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African Science Service Centre on Climate Change and Adapted Land Use, Ouagadougou, Burkina Faso;
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ABSTRACT
The Landsat mission which has existed over five decades has
remained at the forefront of providing consistent moderate spatial
and temporal resolution optical images of the earth. The failure of the
scan line corrector (SLC) on board the Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) in May 2003 has permanently resulted in data
gaps on each Landsat 7 scene. Due to the obvious negative impacts
on the image usability, a number ofmethods have been developed to
fill the no-data areas in the image. This study assessed the perfor-
mance of four Landsat 7 ETM+ SLC-off gap-filling methods in a highly
heterogeneous landscape of West Africa for two different seasons
(dry and rainy). The methods considered are: (1) Weighted Linear
Regression (WLR) integrated with Laplacian Prior Regularization
Method (LPRM), (2) Localised Linear Histogram Matching (LLHM), (3)
Neighbourhood Similar Pixel Interpolator (NSPI) and (4) Geostatistical
Neighbourhood Similar Pixel Interpolator (GNSPI). All the imagesused
were Landsat 7 ETM+ SLC-off images, temporally close and from the
same season for each set of time step. Visual comparison, mean, and
standard deviations of the histograms of all bands of only the filled
areas were used to assess the results. Additionally, overall accuracy
(OA), kappa coefficient (κ), and balanced accuracy (BA) per class were
used to evaluate a land use/cover (LULC) classification based on the
gap-filled images. Visually, all the four methods were able to com-
pletely fill the gaps in the Landsat 7 ETM+ SLC-off image. They all look
similar and spatially continuous with no anomalies or artefacts on
them. The histograms from each band for only the filled areas for all
the four methods also gave similar means and standard deviations in
most cases. All the four gap-filling methods provided satisfactory
results (OA >96% and κ> 0.937 in all methods for images in the dry
season and OA >93% and κ> 0.877 for the image in the rainy season)
in the land cover classification considering the complexity of the
study area. But the GNSPI was superiority in all cases with the highest
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OAof 97.1% and κ of 0.947 in the dry season andOAof 94.6% and κ of
0.899 in the rainy season. This implies that the GNSPI ismore robust in
gap filling of Landsat 7 ETM+ SLC-off images than the other three
methods in a heterogeneous landscape of West Africa regardless of
the season. This study suggests that gap filling of Landsat 7 ETM+
SLC-off images will help to increase the number of Landsat images
needed to build time-series data for a data-scarce region such asWest
Africa.

1. Introduction

Land use/cover (LULC) mapping and monitoring with optical images have been exten-
sively used in land surface studies and applications (Ghansah et al. 2016; Jarman, Jarman,
and Edwards 1983; Lunetta et al. 2006; Nyamugama and Kakembo 2015; Vittek et al. 2014;
Forkuor et al. 2017a) because of its ability to produce consistent and comprehensive data
in time and space . The Landsat mission, which has been operational since 1972 (Loveland
and Dwyer 2012; Williams, Goward, and Arvidson 2006), has produced the most compre-
hensive and complete set of medium resolution optical images of the earth. It has been
utilized in diverse fields of land surface research including agriculture (Hamuda et al. 2018;
Leslie, Serbina, and Miller 2017), soil (Aksoy, Özsoy, and Dirim 2009; Azabdaftari and Sunar
2016; Nawar et al. 2014), water (Laili et al. 2015; Hellweger et al. 2004), forestry (White et al.
2017; Onojeghuo and Onojeghuo 2015) and settlements (Hu et al. 2016; Esch et al. 2009;
Bhatti and Kumar Tripathi 2014). However, as an optical system, data availability is often
hindered by persistent cloud and cloud shadow cover, making it difficult to obtain
consistent data for LULC classification and trend analysis especially in tropical regions
such as West Africa (WA) (Wijedasa et al. 2012). The failure of the scan line corrector (SLC)
on board the Landsat 7 Enhanced Thematic Mapper plus (ETM+) instrument in May 2003
introduced a further limitation on obtaining usable and consistent data for studying LULC
dynamics (Zhang, Li, and Travis 2007; USGS 2013). The function of the SLC was to
compensate for the forward motion of the satellite during data acquisition. This failure
has resulted in images with wedge-shaped gaps (so-called SLC-off images) that range
from a single pixel near the centre of the image to about 14 pixels along the east and west
edges of each scene acquired (Maxwell, Schmidt, and Storey 2007; Maxwell 2004). On
average, each scene losses about 22% of the image data. Nonetheless, the remaining
spectral information on such SLC-off images exhibits the same radiometric and geometric
qualities as images taken before the failure (Storey et al. 2005).

