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ABSTRACT 

Climate change and variability are worldwide phenomena and their impact is different in 

nature from one region to the other. In that context, this study focused on the assessment 

and prediction of climate variability impact on Land Use Land Cover Change (LULCC) 

in Sikasso region, Mali with focus on agricultural lands. Three objectives were achieved 

in this study: (1) assess changes in LULC, (2) examine climate variability and its impact 

on agricultural LULC and (3) predict future changes in LULC by 2030 and 2050. The 

dataset composed of time series satellite images from Moderate Resolution Imaging 

Spectroradiometer (MODIS) Terra for the years 2000, 2008 and 2016, monthly rainfall 

and temperature from 1981 to 2016 for the four main meteorological stations across the 

study area and socioeconomic information. The Savitzky-Golay (SG) filtering process 

(smoothing) was performed on Normalised Difference Vegetation Index (NDVI) time 

series images with TimeSat software and an ISODATA classification scheme adopted for 

four main classes which are cropland, vegetation, water and others. Standardised 

anomaly, Coefficient of Variation (CV) and Modified Mann-Kendall (MMK) trend test 

were used to analyse rainfall and temperature data. Pearson's Chi-square test of 

association was performed on questionnaire data to determine whether climate variability 

has impact on LULCC and the prediction was carried out using Cellular Automata (CA)-

Markov model. The LULCC analysis showed that agricultural lands increased by 4 % 

(129,665 ha) between the year 2000 and 2016 and the vegetation cover decreased by -1 

% (30,000 ha) during the same period; water bodies increased and the class others 

decreased. The expansion of agricultural lands and decreases in vegetation cover are 

expected to continue. Furthermore, the mean temperature increased from 1981 to 2016 at 

the rate of 0.3 °C per decade and the minimum temperature recorded the highest rate of 

increase (0.44 °C per decade); on monthly basis, the highest deviations in the temperature 

were observed in the months of November (+1.24 °C), March (+0.69 °C) and October 

(+0.67 °C) while lowest was observed in the month of February (+0.15 °C). At 5 % 

significance level, an increasing trend was detected in the regional annual average rainfall 

and the amount of rainfall during the rainy season (for years after 2010) was considerably 

higher than the climatological mean-normal (1981-2016) except the years 2011 and 2013. 

The LULC model revealed that cropland will increase by 6.54 % (217,599 ha) between 

the period 2016-2030 and 18.58 % (618,179 ha) in 2016-2050. Vegetation will decrease 

by -11.14 % (-357,149 ha) between 2016-2030 and by -34.49 % (-1,105,814 ha) by 2050. 

Generally, the observed increment in annual and seasonal rainfall was not the primary 

factor for the expansion of agricultural lands as questionnaire analysis revealed that 

farmers' decisions to bring changes in their farms size was rather a function of market 

prices, changes in production systems, access to improved seeds and number of male 

workers. The intensification of LULCC as apparent from the model predictions and 

spatio-temporal climatic pattern signals the need for the development of mitigation and 

adaptation strategies that will minimize the sensitivity and exposure as well enhance the 

resilience of the Sikasso region to the anticipated changes. Further study should address 

rainfall variability in terms of its intra seasonal distribution and impact on agricultural 

production in the region. 
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CHAPTER ONE 

1.0.                                                 INTRODUCTION 

1.1. Background to the Study 

Mali is a landlocked country with an economy largely dependent on rural activities 

including farming and livestock productions. About 80 % of the Malian population are 

involved in rural activities whereas natural resources in general and land specifically are 

the major asset (Ministere de la Sante et de l'Environnemnt, 2011). However, climate 

change in combination with the rapidly growing population and expansion of urban cities 

are putting pressure on land resources in Mali. Consequently, the environmental 

degradation of agro-ecosystems and large-scale land-use change are becoming critical 

issues of farmers’ vulnerability across the rural areas. The negative implications of the 

Land Use Land Cover Change (LULCC) for socio-ecological sustainability, changing 

land entitlement and other productive resources in agriculture-based economies like the 

one of Mali are emphasised in several literatures (Padgham et al., 2015). 

 

As in many other countries throughout the world, Mali has been experiencing an increase 

in temperature for a long time. The Ministere de la Sante et de l'Environnemnt (2008) has 

in fact reported that since 1960, the annual average temperature in Mali rose by 0.7 °C, 

corresponding to the rate of 0.15 °C per decade. It also documented that the temperature 

exhibits seasonal changes. Furthermore, Bodegom & Satijn (2015) stated that sahelian 

Mali is characterised by frequent droughts, annual rainfall variability and that local 

temperatures, rainfall variability and the extent of severe weather events are expected to 

increase due to climate change. By implication, the higher temperature values and 

positive changes in recent times will adversely impact on Land Use Land Cover (LULC) 

across the study area. 



2 
 

Changes related to climate are felt in Mali and have led to a substantial relocation of 

agricultural, fishing and livestock keeping activities in the southern part of the country 

where the density of population is much higher, that increases the conflicts amongst 

farmers, fishermen and pastoralists (Bodegom & Satijn, 2015). These weather induced 

migration will not only increase southern population but also impact on land resources in 

southern parts of the country particularly, the study area. 

 

Climate variability and change are challenges that the Malian agriculture may have to 

face. It has been projected that climate will demonstrate decreases in precipitation and 

increases in temperature. Precisely, the Canadian Global Circulation Model (CGCM) and 

the 2030 projections of the Hadley Coupled Model (HadCM) indicate that the average 

temperature in Mali might rise by about 1° – 2.75 °C, with precipitation decreasing 

slightly (Butt et al., 2005).  In addition, the following projections were made: 1) crop 

production to increase or decrease in the range from –17 % to +6 % at country level 2) 

yields of forage to decrease by between 5 % and 36 % (Butt et al., 2005; Butt et al., 2011). 

Consequently, these challenges will affect LULCC in Mali and particularly in Sikasso 

which constitutes an important agricultural zone in the country. 

 

1.2. Statement of the Problem 

Deceasing trend of rainfall coupled with higher temperatures trend have been documented 

across Mali. The National Directory of Meteorology (2001) depicted decreases in the 

rainfall trend from 1961 to 2001. Bodegom & Satijn (2015) reported that in the 1950s’, 

the annual precipitation used to vary within the range 500 and 1500 mm but in the course 

of the last 15-20 years the maximum has not been beyond 1300 mm. Moreover, Traore et 

al. (2013) reported that during the period 1965-1993, the number of dry days have 
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increased during the rainy season in Sikasso region and identified variation as one of the 

most important characteristics of climate change in southern Mali. These trends 

necessitate proactive approaches which should be based on accurate and adequate 

information of anticipated future change. 

 

Land resources are the key pillars for agricultural production which involves the large 

portion of rural population in Mali. However, the degradation of land resources as a result 

of climatic and non-climatic factors combined with the population growth and 

urbanisation are affecting the land cover change in Mali and most semi-arid countries. 

Land use dynamics, logging of trees for firewood, construction of houses and other social 

needs are taking away the vegetation cover thereby exposing the land to various agents 

of degradation. Furthermore, the intensification of human activities through continuous 

agriculture and animal grazing has continued to aggravate land degradation and shrinkage 

of productive lands and vegetation cover. 

 

Fundamentally, climate change and variability in sahelian Mali is encroaching on 

marginal lands and thereby forcing people to migrate southwards. As reported by 

Bodegom & Satijn (2015), ‘migration is likely to be caused by climate change’ and 

concluded that the region of Sikasso will receive more migrant from northern regions. 

Despite the apparent features of climate variability and change, decreasing rainfall (erratic 

rainfall pattern), intensive degradation and southwards migration of people and livestock, 

few researches have been conducted to assess and predict climate change and variability 

impact on LULCC in Sikasso region as earlier efforts were concentrated on analyses of 

vegetation trends and changes. The combination of these elements makes it important to 

assess and predict the impact of climate variability on LULC changes in Sikasso region, 
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with a view of documenting accurate and adequate information on the anticipated future 

changes as a pathway for the attainment of sustainable LULCC in rapidly changing 

environment and thereby enhancing socio-economic livelihood. 

 

1.3. Justification for the Study 

Assessing changes in agricultural LULC is of great importance for forests protection and 

the preservation of pasture lands. Massive agricultural LULCC may lead to different 

types of land degradation, landscape and ecosystem perturbations. 

 

Agricultural intensification is a very slow process in most West African countries. This 

leads to increase in agricultural production through deforestation and expansion of 

agricultural lands instead of improved technologies, practices, fertiliser application and 

seed amelioration. This is a primary phenomenon leading to forests loss, shrinking of 

pasture lands and degradation of soils. Barbier (2004) stated that agricultural land is the 

most important source of natural wealth for developing countries not having oil and 

natural gas reserves and also mentioned that the agricultural land base is rapidly 

expanding through conversion of wetlands, forests and other natural habitat. This led to 

the question of continuity / sustainability of that scenario and ascertains the importance 

of this study. In such context, studies on monitoring LULCC with particular regards on 

agricultural lands and vegetation is of great interest for environmental protectionist and 

climate scientist for mitigation actions. Katana et al. (2013) reported that the 

identification, delineation and mapping of the types of land covers are regarded as 

important activities in support of sustainable natural resource management. 
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The fast growing population in West Africa leads to the need of growing more food to 

meet the increasing food demand of the escalating population and to expansion in 

croplands. This expansion has negative impact on the sub-region's ecosystem and 

repercussions on biodiversity, climate, water and soil quality. To monitor appropriately 

these changes in croplands and assess their impact on the ecosystem and other 

environmental processes, precise and up-to-date information on agricultural land use is 

essential (Knauer et al., 2017a). In this regard, Lambert et al. (2016) stated that it is very 

important to monitor land use change and develop thorough understanding of the detailed 

spatial patterns and the temporal dynamics of cropland. Relatively, this study aims at 

providing accurate and adequate information that is crucial for monitoring the Sikasso 

region, and the development of mitigation and adaptation approaches to the changing 

environment. 

 

Sikasso is the most successful agricultural zone in Mali (Diallo, 2011). It is of primary 

importance when it comes to food security-related matters. It lodges most of the country’s 

forested area and natural reserves. However, most of the studies in agricultural sector in 

Mali focused on agricultural productivity and soil fertility loss. In addition, the very few 

studies related to LULC mapping were mostly based on the usage of Landsat single date 

images which are very limited in delineating agricultural lands from vegetation cover. 

Therefore, in this study, the Moderate Resolution Imaging Spectroradiometer (MODIS), 

Normalised Difference Vegetation Index (NDVI) time series images were used in 

addition to Landsat images for a better identification and classification of different LULC 

types. Furthermore, no study has addressed the issue of prediction of future changes in 

LULC and assessed climate variability and its impact on LULCC in Sikasso. 

Consequently, it becomes necessary to assess past changes for a better prediction, 
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identification of strategies for the attainment of sustainable development through 

implementation of appropriate mitigation and adaptation practices. 

 

1.4. Aim and Objectives 

Aim 

The study was aimed at assessing and predicting climate variability impact on LULC in 

order to have information that will be crucial for the development of LULC mitigation 

and adaptation strategies commensurate with the changing environment in Sikasso 

region, Mali. 

 

Specific objectives 

The following objectives were tackled in order to achieve the aim of the study: 

1. Assess changes in agricultural LULC in Sikasso, 

2. Examine climate variability and its impact on agricultural LULC, 

3. Predict future changes in LULC by 2030 and 2050. 

These specific objectives were achieved by answering these questions 

1. What are the changes in agricultural LULC in Sikasso? 

2. How is climate variable and what is the impact on agricultural LULC? 

3. What is likely to be the nature of LULC change by 2030 and 2050? 

 

1.5. Scope and Limitations of the Study 

This study aimed at the assessment and prediction of climate variability impact on 

LULCC in the region of Sikasso, it looked at LULCC in general but with particular focus 

on agricultural LULC changes. It used MODIS Terra time series images to assess changes 

LULC from the year 2000 to 2016 and Cellular Automata (CA)-Markov model to predict 
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changes by the years 2030 and 2050. Temperature and rainfall data were used to examine 

the climate variability and trend. Questionnaires were administered to farmers in order to 

understand their decision making process with regards to changes in LULC with 

particular interest on agricultural lands. 

 

Mapping LULC using MODIS images can be challenging, for they are of coarse 

resolution. That makes it sometimes difficult to adequately identify some of the spatial 

features. Moreover, the basic assumption of the prediction is that the factors having 

influence on LULCC process will continue keeping their past trends. In real life, these 

factors can behave differently and therefore, one should be cautious holding too much on 

results from such predictions for they are subject to uncertainties. 

 

1.6. Study Area 

1.6.1. Location 

The study was conducted in Sikasso region, located between longitude 4° 39’ to 8° 68’W 

and latitude 10° 15’ to 12° 82’N. Sikasso is one of the ten regions of Mali, composed of 

7 cercles-second level administrative units (Bougouni, Kadiolo, Kolondieba, Koutiala, 

Yanfolila, Yorosso and Sikasso-cerlce), located in the southern part of the country and 

sharing border with Côte-d’Ivoire, Guinée Conakry and Burkina Faso. It has a total land 

mass of 70 280 km2 (5.8 % of the national territory) and a population of 2 625 919 in 

2009 (Ministere de l’Adiministration Territoriale, 2011). Figure 1.1 shows the map of 

Sikasso region in Mali. 
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Figure 1.1 Study Area 
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1.6.2. Climate  

In the entire Mali, the annual average temperature is 28 °C, the north is characterised by 

higher average temperatures while lower averages are observed in the south; the absolute 

maximum temperature is 51 °C, whereas the minimum temperature has not been lower 

than 10 °C which causes high rates of evapotranspiration (Ministere de la Sante et de 

l'Environment, 2008). However, Sikasso receives the highest amount of rainfall in 

comparison with the other regions of the country. The climate is of tropical Sudanian 

type, subdivided into two climatic zones, the Sudanian humid and the Guinean zone, 

which is the wettest region of Mali and receives the highest rainfall (700-1,500 mm / year) 

with an average annual temperature of 27 °C (PSA, 2011). Among others, continuous 

degradation of forest, lack of agricultural lands, soil erosion and loss of soil fertility have 

been identified as main problems of the region (PSA, 2011). 

 

1.6.3. Economic activities 

Agriculture is the main economic activity in the region of Sikasso, and it is in fact the 

most agricultural successful zone in the country. The main crops produced are maize, 

millet, sorghum, rice and cotton. 
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CHAPTER TWO 

2.0.                                            LITERATURE REVIEW 

This section of the thesis defines the concepts used in the study and presents a review of 

related studies in accordance with the three different objectives which are: agricultural 

LULCC assessment, climate variability analysis and LULCC prediction. 

 

2.1. Review of Concepts 

2.1.1. Climate change 

Climate change is differently defined by the Intergovernmental Panel on Climate Change 

(IPCC) and the United Nations Framework Convention on Climate Change (UNFCCC). 

While the IPCC makes inclusion of both natural and human factors as causes of changes 

in climate (mean and/or variability of its properties) for an extended period of time, the 

UNFCCC defines it by focusing on the human activity causing direct or indirect changes 

in climate over long periods of time added to natural climate variability (IPCC, 2007). 

The latter excludes the natural factors as causes of change. Though they differ in including 

natural variability, both of them agreed that it should be over a long period of time (a 

minimum of thirty years). That suggests that at least three decades of statistical data are 

required for studies aiming at showing evidence of climate variability/change. In this 

regard, Adhikari et al. (2011) mentioned that ‘It refers to a statistically significant 

variation in either the mean state of the climate or in its variability, persisting for an 

extended period (typically decades or longer)’. 

