP data-
set is based on a combination of satellite and gauge measurements with daily temporal resolution 

(1)uk =
(

sk − l
)p
rk

ifsk > luk = 0

Table 1. Efficiency coefficients for model calibration in the Niger basin
Symbol Full name and range Reference
Nash Nash-Sutcliffe efficiency (−∞ ≤ Nash ≤ 1) Nash and Sutcliffe (1970)

d Index of agreement (0 ≤ d ≤ 1) Legates and McCabe (1999)

md Modified index of agreement Krause, Boyle, and Bäse (2005)

r Pearson correlation coefficient (−1 ≤ r ≤ 1)

R2 Coefficient of determination (0 ≤ R2 ≤ 1) Krause et al. (2005)

KGE Kling-Gupta efficiency (0 ≤ KGE ≤ 1) Kling, Fuchs, and Paulin (2012)
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(Huffman et al., 2001) while ERA-Interim is a precipitation re-analysis. The selection of the products 
was motivated first by their availability over the region of interest and the fact that they are com-
monly used in hydrological research studies (Gosset & Viarre, 2013; Jobard, Chopin, Berges, & Roca, 
2011; Negrón Juárez et al., 2009; Oyerinde et al., 2017, 2016). Evaluated catchments were selected 
based on discharge data acquired from the Niger basin authority. Catchment boundary of the Niger 
basin was obtained from Hydrosheds. Boundaries of selected sub-catchments were delineated with 
a preconditioned DEM from Hydrosheds using the Hortonian drainage networks analysis (Jasiewicz 
& Metz, 2011). Basin satellite rainfall and temperature series were calculated as the weighted aver-
age of all grid boxes by latitudes. This was done to follow the patterns of rainfall and temperature 
distribution in West Africa which is as a result of the back and forth movement of the Inter Tropical 
Convergence Zone (ITCZ) in the region (Lucio et al., 2012). The movement of the ITCZ follows the 
position of maximum surface heating associated with meridional displacement of the overhead 
position of the sun, lower latitudes experience higher rainfall and lower temperature, whereas high-
er latitudes experience lower rainfall and higher temperatures. For extraction of rainfall, higher lati-
tudes were given lower weights than the lower latitudes while the reverse was applied for 
temperature.

We computed catchment evapotranspiration from MERRA 2 meter daily air temperature on each 
catchment with the Hamon model (Oudin et al., 2005). This evapotranspiration model was selected 
based on the recent findings that very simple evapotranspiration models relying on mean daily tem-
perature are as efficient as more complex models such as the Penman model and its variants (Oudin 
et al., 2005).

2.4. Local evaluation
The two satellite modeled rainfall estimates were compared with rain gauge data in the Sota catch-
ment (Figure 1) using six efficiency criteria described in Table 1. They were also used to force the 
hydrological model and their six efficiency criteria were compared with that of the observed hydro-
logical simulation. Good discharge data were available for a 7 years period from 2004 to 2010 in the 
catchment. Consequently, automatic calibration was done on the catchment with regard to the 
optimization of the Nash efficiency from 2004 to 2007 and the simulations were validated from 2008 

Figure 1. Distribution of 
selected catchments on the 
Niger basin.
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to 2010. Fitness of observed and simulated discharge was evaluated with the six efficiency coeffi-
cients (Table 1) during calibration and validation.

2.5. Regional evaluation
Due to dearth of rain-gauge observations, regional Niger basin simulation in the 10 catchments was 
done with the better of the two evaluated rainfall estimates in the pre-evaluation phase described 
above. The hydrological model was calibrated with observed discharge for selected periods based on 
data availability. Good discharge data were available for a 7 years period from 2004 to 2010 in most 
of the catchments except at Bani and Dargol where good 7 years discharge data were available from 
1997 to 2003. Automatic calibration was done on each catchment with regard to the optimization 
of the Nash efficiency. Due to lack of quality 7 years data for model validation in three of the catch-
ments, model was validated in all the simulation period from 1997 to 2010. Fitness of observed and 
simulated discharge was evaluated with the six efficiency coefficients (Table 1) during calibration 
and validation.

3. Results

3.1. Local
Table 2 provides a comparison between the satellite products and the gauges. High Nash values of 
0.93, 0.96 and 0.76 were recorded in GPCP monthly, seasonal and daily climatological comparisons 
while ERA-Interim values were 0.73, 0.78 and 0.58. Other five efficiency criteria were also higher in 
GPCP than ERA-Interim. Optimum model calibration results presented in Table 2 revealed the supe-
riority of rain gauge observations relative to the satellite estimates. Optimum NSE values of 0.7, 0.67 
and 0.45 were recorded for rain gauge observation, GPCP and ERA-Interim. Other efficiency criteria 
also followed similar pattern as the NSE. During model validation, greater NSE value of 0.82 was 

Table 2. Efficiency coefficients of the two products compared to rain-gauge measurements
Efficiency coefficients GPCP ERA-Interim
Monthly

NSE 0.93 0.73

d 0.98 0.91

md 0.9 0.79

r 0.96 0.9

R2 0.93 0.81

KGE 0.93 0.63

Seasonal

NSE 0.96 0.78

d 0.99 0.93

md 0.91 0.8

r 0.98 0.96

R2 0.96 0.91

KGE 0.94 0.63

Climatological daily

NSE 0.76 0.58

d 0.93 0.85

md 0.81 0.75

r 0.87 0.8

R2 0.76 0.64

KGE 0.84 0.56
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recorded in the GPCP followed gauge data (0.71) and the least was ERA-Interim (0.58). Other effi-
ciency criteria also followed similar pattern of the NSE (Table 3).