Due to the obvious negative impacts of this failure on image usability, a team of
scientists put together by the USGS (United States Geological Survey) was tasked to
evaluate the utility and validity of Landsat 7 ETM+ SLC-off products. They noted that for
applications covering large spatial scales (such as LULC changes) the impact of the
anomaly was acceptable. However, for local-scale applications, the effect of the SLC-off
induced data gaps may have a substantial influence on the results of the specific
application under consideration (USGS 2013). Consequently, several methods have
been developed to fill the gaps caused by the malfunctioning of the SLC to ensure
image usability for various applications as well as to maintain the continuity of the
Landsat data archive (Wulder et al. 2008).
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Examples of methods developed include: (1) Linear Histogram Matching (localized and
adaptive window linear histogram matching (LLHM and AWLHM)) (Scaramuzza, Micijevic,
and Chander 2004), (2) Neighbourhood Similar Pixel Interpolator (NSPI) (Chen et al. 2011),
(3) Geostatistical Neighbourhood Similar Pixel Interpolator (GNSPI) (Zhu, Liu, and Chen
2012), (4) Kriging (Zhang, Li, and Travis 2007), (5) Weighted Linear Regression (WLR) and
Laplacian Prior Regularization Method (LPRM) (Zeng, Shen, and Zhang 2013), and the (6)
Geographically Weighted Regression (GWR) method (Zhang, Li, and Civco 2014). Common
to these methods is the use of other Landsat scenes (known as input images) to fill the
gaps in the SLC-off images. Since the location of the gaps differs for each SLC-off scene
(Storey et al. 2005), it is possible to use SLC-off images as input images. There are,
however, differences in the approach each method adopts in filling the missing data
pixels. For example, the number of input images required, type and number of input
parameters and method used to transform input parameters for gap filling (e.g. regres-
sion, geostatistical). Yin et al. (2017) provide a good summary of most of these methods.

These differences have necessitated a number of studies which aimed at ascertaining the
accuracy and suitability of the different methods in filling the missing data pixels in Landsat
7 ETM+ SLC-off images. These studies tested the methods in different landscapes in varying
parts of the world. Romero-sanchez et al. (2015), for example, compared four gap-filling
methods (LLHM, NSPI, GNSPI and WLR) to determine the most robust in filling SLC-off
images for mapping a semi-deciduous tropical forest in Mexico. They created artificial gaps
on an SLC-on, filled the gaps with the methods, and compared the gap-filled predicted
pixels with the corresponding pixels in the original image. Based on accuracymeasures such
as overall accuracy (OA), kappa coefficient (κ), etc., they concluded that the GNSPI method
performed better than the othermethods (Romero-sanchez et al. 2015). In a similar research,
Yin et al. (2017) applied four gap-filling algorithms – Kriging and co-Kriging, GNSPI, WLR and
the DS – across a range of land surface conditions (homogeneous and heterogeneous) in
scenes with abrupt changes in landscape elements. Their results showed a satisfactory
performance for all of the gap-filling approaches for the homogeneous case. However, in
a heterogeneous environment, GNSPI achieved the best performance for all tested cases.
They found the WLR and the GNSPI methods to exhibit equivalent accuracies when
temporally close images are used. For the case of abrupt changes in scene elements or in
the absence of ancillary data, the DS approach performed better than the other tested
methods. Following from these results, other studies have underscored the influence of
landscape characteristics (homogeneity or heterogeneity) on the performance of gap-filling
algorithms (Zhu, Liu, and Chen 2012; Yin, Mariethoz, and McCabe 2016; Yin et al. 2017).

Studies conducted in several parts of West Africa have alluded to rapid changes in
LULC in the sub-region (Kleemann et al. 2017; Obahoundje et al. 2018). To ensure
sustainable land management in the future and reduce the looming effects of climate
change in West Africa, a good understanding of present and historical LULC patterns is
required, which could help in predicting future patterns. Landsat images are an important
data source for LULC mapping globally, but especially in data-poor regions such as West
Africa. Although new high to moderate resolution open-access images are now available
(e.g. the Sentinels through the Copernicus program), which could help in determining
present LULC patterns, Landsat ETM+ SLC-off presents one of the most comprehensive
open-access historical remote sensing data for LULC and other analysis. In this regard,
investigating which of the several gap-filling algorithms works well for the heterogeneous
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West African landscape is important for deriving and understanding historical LULC
patterns. Further, knowledge of the best gap-filling algorithm will increase the number
of available Landsat data time-series for deriving and understanding present-day LULC
patterns (considering that Landsat 7 and 8 are running concurrently). This will also reduce
the effects of persistent cloud cover on availability of cloud-free images. Unfortunately,
not much research has been conducted in West Africa concerning the best gap-filling
algorithm for the peculiar landscape of this region (Laurin et al. 2012). This submission
aims at contributing to this research gap by comparing the performance of four gap-
filling algorithms – WLR-LPRM, LLHM, NSPI, and GNSPI Landsat 7 ETM+ SLC-off images.
These methods were selected because they are open source, user-friendly and often used
methods for gap filling (Yin et al. 2017; Sadiq et al. 2014; Romero-sanchez et al. 2015). The
study was conducted in South-Western Burkina Faso, which has a landscape characteristic
typical of West Africa. Experiments were performed on two data time steps representing
the two main seasons (dry and rainy) in the study area. The resulting gap-filled images
were assessed qualitatively using the mean and standard deviations of the pixel values of
the filled areas. For a quantitative assessment, the gap-filled images were classified to
reveal LULC classes, and subsequently validated to produce error matrices. The balanced
accuracy per class, OA and κ obtained from the error matrices were compared to judge
which of the algorithms is more robust in filling the gaps of Landsat 7 ETM+ SLC-off
images of heterogeneous landscapes in WA.