 

2.1.2. Climate variability  

Climate variability refers to variations in the mean state and other climate statistics 

(standard deviations, the occurrence of extremes, etc.) on all temporal and spatial scales 
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beyond those of individual weather events (Adhikari et al., 2011). Variability may result 

from natural internal processes within the climate system (internal variability) or from 

variations in natural or anthropogenic external forces (external variability). 

 

Climate variability and changes and their consequences are worldwide (IPCC, 2007), and 

Mali is not an exception. In addition to seasonal changes, an increase of 0.7 °C in 

temperature over the period (1960-2001) has been reported by the Ministere de la Sante 

et de l’Environment (2008). Furthermore, future projections of climate in Mali are 

worrisome. Projected changes in mean annual rainfall range from ‐22 to +25 % by the 

2090s, depending on ‘wet’ or ‘dry’ scenarios with the most likely change between 0 and 

‐11 % (Bodegom & Satijn, 2015). These changes in temperature and rainfall though the 

latter not precise, establish the evidence of climate change and variability occurrence in 

Mali. Therefore, this study focused on climate variability and its impact on agricultural 

LULCC rather than climate change. 

 

2.1.3. Land use land cover 

Whereas land use refers to different activities which human put land to, land cover on the 

other hand is (are) the feature(s) on the surface of land and its immediate subsurface and 

the attributes of that part of the Earth’s surface. Land cover includes biota, soil, 

topography, surface and groundwater, and human structures (Lambin et al., 2000). In 

other words, land cover is all about Earth’s surface observed physical and biological cover 

while land use refers to purposes for which humans exploit the land cover. The land use 

type in the centre of this study is agricultural lands. 
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Land-use and land-cover change is considered to be one of the main driving forces of 

global environmental change and very important for sustainability. Their changes have 

impacts on a wide range of environmental and landscape attributes including the quality 

of water, land and air resources, ecosystem processes and function, and the climate system 

itself through greenhouse gas fluxes and surface albedo effects (Lambin et al., 2000). The 

expansion of croplands for example may lead to changes in surface albedo, greenhouse 

house emissions, thereby, impacting on the environment. 

 

Since humans have controlled fire and domesticated plants and animals, they have cleared 

forests to wring higher value from the land. About half of the ice-free land surface has 

been converted or substantially modified by human activities over the last 10,000 years’ 

(Eric et al., 2003). 

 

2.1.4. Agricultural lands 

Agricultural lands in a general sense refer to lands that are devoted to permanent crop 

production, pastures and arable lands (“OECD,” n.d.). In this thesis, is meant by 

agricultural land, lands used for the production of food or industrial crop for at least once 

a year. Pasture and range lands not included. 

 

2.1.5. Normalised difference vegetation index 

The NDVI is a numerical indicator that uses the visible red and near-infrared bands of the 

electromagnetic spectrum. It is adopted to analyse remote sensing measurements and 

assess whether or not the target being observed contains live green vegetation. NDVI was 

first used in 1973 by Rouse et al. from the Remote Sensing Centre of Texas A&M 

University (“FSNAU,” n.d.).  
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Generally, healthy vegetation will absorb most of the visible light that falls on it, and 

reflects a large portion of the near-infrared light; unhealthy or sparse vegetation reflects 

more visible light and less near-infrared light; bare soils on the other hand reflect 

moderately in both the red and infrared portion of the electromagnetic spectrum (Holme 

et al., 1987). 

 

The NDVI algorithm subtracts the red reflectance values from the near-infrared and 

divides it by the sum of near-infrared and red bands. The formula is as follow: 

NDVI= (NIR-RED) / (NIR+RED) 

The higher the difference between the near-infrared and the red reflectance, the healthier 

the vegetation. The technique makes it easy to differentiate vegetative areas from non-

vegetative areas. 

 

The NDVI can be computed from different satellite images but, the commonest way to 

accede NDVI products directly is by downloading them from very high temporal 

resolution sensors. In that matter, the Moderate Resolution Spectroradiometer is a good 

supplier which, in addition to NDVI products provides the Enhanced Vegetation Index 

which is also used for vegetation dynamics studies. ‘The MODIS NDVI complements 

NOAA's Advanced Very High Resolution Radiometer (AVHRR) NDVI products and 

provides continuity for time series historical applications. MODIS also includes a new 

Enhanced Vegetation Index (EVI) that minimizes canopy background variations and 

maintains sensitivity over dense vegetation conditions. The EVI also uses the blue band to 

remove residual atmosphere contamination caused by smoke and subpixel thin cloud clouds. 

The MODIS NDVI and EVI products are computed from atmospherically corrected 

bidirectional surface reflectance that have been masked for water, clouds, heavy aerosols, and 

cloud shadows. Global MOD13Q1 data are provided every 16 days at 250meter spatial 
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resolution as a gridded level3 product in the Sinusoidal projection. Lacking a 250m blue band, 

the EVI algo=rithm uses the 500m blue band to correct for residual atmospheric effects, with 

negligible spatial artefacts’, NASA Land Data Products and Services (NASA LP DAAC, 

2014). 

 

2.1.6. Smoothing of time series data 

Despite the pre-processing of satellite time series data, some of the images issued are still 

affected by atmospheric disturbances that leads to the presence of extraordinary values in 

some time series data. To deal with such, a noise reduction process is then required in 

order to produce data series with normal behaviour (Smoothing). In this context, one of 

the smoothing techniques applied on satellite time series data that one can easily come 

across because of its applicability in recent years is Savitzky-Golay (SG) filtering (Chen 

et al., 2004). 

 

2.2. Literature Review 

2.2.1. Agricultural land use land cover change assessment 

LULCC detection and monitoring is a subject of great importance to climate scientist and 

urbanist for better management of natural resources. Subedi and Thapa (2013), stated that 

‘understanding land use change has been a matter of interest and concern among 

landscape planners and environmentalist because of the influence land-use change has on 

the global environment’. Zoungrana et al. (2015) mentioned that accurate LULC 

classification and statistically sound change area estimates are essential for a better 

understanding of LULCC processes. Understanding these processes will generate 

information which may serve as decision tool for policy makers regarding LULCC 

planning. 
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Agricultural lands have been expanding in many places throughout the world and over 

time. The expansion happens to be at the expense of forests and other types of vegetation 

cover. In this regard, Barbier (2004) mentioned that the agricultural land is expanding 

rapidly through conversion of forests, wetlands, and other natural habitat. This leads to 

different types of land degradation such as deforestation and desertification.  

 

However, several studies have been conducted aiming at the assessment of LULCC and 

cropland mapping. Butt et al. (2015) mapped and analysed land use and cover change 

over Simly watershed in Pakistan using Landsat and SPOT images for the years 1992 and 

2012. They produced a map of five land use/cover types, agriculture, bare soil, 

settlements, vegetation and water using the supervised Maximum Likelihood 

Classification (MLC) method. The authors reported a significant shift from vegetation 

and water cover to agriculture, bare soil and settlements cover, which shrank by 38.2 % 

and 74.3 % respectively; they also stated that these transformations pose serious threats 

to watershed resources and require a proper management system (Butt et al., 2015). 

Zoungrana et al. (2015) investigated land use land change detection in the southwest of 

Burkina Faso using Landsat and ancillary data for the period 1999 to 2011; a random 

forest classification was performed to obtain five LULC classes which were, water, 

agricultural area, woodland, bare soil and mixed vegetation. That was followed by a post-

classification change detection process comparing the maps of the two periods. The study 

revealed that agricultural area and bare surface have increased at the expense of woodland 

and mixed vegetation, which decreased over the years.  

 

Knauer et al. (2017a) studied the expansion of agricultural land in Burkina Faso over a 

period of fourteen years (2001-2014); they used the Enhanced Spatial and Temporal 
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Adaptive Reflectance Fusion Model (ESTARFM) to generate Landsat-like time series 

images at eight-day interval from the MODIS time series dataset. SG filtering technique 

implemented TIMESAT software was applied on MODIS NDVI time series data for 

noise reduction and the Random Forest classifier was used for the classification of the 

images. The authors reported an increase of 91 % in agricultural area over the fourteen 

years. 

 

Vintrou et al. (2009) mapped cultivated area in Senegal and Mali using MODIS time 

series data 16-Day L3 Global 250m for the years 2004 and 2005; they stratified Senegal 

into sixteen agro-ecological zones and Mali into ten zones. K-means classification 

technique was performed inside each agro-ecological zone, the initial classes generated 

were then regrouped into three classes: crops, crops mixed with vegetation and others. 

Landsat and Google Earth imageries were used for the interpretation and classification of 

MODIS time series images. The study concluded that the cultivated domain can be 

separated from other land-cover types on the basis of its NDVI temporal behaviour. The 

same author, in 2011 (Vintrou et al., 2011) conducted a similar study in Mali using the 

same MODIS product 16-Day L3 Global 250m for the year 2007. The ISODATA 

classification was performed inside each stratified zone; the initial classes generated were 

regrouped into two classes: crop and non-crop. The result of their classification was 

compared with four global products which are GLC2000 for Africa, GLOBCOVER, 

MODIS V05 (MCD12Q1) and ECOCLIMAP-II. They reported that their classification 

from MODIS 250m NDVI time series data performed better and can be used for cropland 

mapping in the study area. 
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Doraiswamy et al. (2006) used a three-year MODIS terra 250m resolution eight-day 

composite for mapping soybean area in four provinces in Brazil. SG technique for 

smoothing time series data was performed before proceeding to the classification with a 

decision tree-based algorithm. The authors mentioned that filtering improves the result of 

classification and concluded that MODIS imagery can be used for regional classification 

when screened for data anomalies and contaminations due to clouds and compositing 

procedures. 

 

Kaishan et al. (2011) used MODIS 250m NDVI time series from 2001 to 2007 and 

Landsat data to map the LULC of  Amur river basin in Russia. They compared the 

different maps and reported that MODIS time series dataset have high potential in 

mapping more features than Landsat products. Lambert et al. (2016b) mapped croplands 

in West African Sahelian and Sudanian agro systems (area of interest 17°W–23°E to 9°N–

18°N) using PROBA-V times series at 100m resolution. For the discrimination of 

croplands, five temporal features were selected, the maximum of the red band, the 

minimum and maximum of the NDVI and the increasing and decreasing slopes of the 

NDVI profile (Lambert et al., 2016b). 

 

Krishna et al. (2014) used MODIS 500m resolution NDVI products for mapping seasonal 

rice cropland extent and area in the high cropping intensity environment of Bangladesh 

for the year 2010. They used 46 composites dates (8 days interval) and applied 

unsupervised classification (ISODATA), based on NDVI, Monthly Maximum 

Composites Values (MVC) and Land Surface Water Index (LSWI). They were able to 

discriminate rice production area by the spectral signatures (Krishna et al., 2014). Similar 

methods were used by Traore et al. (2014) to assess long-term trends in vegetation 
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productivity change over the Bani river basin in Mali using NDVI from Landsat imagery 

time series for the period 1982-2011. 

 

However, the review of these literature revealed that the methods for monitoring and 

detecting changes in agricultural lands have been evolving from the massive usage of 

Landsat single date satellite images to very high temporal resolution satellite images like 

MODIS and NOAA AVHRR. Therefore, this study combined the usage of the two types 

of satellite images. In addition, the use of NDVI in these recent studies, ascertains its 

effectiveness in mapping croplands. Hence, there is need to take advantage of this 

effectiveness for cropland mapping and the assessment of the impact of climate variability 

of agricultural LULC dynamics in Sikasso region. 

 

2.2.2. Climate variability assessment 

2.2.2.1. Impact, perception and adaptation strategies 

Agriculture in developing countries where the production system relies mainly on rainfall 

and temperature regimes is threatened by any variability in the pattern of these climatic 

variables. Knowing the pattern of these climate variables helps in adapting agricultural 

production systems in order to tackle food insecurity and malnutrition. Therefore, it is 

very important to analyse climate variability in order to determine trends and adapt the 

agriculture systems. That is even crucial in countries where agriculture constitute the soul 

of the economic system, amongst which is Mali. 

 

According to Sivakumar et al. (2005), ‘climate variability has been, and continues to be, 

the principal source of fluctuations in global food production in the arid and semi-arid 

tropical countries of the developing world’. This includes some West African countries 
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amongst which, Mali which is typically affected. In fact, several studies have been 

conducted throughout the world with regards to climate change, its variability and socio-

economic sector. Traore et al. (2013) studied the effects of climate variability on crop 

production in southern Mali (Sikasso and N’Tarla), using weather data set from 1965 to 

2005. They reported an increase of 0.05 °C per year in the minimum air temperature 

during the period (1965-2005) while the maximum remained the same; a significant 

decrease in rainfall at N’Tarla between 1965 and 1993 (N’Tarla is located within Sikasso 

region-the study area) was reported; large seasonal inter-annual variability of rainfall in 

its distribution which have negative impact on cotton production was also reported. To 

compensate for these changes in production, farmers in general resort to changes in 

cropping systems by changing land size which result in LULCC. 

 

Agriculture and agricultural LULCC interact with the climate in both directions. On one 

hand, agricultural land use systems and cropland expansion through deforestation and 

others practices can contribute to more release of greenhouse gases into the atmosphere, 

contributing to climate change. In this regard, IPCC, (2014) reported that in 2010, 24 % 

of net greenhouse gas emissions were from agriculture, forestry and other land uses. On 

the other hand, changes in climate variables like rainfall and temperature have direct 

impact on agricultural land use and land cover practices. Moreover, Sivakumar et al. 

(2005) stated that inter- and intra-annual variability in rainfall is perhaps the key climatic 

element that determines the success of agriculture in the arid and semi-arid tropics in 

Africa, Asia and Latin America. 

 

Moreover, IPCC (2014) reported that ‘assessment of many studies covering a wide range 

of regions and crops shows that negative impacts of climate change on crop yields have 
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been more common than positive impacts’. Given the fact that continuous changes in crop 

production induce changes in agricultural LULC, especially in developing countries, 

where intensification through new technologies, improved seeds and fertilizer is not well 

rooted, farmers rely on their land size to adjust their production. In context, this study was 

aimed at singling out the case of Sikasso region in Mali. 

 

Scientific understanding of climate change and variability is different from farmers’ 

understanding. While scientists make use of quantifiable evidences, farmers’ take note of 

changes in their daily life and seasonable planning and activities. In this context, several 

studies have been conducted to investigate farmers’ perception and adaptation strategies. 

 

Akponikpè et al. (2010) investigated farmers’ perception of climate change and 

adaptation strategies in five Sub-Saharan West-African countries (Benin, Burkina Faso, 

Ghana, Niger and Togo) using questionnaire to interview a total number of 234 farmers. 

The authors reported that, 98 % of farmers acknowledge climate change; though, 

depending on their climatic regions, they have different opinions of when it has started 

changing; 50 % of those in Guinean Ghana mentioned about less than 10 years while 55 

% of farmers in sahelian Niger stated that it started about 20-30 years ago. The authors 

also reported that changing from late to early crop cultivars, soil water conservation 

strategies (for sahelian farmers’ in Burkina and Niger Republic) and late onset have been 

widely mentioned by farmers’. Similar results were obtained by Toure et al. (2016) who 

studied farmers’ perceptions on climate variability and adaptation strategies to climate 

change in Cinzana, (Mali) using also questionnaire and reported that all the farmers 

interviewed are aware of climate change and identified change in crop variety as major 

adaptation strategy. 
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Rao et al. (2011) examined farmers’ perceptions of short- and long-term variability in 

climate, their ability to discern trends in climate and how the perceived trends converge 

with actual weather observations in five districts of Eastern Province in Kenya where the 

climate is semi-arid with high intra- and inter-annual variability in rainfall. They also 

conducted field surveys to elicit farmers’ perceptions about climate variability and change 

in the districts. The authors analysed long-term rainfall records from five meteorological 

stations within a 10 km radius from the survey locations and compared the results with 

farmers’ observations. It was reported that farmers are well aware of general climate, its 

variability and impacts on crop production but, farmers’ perception of changing rainfall 

pattern was not supported by the observations from the meteorological data. 

