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ABSTRACT

Land Use/Land Cover (LULC) changes induced by urbanisation constitute a key driver
in surface thermal properties modification, which intensifies Land Surface Temperature
(LST) in rapidly urbanising areas. The aim of this research was to analyse the patterns of
urban LULC changes induced LST and its public health implications in Ouagadougou
and Bobo-Dioulasso, Burkina Faso. For this purpose, Landsat images were used to map
LULC for four selected years including 2003, 2009, 2015 and 2021, using Random
Forest, Support Vector Machine and Gradient Tree Boost algorithms in the Google Earth
Engine (GEE) environment. MODIS/Aqua LST and ERAS5-Land average air temperature
datasets with Mann Kendall trend test were used to assess the LST and air temperature
trends respectively. Aggregation was used in combination with correlation to establish
the link between LULC and LST at the pixel level. Also, correlation analysis was
employed to determine the relationship between LST and air temperature, and between
LST and selected public diseases. Markov chain and Multiple linear regression models
were employed to predict future LULC and LST. The study revealed that Ouagadougou
experienced more rapid changes in LULC than Bobo-Dioulasso, with a maximum annual
change intensity of 3.61 percent recorded between 2015 and 2021 as against 2.22 per cent
in Bobo-Dioulasso for the period 2009 — 2015. The transition of changes was towards
built-up areas, which gains targeted bare land and agricultural lands in both cities. This
situation has led to the increase of built-up surface in Ouagadougou by 78.12 per cent,
while 42.24 per cent of the agricultural land area was lost. However, in Bobo-Dioulasso,
the built-up area has increased far more by 140.67 percent and the agricultural land areas
experienced a gain of 1.38 per cent compared with the 2003 baseline. Both cities
experienced an increasing trend in LST and air temperature (z value >0) with a greater
increase in Ouagadougou than Bobo-Dioulasso, due to urbanisation. The global yearly
trend was supported by the March-April-May (MAM) season, which shows a statistically
significant trend in Ouagadougou (p-value=0.009). The LST and air temperature
exhibited a stronger correlation in Bobo-Dioulasso (R=0.83) than in Ouagadougou
(R=0.76). In the study area, at the pixel level, the built-up proportion showed a moderate
positive correlation with the LST (0.44<R<0.64 in Ouagadougou, 0.49<R<0.61 in Bobo-
Dioulasso), while the non-built-up proportion was negatively correlated with LST (-
0.41<R<-0.6 in Ouagadougou, -0.49<R<-0.59 in Bobo-Dioulasso). The difference in LST
between a fully built-up pixel and a fully non-built-up pixel decreased from 2003 to 2021
in both cities indicating that the LST increased in all LULC types throughout the study
period. The contribution of the non-built-up class to urban cooling was lower in Bobo-
Dioulasso (between 0.29°C and 1.39°C) than in Ouagadougou (between 0.74°C and
1.94°C). The research also found that malaria and dengue fever had a weak correlation
with LST (R<0.4), while meningitis presented a moderate correlation in the districts of
Dafra (R=0.56) and Konsa (R=0.49) in Bobo-Dioulasso) and Sig-Noghin (R=0.66) in
Ouagadougou. Only the district of Do in Bobo-Dioulasso showed a strong correlation
(R=0.86) with the LST. With projected increases in LST under the Business-as-usual
scenario, the prevalence of temperature-related diseases may increase. In summary, the
study area experienced an increase in human footprint, which contributed to the
intensification of the LST which is an environmental threat to urban dwellers. These
findings constitute a useful decision support for sustainable urban planning. It is therefore
recommended that afforestation should be vigorously pursued at all governmental levels
to step down the LST in the two cities. While sponsored research should be carried out to
deepen the knowledge on LST and epidemic in the nation.
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CHAPTER ONE

1.0. INTRODUCTION

1.1. Background to the Study

Urbanisation is often characterized by changes in lifestyle, increased consumption, and
fossil fuel usage, which contribute to alter the environment, increase global warming, and
cause climate change (Yuen and Kumssa, 2011; Sannigrahi ef al., 2017). The exponential
growth of urbanisation, in the context of climate change, presents significant problems to
city authorities and urban managers in the planning of sustainable and prosperous cities
(Fonseka et al., 2019), because the demand for land is increasing together with unplanned
development. Rapid urbanisation is expected to result in 6.68 billion urban dwellers by
the year 2050 (Bocquier, 2005) and cities will be exposed to climate change effects,
including Greenhouse Gas (GHG)-induced radiative forcing and localised effects from

urbanisation such as the Urban Heat Island (McCarthy ef al., 2010).

The global temperature of the earth is rising due to the GHG radiative forcing and the
effects of urbanisation (McCarthy et al, 2010). Principally, the Land Surface
Temperature (LST), defined as the temperature near or at the land surface (Ndossi and
Avdan, 2016), in densely urbanised areas is generally higher. This situation is due to the
absorption of incoming solar radiation which keeps the surface warmer during night-time
in comparison to the surrounding areas which cool quickly after the sun sets. These areas
are hotter because of materials like concrete that soak up and retain heat unlike trees, soil
and other permeable surfaces. This phenomenon is known as the Surface Urban Heat
Island (SUHI) effect (Estoque and Murayama, 2017). LST and its associated UHI effect
are increasingly gaining scientists’ attention in recent years. This is because, as an

important indicator for monitoring vegetation, urban climate and changes in built-up areas



(Kayet et al., 2016), these variables are closely related to the widely studied urbanisation
phenomenon. Given the differences in Land Use/Land Cover (LULC) units across the
urban setting and their varied thermal characteristics, LST is higher in densely built-up
areas (Sannigrahi et al, 2017), and lower in areas covered with vegetation and water
(Fonseka et al., 2019). Accordingly, since the rate of urbanisation in Africa is arguably
the highest (Schug et al., 2018) in the world and is projected to reach 55% of the total
population by 2050 (Giineralp et al., 2017), a proportional increase in surface temperature
is anticipated in most African urban areas. This is especially true for cities in low-income
countries such as Burkina Faso where the most rapid urbanisation is expected between

now and 2050 (United Nations, 2019).

Besides the anthropogenic LULC activities, another determinant of LST change is
topography. For example, terrain conditions including elevation, aspect, and slope can
affect the surface temperature (Peng et al., 2020). While the influence of topography on
the LST varies according to the amount of downward solar radiation reaching the surface
(Peng et al., 2020), it can help explain the spatial variations of LST when combined with

LULC (Estoque and Murayama, 2017).