2. Materials and method

2.1. Study area

The experimental area is located in the South-West Region of Burkina Faso (Figure 1). It is
located between latitudes 11°45ʹand 11°10ʹNand longitudes 003°10ʹand 003°00ʹWwith a total
area of about 1,429.73 km2. Rainfall pattern in the area is uni-modal and starts from May to
October followedby a dry season fromNovember to April. The annual rainfall average is about
850 mm and daily temperature ranges between 20°C and 34°C (Forkuor et al. 2017b; Liu et al.
2015). The study region falls within the Sudanian savannah climatic zone with natural vegeta-
tionmade up of forest, savannahwoodland, grass and shrub. Themajor land use is agriculture.
Sorghum,millet, maize, cowpea, groundnut are themain staple cropswhile cotton is themost
important cash crop (Hipt et al. 2017). There are several rural settlements scattered within the
farming areas and fewmajor towns (which includesDano andDiebougou) in the study area. In
terms of surface water, the area has several irrigation dams and network of rivers. Illegal small-
scale gold mining is gradually springing up in the area and due to its lucrative nature, people
are migrating from other areas of the country into the region. Topographically, the area is
relatively flat with some few hilly areas. The elevation ranges between 236 and 568 m above
mean sea level. The soil types are Lixisols (most dominant), plinthosols, gleysols, cambisols,
leptosols, and stagnosols (Hipt et al. 2017; IUSS 2006; Callo-Concha, Gaiser, and Ewert 2012).

2.2. Data and pre-processing

Cloud-free Landsat 7 ETM+ SLC-off images (C1-Level) of path 196 and row 052 were used
in this study. The study area falls within the section of the scene where missing pixels per
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strip range from 4 to 9. Compared to the gaps at the edges of the scene (up to 14 pixels),
these gaps are relatively narrow. But the accurately filling of these narrow gaps are
important for understanding local-scale dynamics, which was the purpose of this study.
Moreover, for subsequent classification of the gap-filled images, authors conducted field-
work in the study area only. Table 1 details the images used as target and input. ‘Target
image’ represents the image with gaps to be filled, ‘input image’ is the image to be used
to fill the gaps in the target image. The images were selected for two different time steps.
The first time-step (season 1 – S1) was taken from the dry season in the month of January
in a 16 days interval between the target image and the input image. The second time step
(S2) was taken from the rainy season in the months of May and June for the target and
input images, respectively, and with a 16-day interval.

Our choice of image dates was influenced by cloud cover and the different seasons in
the study area. The digital numbers of all images were converted to top-of-atmosphere

Figure 1. Map of the study area in the South-west region of Burkina Faso.

Table 1. Landsat 7 ETM+ SLC-off images used in the study. S1 represent images chosen
from the dry season and S2 is images from the rainy season.
Time step Purpose Date acquired Landsat scene ID

S1 Target image 3 January 2010 LE71960522010003ASN00
Input image 19 January 2010 LE71960522010019EDC00

S2 Target image 25 May 2015 LE71960522015145ASN00
Input image 10 June 2015 LE71960522015161ASN00
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(TOA) reflectance using the relevant information in their respective metadata files.
Atmospheric correction was not performed due to information provided by developers
of some of the algorithms. For example, Chen et al. (2011) explained that the NSPI can be
applied to either TOA radiance or reflectance, so far as the calibration formula is the same
between input and target images. Zhu, Liu, and Chen (2012) also utilized TOA images in
testing and presenting the GNSPI algorithm. Due to the gentle relief of the study area,
topographic correction, as was recommended for mountainous areas by Zhu, Liu, and
Chen (2012) was not performed for images.

