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A B S T R A C T

In the field of climate services, characterization of rainfall extremes is useful to identify and quantify rain rates
that can trigger floods, on-farm water stagnation, excess run-off causing arable soil depletion and other natural
hazards. Delving through multiple sources of observational uncertainties, we define extreme rain events (EREs)
using the 99th percentile thresholds of daily accumulated rainfall, extracted from historical data records
(1960–2016) of manual and tipping bucket gauges. The results of the analysis show that the average amplitude
of these threshold values has been increasing in the recent years. Meanwhile, the three categories of heavy rains
exhibit an intra-seasonal timing that follows different phases of the West African monsoon. Category 1 & 2 occur
mostly in the northern Sahel, between weeks 27 and 35 of the year with an accumulated daily amount varying in
the 37–65mm range and less than or equal to 85mm/day respectively. In category 3, rain rates are greater than
85mm/day, observed between 28th and 38th week-of-the-year predominantly in the southern and western of
the Sahelsub-region. For each category of ERE, high risk areas are mapped using the relative probability of
occurrence at local scale. This classification can be exploited for forecasts verification, climate model evaluations
and operational early warning services against high impact rainfall events.

1. Introduction

As the climate of the West African region is changing, a new pattern
of rainfall variability has emerged since the 1990s (Lebel and Ali, 2009;
Nicholson, 2005), characterized by a mixture of intense rainfall
(Giannini et al., 2013; Panthou et al., 2014; Maidment et al., 2015;
Sanogo et al., 2015), long dry spells (Salack et al., 2014; Sarr et al.,
2015) and sequences of floods events (Panthou et al., 2014; Zahiri et al.,
2016). Since 1990 many West African countries reported frequently
flood events. 1.7 million people were affected by floods in Benin,
Burkina Faso, Chad, Ghana, Niger, Nigeria, and Togo in 2010 (Sarr,
2011). In 2009, Benin, Burkina Faso, Niger and Senegal all experienced
major floods. In 2012 more than 80% of Nigeria was affected by heavy
rains which submerged much of Delta and Bayelsa states in the south-
east, affecting some 350 communities and making 120,000 people
homeless. In 2012, UN agencies estimated that over 16 million people
in Mali, Sudan, Niger, Burkina Faso, Senegal, The Gambia, and Chad
were affected by drought (UCDP, 2017). This mixed dry and wet (i.e.
hybrid) rainfall distribution is attributable to global warming through
internal variability of dynamic factors of the regional atmosphere

(Janicot et al., 2015; Salack et al., 2016). Its impacts on water-food-
energy nexus include yield/biomass loss, reduced growth, and devel-
opment of crops but also farm flooding, water logging of low land crops
and arable soil erosion (through excess runoff), power and energy
losses. Subsistence farming, water management, and socio-economic
sectors need highly precise information on rainfall extremes, but also
need practical advisory on how this information can be translated into
operational actions.

While extreme events are generally multifaceted phenomena
(Zwiers et al., 2013; Sillmann et al., 2013), the spatiotemporal variation
of heavy rainfall events is the main driver of floods. However, from
event scales of minutes to hours at local and synoptic scales, quanti-
fying extreme rainfall rates remains a challenge (Zahiri et al., 2016) as
ground observation networks of this region have deteriorated, in most
cases their technology is outdated (Jones et al., 2015), and modern
equipment and forecasting tools are full of uncertainties (Habib et al.,
2001; Sillmann et al., 2013). The Expert Team on Climate Change
Detection and Indices (ETCCDI, https://www.wcrp-climate.org/data-
etccdi) and the Expert Team on Climate Risk and Sector-specific Indices
(ET-SCI, http://www.wmo.int/pages/prog/wcp/ccl/opace/opace4/ET-
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SCI-4-1.php) have attempted to facilitate the analysis of rainfall types
by defining a set of indices that provide some definitions of extremes.
But, the relative dependency of the indices to baseline periods of ana-
lysis weakens their definitions of heavy rain events. Hence, identifying
and quantifying extreme rain events (ERE) has been the focus of many
recent studies (e.g. Ta et al., 2016).