Changes in LST in urban areas as determined by anthropogenic LULC changes and
topographical variations are often associated with different public health issues. The
urban population’s exposure to the risk of temperature-related diseases is often intensified
(Zhang et al., 2020), due to the UHI phenomenon and climate change (Estoque et al.,
2020). As a result, spatial modelling and thermal remote sensing data and methods are
becoming popular in environmental epidemiology and public health studies (White-
newsome et al., 2013). For example, geospatial technologies provide valuable resources
for emergency response to planners and public health practitioners in identifying areas

that are most at risk of temperature-related diseases. In this era of climate change

2



associated with global health pandemics, there is a growing interest in the impacts of

environmental conditions on public health.

Globally, the impacts of environmental conditions on LST have received varied scientific
inquisition in different contexts. For instance, a study in Italy established that topographic
elements and solar radiation have influence on the surface temperature of an area
(Stroppiana et al., 2014). In China, Jiang and Tian (2010) showed that LULC changes
play a determinant role in LST trends in urban areas. In the African region, few studies
on that subject have been conducted. Indeed, a research on the link between LST, UHI
and temperature-related risks in Ghana showed that the risk is significantly elevated in
areas where the LST is high (Stemn and Kumi-Boateng, 2020). In Burkina Faso, a study
on the role of green infrastructure in LST mitigation in Bobo-Dioulasso found that
vegetation has a cooling effect on the LST (Di Leo et al, 2016). These studies
demonstrated that LST strongly depends on the human footprint in the landscape in such

a way that where the natural areas remain dominant, LST is found to be low.

Although LULC activities interact in complex ways with topography to modify the LST
in urban centres (Peng et al., 2020), their parallel and coupled impacts have not been
much explored in Burkina Faso. Secondly, not much is known about the impacts of LST
on public health in the country. Thus, this study has a dual purpose; first, to unveil the
extent to which LST values observed in Ouagadougou and Bobo-Dioulasso are
influenced by LULC changes and topography, and second, to ascertain the public health

implications of LST in the two cities.



1.2. Statement of the Research Problem

Land Use/Land Cover (LULC) change is one of the causes of global climatic and
environmental change (Faichia et al., 2020), which lead to landscape degradation and
affects urban land surface (Hamad et al., 2018). As urban areas develop, there are changes
in landscape such as replacement of open spaces and vegetation by houses, roads, and
other urban infrastructure, which transform the permeable and moist surfaces into
impermeable and dry ones (Kundu and Kumar, 2016). The establishment of these
impervious surfaces causes the land surface temperature to rise due to their high thermal
storage capacity (Mccartney and Mehta, 2020). Indeed, the impervious surfaces are
water-resistant, impede evapotranspiration (Alavipanah et al., 2015) and do not allow
natural cooling of the environment (Liu and Zhang, 2011; Asgarian et al., 2015), because
these features absorb and store more of the incoming short wave radiation and later emit

them leading to increasing temperature (Patra ef al., 2018).

The world’s total urban population will reach 6.7 billion, and correspondingly about 0.6
to 1.3 million square kilometres of land will be converted into urban areas (Huang et al.,
2019b). Although urbanisation phenomenon is a global phenomenon, the most dramatic
increases in the share of urban population are in Africa and other developing countries in
the global south (Cohen, 2006; Schug ef al.,, 2018; Hackman et al., 2020; Stemn and
Kumi-Boateng, 2020) . However, SUHI intensity (and its related extreme heat events that
can be dangerous to health, even fatal), which is believed to be increasing in fast-growing

cities, has received less attention.

The thermal properties of the urban surface are modified due to the LULC changes and
the immediate consequence is the increase in the intensity of UHI (Sannigrahi et al., 2017)
because the urban canopy has become more complex with a diversity of composition, and

arrangement of canopy elements including buildings and other impervious elements.
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Indeed, the urban canopy energy budget is such a way that the Latent Heat Fluxes (LHF)
and the albedo of the surface are reduced, while the Sensible Heat Fluxes (SHF) rise and

contribute to increase the urban environment LST (Xia et al., 2017).

The increase of LST, associated with the air temperature rise is the source of risk of
temperature-related morbidity and mortality in the urban area, affecting mainly the
children, the old people and those with existing health conditions (Mccartney and Mehta,
2020). The UHI intensifies during periods of heatwaves (Alavipanah ef al., 2015) and
contributes to increased electricity demand for cooling and consequently increased air
pollution by the emission of GHG through the fossil fuel-based electricity production
(Tariq and Shu, 2020) and affect human health. The thermal comfort of individuals living
in the urban zone is disturbed and they are exposed to heat-related diseases and morbidity

due to the combined effects of UHI and heat waves (Alavipanah et al., 2015).

In Burkina Faso, the combined effects of natural growth of population and positive net
migration (INSD, 2022a) have placed the main cities of Ouagadougou and Bobo-
Dioulasso in continuous urban expansion (Sory, 2013). On the demographic level, the
total population has evolved, and the densities have exponentially increased in the two
cities. For instance, Ouagadougou recorded the highest population density with an
increase of 1.54 inhabitants per square kilometre between 2006 (2,847.9 inhabitants per
square kilometre) and 2019 (4,385.5 inhabitants per square kilometre) (INSD, 2022¢). In
Bobo-Dioulasso, although lesser than Ouagadougou, the population density doubled
between 2006 (271 inhabitants per square kilometre) and 2019 (553,5 inhabitants per
square kilometre) (INSD, 2022b). This situation, in addition to the unprecedented land
speculation occurring in the two cities, leads to a spatial expansion characterized by the
development of informal housing and consequently the multiplication of impervious

surfaces (built-up, roads, pavement) to the detriment of natural vegetation and water
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bodies. In Ouagadougou for instance, because of the increasing trend of informal housing
in the urban fringe, rapid sprawl and leap development is taking place, resulting in
significant urban restructuration processes (Hauer et al., 2018). Indeed, due to the rapid
evolution of anthropogenic activities, the natural areas of the cities have experienced
significant degradation due to ongoing conversion for the construction of buildings, and
farming activities. Within Ouagadougou for instance, only the “Bangr-Weogo” park, a
few green spaces, and a small portion of the urban green belt remain vegetated areas

(Soma, 2015).

This situation added to the effects of climate change considerably reduces the cooling
effects of vegetation on the urban environment and consequently increases atmospheric
temperature, which is dangerous to the human health (Jaiye, 2020; Zhang et al., 2020).
Consequently, the increasing environmental temperatures is responsible for heat cramps
and exhaustion (Jaiye, 2020). The high near-surface air temperatures, which result from
high LST are associated with increased mortality (particularly in children) in Burkina
Faso (IPCC, 2014). Consequently, it has become important to understand how past and
current urban expansion affect LST and how LST influences the geographic distribution

of temperature-related diseases.