All the six reflective bands (blue, green, red, Near-infrared (NIR), Short-wave infrared
(SWIR) 1 and 2) were used in the gap-filling process. Figure 2 shows the images used in
a false colour composite (band combination 4-3-2). The gap-filled images, based on the
different algorithms under review, were classified to reveal five land use/land cover classes
with reference to the Food and Agriculture Organization (FAO) LULC classification scheme
(FAO 2000). These are vegetation, bare land, water, settlement and cropland. For training
the classifiers and validating the LULC classification results, polygons of the various land-use
classes were delineated using homogeneous purposive sampling approach. The training
samples were obtained from high resolution (50 cm) digital globe images of 2010 and 2015
on Google Earth engine’s historical images, existing topographic maps, previous LULCmaps
(Zoungrana et al. 2015), field visits and interviews conducted fromMarch toDecember 2017.
In all 123 polygons of sizes between 178 m2 and 3328 m2 were used.

2.3. Gap-filling methods

2.3.1. Weighted linear regression integrated with laplacian prior regularization
This approach fills image gaps by using two methods (WLR and LPRM), either separately
or combined. TheWLRmethod (Zeng, Shen, andZhang2013)fills themissingdata pixels in the
target image with an input image information by building a regression model between the
corresponding pixels assuming a linear relationship between the two images covering
the same area. When the target image cannot completely recover the missing pixels, a non-
reference regularization algorithm is used to implement the pixel filling. In this algorithm,
similar pixels of the input imagewill be searched, and aweighted linear regressionwill be built
based on it. This means, themost important parameter in this process is the number of similar
pixels.When thegapwidths are large, theWLRmethodmaynotbe able tofill allmissingpixels;
in that case, the LPRMmethod is adopted to fill the remaining gap pixels. The LPRM algorithm
is a non-reference recovery method. In this process, the invalid pixels are recovered by the
iterations and updates under a priori constraint. Two important parameters must be consid-
ered, the regularization parameter and themaximum number of iterations. The regularization
parameter balances the data fidelity and the image regularization. The larger the parameter,
the smoother the results. Themaximumnumberof iterationsdetermines themagnitudeof the
algorithm. When the invalid region is large, this parameter should increase. Otherwise, not
every invalid pixel can be filled. The detailed concept of WLR-LPRM gap-filling method can be
found in Zeng, Shen, and Zhang (2013) and the packaged software is available online (Shen
2014) for free. The following parameters were used in-linewith the guidance fromZeng, Shen,
and Zhang (2013): the number of similar pixels is 30, the regularization parameter is 1000, and
the maximum number of iteration is 600.
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Figure 2. Landsat SLC-off images used for gap filling (band combination 4-3-2): (a & b) are the target
and input images, respectively, for time step 1 (dry season); (c & d) are target and input images,
respectively, for time step 2 (rainy season).
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2.3.2. Localized linear histogram matching
The LLHM which was developed by a joint USGS/NASA (National Aeronautics and Space
Administration) research team (USGS 2004; Desai and Ganatra 2012) and was the first gap-
filling algorithm after the failure of the scan line corrector on board the Landsat 7 ETM+
sensor. In the LLHM method, the linear transformation is obtained by calculating the gain
and bias using the mean and standard deviation within a localized moving window
around each pixel in the SLC-on or another SLC-off image to obtain the localized linear
transform function. Then, it transforms the pixel value to fill the missing data pixels in the
target SLC-off image (Suliman 2016; Sadiq et al. 2014). All valid data within the target
image are retained. Two or more fill scenes may be used due to the geometry of the gaps.
In many instances, the gaps in the target and input images will overlap, resulting in some
left-over gaps in the target image. In such an instance, more than one fill images should
be used before the gaps can be completely filled. The detailed methodology of LLHM
algorithm has been outlined on the USGS website (USGS 2004) and the IDL compiled
version for ENVI (Environment for Visualizing Images) is online (YCEO 2013).

2.3.3. Neighbourhood similar pixel interpolator
The NSPI which was proposed by Chen et al. (2011) is based on the assumption that
neighbouring pixels which are close to SLC-off gaps share common spectral character-
istics and temporal patterns of changes with the missing data pixels, if they are all of the
same land use or cover type. In this case, it is necessary to search for similar pixels near the
gaps. All the pixels in a similar class of an area are counted and their distance, similarity,
and temporal measures are calculated before a new radiometric value is predicted for the
missing pixel value. The steps included in the NSPI are (i) selection of neighbouring similar
pixels, (ii) calculation of the weights for similar pixels, (iii) calculation of the target pixel
value, and (iv) data quality flag generation. The NSPI can be applied to either TOA
radiance or Digital Numbers (DN) value (if the radiometric calibration formula is the
same between input and target images) or to TOA reflectance or reflectance products
after performing atmospheric correction on the image. The detailed explanation of this
method can be found in Chen et al. (2011) and the IDL code is online (Zhu 2016b). The
parameters used are as follows: sample size of the sample pixel is 20, the maximum
window size is 8, the estimated number of classes is 5, range of minimum and maximum
DN values of the image is [0, 1], and the block size is 500. These parameters were selected
based on the recommendations made by Chen et al. (2011).