In this study, we rate and classify intense rainfall events in support
of operational monitoring, forecasting, and early warning services in
the Sahel. The assessment is based on a novel hydro-climate framework
of observation systems developed by the West African Science Service
Center on Climate Change and Adapted Land Use (WASCAL, www.
wascal.org) and partners in the region which is integrated into the re-
gional hydro-climate observation networks. The network of testbed
sites, collecting cutting-edge data since 2012, is used to rate un-
certainties across scales and across rain gauge types based on 99th
percentile thresholds of daily accumulated rainfall. Historical data sets
from the transboundary observation network, shared with the national
weather services of member countries, are used to upscale the catch-
ment scale identification scheme, in order to classify ERE into cate-
gories embedded with warning flag colors. Section 2 of this document
provides a detailed description of the observation networks and data
used and sources of uncertainties found in depicting local scale extreme
rainfall. The criteria of identification of intense rainfall events are ex-
posed in section 3. The results of this study are described in section 4 &
5. The discussion and conclusions are given in section 6.

2. WASCAL observational networks

A solution to improving the quality of climate information in West
Africa is to provide the region with a reliable data provision service
through the modernization of the hydroclimate observation sensors,
data collection systems, and related infrastructure. Recently published
studies confirm that, in West Africa, this near-surface network of
manual stations has substantially deteriorated over the past three dec-
ades (Lorenz and Kunstmann, 2012). The spatially loose and unevenly
distributed stations which are still functional exhibit obsolete, damaged
and non-calibrated instruments, the data transmission, typesetting and
archiving are manual, paper-based and the operational staff is retiring
often not replaced (Jones et al., 2015). To improve the availability of
high quality hydro-meteorological measurements and increase our un-
derstanding of land-atmosphere processes and their interactions in the

context of climate variability and change, advanced and modern near-
surface observational systems are needed in West Africa. Since 2010,
WASCAL has designed a set of observatories in close collaboration with
its member countries, Germany and other partners (Bliefernicht et al.,
2018). The main objective of observatories is to keep long-term and
high quality records of micro-scale biophysical processes information
by establishing sustainable near-surface observation networks
(WASCAL ONs) with the national institutions of member countries
(Benin, Burkina Faso, Côte d’Ivoire, The Gambia, Ghana, Mali, Niger,
Nigeria, Senegal and Togo) and other partners. WASCAL ONs was for-
mally defined as a multi-stakeholder framework of observation systems
(integrated into national observation grids) which co-designs, shares
data through country-specific policy and co-implements observation
activities such as i) rehabilitation of existing instruments, sites, and
observatories; ii) increasing the number of observation sites/stations by
adding new locations; iii) rescue paper/microfiche archives of historical
data by digitization; iv) improving data processing techniques; and v)
train technical country institutions' staff involved in observations &
related services. WASCAL ONs has two components. The first compo-
nent is the regional or large scale observations network which is a
transboundary sets of near-surface observation sensors, shared with
national institutions of member countries. The data collection and
sharing processes are governed by country-specific “third party” data
sharing policy signed by WASCAL and the contracting institution of
each country. The establishment of the transboundary observation
networks has made progress between 2014 and 2016 with the acqui-
sition and installation of fifty automatic weather stations across West
Africa.

The second component of WASCAL ONs is the mesoscale testbeds
also called "core research watersheds" of WASCAL include Dano catch-
ment (600 km2) in South-West Burkina Faso, the Vea & Sissili catch-
ments (300 km2 and 12,633 km2 respectively) in Northeast Ghana and
Dassari catchment (200 km2) in Northwest Benin (Fig. 1) and projects’
pilot sites. The objective of the testbed in-situ measurements is to install
multiple cutting-edge sensors to keep long-term monitoring records of
hydro-climate and land use processes from local-to-catchment scales
(Bliefernicht et al., 2018). The collected panel data is a fundamental
asset to improve our understanding of uncertainties in near-surface
observations and useful for the calibration of biophysical models. The
current hydro-climate observations equipment in WASCAL research
catchments is summarized in Table 1.