In the past decade, using optical and thermal remote sensing datasets, many studies have
investigated LULC change and the relationship between the LST and the surface
biophysical indices in different areas of Asia and Europe (Liu and Zhang, 2011; Kumar
et al., 2012; Alavipanah et al., 2015; Boori et al., 2015; Jain et al., 2019; Ramaiah et al.,
2020). In Africa, particularly West Africa, only a few have used thermal remote sensing
techniques to assess LST in urban areas (Ogunjobi et al., 2018; Eresanya et al., 2019;
Stemn and Kumi-Boateng, 2020). To compute the LST, these studies focused on

diachronic analyses between two, three or four periods without a clear comparative
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analysis between several months of the year to set the suitable period for LST assessment,
as it should be done under tropical conditions. Also, even at the global level, the
implication of surface temperature on public health is not well known (White-newsome
et al., 2013), despite the plethora of literature on LULC and LST. Thus, in Burkina Faso,
very little work has been done on LULC change impacts on surface temperature (Di Leo
et al., 2016). However, not much work has been conducted on how the LST pattern over
the study area impacts public health. Specifically, this research used time-series satellite
imagery together with ancillary data and socio-economic data to determine the patterns
of LULC changes induced LST in the cities of Ouagadougou and Bobo-Dioulasso,

Burkina Faso and assess its impacts on public health.

1.3. Research Questions
The research attempts to answer the following questions:
1. What are the major Land Use/Land Cover changes in Ouagadougou and
Bobo-Dioulasso from 2003 to 2021?
1. What is the trend of the meteorological and satellite-based thermal emission
data between 2003 and 2021 in the two cities?
1il. What is the correlation between land surface temperature and the urban Land
Use/Land Cover dynamics in the two cities?
iv. To what extent is the Land surface temperature related to the distribution of
temperature-related diseases in the two cities?
V. What will be the future trend of Land Use/Land Cover changes and land

surface temperature in the two cities?



1.4. Aim and Objectives of the Study
This study was aimed at analysing the influence of Land Use/Land Cover changes and
topography on land surface temperature and its implications on public health in the cities
of Ouagadougou and Bobo-Dioulasso, Burkina Faso. This aim is in line with the
Sustainable Development Goal (SDG) number 11: “Sustainable cities and communities™.
This is to be achieved through the following objectives:
1. assess the major Land Use/Land Cover changes in Ouagadougou and Bobo-
Dioulasso between 2003 and 2021;
il. carry out comparative trend analysis of the meteorological and satellite-based
thermal emission data from 2003 to 2021 between the two cities;
1ii. determine the correlation between land surface temperature and urban Land
Use/Land Cover changes in the two cities;
1v. assess the relationship between temperature-related diseases and land surface
temperature in the two cities; and
V. carry out future projection of Land Use/Land Cover and land surface

temperature in the two cities.

1.5.  Justification for the Study

Previous studies have used data from series of satellites platforms such as Landsat,
Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) coupled with observation or
gridded (ground observation data combined with satellite data) air temperature datasets
to derive land surface temperature. This research uses satellite data and reanalysis (ground
observation data combined with model data) air temperature datasets to assess the trend

in LST and its patterns regarding different LULC dynamics.



This research provides information on the trend in LULC units within the urban
environment in Burkina Faso, their influence on the LST and the consequences on urban
cooling. This could generate much needed data to support municipal authorities in
planning for better mitigation and adaptation measures that can improve the well-being
of the urban population. Burkina Faso is a Sahelian country with high urban temperatures.
Thus, this study will support urban planners and decision makers by providing
information on the types of LULC that increase the heat capacity of the urban surface, for

a better sustainable land use policy development.

This research contributes, in the country level, to the achievement of the United Nations
Sustainable Development Goals (SDG) 11 on “Sustainable cities and communities™; 13
on “Climate action”; and 15 on “Life on land”. Indeed, the implementation of sustainable
land use policy including building codes policy, green spaces development, open spaces
development, blue infrastructures development can play a key role in climate change
adaptation and mitigation in urban areas. This could then contribute to improve the

thermal comfort for a better urban liveability.

This research builds on the existing approaches to perform a time series analysis of the
LST and LULC using a cloud computing platform, Google Earth Engine (GEE). The
findings could be a valuable addition to the literature on applied climatology and
particularly the use of GEE in LULC analysis and climatic data extraction. It could also
strenghten the knowledge in terms of LULC changes impact on LST patterns in the
African region. The use of a long-term dataset with a time step of one year in this study
could show the annual dynamic of urban land surface temperature as well as air
temperature. This could bring out a clear understanding of the spatio-temporal patterns

and linkages of the two variables for further research on urban climate modelling.



1.6. Study Area Description

1.6.1. Geographical location of the study areas

The research was conducted in Ouagadougou and Bobo-Dioulasso, the first two largest
cities of Burkina Faso. Ouagadougou is the political and administrative capital and is
within the province of Kadiogo in the Centre Region. Bobo-Dioulasso, the economic
capital of Burkina Faso, belongs to the province of Houet in the Hauts-Bassins Region.
They are located between Longitude 1°41°31°"W and 1°21°05°°W and between Latitude
12°12°42°°N and 12°30°14”°N; between Longitude 4°23°40”°W and 4°12°19”’W and
between Latitude 11°06°26°°N and 11°17°27°°N, respectively. Ouagadougou covers an
area of 970 square kilometres while Bobo-Dioulasso’s land mass in 1,779 square

kilometres.

In term of topography, Ouagadougou lies in the so-called central peneplain (lowland area)
of Burkina Faso, with altitudes fluctuating between 272 and 368 metres above sea level.
In Bobo-Dioulasso however, the altitudes range between 287 and 558 metres above sea
level, indicating a relatively high land area compared to Ouagadougou. Figure 1.1
presents the geographical location of the study sites: (a) shows West Africa inset Burkina
Faso; (b) presents Burkina Faso showing administrative boundaries of districts inset
Ouagadougou and Bobo-Dioulasso in red boxes; (c) is a Zoom of Ouagadougou showing
elevation, roads, rivers and localities; (d) is a Zoom of Bobo-Dioulasso showing

elevation, roads, rivers and localities.
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Figure 1.1: Location of the Study Area.
Source: Ouedraogo et al. (2023)