2.3.4. Geostatistical neighbourhood similar pixel interpolator
GNSPI is a geostatistical approach which combines deterministic interpolation and geosta-
tistical principles (Zhu, Liu, and Chen 2012). The technique uses physical or empirical
models to first remove the trend of data in the target image and then adopts ordinary
Kriging to predict the residual (Yin et al. 2017). One or more additional image(s) is/are
needed together with the target image in the gap-filling process. The algorithm involves
a six-step process: data de-trending using empirical or physical models (steps 1 & 2);
estimation of the semi-variogram of the residuals arising from the de-trending model
(step 3); prediction of the residuals of the locations without observation from ordinary
kriging (steps 4 & 5); final prediction of locations without observation is obtained by adding
back the trend (step 6) (Zhu, Liu, and Chen 2012). The GNSPI code is written in Interactive
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Data Language (IDL) and can be accessed online (Zhu 2016a). The following parameters
were set based on the advice of the developers: sample size is 20, the maximum window
size is 12, the estimated number of classes is 5, range of minimum andmaximum DN values
of the image is [0, 1], and the block size is 500 (Zhu, Liu, and Chen 2012).

2.4. Method

2.4.1. Gap-filling process and analysis
All four aforementioned data preparation routines and processes were utilized in order to
produce the final gap-filled images for comparison. The WLR-LPRM algorithm was imple-
mented using a packaged software that runs on windows operating system. The NSPI and
GNSPI codes were implemented on the IDL platform in ENVI software whiles the LLHM
algorithm was implemented using a packaged software which was installed and run on
ENVI software as a toolbox. The gap-filled images were assessed in two ways: (i) based on
the DNs of the resulting images, (ii) based on classification results. For the assessment
based on the DN values, the mean and standard deviation of the filled areas were
calculated and compared. In addition, the histograms of all the six bands for S1 were
plotted for qualitative comparison. For the comparison based on the classification results,
the balanced accuracy (BA) per class, the OA and κ obtained from the error matrices after
classification were taken into account (Congalton 1991). It was assumed that since all the
gap-filled images will be classified with the same algorithm, training and validation
samples, this process can be used to explain the effectiveness of the filled images in
a classification application (Zhu, Liu, and Chen 2012). This assumption provides a fair basis
for comparing the OA and κ of each gap-filled image. Also, the filled results were visually
checked to determine whether they were spatially continuous, and whether there were
any anomalies in the filled image (Chen et al. 2011; Maxwell, Schmidt, and Storey 2007;
Pringle, Schmidt, and Muir 2009). A comparison between the two time steps was done to
ascertain whether they all had similar results.

2.4.2. Image classification using random forest
The resulting gap-filled images were classified into various LULC types using the ‘super-
class’ command under RStoolbox package (Leutner 2017) in R stats. Random Forest (RF) is
a supervised machine learning technique that is widely used by researchers in remote
sensing (Forkuor et al. 2014; Kalbi, Fallah, and Shataee 2014; Stefanski et al. 2014; Watts
et al. 2011; Meng et al. 2017). As a non-parametric decision-tree (DT) based classifier, RF
combines the results of a given number of DTs. DT is a tree-like hierarchy, made up of
a root node, which involves all samples, internal or split nodes with a decision rule, and
final leave nodes, representing the different classes. Tree ‘branches’ are split by reducing
the uncertainty present in the data and hence the probability of misclassification. Each
tree in the forest is trained by a randomly selected subset of samples. The performance of
an RF depends on the predicted accuracy of the individual trees and the correlation
between the trees. In the classification process, each tree in the forest casts a unit vote for
the most popular class (Breiman 2001). It also has an internal unbiased estimator of the
training set error known as ‘out-of-bag’ (OOB) for cross validation-like accuracy measure.
The advantages of RF compared to other classification algorithms include; (i) very high
accuracy and robust results; (ii) a way of determining variable importance and (iii) ability
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to model complex interactions among predictor variables (Cutler et al. 2007). The imple-
mentation of RF classification requires two parameters: the total number of trees to be
constructed, in this study 500, and the number of variables to be randomly selected as
candidates at each node split, here 1000.

2.4.3. Accuracy assessment
To evaluate the performance of the RF classifier, classification accuracies were deter-
mined using a set of independent data (validation data). The OA and κ are the most
commonly used statistics for evaluating the overall performance of LULC classification
(Congalton 1991). The OA is the proportion of pixels that are correctly classified,
whereas κ measures the agreement between the classification by assessing if the
confusion matrix is significantly different from a random result (Zijdenbos et al.
1994; Smits, Dellepiane, and Schowengerdt 1999; Congalton 1991). In comparing
two classifications, higher OA and κ represent more accurate results from the overall
prediction perspective (Kalbi, Fallah, and Shataee 2014; Stefanski et al. 2014). To
determine the per class performance, the balanced accuracy (BA) per class, which
can be defined as the arithmetic mean of sensitivity and specificity was calculated
according to equations 1–3:

BA ¼ sensitivityþ specificityð Þ
2

(1)

The sensitivity (producer’s accuracy or true positive rate) is the percentage of the pixels
which were correctly classified. To calculate the specificity, the sensitivity is normalized by
either the total number of observations predicted to the class or the actual number of
observations in that class (Brodersen et al. 2010; Garcia, Mollineda, and Sanchez 2009;
Sokolova, Japkowicz, and Szpakowicz 2006).