Fig. 1. Rainfall climatology (1986–2015) of the Sahelregion of West African and the WASCAL testbed catchments (Dano, Sissili/Vea & Dassari catchments) and pilot
sites (*) where cutting-edge hydro-climate sensors are running.
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The testbed weather observing stations consist of twenty-six auto-
matic sets of meteorological sensors with a global positioning System
(GPS), a GSM/GPRS communication link, a solar panel and battery, a
lightning/grounding rod and a data logger. Each set has a pyranometer
for measuring the incoming shortwave radiation and a two-dimensional
sonic anemometer for measuring horizontal wind speed and wind di-
rection. In addition, a silicon bandgap temperature sensor and a capa-
city humidity sensor protected by a radiation shield are used to de-
termine air temperature and relative humidity. There are soil moisture
and temperature probes at different depths. The air pressure is mea-
sured using a capacity pressure sensor. The total precipitation amount is
recorded by tipping bucket rain gauges. In Dano (South-West Burkina
Faso) and Dassari (Northern-East Benin), two rain gauges are installed
in parallel, located at only 2m from each other and connected to a
central unit of data logger (Photo 1). The two tipping bucket gauges are
available with a 0.2mm sampling resolution. The rain gauges provide
simultaneous records of rainfall events, enabling easy inter-comparison
of records, critical in quantifying the rates of uncertainty in observa-
tions. The weather observation systems are regularly maintained every
two weeks for all rain gauges and twice a month for other sensors. In
the case of tipping bucket gauges, routine maintenance consists of
checking the filter cleaning, removing any debris, leaves or anything

else that may obstruct normal water flow. The rain gauge is usually
opened to check that in the tilting bucket there are not soil residues,
sand or other blocking debris. The collected data consists of nine me-
teorological variables: incoming shortwave radiation (Wm−2), air
temperature (°C), horizontal wind direction (°), horizontal wind speed
(ms−1), relative humidity (%), air pressure (hPa), precipitation amount
(mm), soil moisture (8 depths) and soil temperature (5 cm, 10 cm,
50 cm depths) sampled every 5min interval. At the end of every record
year, the retrieved data is subjected to a quality control post-processing.
All datasets and derived products are open access at geoportal https://
wascal-dataportal.org/wascal_searchportal2/. The data is provided for
a period ranging from the start of the measurements in early April 2012
(2013 for others) to date and the management and ownership are to
WASCAL. The data collected from WASCAL ONs are used for the de-
velopment of reliable modeling approaches, for determining the impact
of local land cover changes, environmental energy exchanges (Quansah
et al., 2015, 2017; Bliefernicht et al., 2018), for rating observational
uncertainties and supporting operational monitoring and early warning
services against climate extreme events.

3. Identification scheme for intense rain events

An extreme rainfall event (ERE) is defined as the exceedance of a
threshold that corresponds to the 99th percentile of daily rainfall
amounts observed in a season. To compute the 99th percentile for each
station, we create a vector of daily rainfall values RR (RR≥ 1mm) of
each year, sorted in ascending order. Then, we multiply 99% by the
total number of those values of this vector to generate a rank index (if
the index obtained is not a whole number, it is rounded to the nearest
whole number). The rank index is used to extract the corresponding
value from the ordered vector. This value is considered the 99th per-
centile threshold value. The latter is used to extract all rainfall amounts
greater or equal to it in each season's record. Each ERE case(s) of a
season is (are) identified with respect to the date(s)-of-occurrence
(DTO) and the daily amount(s) (INT). At each rain gauge location, any
daily accumulated rainfall amount is considered as extreme rainfall if it

Table 1
The mesoscale testbed equipment manned by WASCAL in Dano, Dassari, and
Vea/Sissili catchments.

Type of Station Dano Dassari Vea/
Sissili

Total Records start

Automatic Weather station 8 7 12 27* 2012–2013
Eddy-covariance station 0 0 3 3 2012
Soil water station 3 2 3 8 2012
River gauging station 10 5 8 27 2012
Turbidity station 3 3 1 8 2012
Soil erosion and runoff plots 3 1 2 3 2012
Sediment Sampler 3 1 0 4 2012

* Datasets used in the current analysis.

Photo 1. Automatic weather station set-up in Dano catchment with two parallel tipping bucket gauges to depict rainfall uncertainties.
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belongs to the class of ERE which is greater than or equal to the 99th
percentile threshold values. The analysis of the near-ground records of
the ERE depicted at Dano and Dassari catchments show that the two
parallel rain gauges report the same DTOs but fail to agree to the ac-
cumulated daily rain rates associated with ERE when INT is above
50–60mm/day (Fig. 2). This discrepancy may be linked to the basic
functionality of tipping buckets (i.e. sensor errors). According to Habib
et al. (2001), the tipping bucket suffers from accuracy problems at high
rain rates: it is usually unable to give an accurate estimate of the peak
values within the event. This is mainly due to the high gradient of the
rain rates at the peaks and valleys of the rainfall time series.