1.6.2. Climate
The two cities are all situated in the Sudanian climatic zone (North Sudano-Sahelian for
Ouagadougou and South Sudanian for Bobo-Dioulasso). As in the whole of West Africa,

the climate over the study area depends on the Inter-Tropical Convergence Zone (ITCZ)
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fluctuations, from south to north and vice versa (Byrne et al., 2018). The climate in the
study sites is characterized by high temperatures and a uni-modal rainfall pattern with a
peak in August. The rain falls usually between May and October (Figure 1.2), while the
dry season, relatively long, ranges from November to April. Station data received from
the National Meteorological Agency (ANAM) of Burkina Faso, showed that the average
annual rainfall from 1980 to 2020 was 757.94 mm and 1,027.2 mm at the station of
Ouagadougou and Bobo-Dioulasso, respectively. During the same period, the total
amount of yearly rainfall varied from 571.4 to 1003 mm/year in Ouagadougou, whereas,
in Bobo-Dioulasso, it ranged from 681.7 to 1,370.2 mm/year. These features show that
Bobo-Dioulasso received more rainfall than Ouagadougou and consequently the amount

of sensible heat radiated from the surface may be relatively low.
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Figure 1.2: Monthly Rainfall in Ouagadougou and Bobo-Dioulasso
from 1980 to 2020
Source: ANAM (2021)
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The temperatures fluctuated during the period and varied from one site to another. The
monthly average temperature varied from 25.21°C to 33.26°C in Ouagadougou and from
25.54°C to 31.05°C in Bobo-Dioulasso (Figure 1.3). In the two sites, high day time
temperatures were observed in March, April and May, while low daytime temperatures
were recorded in July, August and September. The night-time low temperatures were

recorded between December and February due to the Harmattan winds.
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Figure 1.3: Monthly Air Temperature in Ouagadougou and Bobo-Dioulasso,
from 1980 to 2020
Source: ANAM (2021)

1.6.3. Vegetation, drainage and soils

Ouagadougou falls in the North-Sudanian phytogeographical domain and is experiencing
a significant degradation of vegetation cover due to the occupation of the space for
housing purpose, farming, and the utilisation of biomass as a source of domestic energy.
Only the protected forests of Bangr-Weogo, of the National Scientific and Technologic
Research Centre, and a few green spaces scattered along the roads and houses form the

vegetation of the city. The tree species common to the study area include Vitellaria
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paradoxa, Lannea microcarpa, Mangifera indica, Khaya senegalensis, Acacia nilotica,

Parkia biglobosa, Adansonia digitata, Faidherbia albida, Carapa procera.

In terms of drainage, the settlement of Ouagadougou is set up in the Massili catchment.
Given such geographic location, the city is drained by four main tributaries of the river
Massili that flows from south to north. They are the central watercourse, the watercourse
of Zogona, the watercourse of Mogho Naaba and the watercourse of Wemtenga. In the
framework of urban development, these watercourses have been planned to facilitate the
evacuation of runoff water during rainy season and improve the management of water for
urban activities. In addition, there are three main urban dams, with a total capacity of
5,235,500 cube metres (INSD, 2022c¢), which allow the storage of rain water in the city.
Ouagadougou lies on less deep and nutrients deficient soils. There are two types of soils
namely hydromorphic soils which evolve under the influence of the water from dams,

and the less evolved soils, characterized by weak storage of runoff water (Soma, 2015).

Unlike Ouagadougou, Bobo-Dioulasso belongs to the south-Sudanian phytogeographical
vegetation domain. The vegetation is dominated by open forests and wooded savannahs.
There are some protected forests such as Dienderesso forest, Kua forest, Kou forest and
Kuinima forest (INSD, 2022b). The common trees species in the area are Antiaris
Africana, Berlinia grandiflora, Carapa procera, Vitellaria paradoxa, Voacanga
Africana, Lannea microcarpa, Khaya senegalensis, Acacia nilotica, Parkia biglobosa,
Mangifera indica, Adansonia digitata.

In terms of climate change, the forests are key ecosystems in Bobo-Dioulasso as they
serve as a sink for the urban carbon capture and storage and contribute to cool the
environment. The predominance of vegetation may lead to high evapotranspiration and

then a relatively low surface temperature in the city compared to Ouagadougou. The
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settlement is crossed from South to North by the River Kou, a tributary of the Mouhoun
River. A number of water sources are encountered in the city, with the Guinguette being
the most important (INSD, 2022b). Bobo-Dioulasso comprises four types of soils:
hydromorphic soils, tropical ferruginous soils (with little leaching and on sandy

materials), sandy-clay soils and sandy soils.

1.6.4. Population and economic characteristics of the study area

The population of Ouagadougou city has evolved from 60,000 inhabitants in 1960 to
172.661 inhabitants in 1975, 441,514 inhabitants in 1985, 709,736 inhabitants in 1996,
1,475,223 inhabitants in 2006 (INSD, 2006) and achieved 2,415,266 inhabitants (45.1%
of the urbanisation rate) in 2019 (INSD, 2022a). Figure 1.4 shows a rapid growth of the
population which increased by 39.25 times in 2019 compared to 1960. The main ethnical
groups living in the area are the Mossi, Dioula, Bissa and Gurunsi. The economic
activities are dominated by industry, commerce, services, agriculture and livestock in the

fringe areas of the city.

As for Bobo-Dioulasso, its population has evolved from 50,000 inhabitants in 1960 to
115,063 inhabitants in 1975, 228,668 inhabitants in 1985, 309,771 inhabitants in 1996,
489,967 inhabitants in 2006 (INSD, 2006) to reach 984,603 inhabitants, corresponding to
16.9% of the urbanisation rate in 2019 (INSD, 2022a). Like Ouagadougou, the population
figures exhibited an increasing trend in Bobo-Dioulasso. Indeed, the total population of
the city increased by 18.69 times in 2019 compared to 1960, showing a lower growth than
Ouagadougou (Figure 1.4). The main economic activities in Bobo-Dioulasso are services,

commerce, agriculture, livestock, industry, hunting, fishing and handicraft.
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Figure 1.4: Trend in Growth of the Urban Population in the Two Cities

Source: INSD (2022b), INSD (2022c¢)

1.6.5. Urban development in the two cities

The settlement of Ouagadougou has been established as the capital of the Mossi kingdom
in 1441 and as the permanent residence of the Mogho Naba, the king of the Mossi, in
1691. The settlement first developed around the royal palace, with the regrouping of
certain villages that gave their names to certain current districts of the city, such as
“Gounghin”, “Laarlé”, “Ouidi” (Soma, 2015). The administrative structuration of
Ouagadougou has changed many times over the past few decades. In 1984, Ouagadougou
was divided into five districts to facilitate the management and to improve access to

public services by the citizens.

Bobo-Dioulasso city is Burkina Faso’s second most populous settlement (Di Leo et al.,
2016) created around 1050. The area has been an administrative and military post for
France and was the capital of Burkina Faso (former Upper Volta) until 1947. Bobo-
Dioulasso originated from a small village called Sya, which was conquered by France in
1897. After the France occupation, Sya was changed into Bobo-Dioulasso, which means

the house of the Bobo and Dioula. The French colonial government constructed, between
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1926 and 1929, the city layout using a grid pattern structured in avenues and streets,
squares and urban lots (Fourchard, 2003). This has laid the frame of the modern city
centre and its LULC policies. New industries arrived in the city during 1980 and 1990s

and contributed to shaping the economic sector.