Sensitivity ¼ TP
TPþ FNð Þ (2)

Specificity ¼ TN
FPþ TNð Þ (3)

where TP is true positive, FN is false negative, TN is true negative, and FP is false positive
rates. Note: TN for a class is the sum of the values in the leading diagonal except the value
of that particular class.

The class BA utilizes three core elements from each class within the confusion matrix:
the total number of correctly classified pixels, the total number of pixels predicted into
that class, and the total number observed in the data. In this study, the ground truth data
were split 70% to 30% for training and validation, respectively. The random seeds were set
to the same values before training the RF model. This was done to ensure that the same
random samples were used in each of the four algorithms and permit a direct comparison
of their results (Forkuor et al. 2017a).
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3. Results and discussion

3.1. Filled Landsat 7 ETM+ SLC-off image

Figure 3 shows the resulting Landsat 7 ETM+ SLC-off images for the two time steps
displayed in a false colour composite (4-3-2). Although the gap-filling methods cannot
perfectly restore an SLC-off image, the resultant images look excellent. No obvious visual
differences were observed between the pixels of the filled areas and the other areas.
Visually, all the filled images have no data gaps (stripes) left on them. They look spatially
continuous with no anomalies and they all look similar. This implies that all the methods
have comparable abilities for gap filling in a heterogeneous landscape of West Africa with
cloud-free images. The results from the LLHM were visually good just like the results from
the other methods although the other methods claim to be more robust than the LLHM
(Romero-sanchez et al. 2015). The inclusion of the time-series images in the NSPI and
GNSPI did not make any visual difference from the WRL-LPRM and LLHM which required
no time-series image. This may be as a result of the non-over lapping nature of the gaps in
the images used for this exercise and the fact that the time-series image was from the
same season and temporally close to the target and input images.

Figure 4 shows two zoomed-in areas of the gap-filled images for S1 and further
confirms the effectiveness of all the gap-filling methods. Panel 1 shows a dam (black
colour) area with a major road along the retaining wall and large areas of croplands
around the dam. Panel 2 shows a forest reserve (big red stripe) with a major road through

Figure 3. Results of gap-filled Landsat 7 ETM+ SLC-off images using the four methods (band
combination 4-3-2). (a & e) WLR-LPRM; (b & f) LLHM; (c & g) NSPI; and (d & h) GNPSI. (a – d) represents
time step 1, dry season. (e – f) represents time step 2, rainy season.

INTERNATIONAL JOURNAL OF REMOTE SENSING 11



it. It is evident from Panels 1 and 2 that all the gaps in the original image (Figure 2) have
completely been filled by all the four methods.

In addition to the visual comparison, the histograms of all the six bands of only the
filled areas were generated and their mean and standard deviations calculated. From
Figure 5 which shows the histograms for S1 (dry season), it can be observed that the
pixel values show similar distributions for the filled areas using the four methods for all
bands. Nonetheless, the LLHM gave a slightly different distribution for bands 1 and 4.
Likewise, the means and standard deviations of the bands were similar in most cases. In
the case of the LLHM, band 3 gave a slightly different mean value (μ of about 0.001 more
than the others) (Table 2). For the WLR-LPRM, bands 5 and 7 also had means (B5: μ of
about 0.003 less and B7: μ of about 0.004 less) which were slightly different from the
other three methods. The results from S2 (rainy season) for the four methods had similar
pixel value distributions, means, and standard deviations trend like S1 (Table 2), with

Figure 4. Zoomed areas of original SLC-off image and gap-filled images for S1 (band combination
4-3-2); columns: (a) WLR_LPRM; (b) LLHM; (c) NSPI; and (d) GNPSI methods; Row (e) is the original SLC-
off image (the left image shows a dam (black) surrounded by croplands and the right image shows
a forest reserve (red) area). The area of interest is within the green rectangle.
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WLR-LPRM having a slight deviation of mean for bands 5 and 7 (B5: μ of about 0.004 less
and B7: μ of about 0.004 less). All the other bands gave similar mean values for all the
four methods. A comparison of the trends of mean and standard deviation values for
each of the bands for the different time steps shows a similar trend in most cases with
very few deviations.