 

2.2.2.2. Climate variability assessment methods-trend analysis 

Different techniques have been used in diverse studies in order to monitor climate 

variables like rainfall and temperature in order to establish whether or not there is 

variability. However, some of the most widely used are: anomalies, standardised 

anomalies, Coefficient of Variation (CV) and Mann-Kendall (MK) trend test. 

 

Anomaly is generally defined as the departure or deviation from the mean value (normal), 

it explains an unexpected behaviour of the observed value in relation to the expected 

value. Kawale et al. (2000) explained that the central idea behind anomaly construction 

is to split the data into two parts, data with expected behaviour, and anomaly data that 

shows the variability from the expected value. It is generally used for understanding 

climate change phenomenon (Kawale et al., 2000). The standardised anomaly is the 

anomaly divided by the standard deviation, it is also referred to as normalised anomalies. 

It generally provides more information about the magnitude of the anomalies because of 
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the removal of dispersion influences and one of its advantages is that it does not require 

that dataset have a particular distribution before computation (Karavitis et al., 2011). 

 

The CV is the ratio of the standard deviation to the mean over a determined period. It is 

expressed in percentage and in the form of the level of variability (Eshetu et al., 2016). 

MK test is said to be the most popularly used non-parametric test for detecting trend in 

the time series data. It is widely used for different climatic variables  (Suryanarayana & 

Parekh, 2016). Pohlert (2016) defined it as a non-parametric test that is commonly 

employed to detect monotonic trends in series of environmental data, climate data or 

hydrological data. The null hypothesis, H0, is that the data come from a population with 

independent realizations and are identically distributed while the alternative hypothesis, 

HA, is that the data follow a monotonic trend (Pohlert, 2016). The purpose of the MK test 

(Mann 1945, Kendall 1975, Gilbert 1987) is to statistically assess if there is a monotonic 

upward or downward trend of the variable of interest over time. A monotonic upward or 

downward trend means that the variable consistently increases or decreases through time, 

but the trend may or may not be linear. The MK test can be used in place of a parametric 

linear regression analysis, which can be used to test if the slope of the estimated linear 

regression line is different from zero. The regression analysis requires that the residuals 

from the fitted regression line be normally distributed; an assumption not required by the 

MK test, that is, the MK test is a non-parametric (distribution-free) test (Suryanarayana 

& Parekh, 2016). 

 

These methods have widely and sometimes simultaneously been used by researchers over 

space and time for trend analyses in climate and other time series datasets. Eshetu et al. 

(2016) used MK test for trend and variability analysis of daily rainfall data for two 
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meteorological stations (Setema and Gatira) in Ethiopia and were able to identify 

decreasing trend in Setema and an increasing one in Gatira. 

Ekpoh and Nsa (2011) used standard deviation method and the CV to investigate extreme 

climatic variability in north-western Nigeria by analysing rainfall trends and patterns over 

the period (1915-2008); the results showed substantial fluctuations in rainfall pattern and 

quantity over the period of concern and within the study area. 

 

Jhajharia et al. (2013) analysed trends in temperature over Godavari River basin in 

Southern Peninsular (India) employing the non-parametric MK test to detect the trends in 

maximum temperature, minimum temperature and mean temperature at 35 stations in the 

basin and Theil Sen’s slope to determine the magnitude of the trend. The result showed 

both upward and downward trends for maximum temperature at different stations. Gopal 

et al. (2015) also used MK test to analyse rainfall trend for 102 years (1901-2002) in 

Punjab (India); they reported increasing trend in all the seventeen districts of Punjab over 

the period of study.  Ganguly et al. (2015) used MK and Sen’s slope estimates to analyse 

trend of the precipitation data for three districts in India for the period (1950-2005). 

Suryanarayana et al. (2016) also used MK technique to detect trends in mean monthly 

maximum temperature, mean monthly minimum temperature, mean monthly 

precipitation, mean monthly wind speed and mean monthly relative humidity for the 

Vadodara district in the state of Gujarat in India. Therefore, all the above mentioned 

authors have confirmed the ability of these methods to detect trends in climate data. That 

ascertains our interest in adopting them in addition to standardised anomalies for 

analysing rainfall and temperature datasets in the study area. 
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2.2.3. Land use land cover change modelling and prediction 

Several models have been developed and used for the prediction and modelling of 

LULCC; from statistical models to rule-based models. ‘Statistical models make use of 

statistical techniques to model spatial change in land. The allocation of the land is 

considered to be the result of different forces, or driving factors (socio-economic, 

environmental, and other factors), assumed exogenous to the land-use system. In 

particular, a system of equations is used to represent the relation between land demand or 

supply, and its determinants. This relation, expressed by the coefficients in the system, is 

normally obtained implementing multiple or multivariate regression techniques. The 

empirical analysis is supported by some rules, which concur to control the land 

competition among different uses. These approaches, simple to apply and manage, lack 

an endogenous categorisation of land-use economics and normally do not foresee a role 

for feedback effects’ (Melania, 2012). Some of them are CLUE model and ELPEN 

models. None of these addresses explicitly the interaction of land-use processes and 

driving factors, problem solved by Rule-based models (Melania, 2012). 

 

Rule-based models try to replicate land-use processes addressing more explicitly the 

interactions between such processes and driving factors. They can capture the effects of 

new land-use policies and can incorporate different factors for future land prediction 

(Melania, 2012). Some of them are Cellular Automata Markov Chains Analysis (CA-

Markov), SALU and KLUM. Amongst these models, CA-Markov model has been widely 

used for modelling and predicting LULCC in recent years. It is used for as well 

agricultural land use change studies as urban dynamic studies as states Yang et al. (2008): 

‘recently, Cellular Automata (CA) models have been applied in urban growth and land 

use change prediction’(Soffianian, 2011). 
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The Markov model can quantitatively predict the dynamic changes of landscape pattern, 

while it is not good at dealing with the spatial pattern of landscape change. On the other 

hand, Cellular Automata (CA) has the ability to predict any transition among any number 

of categories (Li et., 2015). ‘Combining the advantages of Cellular Automata theory and 

the space layout forecast of Markov theory, CA-Markov model performs better in 

modelling land cover change in both time and spatial dimension. At present, IDRISI 

software is one of the best platforms to conduct CA-Markov model, which is developed 

by Clark Labs in the United States' (Li et al., 2015). 

 

CA-Markov is a combination of two models, Cellular Automata and Markov Chain. It 

integrates multiple criteria and objectively allocates land in order to predict land cover 

change over time (Sang et al., 2011). Cellular Automata adds into Markov model the 

spatial contiguity and the probable spatial transitions occurring in a particular area over a 

time (Subedi et al., 2013). These authors (Subedi et al., 2013), in fact investigated the 

applicability of CA Markov model in predicting land use change in Saddle Creek drainage 

basin in Florida and concluded that inclusion of spatio-temporal land-use change 

dynamics in hybrid models such as CA-Markov, prove to be a valuable tool for better 

land use change prediction. Due to its quality of considering both spatial and temporal 

components of land cover dynamics, CA-Markov models have been regarded suitable by 

many authors for land cover change prediction and simulations as it has been reported in 

several studies (Katana et al., 2013). 

 

Cheng and Jui (2006) used SPOT data of Jiou Jiou Mountain from four different periods 

(March 1999, October 1999 and November 2002 & 2005) to study vegetation cover in 

2006. Finally, they used Markov chain analysis and Cellular automata to predict temporal 



26 
 

and spatial changes of vegetation cover. The paper concluded that CA Markov model is 

a more suitable method than others for the simulation of vegetation cover changes 

(Soffianian, 2011). 

 

Muhammad (2015) predicted land use changes in Cameron Highland (Malaysia) using 

CA-Markov model. It has also been used by Katana et al. (2013) for detection and 

prediction of land use/cover changes in upper Athi river catchment, Kenya. The change 

analysis over the period (1997-2005) revealed that forests and wetlands have decreased 

while agricultural lands, built up and open water areas have increased; the prediction for 

the year 2020 revealed that agriculture, open water and built up areas will know an 

increase. 

 

Razavi (2014) used Markov chains model to detect LULCC in Kermanshah city (Iran) 

over the period (1987-2006) and predicted changes for the year 2025; a decreasing trend 

in range land, forest, garden and green space areas and increasing trend in residential and 

agricultural lands have been reported over the period (1987-2006). The result of the 

prediction based on the maps of years 1987 and 2006 have shown that 82 % of residential 

land, 58.51 % of agriculture, 34.47 % of water, 8.94 % of green space, 30.78 % of gardens, 

23.93 % of waste land and 16.76 % of range lands will remain unchanged from 2006 to 

2025. 

 

Sang et al. (2011) analysed land use spatial pattern in Fangshan (Beijing, China) over the 

period (2001-2008) and simulated for the year 2015 using CA-Markov Model. The 

simulation result showed that the original rate of changes in trends will be constant from 

2008 to 2015. These applications ascertain the ability of CA-Markov model to predict 
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LULCC. Consequently, it is evident that CA-Markov is a suitable model for land use/ 

cover prediction. 
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CHAPTER THREE 

3.0.                                      RESEARCH METHODOLOGY 

This part contains all the materials, data, software and methodology that were required 

for the achievement of the stated research objectives. The Table 3.1 indicates the 

materials, data, software and models and their usages in this study. 

 

 

Table 3.1 List of Materials and Software 

 Data / Material/ Model Purpose / Usage 

GPS 
Collection of ground reference points for 

classification and accuracy assessment 

MODIS NDVI products Cropland land mapping 

MRT 
Reprojection and extraction of NDVI layer 

from MODIS 

TIMESAT SG filtering 

Climate data (Rainfall and 

Temperature) 
Climate variability assessment 

CA-Markov Model LULC prediction 

IDRISI 
Change Detection and CA-Markov model 

running 

IDRISI, QGIS, ArcGIS, ENVI 
Pre-processing, classification, output map 

production 

R software, SPSS and XLSTAT 
Statistical analyses on climate data and 

questionnaire 

Questionnaire 
Socio-economic information, farming 

practices and decision making process 

Source: Author’s, 2017  
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3.1. Data 

This sub-section describes all the data collected, starting from satellite images, model 

input data, climate data to socio-economic information and the sampling method used for 

their collection. 

 

3.1.1. MODIS data 

The Moderate Resolution Imaging Spectroradiometer MODIS / Terra Surface 

Reflectance sixteen-day L3 Global 250 m SIN Grid v006 (MOD13Q1) NDVI time series 

for the 01-March-2000 to 28-February-2001, 01-March-2008 to 28-February-2009, 01-

March-2016 to 28-February-2017 were downloaded. The numbers from 49 to 33 

correspond to Julian calendar Day Of Year (DOY) with an interval of sixteen days starting 

from March 1 to February 28 of the next year in Gregorian Calendar. These correspond 

to 23 composites images (excluding the last images) of 16-day for each period for total 

of 69 composites for the three periods, spanning the rainy seasons of the years 2000, 2008 

and 2016. All were downloaded from the National Aeronautic Space Administration 

(NASA)’s Earth Observing System Data and Information System EOSD website 

(https://reverb.echo.nasa.gov/reverb). The MODIS tile covering the study area is h17v07. 

 

 

Table 3.2 MODIS Data Description 

Product Tile period Number of 

Images 

Layer Resolution (m) 

MOD13Q1 h17v07 01/03/00 - 28/02/01 23 NDVI 250 

MOD13Q1 h17v07 01/03/08 - 28/02/09 23 NDVI 250 

MOD13Q1 h17v07 01/03/16 - 28/02/17 23 NDVI 250 

 Source: Author’s compilation, 2017 

https://reverb.echo.nasa.gov/reverb
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The NDVI is said to be  a well-established and frequently used vegetation index in studies 

that use remote sensing data because of its rough correlation with green plant biomass 

and vegetation cover (Yu et al., 2004). 

 

3.1.2. Landsat data 

Nine Landsat 5 Thematic Mapper (TM), 7 Enhanced Thematic Mapper (ETM+) and 

Landsat 8 Operational Land Imager (OLI) images were downloaded from the United 

States Geological Survey (USGS) Glovis website (http://glovis.usgs.gov/) for free. The 

downloaded images covered four districts within the study area. The dates of acquisition 

were October, November and December 2000, 2009 and 2016. These months were 

chosen because of the likelihood of having cloud free images and the easiness of 

differentiating cropland from other types of vegetation. Therefore, the images were free 

from cloud, geometrically corrected and in GeoTIFF format with the UTM WGS84 Zone 

29N projection. The Landsat images for the year 2008 were not available and were 

replaced by the images of the following year 2009. 

 

Table 3.3 Landsat Data Description 

Sensor Path/Row Acquisition date Bands Resolution (m) 

ETM+ 

198/51 04/10/2000 

7 

30*30 

198/52 04/10/2000 

199/52 27/10/2000 

TM 

198/51 05/10/2009 

7 198/52 06/11/2009 

199/52 12/10/2009 

OLI 

198/51 20/10/2016 

11 198/52 04/11/2016 

199/52 06/12/2016 

 Source: Author’s compilation, 2017 

 

http://glovis.usgs.gov/
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3.1.3. CA-Markov model input data 

For the LULC prediction, the CA-Markov model requires basically two classified maps 

of earlier and later dates; the road layer, Digital Elevation Model (DEM), slope and aspect 

can also be added to the model as factors for a better prediction. Therefore, the classified 

maps of 2000, 2008 and 2016 along with the Road Network and DEM from which the 

slope and aspect maps were derived and used as input for the model. The DEM was 

downloaded from the United States Geological Survey (USGS) website 

(earthexplorer.usgs.gov/) at approximately thirty-meter resolution and the road network 

was downloaded from Open Street Map website (www.openstreetmap.org). It was then 

imported in Google Earth in order to check if the major roads were properly represented. 

 

3.1.4. Sampling method 

To collect the data needed for this study, a multistage sampling technique was applied. 

Two major criteria were established to identify the districts and villages for the selection 

of the respondents. 

The two criteria were that: 

(i) Three villages of the district should be located on one single Landsat scene; 

(ii) The district must have a reliable meteorological station covering the area. 

Based on these criteria, four districts were identified. From each district, three villages 

were selected, giving a total number of twelve villages. Twenty household heads with age 

not less than thirty-five years were then selected in each village making a total number of 

two hundred and forty (240) household heads interviewed. The criterion of using one 

Landsat scene was aimed at avoiding the effect of mosaicking images acquired on 

different dates which could affect the result of the classification. Furthermore, the 

availability of reliable meteorological stations was judged important for the access to 

http://www.openstreetmap.org/
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reliable climate data (less missing observations). The number twenty household heads in 

each village was estimated reasonable and achievable with regards to the timeframe. The 

minimum age of thirty-five years was chosen because some of the questions related to the 

past could only be answered by people of this category. 

 

3.1.5. Ground reference data 

Global Positioning System (GPS) was used to obtain ground reference data from the 

twelve villages in the four selected districts within the study area. Google Earth High 

Resolution Images helped to increase the number of ground reference points (Son et al., 

2014). 

 

3.1.6. Climate data 

Monthly weather data, rainfall and temperature (Min-Max) for 36 years (1981-2016) for 

four stations (Yanfolila, Bougouni, Sikasso and Koutiala) within the study area were 

acquired from the national meteorological service Mali-Meteo. Additionally, the monthly 

rainfall and temperature data from the four stations were averaged to get regional data 

series which was also subject to analyses. A few number of missing data were observed 

in the dataset obtained from the station of Yanfolila and they were filled-in using the 

average of the values of the first previous and first next non missing observations. 