To look for possible identical features in all ERE, the same extrac-
tion algorithm is applied on an additional data set from primary sta-
tions and stand-alone raingauges owned by national weather services or
agencies of WASCAL member countries. This daily rainfall dataset is
retrieved from archives of manual ordinary rain gauges dating back in
1960s (Salack et al., 2016) and updated for 2013–2016. The inter-an-
nual variability of seasonal 99th percentile threshold values of INT
depicted over 1960–2016 is illustrated by Fig. 3. The latter shows an
increasing trend of extreme rainfall thresholds with the recent years’
features being similar to the early 1960s. Meanwhile, the inter-decadal
variation of these events, depicted by the blue curve, shows that the
recent recovery of rainfall is mainly explained by the rain rates of ex-
treme events. These results show that the amplitude, of the thresholds
defining heavy rain events, has increased in the recent years. In other
words, the amplitude of thresholds defining extreme rainfall has in-
creased. This is similar to arguments provided by Lodoun et al. (2013),
Sanogo et al. (2015), Salack et al. (2015), and Maidment et al. (2015)
among others. Meanwhile, remote sensing data analysis has also shown
that the frequency of extreme rainfall has also increased since the 1980s
(Taylor et al., 2017) As this new development of the Sahelseasons is full
of challenges for all practitioners, the question is “which type of ERE
should be monitored and at what period of the season?”

To answer this question, we developed an areal classification
scheme for DTO and INT of historical (1960–2016) and multiple sites’
daily data (Fig. 1). The extracted DTO (here the DTO unit is converted
from day-of-year to week-of-year, WOY, to reduce signal-to-noise ratio)
and INT (mm/day) of all observed EREs are subjected to an un-
supervised clustering algorithm that groups data based on the Eu-
clidean distance across sample elements in order to find common pat-
terns. The general procedure is to search for a K-partition with locally
optimal within-cluster sum of squares by moving points from one
cluster to another (Hartigan and Wong, 1979). As we have to specify
the number of clusters to be used to group the data, we computed the
percent variance explained as a function of a possible number of clus-
ters ranging from 2 to 15. The first two clusters explain the maximum,
followed by the 3rd, the 4th and so on until the marginal gain drops,
giving an angle in the scree plot. The number of clusters is chosen at
this point of the scree plot (also called the “elbow”). Once the optimum
number of clusters is chosen, clusters centroids are calculated itera-
tively by reassigning data points, ordered by their distances to the
overall mean of the sample, till the within-cluster variation cannot be
reduced any further. The within-cluster variation is calculated as the
sum of the Euclidean distance between the data values and their re-
spective cluster centroids which correspond to the mean values as-
signed to each cluster (Hartigan and Wong, 1979). The output of this
analysis yielded three categories of INT and two classes of DTO for ERE
as described below.

4. Classification of heavy rain rates

The Sahel is characterized by a long dry season followed by a unique
rainy season peaking in July–August and retreating in September. The
spatial distribution of total annual rainfall decreases as one moves
northward from ∼1 300mm to 100mm (Fig. 1), and it is mainly con-
centrated over a short period of 3–4 months. The organized mesoscale
convective systems, also known as squall lines, contribute the majority
of the seasonal rainfall totals (Bell and Lamb, 2006; Smith et al., 2012;
Taylor et al., 2017). The natural factors affecting the intra-seasonal
variability of the rainfall regime in the Sahelwere summarized in Salack
et al. (2016): the local forcing of the Saharan dry air masses, pollution
aerosols and regional scale circulation features including the latitudinal
movement of the intertropical convergence zone (ITCZ), the Saharan
heat low (SHL), the variability of lower-to-upper-tropospheric circula-
tion features such as the African Easterly Jet (AEJ), the Tropical East-
erly Jet (TEJ), the African easterly waves and other low-level westerly
jets. The global oceans also play a major role in modulating the seasonal