Up to 2009, Ouagadougou’s city comprised five districts, 30 sectors and 17 associated
villages, whereas Bobo-Dioulasso had three districts and 25 sectors. In December 2009,
the National Assembly adopted a new law which culminated in the division of
Ouagadougou into twelve districts and 55 sectors (INSD, 2022c¢); and Bobo-Dioulasso

into seven districts, 33 sectors with 36 affiliated villages (INSD, 2022b).

While the urban areas were spatially being restructured for close governance purposes,
the authorities undertook several planning initiatives and interventions to develop formal
housing for the citizens. From the colonial period to the independence and the revolution
era, many formal housing units have been provided by the successive governments, but
in insufficient number. For example, for a demand of 38.000 parcels in Ouagadougou,
the governments provided only 10.800 parcels between 1960 and 1980. In addition to the
usual housing development programmes, there were urban renewal projects such as the
“project ZACA” area (an administrative and trade zone), the development of new modern
housing areas such as “Ouaga 2000” (Southern part of Ouagadougou), “Bobo 2010~
(Northern part of Bobo-Dioulasso), “Bassinko” (Northern part of Ouagadougou) and
other private estates development in the two cities. Since 2009, housing development in
the country is led by private real estates/land development companies, whose number has
reached 275 in 2019 (Sory, 2019). The growth in housing development has caused the
spatial expansion of the cities’ areas as showed by Figure 1.5. The spatial growth of the

urban area was relatively slower in Bobo-Dioulasso than in Ouagadougou.
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Figure 1.5: Spatial Expansion of the Urban Area Size in the Two Cities
Source: Soma (2015)

1.7.  Scope and Limitations of the Study

1.7.1. Scope of the study

The research has a temporal scope of 19 years (2003 - 2021). This interval is selected not
only because the study intends to carry out a time series analysis of LULC change and
LST, but also to fit with MODIS LST data availability over the area. Although MODIS
Aqua LST products were available by mid-2002, 2003 was considered as the start year to

have full year data (from January to December).

The spatial scope of the study covers the metropolises of Ouagadougou and Bobo-
Dioulasso. Being the main urban centres of Burkina Faso, the two cities experience rapid
urbanisation, in terms of spatial expansion and population growth, which causes the
development of impervious lands to the detriment of natural vegetated and water body
areas. The study concerns the urban and suburban areas of the two cities for the purposes
of comparison between the two zones in regard to LST trends. Moreover, the two cities
are located in the same climatic zones with slightly different meteorological and
environmental conditions and are therefore well suited for comparative study.
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In terms of content, the study focuses on LULC changes assessment, air temperature trend
assessment, LST trend assessment and LST related diseases investigation. This research
wholly depends on the existing datasets captured by ground observation stations or
satellites platforms such as Landsat, MODIS Aqua and also on reanalysis datasets to map
the LULC changes in the two cities and determine the LST and air temperature trends and
relationship during the study’s chosen time span. Furthermore, it assesses the relationship
between the LST and LULC changes on one hand, and between the air temperature in the

other. It also investigates the link between selected temperature-related diseases and LST.

1.7.2. Limitations of the study

The limitations of this research include the non-availability of in situ measurements of
LST datasets when the satellite passes to serve as control data for the accuracy assessment
of the LST retrieved from MODIS Aqua satellite data. In addition, the coarse spatial
resolution and the presence of missing data in MODIS daily LST, due to cloud cover,
might introduce some uncertainties in the seasonal and yearly aggregated data. To
mitigate these limitations, MODIS LST was considered as a proxy of the surface skin
temperature over the study area, and a gap-filling method was used to compute the

missing daily LST values.

More so, the data on temperature-related diseases do not cover the whole temporal and
spatial span of the research. While, the datasets have been aggregated at district level,
rather than patient location based. Essentially, five years (2017 - 2021) monthly reported
cases covering the Central Business District (CBD) areas of the different cities were used
for the analyses. The study assumed that all patients recorded in a given district live within

the geographical area of that district to proceed.
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CHAPTER TWO

2.0. LITERATURE REVIEW

2.1. Conceptual Framework
This sub-section describes the conceptual framework of the study. It analyses the
concepts of urbanisation, temperature inversion, Land Use/Land Cover and Land

Use/Land Cover change, Land Surface Temperature and Urban Heat Island.

2.1.1. Concept of urbanisation

Urbanisation is a complex socio-economic phenomenon that results in a shift of
population’s concentration from rural to urban settings and the consequent spatial and
demographic changes occurring in the destination areas (Kuddus et al., 2020). In 2018,
the United Nations estimated that about 4.2 billion people were living in urban areas, and
this figure will reach 6.7 billion by 2050 (United Nations, 2018). In a similar way, the
global urban settings area is expected to increase by about 0.6 to 1.3 million square
kilometres between 2015 and 2050 (Huang et al., 2019a). The future global urban
development is expected to slow down compared to that of the period 1950 — 2018. It is
estimated that the urban annual growth rates will range between 1.7% and 1.3%, from
2018 to 2030 and 2030 to 2050 respectively, against 2.2% during the period 1990 - 2018

(United Nations, 2018).

In Africa, the rate of urbanisation is arguably the highest in the world (Schug et al., 2018)
and is projected to reach 55% of the total population by 2050 (Giineralp et al., 2017). The
rapid trend of urbanisation in Africa has been confirmed by several authors (Giineralp et
al., 2017; Schug et al., 2018; Hackman ef al., 2020; Stemn and Kumi-Boateng, 2020) and

is characterized by the increasing number of its megacities, cities and towns (Giineralp et
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al., 2017). The main drivers of urban growth in Africa, in particular and the developing
world in general, are the population growth (natural growth, and positive net migration),
advances in medical sciences, global technological transformation and political change
(Cohen, 2006), the combined effect of which is causing a spatial expansion of urban
settlements towards the surrounding rural areas. The urbanisation patterns in most of the
developing countries, like Burkina Faso, is inconsistent with the local plans and policies,
resulting in the formation of slums where socio-economic facilities such as transportation,

water and sanitation, health, and education are lacking (Rimal et al., 2018).

2.1.2. Concept of temperature inversion

In the Troposphere, temperature decreases with height under normal conditions; the
higher we go, the lower the temperature and the lapse rate equals to 6.5°C/km.
Temperature inversion or thermal inversion, is therefore the reversal of temperature’s
normal behaviour in the troposphere where temperature increases with height (Nejad et
al., 2023). Under inversion condition, a layer of cool air at the surface is overlain by a

layer of warm air.