 

3.1.7. Questionnaire 

The questionnaire comprising three sections (i) socio-demographic information (ii) 

LULCC dynamic and impact (iii) climate variability perception, impact and adaptation 

was prepared and validated before being administered to the real respondents. The 

targeted people were household heads with age not less than thirty-five years. It is only 
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people of that category that could answer some of the questions related to past situations. 

Based on that, two hundred and forty (240) household heads were interviewed in the 

twelve selected villages. The questionnaires were written in English, then translated into 

French and administered in local language Bambara. The questionnaire contained both 

closed and open questions. The data collected were coded and entered into the Statistical 

Package for Social Science (SPSS) for analysis. 

 

3.2. Data Analysis 

The methods for data analysis consisted of different approaches used to depict the 

processes of LULCC, the impact of climate variability on agricultural LULCC and 

prediction of the future change. The following methods were used for the attainment of 

the stated objectives and the research questions. 

 

3.2.1. Land use land cover change assessment 

This section explains the methodology used for the achievement of the first objective 

which is to assess changes in land use land cover with focus on agricultural lands. 

 

3.2.1.1. Pre-processing of satellite images 

Before classification of any satellite images, some preliminary operations are needed in 

order to prepare the images. In this regard, the Landsat images downloaded were re-

projected from WGS UTM Zone 29N to UTM Zone 30N. An overlay action was executed 

to determine whether there is need for any geometric correction. There were no distortions 

identified. The shape files were also re-projected to the same UTM Zone 30N as Landsat 

images. They were used to clip the study area, and stacks of bands 1, 2, 3, 4, 5 (for Landsat 

5 and 7) and bands 2, 3, 4, 5, 6 (for Landsat 8) were then produced. These bands 
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correspond respectively to Blue, Green, Red, Near Infrared (NIR) and Shortwave Infrared 

(SWIR) which are generally used for a better visibility of different classes. These 

operations were performed using ENVI 5.1 and ArcGIS 10.3.1. 

 

Images from MODIS were re-projected from their sinusoidal projection to WGS UTM 

Zone 30N and the NDVI layers were extracted. These two operations were performed 

using MODIS Reprojection Tool (MRT) which is a package developed for the pre-

processing of MODIS images. After extraction, the NDVI layers were then rescaled with 

a scaling factor of 0.0001 as indicated in (NASA LP DAAC, 2014) from their original 

values ranging from (-10,000 to +10,000) to normal NDVI values ranging from -1 to +1 

(using ENVI 5.1). The buffered shape file was used to extract the Whole of Sikasso 

Region. After these steps, a smoothing process was applied using SG filtering method in 

TimeSat software. 

 

3.2.1.2. Savitzky-Golay (SG) filtering algorithm 

‘SG (1964) suggested a simplified least squares fit convolution to smooth and compute 

derivatives of a consecutive values set. The convolution is to be understood as a weighted 

moving average filter with weighting given as a polynomial of a certain degree. The 

weight coefficients, when applied to a signal, perform a polynomial least-squares fit 

within the filter window. This polynomial is designed to preserve higher moments within 

the data and to reduce the bias introduced by the filter’ (Chen et al., 2004). Any data 

series with equal time interval can be subject to this filtering process. The formula is as 

follows: 

(3.1) 
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N=2*m+1 

where  

                                                    Yj* = filtered value at position j 

                                                    Ci = filter coefficient at position i 

                                                    Yj+I = data value at position j+i 

                                                    m = filter interval 

                                                    N = number of data points for calculation 

(Chen et al., 2004) 

 

3.2.1.3. Classification and validation 

After pre-processing of the images, classification is the next step. Ground reference points 

were collected with the GPS, Google Earth Imagery (Knauer et al., 2017b; Hentze et al., 

2016 and Traore et al., 2014) and Landsat images. Both Landsat images and those ground 

reference points combined with the NDVI profiles were used for the identification of 

different classes from MODIS images.  

 

The frequently used unsupervised classification technique-ISODATA employing the so-

called Iterative Self-Organizing Data Analysis Algorithm to partition n-dimensional 

imagery into a number of clusters according to a specified value (Eastman, 2012) was 

used for the classification of MODIS images. Forty initial classes were generated. As our 

interest was mainly on cropland and the fact that there is no much difference between 

bare surface and urban NDVI profiles, the initial classes generated from the ISODATA 

classification were then regrouped into four main classes: cropland, vegetation, water and 

others, the later one combines bare surfaces and built-up areas altogether. We finally 

ended up with those four classes and assume that any increase in the class (others) refers 
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to urban area expansion and increase in bare surfaces or degraded lands. The producers, 

users and overall accuracy along with kappa coefficient techniques were used for the 

accuracy assessment of the classified maps. The MODIS classified map of the year 2008 

was also compared with GlobCover map of 2009 for validation. 

 

3.2.1.4. Change detection 

In order to achieve the first objective, change detection was performed using Land 

Change Modeler module under IDRISI Selva 17.0 software. That module quantifies 

changes between different classes from one period to the another along with change maps. 

Therefore, three change maps were produced for three periods: 2000-08, 2008-16 and 

2000-16. The year 2008 was chosen as intermediate point in order to look at specific 

details of the change pattern between 2000 and 2016. The results are presented in graphs, 

tables and change maps. 

 

3.2.2. Examination of climate variability and its impact on agricultural lands 

This section give details of the methodologies used to examine climate variability and to 

assess its impact on agricultural lands. 

 

3.2.2.1. Analysis of rainfall and temperature data 

Standardised anomalies and CV for variability analysis and MK test for trend analysis 

were performed on rainfall and temperature data in order to achieve the first part of the 

second objective. These were carried out using XLSTAT, Excel and R statistical software 

with MK package. 
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3.2.2.1.1. Standardised anomaly and coefficient of variation 

The formula for computing the standardised anomalies is as follows: 



−
=

x
Z  (3.2) 

Where 

Z is the standardised anomaly; 

x is the variable in concern; 

µ is the mean of the dataset; 

σ is the standard deviation of the dataset. 

(Nicholson, 1985; Karavitis et al., 2011) 

The formula for the CV is by dividing the standard deviation by the mean and 

multiplying the result by hundred and is given as: 

100=
x

CV


   (3.3) 

Where: 

CV = coefficient of variation; x = mean; δ = standard deviation 

(Ekpoh & Nsa, 2011) 

For calculating the climatological means of rainfall and temperature, the period from 

1981 to 2010 was considered, which correspond to thirty years. In this study, the 

climatological mean is referred to as normal or simply climatology. 
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3.2.2.1.2. Mann-Kendall (MK) test 

The formula for the non-parametric MK test is expressed as follows: 

)
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𝑠𝑖𝑔𝑛(𝒙𝒋 − 𝒙𝒌) = 𝟏 𝒊𝒇 𝒙𝒋 − 𝒙𝒌 > 𝟎 

                             = 𝟎 𝒊𝒇𝒙𝒋 − 𝒙𝒌 = 𝟎 

                          = −𝟏 𝒊𝒇𝒙𝒋 − 𝒙𝒌 < 𝟎 

                                                                                    (3.4) 

Where: n is the number of data points 

Assuming (xj-xk) = θ, positive values of θ indicate increasing trend while negatives ones 

are indicator of decreasing trend. If the θ = 0, that means the data has no trend. The MK 

test verifies the null hypothesis (H0) of no trend versus the alternative hypothesis (H1) 

for the existence of increasing or decreasing trend (Gopal et al., 2015; Pohlert, 2016). By 

implication, positive or negative trend will signal the nature of impact on LULC within 

the study area over the period of consideration. The modified MK method was adopted 

because it takes into account the effect of autocorrelation and corrects it using Hamed and 

Rao (1998) methods. 

 

3.2.2.2. Climate variability impact on agricultural lands 

This subsection addresses the analysis of climate variability impact on agricultural lands, 

which is the subsequent part of the second objective. Firstly, the Pearson’s correlation 

test was performed to investigate the relationship between changes in agricultural lands 

and rainfall trend and coefficient of variation. Sivakumar et al. (2005) affirmed that inter- 

and intra-annual variability in rainfall is perhaps the key climatic element that determines 

the success of agriculture in the arid and semi-arid tropics. Secondly, percentage, 

frequency and mean computations were carried out on questionnaire data in order to 
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produce graphs and tables for explanation of farmers’ perception of climate variability. 

Finally, the Pearson’s Chi-square Test of association was also performed on questionnaire 

data to identify the factors which have influence on farmers’ decision to make changes in 

their farm size. 

 

3.2.2.3. Land use land cover change prediction 

This third objective which is the prediction of LULCC by the 2030 and 2050 was achieved 

using CA-Markov model in IDRISI environment. The derived LULC maps, the DEM and 

roads networks were used as input for the development of the model, validation and 

prediction. The maps of the years 2000 and 2008 were used as base maps to predict for 

the year 2016 which was then compared with the reference map of 2016 for validation. 

After the validation of the model, the maps of 2008 and 2016 were then used to predict 

for the years 2030 and 2050. For both periods, all the transitions were considered. The 

DEM was used to derive the slope map and both were included for the development of 

the model. The distance to major roads was calculated using major roads layer which was 

extracted from the roads network. 
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CHAPTER FOUR 

4.0.                                     RESULTS AND DISCUSSION 

This fourth chapter of the thesis presents the findings of the study using tables, graphs 

and figures. 

 

4.1. Agricultural Land Use Land Cover Change 

This section illustrates the role the smoothing process in the classification of images, 

presents LULC maps of the years 2000, 2008 and 2016 followed by change detection 

results and discussion. 

 

4.1.1. NDVI profiles 

This subsection demonstrates the role of the SG filtering process (smoothing) in the 

LULC classification of NDVI time series by comparing and presenting the raw and 

smoothed NDVI profiles of water and cropland and the smoothed profiles of the different 

LULC classes. 

 

4.1.1.1. Water and cropland smoothed and raw NDVI profiles 

The SG filtering was used to reduce noises from the NDVI profiles and improve the 

results of the classification. The comparison of smoothed and raw NDVI profiles for 

water and cropland is illustrated in Figure 4.1. It is apparent that clear pattern can be 

identified from the smoothed profiles compared to raw profiles. Abrupt variations in 

NDVI profiles due to the presence of unexpected values have been reduced by replacing 

those values with new ones that gave clear shape to the NDVI profiles over time which 

improved the classification result. 
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Figure 4.1 Effect of Smoothing 
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This SG filtering method revealed to be very important in generating high quality NDVI 

profiles and improved the result of the classification. Accordingly, many researchers have 

recommended this technique for the enhancement of classification accuracy. Kaishan et 

al. (2011) reported that the method was more effective for generating high-quality NDVI 

time series data for their classification. Furthermore, Kim et al. (2014) reported that the 

SG filtered NDVI time series was most suitable for classification and delineation of land 

cover types compared to the original NDVI data sets; the study also confirmed that 

‘phenological signature of an individual ecosystem class is an intrinsic advantage of using 

time-series data and yields better classification maps’. 

 

4.1.1.2. NDVI profiles of the different land use land cover classes 

From the smoothed NDVI profiles, six classes were identified: Water, Cropland, Bare 

Surface, Urban or Built-up, High vegetation and relative high vegetation were identified 

(Figure 4.2). These classes were later regrouped into four broad classes: cropland, 

vegetation, water and others as earlier explained in the methodology. The results showed 

that water bodies reflected lower NDVI values (-0.15 – 0.1), urban (0.2 – 0.38) and bare 

surfaces (0.15 – 0.3) were almost within the same range, cropland (0.25 – 0.6) was also 

differentiated by its specific profile; high vegetation (0.42 – 0.8) and relative high 

vegetation (0.35 – 0.7) reflected higher NDVI values.  
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Figure 4.2 NDVI Profiles 
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From these NDVI values, it is apparent that the higher the vegetation the higher the NDVI 

values as mentioned by Holme et al. (1987). Similarly, Kim et al. (2014) found around 

(0.2 – 0.9) for cropland, urban (0.15 – 0.4) for urban area, (0.2 – 9.6) for broad leaf 

vegetation and (0.3 – 0.9) for needle leaf vegetation in South Korea. Furthermore, 

Doraiswamy et al. (2006) found NDVI values ranging from around  0.25 to 0.9 for 

soybean crop in four different provinces in Brazil. However, it is worth mentioning that 

the slight differences between these results could certainly be due to the duration, number 

of seasons and amount of rainfall received throughout the year in the different locations. 

The highest NDVI values were reached by around the 225th DOY (midst of August) which 

corresponds to the peak of the rainy season when highest rainfall is recorded and 

vegetation is always at its pick over the study area. By implications, croplands reached 

their highest NDVI positive values within the same period, water bodies reached their 

lowest values, which is certainly due to their depth in response to the rainfall recorded. 

Differences between land cover categories were also clearly shown based on the evolution 

of their NDVI profiles over time as illustrated in the Figure 4.2 where the profile of each 

land cover category could be observed. 

 

4.1.2. Land use land cover in 2000 

In the year 2000, the major land cover type was vegetation which occupied more than 45 

% of the total area, followed by cropland with 3197845 hectares corresponding to 44.79 

% of the total area. Water bodies occupied less than 1 % and the class others which 

combines built-up areas and bare surfaces (or degraded lands) occupied around 10 % of 

the area. The Table 4.1 presents the details of the area occupied by each land cover type 

along with proportions.  
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Table 4.1 LULC Area in 2000 

LULC 2000 (ha) Proportion (%) 

Cropland 3197845 44.79 

Vegetation 3236242 45.33 

Water 38333 0.54 

Others 666789 9.34 

Total 7139208 100 

                 Source: Author’s computation, 2017 

 

 

 

In addition, Figure 4.3 visualizes the spatial distribution of each land cover category. It is 

apparent that most of the vegetation cover were distributed across the southern part of the 

region, croplands mostly in the central part and the class others in the northeast. This is 

explained by the rainfall regime which is of south-north gradient in the area (Brandt et 

al., 2014; Vintrou et al., 2009). The rainfall starts from south where the quantity is high 

and the duration is long to the north with low quantity and short duration. 
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Figure 4.3 LULC Map of 2000 
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4.1.3. Land use land cover in 2008 

In the year 2008, cropland occupied larger area than vegetation. It became the major land 

cover type and occupied around 46 % of the whole area while vegetation occupied 44 % 

of the area. Water bodies have slightly decreased and Built-up and bare surfaces have 

slightly increased. Table 4.2 gives details about areas and proportions of each land cover 

type. 

 

 

Table 4.2 LULC Area in 2008 

LULC 2008 (ha) Proportion (%) 

Cropland 3278464 45.93 

Vegetation 3156824 44.22 

Water 35805 0.50 

Others 667414 9.35 

Total 7138508 100 

             Source: Author’s computation, 2017 

 

 

Additionally, Figure 4.4 shows the spatial distribution of the various features in 2008. 

Likewise, the map of the year 2000, as in 2008 it was depicted that most of the vegetation 

cover were dominant across the southern part of the region, croplands mostly in the 

central part and bare surfaces in the north. However, the presence of more cropland in 

north is apparent. 
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Figure 4.4 LULC Map of 2008 
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4.1.4. Land use land cover in 2016 

In 2016, the area occupied by cropland was around 47 % of the total land mass of the 

region, vegetation occupied 45 % while water bodies-which have slightly increased still 

occupied less than 1 % and the class others occupied around 8 % of the total area. Table 

4.3 presents the details about the areas and proportions of each land cover category. 