Fig. 2. Dates of occurrence (a) and accumulated daily rain rates (b) depicted by
two parallel tipping bucket gauges in Dano and Dassari catchments.
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rainfall (Giannini et al., 2013; Salack et al., 2016). The coexistence and
interactions of these dynamic processes, with ever changing local land
use/land cover types, determine the dominant weather in a season and
its associated extreme events. Beside the interannual and interdecadal
variability (Lebel and Ali, 2009; Salack et al., 2015), rainfall has been
dominated by a high intra-seasonal distribution of sub-daily rainfall
intensity (Zahiri et al., 2016) and a high variability of daily events
observed in the form of mixed dry/wet patterns (or hybrid rainfall re-
gime) attributed to global and regional warming rates (Salack et al.,
2016). While the distribution of events is mainly concentrated within
the June–September period, the seasonal total rainfall results from
some 40–50 rainy events of which only 2.5%–4% can be considered
extreme events (Panthou et al., 2014).

In the Sahel, extreme rainfall events contribute ∼50–90% to the
seasonal rainfall amount with a South-North gradient (Ta et al., 2016).
Table 2 provides the three intensity classes of ERE observed in the Sahel
region on a weekly time scale. As provided by the unsupervised K-
means clustering, the two categories of DTO reveal the timing of each of
the three INT categories. Categories 1 & 2 occur most likely between
week 27 and 35 of the year (1 July to 31 August) with an accumulated
daily amount varying across 37–65mm for category 1 and greater than
65mm/day, but less than 85mm/day for category 2. The daily accu-
mulated rain rate of category 1 has 52% probability of occurrence
against 40% probability for category 2, within the same period. When
an extreme rainfall event of category 1 (category 2) is observed from
near-surface raingauges or predicted, a yellow (orange) color flag is
suggested in operational warning messages. Category 3 is identified
when rain rates exceed 85mm/day, occurring between the 28th and
38th week of the year (10 July to 22 September). It is the most da-
maging class of heavy rains but very difficult to predict. For operational

warnings, ERE of category 3 is flagged with red color denoting highest
level risk of flooding or damages. The timing of the three categories of
ERE (Fig. 4) falls within three phases of the West African monsoon
namely the installation phase (July, 27th −31st week-of-the-year), the
intensification phase (August, 31st – 35th week-of-the-year) and the
retreat phase (September, 35th – 39th week-of-the-year). Category 1 is
observed in the installation phase over central sub-regions after the
abrupt monsoon jump (Sultan and Janicot, 2003) while categories 2 & 3
are recorded in the intensification and retreat phases respectively. In
these last two phases, rainfall intensity is characterized by a steady
increase until it reaches its maximum at the end of August (also known
as the continental phase of West African monsoon) and an abrupt re-
treat in one month, with residual rainfall in October (Lebel and Ali,
2009). The spatial distribution of DTO of Category 2 & 3 suggests an
east-west bipolar pattern while category 1 is unevenly observed all over
the region. All categories are recorded with a time lag of at least one
week and the western Sahel is predominantly influenced by the oc-
currence of categories 2 & 3 in September. The distribution of DTO also
exhibits a coherent sub-regional high risk zones of local extreme rainfall
discussed below.

5. High -risk areas

The cumulative rainfall of extremely wet days and the maximum
number of consecutive wet days have been increasing since the late
1980s, indicating that extreme rainfall events have become more fre-
quent in the West African Sahel during the last decade (Ly et al., 2013;
Taylor et al., 2017). The three INT categories of ERE identify the types
of local extreme rainfall. Computing the relative frequency of ERE at
individual locations enables the identification of areas potentially af-
fected by heavy rain events. Fig. 5 shows the percent probability of
occurrence of daily accumulated rain rates of each category. It appears
that the northern Sahel stations are highly exposed to category 1
rainfall types with specifically higher potential exposure of eastern and
western corners of the sub-region. The southern parts are more likely
exposed to category 2 of ERE types at a quasi-equal percent probability
of occurrence as category 3 in the southern and western sub-regions.
Category 2 may occur everywhere in the Sahel at equal probability of
occurrence, only its timing is different from one location to another as
illustrated in Fig. 4.

In these arid and semi-arid regions of West Africa, ERE are im-
portant sources of impact for life and property and also important
sources of water bodies used for multiple purposes including domestic,

Fig. 3. Inter-annual variability of 99th percentile thresholds of intense rainfall events depicted from 72 stations distributed over the Sahel.