It occurs in areas with clear skies, light wind, and in low places such as valleys. Inversions
play a key role in cloud formation, precipitation and visibility level. An inversion acts as
a blanket on the up-warding air from the layers below, and as a result, the convection
produced by the heating of the air from below and diffusion of pollutants as well are
limited to levels under the inversion. So, in areas with persistent low-level inversion
occurs, convective clouds can not grow and visibility may be reduced due to the
accumulation of dust and smoke particles. Inversion also affects daytime air temperature
variations. Since daytime warming of air is mainly caused by land surface emission, if an

inversion occurs in-low level, only a shallow layer of air will be heated and thus the
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environmental temperature will rise astronomically. A schematic representation of an
inversion is shown in Figure 2.1. Tpase: Temperature at the basis of inversion, Tiop:
Temperature at the top of the inversion, Zpase: Height of the base of the inversion, Zop:
Height of the top of the inversion, DZinv: Temperature difference across the inversion,

DTinyv: Depth of the inversion and the temperature lapse rate within the inversion.
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Figure 2.1: Temperature Inversion Scheme

Source : (Iacobellis ef al., 2009)

2.1.3. Concepts of land cover, land use and land use/land cover change

Land cover is defined as the observed natural and man-made features coverings of the
earth’s surface (Giri, 2012). The major land cover types are forests, grassland, barren
land, pavement, asphalt, water body including groundwater (Giri, 2012).

Land use, in contrast, is defined as the way the biophysical attributes of the land are
manipulated and the purpose for which the land is used (Giri, 2012). In other words, it
refers to how the land is used by humans. According to this author, a land covered by
vegetation can be a forest as seen from the ground or through remote sensing platforms,
while the same area of forest can be used for production, recreation, conservation or for

religious purposes. The land cover is also defined as the type of feature present on the
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earth surface, while land use is related to anthropogenic activity or economic function
associated with a piece of land (Congalton, 2015). Land cover data can be directly
extracted from remote sensing images, whilst ancillary data is often needed to retrieve
accurate land use information. According to the National Oceanic and Atmospheric
Administration (NOAA), land cover data documents how much of a region is covered by
forests, wetlands, impervious surfaces, agriculture, and other land and water types. Land
use shows how people use the landscape whether for development, conservation, or

mixed uses. The different types of land cover can then be managed and used differently.

Land Use/Land Cover (LULC) change comprises two major types: LULC modification
and LULC conversion. Indeed, a conversion is a change from one LULC category to
another, while a modification denotes a change in condition within the same LULC
category (Giri, 2012). An example of land-cover modification is forest degradation that
may be due to change in phenology, biomass, forest density or flooding. With remote
sensing data, it is easier to measure and monitor conversion than modification.
Modification is usually a long-term process and may require multi-year and multi-
seasonal data for accuracy assessment. Land use may change without land-cover
conversion or modification. However, once land use activities are practised in a particular
area, land cover may change even if the land use remains unchanged; therefore, land-use

is likely to cause land cover change.

In Ouagadougou as well as Bobo-Dioulasso land cover is mainly characterized by
vegetation, impervious surfaces (for example built-up, roads), water body. The
encountered land uses are agricultural use, economic activities use, conservation (for
example protected forests, rivers), housing (for example settlement). In sum, deducing
from these definitions and examples, land cover can be considered as the physical cover,

whereas land use is based on the function or the socio-economic purpose for which the
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land is used. A piece of land can then have only one land cover (for example water body)

but can have more than one land use (for example educational, conservation, tourism).

In this research, the term Land Use/Land Cover is adopted, because it is a collective term
meaning that the maps generated include both land use and land cover types (Reese,
2011). Land use, being the expression of underlying anthropogenic driving forces, is the
dominant source of land cover change which may have further biophysical impacts on
the land surface (Meyer and Turner II, 1996). Therefore, LULC change concept is
considered, because the thermal properties of the surface depend on the type of materials
covering it. Though the way the population uses the land may influence the surface
properties through the resulting waste from the household or the economic activities, the
LULC change will result in a blacker or whiter surface which determines its reflectance
capacity. The whiter the surface the higher the albedo and the lower the amount of

incident radiation absorbed (Beucher, 2010).

2.1.4. Concept of land surface temperature

The Land surface temperature (LST) is a driving force in the exchange of long-wave
radiation and turbulent heat flux at the interface between the surface and the atmosphere.
It is considered as the radiometric temperature or skin temperature of the ground (Li et
al., 2013). Radiometric and thermodynamic temperature are the same for homogeneous
and isothermal surfaces (Becker and Zhao-Liang Li, 1995). Since surfaces with
homogeneous pixels are rare in the nature, the radiometric temperature depends on the
configuration of the surface materials, their emissivity and the electromagnetic spectrum

channel used to measure it.

Therefore, the LST depends on the incoming solar radiation, the albedo, the vegetation

cover and the soil moisture. In most cases, it is a mixture of vegetation and other land
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cover types temperatures. In that case, the LST shows quick variability because all types
of land cover respond rapidly and differently to incident radiation changes due to cloud

cover, aerosol load modifications and daytime illumination variation.

The LST can also be defined as the surface radiometric temperature corresponding to the
instantaneous field-of-view of the satellite sensor (Prata et al., 1995) or, particularly as
the ensemble directional radiometric surface temperature. So, according to the Indian
Institute of Remote Sensing (2016), the LST is the average skin temperature of the ground
under the pixel scale mixed with different fractions of surface cover. For instance, for
bare soil surface, LST is the soil surface temperature, while for densely vegetated area,

LST is considered as the canopy surface temperature of the vegetation.

2.1.5. Concept of urban heat island

Within the urban setting, the LST varies between the core city and the surrounding areas
in such a way that the urban core areas experience higher temperatures than the periphery.
This persistence of heat within the inner-city compared to the fringe areas represents the
Urban heat island (UHI). The changes in thermal properties of urban materials, and their
spatial distribution are the key factors of UHI patterns (Mccartney and Mehta, 2020).
Urban areas are dominated by low-albedo impervious surfaces such as buildings, roads
and pavements, which absorb and store incoming solar radiation during daytime and
release the heat at night-time leading to high temperature in the urban core. Thus, there
are two types of UHI: the Surface Urban Heat Island (SUHI) and the Atmospheric Urban
Heat Island (AUHI) (Kotharkar and Surawar, 2016). The SUHI is the radiative
temperature difference between impervious and natural surfaces, measured by LST, based
on thermal remote sensing. Its magnitude depends on sun intensity and LULC types and

characteristics (Farina, 2012). The AUHI refers to the effects of temperature difference
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in the canopy layer and the boundary layer. The canopy layer, being the layer of air from
the surface to treetops or rooftops; the Canopy Layer Heat Island (CLHI) is measured by
in situ sensors mounted on fixed meteorological stations (Badugu et al., 2022). However,
the boundary layer extends from treetops or rooftops to where urban landscapes no longer
influence the atmosphere. The Boundary Layer Heat Island (BLHI) is measured by tall

towers, radiosondes and aircraft (Badugu et al., 2022).