 

 

Table 4.3 LULC Area in 2016 

LULC 2016 (ha) Proportion (%) 

Cropland 3327509 46.61 

Vegetation 3206270 44.91 

Water 47815 0.67 

Others 557613 7.81 

Total 7139208 100 

                 Source: Author’s computation, 2017 

 

 

 

In addition, Figure 4.5 shows the spatial occupation of each land cover category for the 

year 2016. More presence of cropland northward intensified, the class others has 

increased in proportion in the central part of the area and vegetation was well distributed 

across the southern and central regions. 
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Figure 4.5 LULC Map of 2016 
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4.1.3. Accuracy and comparison with GlobCover map of 2009 

An overall accuracy of 80, 88 and 83 percent were obtained from accuracy assessment of 

the years 2000, 2008 and 2016 respectively. The computed Kappa coefficient for all the 

three maps reached 0.99 which shows very strong agreement. Among all the classes, 

water was the most accurately classified, followed by vegetation, cropland and the class 

others but none of them had an accuracy less than 60 % for both user’s and producer’s 

accuracy. Table 4.4 presents different values of accuracy obtained for the three different 

maps. 

 

Table 4.4: Confusion Matrix 

 2000 2008 2016 

 Producers Users Producers Users Producers Users 

Cropland 0.66 0.62 0.80 0.63 0.75 0.63 

Vegetation 0.79 0.70 0.97 0.89 0.84 0.94 

Water 0.93 1 0.91 1 1 0.96 

Others 0.62 0.71 0.52 1 0.87 0.71 

Overall accuracy 0.8 0.88 0.83 

Kappa Coefficient 0.996 0.997 0.995 

Source: Author’s computation, 2017 
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In addition to the usual way of map accuracy assessment using kappa coefficient, 

producer’s and users’ accuracy, the classification for the year 2008 was compared with 

Global Land Cover map of the year 2009. It was assumed that one year of difference 

between two LULC maps do not generally have great impact on their classification output 

(Vintrou et al., 2009). Therefore, in order to evaluate the performance of the classification 

scheme and the ability of MODIS 16-day NDVI (MOD13Q1) data in cropland mapping 

in the study area, the Glob Cover 2009 was considered as reference for comparison. It 

was observed that both maps have very close values for cropland, vegetation and water 

with a percentage of agreement in quantity of 89.1, 91.5 and 96.4 percent respectively but 

have different estimations for the class others (3.6) as shown in Figure 4.6. 

 

 

Figure 4.6 Comparison Glob Cover Vs MODIS Classification 

Cropland Vegetation Water Other

GlobCover_09 3655692 3435719 37107 10828

Modis_Class_08 3278464 3156824 35805 667414
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The difference in estimation of the class others may be due to the relatively coarse 

resolution (300m) of Glob Cover which fails to estimate very well that class. Moreover, 

the slight over-estimation of cropland from Glob Cover is certainly attributed to the 

generalisation process in which the class 20 representing a mosaic of cropland (50-70 %) 

/ vegetation (grassland/shrubland/forest) (20-50 %) was added to cropland. However, 

from these statistics it is obvious that these two maps are very similar to each other which 

strengthened the confidence in the classification scheme adopted in this study. Similarly, 

Vintrou et al. (2009) reported that their classification from MODIS time series data 16-

Day L3 Global 250m (2004-2005) performed better after the comparison with GLC2000, 

MCD12Q1 and ECOCLIMAP-II. By implication, it is clear that the MODIS product 

(MOD13Q1) is more suitable for cropland mapping in the study area. Additionally, 

Figure 4.7 shows the abovementioned similarities between the classification from 

MODIS and GlobCover. 

 

 

 

Figure 4.7 LULC from MODIS 2008 Vs GlobCover 2009 
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4.1.4. Change detection 

The change detection was conducted in three different periods, from 2000 to 2008, 2008 

to 2016 and 2000 to 2016. 

 

4.1.4.1. Land use land cover change from 2000 to 2008 

Within this period (2000-2008) vegetation cover has largely decreased with a net value 

of 79,563 ha while cropland has increased with almost a similar value (76,349 ha). Water 

bodies have decreased and the class others has also increased. The analysis of 

contributions to net change in cropland have shown that vegetation was the main land 

cover category that was converted to cropland whereas some cropped areas were also 

replaced by the class others. Figure 4.8 below shows contributions to net changes in 

cropland from 2000 to 2008. It is clear that vegetation was the main contributor to 

cropland expansion.  

 

 

 

 

 

Figure 4.8 Contributions to Net Change in Cropland 2000-08 
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In addition, Figure 4.9 shows the spatial changes that have occurred from 2000 to 2008. 

The green colour represents areas that have been converted from vegetation to cropland 

from 2000 to 2008, red refers to conversion from the class others to cropland, blue 

represents water to cropland and other represents unchanged area. From this map, it was 

observed that the increase in cropland has taken place all across the study area. 

 

 

 

 

Figure 4.9 LULC Change Map from 2000 to 2008 
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4.1.4.2. Land use land cover change from 2008 to 2016 

This period has recorded slight increase in vegetation cover, cropland and water bodies 

while the class others has considerably decreased. The net contributions analysis showed 

that the class others contributed most to the increases in cropland within this period; a 

regrowth of vegetation has also occurred unlike the period 2000-2008. This implies that 

new croplands were established on lands that were considered as marginal lands whereas 

vegetation regrew on fallow lands. This regrowth of vegetation was elsewhere ascertained 

by Brandt et al. (2014) who conducted a study in the Sahel of Mali and Senegal after 

which they reported significant greening trends from 1982 to 2010; the study also 

identified some factors like agroforestry  practices, laws of protection and planting 

programmes, the widespread dispersion of robust species replacing diverse woody 

vegetation and increases in rainfall (recovery from droughts) to be responsible for the 

regrowth of vegetation during this period. 

 

In addition, Figure 4.10 shows the contributions to net changes in cropland from 2008-

2016. From this Figure, the regrowth of vegetation can clearly be observed by its negative 

contribution to increases in cropland. 

 

 

Figure 4.10 Contributions to Net Change in Cropland 2008-16 
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Furthermore, Figure 4.11 illustrates that spatial changes occurred from 2008 to 2016. The 

red colour represents areas that have been converted from the class others to cropland 

between 2008 and 2016, green refers to conversion from vegetation to cropland, blue 

represents water to cropland and Other represents unchanged places. 

 

 

 

Figure 4.11 LULC Change Map from 2008 to 2016 
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4.1.4.3. Land use land cover change from 2000 to 2016 

From 2000 to 2016 which is the main period of concern, it was observed that cropland 

has expanded with 129,665 ha which corresponds to an annual rate of increase of 0.25 % 

(4 % for the whole period), vegetation has decreased by 30,000 ha corresponding to -0.06 

% per year (-1 % from 2000-16) and the class others with 109,175 ha, -1.12 % per year. 

The net changes between different land cover categories is shown in the Figure 4.12. This 

Figure shows clearly that cropland has largely expanded; water bodies has also increased 

but vegetation and the class others have decreased in contrast. 

 

 

 

Figure 4.12 Net Change Between 2000 and 2016 

 

This result shows that expansion of agricultural land is at the expense of vegetation cover 

and marginal lands. However, it is apparent that this expansion was rather a gradual 

process than drastic. Similar results were found by Knauer et al. (2017a) who studied the 

expansion of agricultural lands in Burkina-Faso over a period of 14 years (2001-2014) 

and reported an increase of 91 % at national scale. Zoungrana et al. (2015) also reported 

an increase in agricultural lands and bare surfaces at expenses of woodland and mixed 

vegetation from 1999 to 2011 in the southwest of Burkina-Faso. Moreover, Katana et al. 

(2013) reported increases in agricultural lands and built-up area and decreases in 
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vegetation cover in the Upper Athi River Catchment (Kenya) during the period 1984-

2010. Furthermore, a significant shift from water and vegetation to agricultural lands, 

bare soils and settlement was also reported by Butt et al. (2015) in their study of 

monitoring Simly watershed in Pakistan. From these results, it is clear that the vegetation 

cover in the study area is threatened by uncontrolled expansion of agricultural lands. 

Consequently, appropriate actions need to be taken to support the regrowth of vegetation 

and prevent desertification and land degradation. 

 

Additionally, the change map (Figure. 4.13) shows that LULCC has occurred across the 

entire study area. The red colour represents areas that have been converted from the 

class others to cropland between 2000 and 2016, green refers to conversion from 

vegetation to cropland, blue represents water to cropland and Other represent 

unchanged places. 

 

Figure 4.13 LULC Change Map from 2000 to 2016 
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Furthermore, the overall evolution of different land cover categories is illustrated by the 

Figure 4.14 where cropland expansion can easily be observed. The Figure shows the 

quantity (ha) of each LULC category for the three different years (2000, 2008 and 2016). 

The increase in cropland from 2000 to 2016 through 2008 is shown in statistics. The 

decrease of vegetation from 2000 to 2016 and the slight regrowth between 2008 and 2016 

(Brandt et al., 2014) is also shown. Water bodies have slightly decreased between 2000 

and 2008 and increased considerably after 2008. The class others increased from 2000 to 

2008 but largely decreased after 2008. All these statistics are detailed in the Figure 4.14. 

 

 

Figure 4.14 LULC Evolution from 2000 to 2016 (ha) 
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4.2. Climate Variability and Trend 

This section answers the second research question by presenting the results of the 

variability and trend detection analyses performed on rainfall and temperature data. The 

last part of the section presents the results from the analyses of the socio-economic 

statistics. 

 

4.2.1. Rainfall 

4.2.1.1. Rainfall pattern 

The monthly evolution of rainfall from 1981 to 2010 which was considered as normal 

(climatological mean) compared to monthly average rainfall for the period 2011-2016 is 

illustrated in the Figure 4.15. 

 

The results indicated that rainfall is received as early as in April and stop definitely in 

October in the study area. However, it was clear that the bulk of the rainfall was received 

between June and September which is officially considered as the rainy season given the 

fact that the amount and distribution of rainfall in April, May and October do not meet 

the requirements of the main cultivated crops in the area as ascertained by Funk (2012). 

Therefore, the distribution and amount of rainfall within that period determine the annual 

agricultural production. However, the comparison of the average for the period 2011-

2016 with the climatological mean-normal (1981-2010) on monthly basis shows that 

some changes have occurred in the rainfall pattern in the study area. More rainfall has 

been received in the months of July, August and September in these recent years than it 

used to be, which depicts the monthly variability in rainfall pattern across the study area. 

Specifically, the average rainfall for the months of July, August, September and October 

(2011-2016) were more than normal (1981-2010) with 16, 37, 24 mm respectively. These 
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results indicate an increase in the quantity of monthly rainfall during the rainy season in 

the study area. 

 

 

 

 

 

Figure 4.15 Comparison of the Normal (1981-2010) Vs Average Rainfall (2011-16) 
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4.2.1.2.  Regional annual rainfall anomalies 

The rainfall anomalies were interpreted according to the categorisation of McKee (1993) 

of Standardised Precipitation Index (SPI) in Table 4.5. The rainfall index values are 

divided into seven categoayries starting from extremely dry to extremely wet situations.  

 

Table 4.5 Standardised Rainfall Index Categorisation 

2.0 + Extremely Wet 

1.5 to 1.99 Very Wet 

1 to 1.49 Moderate Wet 

0.99 to -0.99 Near Normal 

-1 to -1.49 Moderate Dry 

-1.5 to -1.99 Severely Dry 

-2 to less Extremely Dry 

Source: Adapted from Eshetu et al., 2016 

 

In application of this categorisation scheme, it was found that the average regional rainfall 

recorded more wet than dry years. Specifically, the years 1994 and 2010 were extremely 

and very wet years respectively; 1991, 1998, 2007, 2012 and 2014 were moderate wet 

years and the year 1984 was the driest during the period (1981-2016), 1983, 1987 and 

2002 were also severely dry years. All the other years were within the range of near 

normal years. Figure 4.16 shows the abovementioned details about the annual rainfall 

anomalies. 
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Figure 4.16 Annual Standardised Rainfall Anomaly Indices from 1981 to 2016 

 

 

These results confirmed the occurrence in the study area of the severe droughts of the 

years 1983-1984 which was experienced in many locations across Africa as reported by 

Traore et al. (2013) for the case of Sikasso. Similarly, Eshetu et al. (2016) reported 

negative anomalies for the years 1983 and 1984 at the stations of Setema and Gatira in 

Ethiopia over the period 1983 to 2013 (for Gatira) and 1979 to 2011 (for Setema). 

However, it was clear that recent years (2012-2016) have received much more quantity 

of rainfall successively. This increase in rainfall was ascertained by Brandt et al. (2014) 
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who reported that rainfall is recovering in recent years compared to pre-drought period in 

two sites of Mali and Senegal. Thus, the cultivation of marginal area and vegetation 

recovery may be associated with this trend in rainfall. 

 

4.2.1.3. Regional seasonal rainfall anomalies 

The seasonal June-July-August-September (JJAS) standardised anomaly indices showed 

that the amount of rainfall during the rainy season (for years after 2010) was considerably 

higher than the normal except the years 2011 and 2013 (Figure 4.17).  

 

 

Figure 4.17 Seasonal Standardised Rainfall Anomaly Indices from 1981 to 2016 

 

As shown by the annual anomalies, the seasonal rainfall for the years 1983 and 1984 were 
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were characterised by negative index values (Traore et al., 2013; Eshetu et al., 2016). 

These results indicate high similarities in seasonal and annual rainfall patterns. However, 

the seasonal rainfall variability was higher compared to annual variability. 

 

4.2.1.4. Spatio-temporal rainfall variability 

The rainfall variability was interpreted in the light of the classification of Hare (1983)-

low variability (<20 %), moderate variability (21-30 %) and high variability (>30 %) 

(Thangamani & Raviraj, 2016). The four stations revealed different magnitudes of 

variability in rainfall (Table 4.6). The station of Koutiala exhibited moderate variability 

in both annual and seasonal rainfall; the three other stations displayed low variability in 

annual and seasonal rainfall. On annual basis, the station of Sikasso recorded the highest 

quantity of rainfall and the lowest was recorded at the station of Koutiala. The highest 

seasonal rainfall was recorded at the station of Bougouni, followed by Yanfolila, Sikasso 

and Koutiala.  

 

Table 4.6 Coefficient of Variation of Rainfall 

Station Period 
Mean 

(mm) 

CV 

(%) 

Classification 

Regional 

average 

Annual 1047 12 
Low 

Seasonal 847 14 
Low 

Sikasso 
Annual 1138 16 

Low 

Seasonal 889 18 
Low 

Koutiala 
Annual 867 21 

Moderate 

Seasonal 734 21 
Moderate 

Bougouni 
Annual 1136 14 

Low 

Seasonal 917 17 
Low 

Yanfolila 
Annual 1105 16 

Low 

Seasonal 902 19 
Low 

          Source: Author’s climate data analysis, 2017; Provided by Agence Mali-Meteo 
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It is apparent that the station of Koutiala was the less watered location from 1981 to 2016 

which is certainly due to its northward position. The results also showed that the 

variability in rainfall is higher from one season to the other than on annual basis which 

may induce difficulties in seasonal rainfall prediction and therefore, impact on 

agricultural production and food security. Besides, the study area seems to experience 

increases in rainfall variability. Traore et al. (2013) reported a CV of 17 % in seasonal 

rainfall at the station of Sikasso from 1965 to 2005 while this study revealed 18 % from 

1981 to 2016. That implies an increase in rainfall variability which affects negatively 

seasonal planning and agricultural production consequently. 