Table 2
Categories of intense rainfall events and flag colors for operational warning
services.

Category Parameter Average Confidence
interval

Proportion (%) Flag color

Category 1 Intensity
(mm/day)

47 [37; 65] 52 Yellow

Category 2 Intensity
(mm/day)

75 [65; 85] 40 Orange

Category 3 Intensity
(mm/day)

120 >85 8 Red
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irrigation, fishing, livestock breeding etc. Thus, knowing the spatial
distribution of these classes of ERE is valuable to the identification of
high risk areas or hot spots which in turn is a crucial input to vulner-
ability/risk assessments and mapping at all scales (Asare-Kyei et al.,
2015).

6. Discussion and conclusions

West Africa is frequently exposed to multiple hydro-meteorological
hazards at different scales (Asare-Kyei et al., 2015), notably extreme
dry spells, intense rainfall, floods, droughts, air pollution, heat waves,
wildfire, etc. Global warming likely increases the frequency and in-
tensity of these extreme events (Sylla et al., 2015; Taylor et al., 2017) or
a mixture of some in a unique season/location (Salack et al., 2016). A
recent Climate Risk & Early Warning Systems (CREWS) analysis shows
that West African countries are most vulnerable to weather extremes
because often they have the lowest early warning capabilities, weak or
non-existent dissemination systems, and lack of effective emergency
planning in case of alerts and warning information (http://newsroom.
unfccc.int/media/454810/crews-presentation.pdf). Therefore, all

adaptation measures that will spur our population to build resilience
rely on the ability of climate information producers to monitor and
predict EREs.

99th percentile thresholds are relatively high rain rates whose am-
plitudes are increasing (see Fig. 3). With respect to the regional mar-
ginal soils, land use/land cover types and other vulnerability potentials,
peaks above 99th percentile thresholds will always be drivers for
flooding, strong run-off and others hazards. When a daily amount, INT,
of a given ERE is greater than or equal to 37mm but less than 65mm, it
should trigger a yellow flag warning especially in the north eastern and
western corners of the Sahel. This region is semi-arid with fragile pas-
toral ecosystem, degraded soils, vulnerable farming systems and people.
When the INT is rated above 65mm/day but below or equal to 85mm/
day, it should be flagged with an orange color denoting a mild level of
warning for potential flooding and other damages. The red color flag is
waved when INT is estimated above 85mm/day. This is the highest
level of warning which should trigger local disaster management plans.
These classes of ERE values, upscaled to week-of-the-year (WOY),
solves the problem of rating heavy rains at event scale (Zahiri et al.,
2016) in support of monitoring and early warning services. They

Fig. 4. Intra-seasonal date-of-occurrence (DTO) of extreme rainfall categories
(category 1, 2 & 3) expressed in week of a calendar year (WOY).

Fig. 5. Relative percent probability of occurrence of extreme rainfall categories
(category 1, 2 & 3) per station.
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represent the highest amounts of daily rainfall recorded during a typical
rainy season, are much better than the thresholds extracted from 90th

percentile as suggested by Ta et al. (2016) which includes average
values less than 20mm/day. Additional observed threshold values of
extreme rain events are available for inter-comparison in Salack et al.
(2018).

These classes of rain events can have devastating effects on the li-
velihoods of vulnerable population, crop production, energy manage-
ment and consumption and biodiversity. The projected increase in cli-
mate variability as a result of climate change is expected to increase the
risk of these hydro-climatic hazards in the region (Salack et al., 2015;
Asare-Kyei et al., 2017). However, the readiness and reaction of na-
tional disaster management agencies and civil society organizations to
these disastrous hazards have been hampered by inadequate event and
vulnerability data collection, assessment, and information sharing
which restrict their capabilities for effective disaster management.
These rating scales can support better planning and prevention actions
by disaster risk managers in the Sahelsub-regions. Likewise, as sub-
stantial discrepancies are found among re-analyses and climate model
outputs, indicating considerable uncertainties regarding their simula-
tion of extremes (Sillmann et al., 2013; Giannini et al., 2013; among
others), downplaying the overall performance of forecasts and climate
projections. The rating scales suggested by this study are prominent in
operational forecasts verification and climate model output diagnostics
and evaluations in terms of timing and amplitude of extreme rainfall
events (Salack et al., 2018).
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