In the present research, the term Urban Heat Islands (UHI) was used to refer to SUHI,
based on LST derived from MODIS Aqua satellite products. Thus, due to the urban LULC
changes, resulting in the increase of impervious surfaces to the detriment of vegetated
and water body areas, the urban runoff is increased and the evapotranspiration is reduced.
This situation causes an unbalanced energy budget characterized by a reduction of the
Latent Heat Flux (LHF) and albedo against an increase of the Sensible Heat Fluxes (SHF)
(Xia et al., 2017). Indeed, the downwelling solar radiation associated with the high heat
storage capacity of the urban materials increase the SHF and consequently intensify the
LST and UHI. The increases in LST lead to rising air temperature over the urban
environment which consequently affects the quality of life of city inhabitants by
deteriorating the thermal comfort (Stemn and Kumi-Boateng, 2020) and causing

temperature-related diseases.

2.2. Theoretical Framework

2.2.1. Theory of thermal radiation

The earth energy budget is determined by the energy input from solar radiation and the
energy loss by terrestrial thermal radiation (Schmittner, 2018). The sun emits radiation
over a wide range of wavelengths forming the electromagnetic spectrum, which range

from gamma rays with wavelengths of 3.10 nanometres (shorter wavelength and higher
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energy) to radio waves with wavelengths of 300 meters (longer wavelength and lower
energy). Different portions of the electromagnetic spectrum are of diverse relevance to
earth observation.

Human eyes are sensitive to the visible light that occupies a small part of the spectrum;
from 390 nanometres to about 750 nanometres (Figure 2.2). Indeed, electromagnetic
radiations are electric and magnetic waves that can travel through a vacuum and matter
at the speed of light. The interaction between electromagnetic radiation and matter
depends on the wavelength of the radiation. The molecules have different discrete energy
states and they can transit from one state to another one by absorbing or emitting a photon
at a wavelength that corresponds to that energy difference (Schmittner, 2018). Absorption
of a photon leads to a transition from a lower to a higher energy state, while emission of

a photon indicates a transition from a higher to a lower state.
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Figure 2.2.: Electromagnetic Spectrum

Source: Sparkes et al. (2011)

The power of solar radiation reaching the top of the atmosphere is 1,370 w/m? and is
known as the solar constant, but only 338 W/m? (25 per cent) reaches the earth’s surface.

The sun’s radiative flux is maximum at a wavelength of 0.5 um, at the centre of the visible
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part of the spectrum (Figure 2.2). Solar radiation, by warming up the earth, is the driver
for many chemicals, physical and biological phenomena in the atmosphere, on the ground
and in the oceans. The thermal remote sensing is based on the theory that all objects with
a temperature above zero kelvin (-273.15°C) emit radiation in all direction as
electromagnetic waves and the amount of radiated energy and the wavelengths depend
on the emissivity (g) of the surface and its kinetic temperature (Prakash, 2000).
Electromagnetic radiation is governed by the physical laws of radiative transfer,

comprising Planck’s law, Stephan-Boltzmann law and Wien’s displacement law.

2.2.1.1. Planck’s law of radiation

The Physicist Max Planck determined experimentally the relationship between the
radiative energy flux from a black body and its absolute temperature. He derived then
Planck’s function describing the radiance emitted by a black body as presented in

Equation (2.1).

Cy

B,T) = e Oy

2.1)

Where B (A, T) corresponds to the spectral radiance in (W/m?), T stands for the absolute
temperature in Kelvin (K), A is the wavelength in metres (m), € is the emissivity, C; is

the first radiation constant (1.191 x 10-16 W/m?), and C, the second radiation constant

(1.439 x 10-2 m K). However, most natural objects are non-black bodies and the spectral
emissivity ¢ is determined by the ratio between the radiance emitted by an object at
wavelength A and that emitted by a black body at the same temperature (Dash et al., 2002).
For a non-black body (0 < & < 1), Planck’s function is multiplied by ¢, as shown in

Equation (2.2).
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Therefore, the amount of radiated energy depends on the wavelength and the temperature.

The hotter the object, the shorter the wavelength and vice versa (Figure 2.3).
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Figure 2.3.: Distribution of Energy Radiated from Black Bodies
at Various Temperatures

Source: Menzel, 2006

2.2.1.2. Stephan-Boltzmann law of thermal radiation
Stephan-Boltzmann’s law of thermal radiation is a derivative of Planck’s law. This
radiation law states that the radiation flux of an object is proportional to the fourth power
of its absolute temperature, as presented in Equation (2.3) (Schmittner, 2018).

E=o0T* (2.3)
Where E is the radiated energy in W.m?, ¢ is the Stephan-Boltzmann constant (5.67x10"
8 W m2 K*) and T is the absolute temperature of the object.
For example, if we consider a black body with surface A temperature T which radiates

to another black body with surface temperature T that completely surrounds it, this
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second blackbody will totally absorb the incident energy and emit radiant energy that is
proportional to T»* as expressed in Equation (2.4).

E = cA(T{ — T)) (2.4)
For a non-black body that does not emit all the incident energy, ¢ is introduced in the
equation to take into consideration the real nature of the radiant bodies. Therefore, the
amount of heat transfer from a real body at temperature T1 which is surrounded by a black
body at temperature T> is given by Equation (2.5).

E = 0Ae (T — TS) (2.5)
Thus, all objects emit radiation as a function of their temperature and hotter objects emit

more electromagnetic radiation per unit surface area (Figure 2.4).
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Figure 2.4.: Evolution of Radiation Flux According to Temperature

Source: Data analysis (2023)

2.2.1.3. Wien’s displacement law
Wien’s displacement law is also a derivative of Planck’s law. It states that the wavelength
of the peak radiation emitted by an object is inversely proportional to its absolute

temperature, as shown in Equation (2.6).
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a

Apeak -7 (2.6)

Where Apqqk is the wavelength of the peak intensity of radiation, a is Wien constant

(2,898) and T is the absolute temperature of the object.

Wien’s law can be used to predict the peak of a black body curve in case the temperature
of the emitting object is known. In addition, Wien’s law informs that in reflectance remote
sensing, short wavelengths in the visible and short-wave infrared domains are used,
because the earth’s surface is cooler; whereas in thermal remote sensing, longer
wavelengths from 2 to 14 micrometres are used because solar radiation is hotter (Tempfli

et al., 2009).