 

4.2.1.5. Spatio-temporal rainfall trend 

At 95 % confidence level, the stations of Sikasso (annual and seasonal) and Yanfolila 

(seasonal) exhibited increasing trends in rainfall (Table 4.7). The regional average rainfall 

exhibited also increasing trend in annual rainfall at five percent significance level and in 

seasonal rainfall at six percent (α= 0.06) but the null hypothesis was not rejected for the 

latter at five percent significance level (α= 0.05). This is due to the higher variability 

observed in seasonal rainfall (CV=14 %) compared to annual rainfall (CV=12 %). The 

null hypothesis (no trend) was not rejected at the other stations. However, all of them 

showed increasing linear trends as indicated by positive (S) statistic values but only those 

that are statistically significant according to the MK test technique are mentioned.  
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Table 4.7 Rainfall Trend 

Stations Period 

MK (S) 

Statistic  MK trend test 

P-value Alpha Hypothesis Nature 

Regional average 

Annual 
170 0.0213 0.05 H1 Increasing 

Seasonal 
144 0.0514 0.05 H0 No trend 

Seasonal 
144 0.0514 0.06 H1 Increasing 

Sikasso 
Annual 

196 0.0079 0.05 H1 Increasing 

Seasonal 
160 0.0303 0.05 H1 Increasing 

Koutiala 
Annual 

106 0.1527 0.05 H0 No trend 

Seasonal 
52 0.4873 0.05 H0 No trend 

Bougouni 
Annual 

68 0.3615 0.05 H0 No trend 

Seasonal 
66 0.3760 0.05 H0 No trend 

Yanfolila 
Annual 

105 0.0917 0.05 H0 No trend 

Seasonal 
147 0.0179 0.05 H1 Increasing 

Source: Author’s climate data analysis, 2017; Provided by Agence Mali-Meteo 

 

These results show that rainfall has been increasing during the period 1981-2016 in the 

region of Sikasso. Indeed, increases in rainfall has been observed in many part of West 

Africa in recent years compared to pre-drought period (Nicholson, 2005). A report from 

the USGS (2012) stated that rainfall is recovering in Mali but the 2000–2009 rainfall is 

on average twelve percent lower than the average rainfall between 1920 and 1969. 

Similarly, Sanon & Vaksmann (2013) reported a recovering trend of rainfall since the end 

of the 1980s in Burkina Faso but the mean rainfall still remains lower than what it was 

during the  wet period (1941-1970). Consequently, increases in rainfall in the study area 

will favour the recovery of vegetation (Brandt et al., 2014) and prevent land degradation. 
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In addition, Figures 4.18-4.22 show the increasing trends detected at different stations 

along with the slopes. These five figures represent areas where statistically significant 

increasing trends were detected using MK trend test. The highest slope (7.66mm) was 

found at the station of Yanfolila in the seasonal rainfall (fig. 4.22); the second highest 

slope was obtained at the station of Sikasso in annual rainfall (7.58mm) and seasonal 

(6.19mm), illustrated in the Figure. 4.20 and 4.21 respectively. Slopes of 4.83 and 

3.79mm were obtained in the annual (Figure 4.18) and seasonal (4.19) average regional 

rainfall. 
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Figure 4.18 Rainfall Annual Trend Regional Average            Figure 4.19 Rainfall Seasonal Trend Regional Average 

 

Figure 4.20 Rainfall Annual Trend Station of Sikasso           Figure 4.21 Rainfall Seasonal Trend Station of Sikasso 

 

Figure 4.22 Rainfall Seasonal Trend Station of Yanfolila 
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4.2.2. Temperature 

4.2.2.1. Evolution of the temperature 

The monthly evolution of the minimum, maximum and mean regional average 

temperatures from 1981 to 2016 are illustrated in Figure 4.23. Highest temperatures were 

recorded in April before the rainy season and in October-ending of the rainy season while 

lowest were recorded in December and August-peak of the rainy season. The average 

minimum, maximum and mean temperatures were respectively 22, 34 and 28 °C from 

1981 to 2016.  

 

 

Figure 4.23 Monthly Temperature Averages from 1981 to 2016 
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Bodegom and Satijn (2015) confirmed that the average mean temperature in Mali is 28 

°C. The same was obtained for the region of Sikasso and at all the stations considered 

separately. Additionally, an average seasonal minimum and maximum of 22 and 33 °C 

was reported by Traore et al. (2013) over the period 1965-2005 at the station of Sikasso 

which is very similar to the findings of this study. These previous studies confirmed the 

pattern of the evolution of temperature observed in this present study. 

 

4.2.2.2. Annual temperature anomalies 

The annual data revealed that hottest years have been recorded since the year 2001 till 

2016 as shown by the Figure 4.24. The Figure shows clearly that from 2001 to 2016, only 

the years 2008 and 2012 recorded negative index values and the years 2002, 2004, 2010, 

2013-2016 were very hot years with 2016 being the hottest. From 1981 to 2000 all the 

years recorded negative index values with the exception of the years 1987, 1993, 1996 

and 1998. 

 

Figure 4.24 Standardised Regional Average Temperature Anomaly 
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The occurrence of more dry years in recent period indicates a clear warming trend in 

temperature in the region of Sikasso with 2016 being the warmest. Similar warming trend 

in temperature was observed in many other parts of Africa as reported in the IPCC Fifth 

Assessment Report (AR5). The  report indicated that near surface air temperature 

anomalies in Africa were significantly higher for the period 1995–2010 compared to the 

period 1979–1994;  West Africa and the Sahel near surface temperatures have increased 

over the last 50 years (Niang et al., 2014). Furthermore, Traore et al. (2013) and Funk et 

al. (2012) respectively confirmed increase in temperature in Sikasso (1965-2005) and at 

national level (1975-2009). Increases in temperature lead to more evapotranspiration and 

reduction of soil water content which may increase stresses on plants and thus threaten 

agricultural production which in turn affects food security. 

 

4.2.2.3. Spatio-temporal temperature variability 

Different levels of variabilities were exhibited in minimum, maximum and mean 

temperatures at different stations. Table 4.8 shows in fact the max, min and mean 

temperatures for all the stations along with the CV obtained. The station of Koutiala 

recorded the highest mean temperature, followed by Bougouni and Sikasso-the lowest. 

The highest variability was observed in min temperature at the station of Sikasso and the 

lowest at both the stations of Koutiala. 
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Table 4.8 Variability of the Temperature 

Stations Measure Mean (mm) CV (%) 

Regional average 

Max 34.17 1.30 

Min 21.51 2.10 

Average 27.84 1.50 

Sikasso 

Max 33.68 1.30 

Min 21.47 2.70 

Mean 27.58 1.40 

Koutiala 

Max 34.41 1.30 

Min 21.74 2.50 

Mean 28.07 1.60 

Bougouni 

Max 34.44 1.93 

Min 21.31 1.90 

Mean 27.88 1.73 

      Source: Author’s climate data analysis, 2017; Provided by Agence Mali-Meteo 

 

 

These results indicated clearly that variabilities in temperature were not as high as in 

rainfall in the region of Sikasso. It is also apparent that higher variabilities were observed 

in minimum temperatures than maximum temperatures (Traore et al., 2013; Niang et al., 

2014) and thus explained more variabilities in average temperatures as well and signalled 

warming of the Sikasso region. 

 

4.2.2.4. Spatio-temporal temperature trend 

The MMK test was performed on annual min, max and mean temperature series from 

1981 to 2016 at 95 % confidence level. The results revealed statistically significant 

increasing trend in min, max and mean temperatures at the stations except the station of 

Sikasso where the max temperature showed no statistically significant trend (Table 4.9). 
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Table 4.9 Temperature trend 

Stations Measure 
MK (S) 

Statistic 

MK trend test 

P-value Alpha Hypothesis Nature 

Regional 

average 

Max 293 0.0001 

0.05 

H1 Increasing 

Min 376 0.0001 H1 Increasing 

Average 357 0.0001 H1 Increasing 

Sikasso 

Max 139 0.0601 H0 No trend 

Min 374 0.0001 H1 Increasing 

Mean 330 0.0001 H1 Increasing 

Koutiala 

Max 259 0.0004 H1 Increasing 

Min 351 0.0001 H1 Increasing 

Mean 353 0.0001 H1 Increasing 

Bougouni 

Max 338 0.0001 H1 Increasing 

Min 256 0.0005 H1 Increasing 

Mean 343 0.0001 H1 Increasing 

Source: Author’s climate data analysis, 2017; Provided by Agence Mali-Meteo  

 

The station of Koutiala showed the highest value in min temperature, followed by Sikasso 

and Bougouni (lowest) while the station of Bougouni showed the highest value in max 

temperature, followed by Koutiala and Sikasso (lowest). Moreover, on monthly basis a 

comparison of the climatological mean-normal (1981-2010) with the average of the 

period 2011-16 showed clearly that the average temperatures have increased for all the 

months. The highest deviations were observed in the months of November (+1.24 °C), 

March (+0.69 °C) and October (+0.67 °C) while lowest was observed in February (+0.15 

°C). 

 

Additionally, Figure 4.25 illustrates the trends that were detected in mean temperatures 

at the regional level and at the three stations along with the slopes. The station of 

Bougouni showed the highest upward trend with a slope of 0.035 °C per year, followed 

by Koutiala (0.031 °C) and Sikasso (0.026 °C). 
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 (a)                                                                        (b) 

 

 (c)                                                                        (d) 

Figure 4.25 Annual Average Temperature Trend at the Station of (a) Regional,            

(b) Sikasso, (c) Bougouni and (d) Koutiala 
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These results strongly indicate that temperature has been increasing from 1981 to 2016 

in Sikasso region, with an increase rate of 0.3 °C per decade. Similarly, Funk et al. (2012) 

reported an increase rate of more than 0.2 °C per decade over the period 1975-2009 at 

national scale in Mali. The highest rate of increase was detected in the minimum 

temperature with 0.44 °C per decade and the lowest in maximum temperature with 0.2 

°C. Similar result was obtained by  Traore et al. (2013) who reported an increase rate of 

0.5 °C per decade in minimum temperature with the maximum being  constant at the 

station of Sikasso over the period 1965-2005. This implies that the warming of the Sikasso 

region is mainly due to increase in minimum temperature. Moreover, this increasing trend 

detected in the study area confirmed the general trend exhibited over West Africa and the 

Sahel as a whole where near surface temperatures have increased over the last 50 years 

(Niang et al., 2014). 

 

4.2.3. Climate variability in farmers’ perspective 

83 % of the farmers' interviewed mentioned that temperature has been increasing in recent 

years, 10 % said they have no idea about the trend, 4 % percent said it has decreased and 

3 % mentioned that no changes have occurred. These results state clearly that the majority 

of the farmers are interestingly following the evolution of temperature and can identify 

its trend as well as statistical techniques applied on meteorological data. This is to say 

that this result is in agreement with the findings from the analysis of meteorological data 

which showed an increasing trend in temperatures from 1981 to 2016 in the study area. 

However, farmers were largely divided on the start of the rainy season. Whereas 46 % 

stated that rains have started earlier in recent years, 42 % mentioned a later start. The 

climate data available could not help to separate these two sides because it was monthly 

data. Only daily data can be used to clearly identify changes in the start of the rainy season 
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unless the shift is as high as more than one month. Moreover, 71 % stated that the rainy 

season is shorter against 13 % who stated that it is longer; 71 % also mentioned that the 

quantity of rain has decreased against 18 % who said it has increased. This is in total 

disagreement with the result from the rainfall data that were analysed which showed 

increasing trend. However, this may be due to the mind-set of farmers who generally 

associate the quantity of rain with agricultural production. Nevertheless, it is to be 

remembered that increases in rainfall quantity do not guarantee increases in production. 

The rainfall distribution is a very important parameter which should be taken into account. 

Additionally, 52 % reported more frequent floods and 72 % also mentioned longer dry 

spells. This is indicative of the occurrence of more intense rains followed by longer dry 

spells. 

 

4.2.4. Climate variability impact on agricultural lands 

The observed increment in monthly rainfall between July and September signals 

increased wetness in current decade. In addition, the average inter-annual regional rainfall 

showed that there is more increase in wet years than dry years. As it was confirmed that 

higher quantity of rainfall was recorded between 2012 and 2016 which by inference will 

impact on agricultural lands expansion. Furthermore, the low and moderate variability 

recorded in annual and seasonal spatio-temporal rainfall variability should have played a 

crucial role in agricultural lands expansion. The spatio-temporal trend analysis equally 

revealed an increasing trend in annual and seasonal rainfall averages ( as ascertained by 

Brandt et al. 2014), because even in areas where the trend was not statistically significant, 

positive MK (S) values were obtained. Despite all these, the increasing trend in 

temperature affirms the impact of global warming in the Sikasso region which is more a 
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function of increase in minimum temperature as confirmed by Traore et al. (2013) and 

Mohamed et al. (2014). 

 

However, the Pearson’s correlation test revealed that no statistically significant 

correlations exist between agricultural LULCC and rainfall trend and variability. Table 

4.10 shows the correlation coefficient and probability values obtained from the analysis. 

The negative (positive) correlation coefficients show that there is a negative (positive) 

relationship between increases in agricultural lands and rainfall trend (variability). 

However, the higher probability values show that the relationship is not statistically 

significant. 

 

 

Table 4.10 Pearson Correlations 

      Annual Trend Seasonal Trend  Annual CV Seasonal CV 

Agricultural 

LULCC  
 

Pearson's r   -0.745   -0.575   0.737   0.504   

p-value   0.465   0.610   0.472   0.663   

* p < .05, ** p < .01, *** p < .001, CV: Coefficient of Variability 

Source: Author’s data analysis, 2017 

 

 

 

This result indicates that despite the increasing trend detected in rainfall, the expansion 

of agricultural lands is not to be associated with that. However, it could have impact on 

agricultural productivity, production and vegetation dynamics as well indicating that 

other factors could have played a fundamental role in agricultural lands expansion. 
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From farmers’ perspective 

Likewise, the Pearson’s Chi-square test of independence conducted on different factors 

revealed that neither variability in rainfall nor in temperature has impact on farmers’ 

decision making process to bring changes in their farm size. Variations in market prices, 

change of production systems, access to improved seeds and number of male workers 

were rather found to be associated with farmers’ decision to either increase, decrease or 

keep unchanged the size of their farmland. Table 4.11 shows the Pearson’s Chi-square 

values and p-values along with significance level.  

 

Table 4.11 Pearson’s Chi-square Test Results 

Variables Chi-square value P-value Alpha 

Male Workers 40.90770998 0.031704 0.05 

Production System 20.61777877 0.000377 0.05 

Improved Seeds 7.331937799 0.025579 0.05 

Market Prices 6.35637489 0.041661 0.05 

              Source: Author’s computation from field survey data, 2017 

Increases in markets prices encourage farmers to produce more for additional profits. 

More increases were also witnessed from farmers whose aim is to produce for both family 

consumption and commercial purposes. Farmers having access to improved seeds and 

those whom the number of male workers have increased have also been increasing their 

farm size. These results imply that despite the variabilities reported in temperature and 

rainfall, they do not affect farmers’ decision on their farmland dynamics. However, they 

may have impact on natural vegetation cover and water bodies dynamics.  
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4.3. Land Use Land Cover Change Prediction by 2030 and 2050 

This third section of the fourth chapter provides answers to the third research question. 

The section starts by introducing the model input data, model validation process followed 

by the presentation and discussions of the results from LULCC prediction by the years 

2030 and 2050. 

 

4.3.1. Model input data 

The LULC maps of the years 2000, 2008 and 2016, DEM from which was derived the 

Slope map in addition to the Distance from Major Roads were used for the development 

of the model. The LULC maps are presented and discussed in the first section of this 

chapter. Figure 4.26 shows the DEM map of the study area. 

 

 

Figure 4.26 Digital Elevation Model Map 
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The DEM map shows that high elevations are located in the eastern part of the Sikasso 

region which are not suitable for agricultural production. Agricultural lands are generally 

located on lands that are neither considered high nor low, that makes the western and 

southern parts of the study area more suitable for agriculture. 

 

Similarly, Figure 4.27 shows the slope map derived from the DEM. 