Hydrographs of the calibration and validation on the Sota catchment during pre-evaluation peri-
ods are presented in Figures 2 and 3. River discharge simulated with the rain gauge measurements 
was compared to observed river discharge and there was a good fit in the structure of the hydro-
graphs. Precipitation and runoff simulated from gauged data were then compared with that of GPCP 
and ERA-Interim. ERA-Interim underestimated the precipitation amount during both calibration and 
validation and also has some outliers while GPCP smoothly replicated the observed rainfall pattern. 
The two precipitation products adequately captured the seasonality of flow on all evaluated catch-
ments. However GPCP has a better fit to the observed especially in the validation period.

3.2. Regional
The distribution of optimum calibration coefficients of runoff simulated with GPCP precipitation esti-
mates are presented in Table 4. Mean of 0.67, 0.91, 0.78, 0.86, 0.74 and 0.72 with corresponding 
standard deviations of 0.25, 0.06, 0.08, 0.08, 0.14 and 0.23 were recorded for Nash-Sutcliffe Efficiency 
(NSE), Index of Agreement (d), Modified Index of Agreement (md), Pearson Correlation coefficient (r), 
Coefficient of Determination (R2) and Kling-Gupta Efficiency (KGE) respectively across the ten catch-
ments. Hydrographs of the calibration periods presented in Figure 4 showcased that GPCP adequate-
ly captured the seasonality of flow on all evaluated catchments. GPCP also captured the peaks and 
low flow discharge periods in all catchments except Lokoja and Sirba. At Lokoja, the product under-
estimated the low flow periods throughout the calibration period while peak discharge was over 
estimated at the Sirba catchment.

Table 3. Hydrological modeling efficiency of the two precipitation datasets compared to rain-
gauge measurements
Efficiency coefficients Observed GPCP ERA-Interim
Calibration

NSE 0.7 0.67 0.45

d 0.91 0.9 0.8

md 0.75 0.75 0.71

r 0.84 0.82 0.69

R2 0.7 0.67 0.47

KGE 0.78 0.76 0.57

Validation

NSE 0.71 0.82 0.58

d 0.92 0.95 0.87

md 0.79 0.82 0.75

r 0.85 0.91 0.77

R2 0.73 0.83 0.59

KGE 0.85 0.88 0.73
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Figure 2. Model calibration with 
rain-gauge measurements and 
two satellite rainfall estimates 
in the Sota catchment.

Note: Black, red and green bars 
represents observed rainfall, 
ERA-Interim and GPCP while 
blue, black, red and green lines 
are observed runoff, simulated 
runoff from observed rainfall, 
simulated runoff from ERA-
Interim and simulated runoff 
from GPCP respectively.
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Figure 3. Model calibration with 
GPCP in the Niger basin.

Note: Green bars represents 
GPCP rainfall while blue and 
green lines are observed runoff 
and simulated runoff from 
GPCP respectively.
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Figure 4. Validation of 
simulated discharge with GPCP 
in the Niger basin.

Note: Green bars represents 
GPCP rainfall while blue and 
green lines are observed runoff 
and simulated runoff from 
GPCP respectively.
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The distribution of optimum validation coefficients of discharge simulated with GPCP precipi-
tation estimates are presented in Tables 3 and 4. Mean of 0.65, 0.90, 0.77, 0.84, 0.71and 0.72 
with corresponding standard deviations of 0.21, 0.06, 0.06, 0.09, 0.14 and 0.11 were recorded for 
NSE, d, md, r, R2 and KGE respectively. Hydrographs of model validation are presented in  
Figure 4. GPCP precipitation product was able to adequately predict the flow seasonality in non 
calibration periods even when there was little or no data as witnessed at Yakin (1993–2003), 
Bani (2004–2010), Dargol (2004–2010), Kompongou (1993–2003) and Sota (1993–2003). At 
lokoja, GPCP underestimation continued in the model validation while over estimation of peak 
flows at Sirba was slightly decreased.

4. Discussion and conclusions
Close correlation between GPCP’s calibration and validation efficiency coefficients recorded during 
pre-evaluation indicates that GPCP precipitation estimates are adequate for hydrological simula-
tion in the Niger basin. This is against the previous opinion that satellite modeled rainfall estimates 
can’t be used directly for forcing hydrological models in West Africa (Gosset & Viarre, 2013). 
However, observed weakness of the ERA-Interim shows superiority of satellite related precipitation 
observations over reanalysis. Similar observation was made by Ricko et al. (2011) where ERA-
Interim precipitation was attributed with weakening of the seasonal cycle at Lake Chad and also 
had a spurious interannual variability at Kainji Reservoir. Capability of the GPCP precipitation esti-
mates in adequately simulating discharge in the validation periods (even when there was little or 
on data) gives some prospects for their applicability in poorly and ungauged basins such as Niger. 
These rainfall estimates could be used in filling missing precipitation gauge observations. In addi-
tion the methodology used in this study could be used in replacing missing hydrological data for 
detailed hydrological analysis. In ability of the model to adequately simulate river discharge in the 
Sirba and Lokoja might be due to the effects of land use and presence of large upstream dams 
which are not included in this simulation. The Sirba is one of the sahelian catchment where 
 discharge is increasing despite a decrease in rainfall due to unsustainable land use change (Amogu 
et al., 2010; Descroix et al., 2009). Further research should aim at evaluating the ungauged basin 
applications of the GPCP rainfall estimate.

Table 4. Hydrological modeling efficiency of GPCP across the 10 catchments
Efficiency coefficients Calibration All simulation

Mean Std. dev. Mean Std. dev.
NSE 0.67 0.25 0.65 0.21

d 0.91 0.06 0.90 0.06

md 0.78 0.08 0.77 0.06

r 0.86 0.08 0.84 0.09

R2 0.74 0.14 0.71 0.14

KGE 0.72 0.23 0.72 0.11
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