Figure 5. Histograms and statistic of bands for only the filled gaps using the four methods for S1 (dry
season). The rows represent the spectral bands (Band 1–5 & 7). The columns represent the gap-filling
methods (WLR-LPRM, LLHM, NSPI, and GNSPI).
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3.2. Accuracy assessment from LULC classification

The summary of the results (OA and κ) obtained after the validation of the classification
model is presented in Table 3.

For S1, it can be seen that GNSPI obtained the highest OA (97.1%) and κ (0.947)
indicating that GNSPI is more robust than the other three methods. The WLR-LPRM
outperformed the NSPI and LLHM with OA and κ values of 96.9% and 0.943, respectively,
although the OA values were very close. In the works of Maxwell (2004) and Zeng, Shen,
and Zhang (2013), the LLHM was rated as the least robust because it had worse results.
The results from this research also proved the same. This notwithstanding, the LLHM did
not perform badly at all although it had the least OA and κ. It was only 0.1 and 0.001 away
from the NSPI for OA and, respectively. Although most of the pre-defined conditions (few
clouds, low temporal variability, and minimal separation date) for the LLHM algorithm to
achieve optimum results were met (Scaramuzza, Micijevic, and Chander 2004; Zhang, Li,
and Travis 2007), it achieved the least performance. This can be attributed to the fact that
the images were not checked for fire scars which is one of the pre-defined conditions and
sun glint (Chen et al. 2011). Secondly, the simple nature of the algorithm can also
contribute to its performance. In the case of LULC which has a huge anthropogenic effect
especially in West Africa, assuming a linear relationship between the temporal variability
of a LULC type may be misleading.

Table 2. Mean (μ) and standard deviation (σ) of band pixel values for only filled gaps using the four
methods. S1 represents time step 1 (dry season) and S2 time step 2 (rainy season).

WLR-LPRM LLHM NSPI GNSPI

Band Statistic S1 S2 S1 S2 S1 S2 S1 S2

B1 μ 0.116 0.122 0.116 0.122 0.116 0.122 0.116 0.122
σ 0.008 0.007 0.008 0.008 0.008 0.007 0.008 0.007

B2 μ 0.108 0.119 0.107 0.119 0.106 0.119 0.108 0.119
σ 0.013 0.011 0.013 0.011 0.013 0.011 0.013 0.011

B3 μ 0.125 0.132 0.124 0.132 0.125 0.132 0.125 0.132
σ 0.022 0.018 0.024 0.019 0.022 0.018 0.023 0.018

B4 μ 0.187 0.206 0.187 0.207 0.187 0.206 0.187 0.206
σ 0.035 0.021 0.036 0.023 0.034 0.021 0.035 0.021

B5 μ 0.250 0.260 0.253 0.264 0.253 0.264 0.253 0.264
σ 0.054 0.035 0.054 0.037 0.052 0.036 0.053 0.036

B7 μ 0.170 0.163 0.174 0.167 0.174 0.167 0.174 0.167
σ 0.041 0.033 0.040 0.032 0.039 0.031 0.039 0.031

Table 3. Classification statistics of the gap-filled Landsat 7 ETM+ SLC-off images using WLR-LPRM,
LLHM, NSPI, and GNSPI, for the two-time steps as shown in Figure 3. S1 and S2 are the results from the
dry and rainy seasons, respectively.

BA [%]

WLR-LPRM LLHM NSPI GNSPI

LULC S1 S2 S1 S2 S1 S2 S1 S2

Bare land 98.3 81.5 98.3 83.6 95.8 81.4 98.4 81.6
Cropland 97.0 95.0 96.5 94.6 96.5 94.6 97.0 95.0
Settlement 97.8 90.7 97.9 82.4 96.5 87.9 97.9 90.9
Waterbody 99.5 99.2 99.5 99.2 99.5 99.2 99.5 99.2
Vegetation 99.4 94.1 95.9 92.6 96.9 91.6 97.4 92.8
OA (%) 96.9 94.3 96.6 93.4 96.7 93.7 97.1 94.6
Kappa () 0.943 0.895 0.938 0.878 0.939 0.882 0.947 0.899
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The comparison of the performance of the various LULC classes using the BA shows the
strength of the GNSPI in the bare land class. For Cropland, the GNSPI and WLR-LPRM
achieved comparable accuracies (BA of 97.0%). The GNSPI again had the same accuracy
with the LLHM (BA of 97.9%) for settlement. All the four methods produced the same BA
(99.5%) for Waterbody. In the vegetation class, the WLR-LPRM obtained the highest BA of
99.4%. The results show that the WLR-LPRM performed very well. Its slight shortfall can be
attributed to its linear relationship assumption part which has a greater chance to be
invalid in reality (Yin et al. 2017).

The difference in the season did not affect the performance rating of the gap-filling
methods because the outcome of S2 had a similar trend like that of S1 (Table 3). The
GNSPI obtained the highest OA of 94.6% and κ of 0.899. This was closely followed by the
WLR-LPRM (OA of 94.3% and κ of 0.895). The NSPI followed with the LLHM obtaining the
least values of OA and κ.