 

 

Figure 4.27 Slope Map 

 

 

The slope map indicates areas suitable for cropping based on their exposure to runoff 

where locations with slope value are the most exposed. Therefore, this map shows that 

very few locations can be considered not suitable for agriculture based on their higher 

slope values which are marked by red colour. 
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Additionally, Figure 4.28 shows the distance to major roads which was derived from the 

major road basic layer. 

 

 

Figure 4.28 Distance to Major Roads 

 

 

This map shows the degree of accessibility of different locations based on how distant 

they are from the major roads. Locations very far from roads are generally less suitable 

because of difficult accessibility. However, locations closer to major roads are preferred 

for urban development. Therefore, areas suitable for agriculture are located between the 

two extremes, marked by the colour yellow and light green. 
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4.3.2. Validation of the model 

The developed model based on transitions from maps of 2000 and 2008 with an accuracy 

of 97 % predicted quite interestingly the LULC map of 2016. The comparison with the 

reference map of 2016 showed an overall Kappa Kstandard = 0.81, Kappa of no 

information Kno = 0.85, Klocation = 0.82 and Klocationstrata = 0.82. The perfect Kappa 

index of agreement is 1 while 0.80 is considered good. The Kappa values obtained were 

all above 0.8 which indicated the goodness of the model. Kappa indices of no information 

(Kno), location (Klocation), Location Strata (KlocationStrata) and overall Kappa 

(Kstandard) of  0.85, 0.87, 0.87 and 0.83 were respectively obtained by Mishra and Rai 

(2016) for the validation of their model for prediction, values which are very similar to 

the results of this study. These values indicate that both in terms of location and quantity 

the model has been able to perform well; the model was then validated and Table 4.12 

shows the statistical estimation of different classes from the predicted and reference maps 

of 2016. The similarity can be observed from this table which shows areas by category in 

hectares for the predicted and reference for maps for 2016. 

 

 Table 4.12 LULC 2016 Areas Predicted Vs Reference 

  Actual LULC 2016 (ha) Predicted LULC 2016 (ha) 

Cropland 3327509 3306827 

Vegetation 3206270 3109523 

Water 47815 37474 

Others 557613 685383 

         Source: Author’s computation, 2017 
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In addition, Figures 4.29 and 4.30 show respectively the reference and predicted maps of 

2016. High similarities can be visually observed between these two maps, high density of 

vegetation in the southern part, cropland in the central part and the class others in the 

northern part of the study area. 

 

 

 

 

    Figure 4.29 Reference Map of 2016             Figure 4.30 Predicted Map of 2016   
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4.3.3. Land use land cover in 2030 

The predicted map of the year 2030 revealed that cropland, urban areas and bare surfaces 

(or degraded lands) will increase while vegetation and water bodies will decrease. 

Cropland will occupy half of the total area of the region by the year 2030, representing 

an increase rate of 6.54 % (0.45 % per year), vegetation will decrease by -11.14 % (-0.84 

per year) occupying 40 % of the total area. Table 4.13 shows the area occupied by each 

land cover category, the proportion and rate of increase or decrease experienced in those 

categories.  

 

 

Table 4.13 LULC Areas Predicted by 2030 Vs Reference 2016 

  

LULC 2016 

(ha) 

Portion 

(%) 

LULC 2030 

(ha) 

Portion  

(%) 

Increase Rate 

(%) 

Cropland 3327509 46.61 3545108 49.66 6.54 

Vegetation 3206270 44.91 2849121 39.91 -11.14 

Water 47815 0.67 35896 0.50 -24.93 

Others 557613 7.81 709082 9.93 27.16 

Total 7139208 100 7139208 100  
Source: Author’s computation, 2017 
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Additionally, Figure 4.31 represents the predicted map for the year 2030. Like the 

previous land cover maps, the predicted map of the year 2030 will have much of the 

vegetation cover in the southern part of study area, cropland in the central and the class 

others in the northern parts. 

 

 

 

Figure 4.31 Predicted Map of 2030 

 

 

 

 

 



88 
 

4.3.4. Land use land cover change in 2050 

The phenomenon of croplands expansion will still continue and in fact, occupy 55 % of 

total area of the region with a rate of increase of 18.58 % (1.22 % per year) while 

Vegetation will just represent 29 % of the whole, a decrease of -34.49 % from the year 

2016. Built-up area and bare surfaces (the class others) will increase by about 90 % which 

is almost the double of the current proportion representing 15 % of the total area compared 

to 8 % in 2016. Table 4.14 presents the area occupied by each land cover category, the 

proportion and rate of increase or decrease experienced by those categories. 

 

 

Table 4.14 LULC Areas Predicted by 2050 Vs Reference 2016 

  

LULC 2016 

(ha) 

Portion 

(%) 

LULC 2050 

(ha) 

Portion  

(%) 

Increase Rate 

(%) 

Cropland 3327509 47 3945688 55 18.58 

Vegetation 3206270 45 2100456 29 -34.49 

Water 47815 1 35896 1 -24.93 

Others 557613 8 1057167 15 89.59 

Total 7139208 100 7139208 100  
Source: Author’s computation, 2017 
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Similarly, Figure 4.32 represents the predicted map for the year 2050. Increases in 

cropland will occur in every part of the study area and the class others will occupy some 

areas in the southern part which was not the case in previous maps. 

 

 

 

 

Figure 4.32 Predicted Map of 2050 
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These results state clearly that cropland will continue expanding considerably in the study 

area and vegetation decreasing. Similarly, increases in agricultural lands and built-up 

areas and decreases in vegetation cover were also predicted by (Mishra & Rai, 2016) in 

the Patna district (India) predicting LULC by the year 2038. Furthermore, similar trends 

were also reported by Katana et al. (2013), predicting land cover changes in the Upper 

Athi River Catchment (Kenya) by the year 2030. This uncontrolled and fast growing 

expansion of cropland and Built-up area will have serious consequence on vegetation 

cover (Mishra & Rai, 2016) and may certainly lead to the deforestation of the region of 

Sikasso. The vegetation cover being less than 30 % of the whole area will not only have 

impact on forest resources but on pasture as well and may intensify soils erosion and thus 

create more degraded lands. Consequently, to prevent deforestation and land degradation, 

appropriate actions are required to promote sustainable agriculture and protection of the 

forests.  
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CHAPTER FIVE 

5.0.                             CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

The identified increase in agricultural lands and warmer temperature will continue to 

impact negatively on the vegetation cover, water resources and land which are vital for 

enhanced livelihood, food security and attainment of socio-economic development of the 

major agrarian region in Mali. The intensification of these as apparent from the model 

predictions and spatio-temporal climatic pattern signals the need for the development of 

mitigation and adaptation strategies that will minimize the sensitivity and exposure as 

well enhance the resilience of the Sikasso region to the anticipated changes. 

Implementation of sustainability measures are crucial because global effort today is 

mainly proactive and not reactive. Thus, implementation of mitigation and adaptation 

measures such as adoption of conservation agriculture, improved land management 

practices and efficient management of water resources are necessary since yesterday’s 

predictions become today’s realities. 

 

Besides, the increases in annual rainfall amount led to vegetation recovery in some areas 

during the period 2008-2016. However, the higher variability that characterised seasonal 

rainfall in recent years compared to previous years in a region where large proportions of 

agricultural production are rainfed is a threat to food security. This is an indication of the 

need for the development and breeding of improved/ early maturing seed species as 

pathway towards enhanced agricultural production under a changing climate. Finally, this 

study will provide the basis for the development of agricultural and environmental 

sustainability policies in the Sikasso region. 
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5.2. Recommendations 

In the light of these findings, some measures and actions appear to be necessary. Hence, 

the following are recommended: 

• The observed increases in temperature requires development and adoption of new 

varieties of crops which can grow under higher temperature values; 

• Programmes of afforestation and reforestation should be promoted through 

bottom-up approaches to compensate for losses in forest cover and to tackle land 

degradation; 

• Intensive agriculture should be encouraged by bringing in new technologies and 

more productive crop varieties in order to limit the uncontrolled expansion of 

agricultural land and forests loss; 

• Conservation agriculture should also be promoted for the preservation of soils 

quality and fertility; 

•  Environmental policy makers should enhance forests protection laws to prevent 

losses through the predicted expansions in croplands; 

•  Further study should address rainfall variability in terms of its intra seasonal 

distribution and impact on agricultural production and land cover change. 

Because, the increasing trend in the amount may not be synonymous with good 

distribution within the rainy seasons. 
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APPENDICES 

APPENDIX A: Questionnaire 

Date    ………/………. / 2017 

Questionnaire number: 

District Name: 

Village Name: 

Respondent’s name: 

Phone number: 

A. General Information 

Question Options Answer 

1.  Gender 1= Male ; 2=Female  

2.  Age   

3. Marital status 1=Single; 2=Married; 

3=widowed; 4=Divorced 

 

4. Level of education 1=No formal education; 

2=Primary school;  

3=Secondary school;  

4=Graduate 

5=Other 

 

5. Number of person in the 

household  

Number  

Male  

Female  
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6. Major source of income 1=Farming 

2=Livestock production 

3=Fishing 

4=Commerce 

5=Forestry 

6=Other (specify) 

 

7. Major source of income 1=Farming 

2=Livestock production 

3=Fishing 

4=Commerce 

5=Forestry 

6=Other (specify) 

 

8. What is your production 

system ? 

1=Commercial  

2=Family consumption  

3=Both  

4=Others (to be specified)  

9. Average income (F 

CFA) ? 

2000 2008 2016 

   

10. Access Input 

 (1=Yes ; 2=No) 

2000 2008 2016 

   

11. Access credit 

 (1=Yes ; 2=No) 

2000 2008 2016 

   

12. Access to technical 

assistance (1=Yes ; 2=No) 

2000 2008 2016 
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B. Land use change and impacts 

Question Options Additional information 

13. How long have you been 

farming ? 

1=less than 20 years ; 

2=20-29 ; 3=30-39 ; 

4=40 and more 

 

14. Land ownership 1=Owner;  

2=Rent;  

3=Borrow;  

4= share-cropping;  

5=Gift ;  

5=Other (préciser) 

 

15. Superficie de l’exploitation 

en ha ? 

2016  

2008  

2000  

16. Farm size per crop type Variety 2000 2008 2016 

Maize    

Millet    

Sorghum    

Rice    

Groundnut    

Cotton    

Others(…

……..) 
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17. Which crop were you not 

growing before ? 

1=Maize; 2=Millet; 3=Sorghum ;4=Rice ;5=Groundnut; 

6=Cotton; 7=Others(……………………………………) 

18. Why did you start growing 

these crops ? 

 

19. Why did you drop some 

crops? 

 

20. Farm size evolution 1=Increasing 

2=Decreasing 

3=Unchanged 

4=No ideas 

 

 

 

21. Which land cover type has 

Increased or Decreased during 

the last 20 years? 

 

 

 

1=Cropland 

2=Forest 

3=Bare soil 

4=Water 

5 = Pasture/grass 

land/shrub 

Increased Decrease

d 

No 

change 

   

   

   

   

   

22. What is the impact of increase in farm size 

on forests and pasture ? 

 

23. Soil fertility evolution 1=Increasing 

2=Decreasing 

3=Unchanged 

 

Chemical fertiliser    

Organic manure           

Yes No  

Yes No 
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24. Adaptation technique to 

soil fertility decline (Yes or 

No) 

Composting                 

Fallowing                     

Crop rotation                

Improved seeds            

Others 

(…………………..) 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

25. What are the major factors 

affecting your decision to 

increase or decrease your 

cultivated land ? 

Household size Yes No  

Technology 

availability 

Yes No 

Market prices Yes No 

Soil fertility loss Yes No 

Decrease of yield Yes No 

Climate variability Yes No 

Other (To be 

specified) 

Yes No 

 

C. Climate Variability, perception and impacts 

26. How has the 

temperature been evolving 

from the year 2000 to 2016 

? 

1=Increasing 

2=Decreasing 

3=Unchanged  

4=No ideas 

 

27. How is the starting of 

the rainy season ? 

1=Earlier 

2=Later 

3=No change 
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4=No ideas 

28. How is the duration of 

the rainy season ? 

1=Longer 

2=Shorter 

3=No change 

4=No ideas 

 

29.  How is the amount of 

rainfall ? 

1=Increasing 

2=Decreasing 

3=Unchanged  

4=No ideas 

 

How is the intensity of 

rainfall ? 

1=More intense 

2=Less intense 

3=No change 

4=No ideas 

 

31. What is the impact of 

rainfall duration change on 

your crop yield ? 

1=Increased yield 

2=Decreased yield 

3=No impact 

4=No ideas 

 

32. What is the impact of 

rainfall duration change on 

your farm size ? 

1 = Increase of yield 

2 = Decrease of yield 

3 = No impact 

4 = No ideas 

 

33.  How is the occurrence 

of floods ? 

1=Increased 

2=Decreased 

3=No change 

4=No ideas 
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34. How is the occurrence 

of droughts ? 

1=Increased 

2=Decreased 

3=No change 

4=No ideas 

 

 

35. How do you cope with a 

decreased yield ? 

1=Increase farm size; 

2=Increase fertilizer 

application; 3=Buy food; 

4=Change crop type; 

5=Change crop variety; 

6=Selling animals; 7= Other 

 

36. Is there movement of pastoralists in 

your area ? 

1= Yes; 2=No 

37. How can you compare 

their presence nowadays to 

years before ? 

1=More present 

2=Same as before 

3=Less present 

 4=No ideas 

 

38. If more present, what do 

you think are causes ? 

 

39. How is the occurrence 

of conflicts between farmers 

and pastoralists ? 

1=More conflicts 

2=Same as before 

3=Less conflicts 

 4=No ideas 
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APPENDIX B: The leading author, collecting ground reference points 

 

 



106 
 

APPENDIX C: Conference paper presented at the Nigerian Meteorological Society 

(NMetS) 2017 International Conference and 31st Annual General Meeting (AGM), held 

at the Department of Geography and Meteorology, Enugu State University of Science and 

Technology (ESUT), Enugu, Nigeria, 20th to 24th November 2017. 
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Abstract 

Climate change and variability are worldwide phenomena and their impact is different in 

nature from one region to the other. This study focused on seasonal and annual rainfall 

variability analysis and trend detection in the region of Sikasso, southern Mali. Monthly 

rainfall data from four meteorological stations in the districts of Bougouni, Koutiala, 

Sikasso-District (1981-2016) and Yanfolila (1981-2012) were collected. The Standardised 

Anomaly Index (SAI) and Coefficient of Variation (CV) methods were used to analyse the 

rainfall inter-annual and inter-seasonal variability; The modified Mann-Kendall (MK) test 

was performed for trend detection in the rainfall time series. The results showed that rainfall 

recorded more wet than dry years during the period (1981-2016) and that the quantity of 

rainfall during the rainy season (for years after 2010) was considerably higher than the 

normal except the years 2011 and 2013. The four stations revealed different magnitude of 

variability in rainfall. The station of Koutiala exhibited moderate variability in rainfall 

(CV=21%) while the other stations were characterised by lower variability. The inter-

seasonal rainfall variability was higher than inter-annual variability at all the stations. Some 

stations showed statistical significant increasing trends while the null hypothesis (no trend) 

was accepted at some other stations. However, all the stations revealed linear increasing 

trends and positive MK(S) statistic values. The apparent annual and seasonal variability 

generally complicate its prediction and therefore, impact on agricultural production and food 

security. 

Keywords: Rainfall Variability, Trend Detection, Standardised Anomaly, Modified Mann-

Kendall Test, Sikasso Region (Mali). 
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1. Introduction  

Mali is a landlocked country with an economy largely dependent on rural activities including 

farming and livestock productions. Rural activities in general and agriculture specifically 

constitute the major occupation of about 70% of the population (Sidibé et al., 2017). The 

agriculture in Mali as in many other African countries is characterised by low technological 

input, intensive labour, scarcity of capital and rainfall-based production system (Exenberger 

and Pondorfer, 2011). In Mali, most of the rain is received between June and September 

(Funk, 2012). The distribution and amount of rainfall within that period to a large extent 

determine the annual agricultural production. The first rains are received as earlier as in May 

and stop definitely in October in the southern part of the country. 

Climate variability and change are challenges that the Malian agriculture faces. Since 1960, 

the annual average temperature rose by 0.7°C, corresponding to the rate of 0.15°C per decade 

(Ministère de la Santé et de l’environnement, 2008). The sahelian Mali is characterised by 

frequent droughts and annual rainfall variability (Bodegom and Satijn 2015). The Direction 

Nationale de la Meteorologie (2001) depicted decreases in rainfall trend from 1961 to 2001. 

In the 1950s, the annual precipitation used to vary within the range 500 and 1500 mm but in 

the course of the last 15-20 years the maximum has not been beyond 1300 mm and local 

temperatures, rainfall variability and the extent of severe weather events are expected to 

increase due to climate change (Bodegom and Satijn 2015). Traore et al. (2013) reported that 

during the period 1965-1993, the number of dry days have increased during the rainy season 

in Sikasso and identified variation as one of the most important characteristic of climate 

change in southern Mali. By implications, the higher temperature values and erratic rainfall 

in these recent years may adversely impact on agricultural production and food security 

consequently.  

In addition to these current unfavourable climate trends, the future climate predictions are 

hampered with uncertainties. In fact, the Canadian Global Circulation Model (CGCM) and 

the 2030 projections of the Hadley Coupled Model (HadCM) indicated that the average 

temperature in Mali might rise by about 1° – 2.75°C, with precipitation decreasing slightly 

and crop produces to increase or decrease in the range from –17% to +6% at country level 

by 2030 (Butt et al. 2005). In such complexity where different trends and variability are 

observed throughout the country, it is necessary to investigate climate variability and trend 

at station-based level in Mali. Therefore, this study focused on rainfall variability and trend 

detection in four districts of the Sikasso region, southern Mali.  
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2.      Material and Methods  

2.1. Study area 

This study was conducted in the region of Sikasso, located between longitude 4° 39’ to 8° 

68’W and latitude 10° 15’ to 12° 82’N. It shares border with Ivory Coast, Guinea Conakry 

and Burkina Faso. Sikasso is one of the ten regions of Mali, composed of 7 “cercles”-second 

level administrative unit (hereby referred to as districts) which are Bougouni, Kadiolo, 

Kolondieba, Koutiala, Yanfolila, Yorosso and Sikasso-district. It has a total land mass of 70 

280 km2 (5.8% of the national territory) and a population of 2 625 919 in 2009 (Ministry of 

territorial Administration, 2011). The location of Sikasso Region is shown in the Figure 1. 

 

Figure 1. Study Area 

In the entire Mali, the annual average temperature is 28°C; the north is characterised by 

higher average temperatures while lower averages are observed in the south; the absolute 

maximum temperature is 51°C, whereas the minimum temperature has not been lower than 

10°C which causes high rates of evapotranspiration (Ministere de la Sante et de 

l'Environment, 2008). However, Sikasso receives the highest quantity of rainfall in 

comparison to the other regions of the country. The climate is of tropical Sudanian type, 

subdivided into two climatic zones, the humid Sudanian and the Guinean zone, which is the 

wettest region of Mali and receives the highest rainfall (700-1,500 mm / year) with an 

average annual temperature of 27 °C (PSA, 2011). Amongst others, continuous degradation 

of forest, lack of agricultural lands, soil erosion and loss of soil fertility have been identified 

as main problems of the region (PSA, 2011). 
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2.2. Data 

Monthly rainfall data for four meteorological stations which are Bougouni, Koutiala, Sikasso 

and Yanfolila within the study area were acquired from the national meteorological service 

(Agence Mali- Metéo). The data covered the period from 1981 to 2016 and 1981 to 2012 for 

the latter. These four stations were selected based on data availability (more than thirty years) 

and data quality. The repartition of the stations is such that two are located in the north-

eastern part of the study area and two in the south-western part for better representativeness 

of the whole area. The annual and seasonal June-July-August-September (JJAS) data were 

derived from the monthly data. Additionally, the monthly rainfall data from the four stations 

were averaged to get the region rainfall data which was also subject to analyses.  

2.3. Methods 

The Standardised Anomaly Index (SAI) and Coefficient of Variation (CV) methods were 

used to analyse rainfall variability and the Modified Mann-Kendall (MMK) test to detect 

monotonic trends in annual and seasonal rainfall. The standardised anomaly is the anomaly 

divided by the standard deviation; it is also referred to as normalised anomalies. It generally 

provides more information about the magnitude of the anomalies because of the removal of 

dispersion influences and one of its advantages is that it does not require the dataset to have 

a particular distribution before computation (Karavitis et al., 2011). The SAI is widely used 

(Kawale et al., 2000; Karavitis et al., 2011) and very popular for drought monitoring studies 

as it allows the determination  of  the  dry and wet years in the record (WMO, 2012; Eshetu 

et al., 2016). The formula for computing the SAI is as follows: 



−
=

x
Z  

Where: Z is the standardised anomaly; x is the variable of concern; µ is the mean of the 

dataset; σ is the standard deviation of the dataset. (Nicholson, 1985; Karavitis et al., 2011). 

The CV is the ratio of the standard deviation to the mean over a determined period. It is 

expressed in percentage and inform of the level of variability (used by Belay, 2014, Ayelow 

et al., 2012, cited in Eshetu et al., 2016). The formula for the CV is obtained by dividing the 

standard deviation by the mean and multiplying the result by hundred and is given as: 

100=
x

CV


 

Where: CV = coefficient of variation; x = mean; δ = standard deviation (Ekpoh and Nsa, 

2011).  
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MK test is said to be the most popularly used non-parametric test for detecting trend in the 

time series data. It is widely used for different climatic variables  (Suryanarayana and Parekh, 

2016). Pohlert (2016) defined it as a non-parametric test that is commonly employed to 

detect monotonic trends in series of environmental data, climate data or hydrological data. 

The purpose of the MK test (Mann 1945, Kendall 1975, Gilbert 1987) is to statistically assess 

if there is a monotonic upward or downward trend in the variable of interest over time. The 

modified MK method takes into account the effect of autocorrelation and corrects it using 

Hamed and Rao (1998) methods. The formula for the non-parametric MK test is expressed 

as follows: 

)
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1 1
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j xxsignS −= 
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𝑠𝑖𝑔𝑛(𝒙𝒋 − 𝒙𝒌) = 𝟏 𝒊𝒇 𝒙𝒋 − 𝒙𝒌 > 𝟎 

                             = 𝟎 𝒊𝒇𝒙𝒋 − 𝒙𝒌 = 𝟎 

                          = −𝟏 𝒊𝒇𝒙𝒋 − 𝒙𝒌 < 𝟎 

Where: n is the number of data points  

Assuming (xj-xk) = θ, positive values of θ indicate increasing trend while negatives ones are 

indicator of decreasing trend. If the θ = 0, that means the variable has no trend. The MK test 

verifies the null hypothesis (H0) of no trend versus the alternative hypothesis (H1) for the 

existence of increasing or decreasing trend (Gopal et al., 2015; Pohlert, 2016). Positive 

(negative) values of (S) indicate increasing (decreasing) trends. 

3.        Results and Discussions  

Standardised Anomaly Index (SAI)  

The SAI was calculated using the region average data. The rainfall anomalies were 

interpreted according to the categorisation of McKee (1993) of Standardised Precipitation 

Index (SPI) as shown in Table 1, the rainfall index values are divided into seven categories 

starting from extremely dry to extremely wet situations as details below. 

Table 1. Standardised Rainfall Index Categorisation 

2.0 to greater Extremely Wet 

1.5 to 1.99 Very Wet 

1 to 1.49 Moderate Wet 

0.99 to -0.99 Near Normal 

-1 to -1.49 Moderate Dry 

-1.5 to -1.99 Severely Dry 

-2 to less Extremely Dry 

   McKee (1993), adapted from (Eshetu et al., 2016) 
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In application of this categorisation scheme, the analysis revealed that the average region 

rainfall recorded more wet than dry years, the year 1994, 2010 were respectively extremely 

and very wet years, 1991, 1998, 2007, 2012 and 2014 were moderate wet years and the year 

1984 was the driest during the period (1981-2016), 1983, 1987 and 2002 were also severely 

dry years (Fig. 2). The period 1983-1984 was actually marked by severe droughts in many 

locations across Africa as reported by Traore et al., (2013) for the case of Sikasso. Eshetu et 

al., (2016) also reported negative anomalies for the years 1983 and 1984 at the stations of 

Setema and Gatira in Ethiopia over the period 1983 to 2013 (for Gatira) and 1979 to 2011 

(for Setema). All the other years were within the range of near normal years. However, it is 

clear that recent years (2012-2016) have received much quantity of rainfall successively. 

Likewise, the seasonal (JJAS) SAI showed that the quantity of rainfall during the rainy 

season (for years after 2010) was considerably higher than the normal except the years 2011 

and 2013, shown in Figure 2. The years 1983 and 1984 were characterised by severe 

droughts. From 1982 to 1988 the only year that recorded a positive SAI value of rainfall was 

the year 1985, all the other years during that period were characterised by negative index 

values as shown in the Figure 3. 

 

Coefficient of Variation (CV) 

On annual basis, the station of Sikasso recorded the highest quantity of rainfall and the lowest 

was recorded at the station of Koutiala which is certainly due to its northward position. The 
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highest seasonal rainfall was recorded at the station of Bougouni, followed by Yanfolila, 

Sikasso and Koutiala. It is apparent that the station of Koutiala was the least watered location 

from 1981 to 2016.  

The rainfall variability was interpreted in light of the classification of Hare (1983)-low 

variability (<20%), moderate variability (20-30%) and high variability (>30%) (Thangamani 

and Raviraj, 2016). The four stations revealed different magnitude of variability in rainfall 

(Table 2). The station of Koutiala exhibited moderate variability on both annual and seasonal 

rainfall; the three other stations displayed low variability in annual and seasonal rainfall. The 

results also showed that the variability in rainfall is higher from one season to the other than 

on annual basis which may induce difficulties in seasonal rainfall prediction and therefore, 

impact on agricultural production and food security. Traore et al., (2013) reported a CV of 

17% in seasonal rainfall at the station of Sikasso from 1965 to 2005 while this study revealed 

18% from 1981 to 2016, that implies an increase in rainfall variability which affects 

negatively seasonal planning. 

 

Table 2. Coefficient of Variation of Rainfall 

Station  Period 
  Mean        

  (mm) 

CV 

 (%) 

    Classification 

Region average 
  Annual 1047 12 Low 

    Seasonal 847 14 Low 

Sikasso 
  Annual 1138 16 Low 

    Seasonal 889 18 Low 

Koutiala 
  Annual 867 21 Moderate 

    Seasonal 734 21 Moderate 

Bougouni 
  Annual 1136 14 Low 

    Seasonal 917 17 Low 

Yanfolila 
   Annual 1105 16 Low 

    Seasonal 902 19 Low 

 

Trend analysis  

At 95% confidence level, the stations of Sikasso (annual and seasonal) and Yanfolila 

(seasonal) exhibited increasing trends in rainfall (Table 3). The region average rainfall 

exhibited also increasing trend in annual rainfall at five significance level and in seasonal 
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rainfall at six percent (α= 0.06), but the null hypothesis was accepted for the latter at five 

percent significance level (α= 0.05). This is due to the higher variability observed in seasonal 

rainfall (CV=14%) compared to annual rainfall (CV=12%).The null hypothesis (no trend) 

was accepted at the other stations. However, all the stations showed increasing linear trends 

as indicated by positive (S) statistic values but only those that are statistically significant 

according to the MK test technique are mentioned. These results show that rainfall has been 

increasing during the period 1981-2016 in the region of Sikasso. Increases in rainfall has 

been observed in many part of West Africa in recent years compared to pre-drought period 

(Nicholson, 2005). A report from the United States Geological Survey (USGS) 2012 stated 

that rainfall is recovering in Mali but the 2000-2009 rainfall is on average twelve percent 

lower than the average rainfall between 1920 and 1969. Similarly, Sanon and Vaksmann 

(2013) reported a recovering trend in rainfall since the end of the 1980s in Burkina Faso but 

the mean rainfall still remains lower than what it was during the  wet period (1941-1970). 

 

 

Table 3. Rainfall Trends 

        

    Stations 
 Period 

    MK (S)  

    Statistic 

MK trend test 

    P-value      Alpha 
   Hypo 

   thesis 
   Nature 

  Region 

  average 

  Annual 170    0.0213  0.05 H1    Increasing 

     Seasonal 144    0.0514  0.05 H0  No trend 

     Seasonal 144    0.0514  0.06 H1    Increasing 

  Sikasso 
  Annual 196    0.0079  0.05 H1    Increasing 

     Seasonal 160    0.0303  0.05 H1    Increasing 

   Koutiala 
   Annual 106    0.1527  0.05 H0  No trend 

     Seasonal 52    0.4873  0.05 H0  No trend 

    Bougouni 
  Annual 68    0.3615  0.05 H0  No trend 

     Seasonal 66    0.3760  0.05 H0  No trend 

    Yanfolila 
  Annual 105    0.0917  0.05 H0  No trend 

     Seasonal 147    0.0179  0.05 H1    Increasing 

 

In addition, the Figures (4-8) show the increasing trends detected at different stations along 

with the linear slopes. These five figures represent locations where statistically significant 

increasing trends were detected using MK trend test along with the region average trend. 
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The highest slope (7.66mm) was observed at the station of Yanfolila in the seasonal rainfall 

(Figure 8); the second highest slope was obtained at the station of Sikasso in annual rainfall 

(7.58 mm) and seasonal (6.19 mm), as illustrated in the Figures 6 and 7 respectively. Slopes 

of 4.83 and 3.79 mm were obtained in the annual (Figure 4) and seasonal (Figure 5) average 

region rainfall respectively. 

 

 

Fig. 4 Rainfall Annual Trend Region Average           Fig. 5 Rainfall Seasonal Trend Region 

Average 

 

Fig.6 Rainfall Annual Trend Station of Sikasso         Fig. 7 Rainfall Seasonal Trend Station of  

                                                                                                                           Sikasso 

 

 

 

 

 

 

 

 

         Fig. 8 Rainfall Seasonal Trend Station of Yanfolila 
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4.        Conclusion 

This study investigated the seasonal and annual rainfall variability analysis and trend 

detection in four districts of Sikasso region, southern Mali. The findings revealed that more 

positive values of SAI were observed in the study area from 1981 to 2016. Recent years were 

characterised by higher quantity of rainfall during the rainy seasons (for years after 2010 

except 2011 and 2013). The CV exhibited lower and moderate (Koutiala) rainfall variability. 

However, the CV has increased in some locations compared to previous studies. All the four 

stations exhibited increasing linear trends and positive values of MK (S) statistic with the 

station of Sikasso (annual and seasonal) and the station of Yanfolila (seasonal) being 

statically significant. These results indicate that rainfall has been increasing during the period 

1981-2016. However, these increases in rainfall should not be automatically considered as a 

positive phenomenon for if it is not accompanied with fair distribution, it may have negative 

impact on agricultural production and seasonal planning. Further studies should focus on the 

occurrence of extreme rain events, longer dry spells, shifts in onset and cessation dates for 

comprehensive understanding of the impact of these variabilities in rainfall quantity and 

trend on agricultural production. 
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