However, the BA showed some slight changes in the class accuracies. The LLHM had
the highest accuracy (83.6%) in the bare land class. For Cropland, the GNSPI and WLR-
LPRM achieved comparable accuracies (BA of 95%). The GNSPI was slightly ahead of the
WLR-LPRM in the settlement class with the NSPI and LLHM following suite. Synonymous
to the trend in S1, all the four methods produced the same BA (99.2%) for Waterbody.
Finally, the WLR-LPRM outperformed (BA of 94.1%) the other three in the vegetation class.

The strength of the GNSPI in both time steps can be attributed to the fact that it applies
a geostatistical approach which is influenced by the spatial dependence of the images.
First, it utilizes the temporal information from the input images which is used to predict
the values of all pixels outside the gaps. Secondly, GNSPI uses the sample pixels, which
have high spectral similarity with the target pixels for predicting the values of the target
pixels (Zhu, Liu, and Chen 2012). In the instance where there is no time-series image
or second input image which is temporally closer to the target image, the WLR-LPRM can
be an option to consider since its accuracies were relatively close to the GNSPI.

A comparison of classification accuracies between the two time steps revealed higher
values of BA, OA and κ (Table 3) in S1. This can be attributed to the fact that in WA, most LULC
types can better be distinguished at the early stages of the dry season than in the rainy season
where most areas have turned green. This result is similar to a study conducted by Liu et al.
(2015) in the study area. Figure 6 shows the classified gap-filled images using the four
algorithms for S1 (dry season). The linear vegetation represents a riverine vegetation.

3.3. Implication for LULC mapping in West Africa

The results of this research give a very bright outlook for LULC mapping in a data-scarce
region such as WA because

● there is a high possibility of correcting existing and future Landsat 7 ETM+ SLC-off
images in West Africa for various LULC analyses.

● considering the high persistence of cloud cover in WA, the concurrent operation of
Landsat 8 and Landsat 7 ETM+ will help to increase the number of Landsat images
needed to build a time series once Landsat 7 ETM+ SLC-off images can be utilized
after gap filling.
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● there is hope for LULC applications which involve historical analysis that depends on
the utilization of previous Landsat 7 ETM+ SLC-off images.

● once Landsat 7 ETM+ SLC-off images are gap filled, there will be a fairground for
comparison with images from other Landsat sensors in LULC classification in multi-
sensor applications.

4. Conclusion

Although the SLConboard the Landsat 7 ETM+has failed to account for about 22%of the data
lost from each scene, the remaining spectral information maintains the same radiometric and
geometric quality as images collected prior to the failure (Storey et al. 2005). Therefore, the
development of gap-filling methods to correct the no-data areas of the SLC-off images was
very vital. Although some of the gap-filling methods have proven to be better than others,
some researchers have identified their limitations (Romero-sanchez et al. 2015; Yin et al. 2017).

Visually, all the four gap-filling methods investigated in this study were able to
completely fill the gaps in the Landsat 7 ETM+ SLC-off images for the two time steps.
The resultant images show similar qualities with no artefacts. The histograms from each
band for only the filled areas for all the four methods also gave similar distributions and
this can be observed in their means and standard deviations, although the LLHM gave
a slightly different distribution for bands 1 and 4. From the LULC classification, all the four
gap-filling methods provided satisfactory results which are comparable to that of
Zoungrana et al. (2015). This is evident in the OA of classification which is above 96%
and 93% for the images for the dry and rainy seasons, respectively. This means that less
than 4% of the pixels are classified as different LULC types in all instances for the dry
season image and less than 7% in the rainy season image. Nevertheless, it cannot be
overlooked that the GNSPI had the highest accuracy in both dry and rainy season’s gap-
filled images. In the instance where no time-series image is available, we recommend the
WLR-LPRM since it gave very good results.

Overall, this research agrees with previous research by Zhu, Liu, and Chen (2012),
Romero-sanchez et al. (2015) and Yin et al. (2017) on other continents with a totally different

Figure 6. Classification results of gap-filled Landsat 7 ETM+ SLC-off images using the four methods for
S1 (dry season); a, b, c, & d represent the classified image from WLR-LPRM, LLHM, NSPI, and GNPSI
algorithms, respectively.
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landscape from that of West Africa but still the superiority of the GNSPI in different seasons
was recorded over the other three methods.

Finally, the findings of this research are based on the use of a set of images (target,
input, and time series) from the same season (dry and rainy seasons), temporally close and
cloud free in a highly heterogeneous landscape. Future research must focus on testing the
robustness of the algorithms for filling gaps in images with large differences in radiance
(i.e. input and target). This knowledge will be useful in instances where temporally close
images are not available due to, for example, excessive cloud cover.
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