2.2.2. Theory of black-bodies and emissivity

A black body is a theoretical object that absorbs and emits all incident energy; it is a
perfect absorber and a perfect radiator, according to Planck’s law. The emissivity of such
an object is by definition equal to 1 and naturally, true black bodies do not exist (Prakash,
2000). Materials that absorb and radiate only a certain fraction, constant for all
wavelengths, compared to a black body are called grey bodies. A grey-body curve is
identical, in shape, to a black-body one, but the absolute values are lower as it does not
radiate as perfectly as a black body (Tempfli ef al., 2009). There are also the group of
objects called selective radiators which radiate only a certain fraction of absorbed energy.
A selective radiator may radiate perfectly in some wavelengths, whilst acting as a very

poor radiator in other wavelengths.

The fraction of energy radiated by an object, compared to a real black body, is called
emissivity (€,). The emissivity for ice is 0.97, that for water is 0.96, and it varies between
0.8 and 0.9 for snow; then water and ice are almost perfect black-bodies (Schmittner,

2018). Equation (2.7) shows how to derive the emissivity.
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Where B, 7, 1s the spectral radiance of a real material at a given temperature, and B,{” l% is

the spectral radiance of a black body at the same temperature.

2.2.3. Theory of radiant and kinetic temperature

The thermal infrared sensor records the spectral radiance reaching the sensor for a given
wavelength. Given that the amount of energy radiated depends on the temperature and
emissivity, a cold object with high emissivity can radiate as much energy as a
considerably hotter object with low emissivity. Using Planck’s law, the ground
temperature can directly be calculated considering the object as a black body that emits a
certain amount of radiation in a given wavelength. This calculated temperature is the
radiant temperature (T,.44) or brightness or Top of Atmosphere (TOA) temperature. In
most cases, the radiant temperature is smaller than the true kinetic temperature (Ty;y,)
which is measured using a contact thermometer on the ground. To calculate the true
kinetic temperature from the radiant one, the emissivity must be determined and

afterwards, apply Equation (2.8).

Traa = 51/4Tkin (2.8)
For this research, the urban materials were considered as grey bodies which temperature
is higher than zero kelvin. The theory of radiation, including Planck’s law and Stephan-

Boltzmann’s law and the theory of emissivity, were employed in the calculation of LST.
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2.2.4. Theory of anthropogenic global warming

Anthropogenic Global Warming (AGW) is a catastrophic climate scenario which states
that projected and anticipated long-term increases in the temperature of the earth is mainly
due to human activities (Stallinga and Khmelinskii, 2016). Since the mid-20" century,
many climate scientists have gathered measurements on various weather phenomena (i.e.,
temperature, precipitation, atmospheric chemical composition) which showed that the
earth’s climate has changed since the beginning of the geologic time and that the influence
of anthropogenic activities since at least the industrial revolution has highly driven that

change (Ouellette, 2008; Selin and Mann, 2021).

Following the growing conviction of the scientific community on anthropogenic climate
change, the Intergovernmental Panel on Climate Change (IPCC) was established in 1988
by the World Meteorological Organization (WMO) and the United Nations
Environmental Programme (UNEP) to provide governments at all levels with regular
assessments of the scientific basis of climate change, its impacts and future risks, and
options for adaptation and mitigation (IPCC, 2013b). By the early 2000s, the theory of
AGW gained a high scientific consensus (Powell, 2017), because pieces of evidence from
ground-based studies and satellites measurements of land surface and oceans revealed a
temperature increase related to carbon dioxide (CO2) level rise since the pre-industrial
time due to global economic and population growth (energy production, transport,
industry, buildings, agriculture-forestry-and other land use) (Johnson et al., 2017). It is
estimated that the CO, level rose from 278 parts per million (ppm) during the pre-

industrial era to 315 ppm in 1957 and over 420 ppm in June 2022 (NOAA, 2022).

Furthermore, the IPCC Fifth Assessment Report revealed that the period from 1880 to
2012 experienced a global average temperature increase of 0.85°C (IPCC, 2013a) and the

special report produced in 2018 mentioned that human activities have caused a global
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warming of about 1.0°C above pre-industrial level, with a likely range of 0.8°C to 1.2°C
(IPCC, 2019). The estimated AGW is increasing at 0.2°C per decade and it may reach
1.5°C between 2030 and 2052 if the current trend persists. Based on the available
evidence, this study sought to understand the influence of LULC changes, as an

anthropogenic factor, on the trends in urban LST.

In this study, since a perfect blackbody does not exist in natural state, the theory of
emissivity is considered and the Planck’s law for grey body is used in the computation of
the LST. Indeed, though the surface materials have different temperatures due mainly to
the wavelength of incident radiation and the emissivity, the skin temperature of a surface
is determined by integrating the emissivity value with the radiant or TOA temperature.
Furthermore, the changing of LULC has implications on the land thermal properties by
decreasing the albedo and then increasing the heat storage capacity and consequently
extending the time range of longwave radiation emission. Based on the theory of
anthropogenic global warming, the infrared outgoing longwave radiation contribute to
enhance the atmospheric temperature given the greenhouse effect. In addition, LULC
changes and LST are considered as the main variables causing urban ecology and

liveability deterioration, and consequently affecting its sustainability (Figure 2.5).
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2.3. Review of Related Studies

2.3.1. Remote sensing and urban land use/land cover assessment

Urban areas are growing in term of human population and spatial coverage. The
assessment of this growth is important for better decisions making and implementation.
Due to the low availability of reliable urbanisation data, remote sensing tools are
increasingly used to assess the urban LULC changes (Schug et al., 2018). A study on land
cover change quantification, within Ouagadougou’s metropolitan area, using Landsat
imagery with support vector regression method found that the area went through a rapid
urban expansion and densification. The methodology used can be replicated to other sites
and the results may be strengthened by integration of new datasets including Sentinel
images or the use of cloud computing platforms such as Google Earth Engine (GEE).
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Relatedly, the temporal dynamics of urban growth was investigated in Kumasi, using 20-
years Landsat time series and employing Random Forest (RF) and Support Vector
Machine (SVM) algorithms in GEE platform (Hackman et al., 2020). The results showed
that the city has extended beyond its administrative boundaries. Fundamentally, the study
demonstrated the capability of multi-temporal satellite images and GEE platform for

quantifying the spatial and temporal dynamics of cities in developing countries.

Landsat satellite images were also used to examine the changes in urban LULC and its
implications for urban climate in India (Patra ef al., 2018). The research found that the
urban area has evolved in respect of concrete areas; and affected the urban climate by
increasing the temperatures and reducing the rainfall. Moreover, urban LULC changes
led to the absorption of high amount of heat, low evapotranspiration due to lack of
vegetation, and low evaporation due to increased surface runoff (Porson et al., 2010; Fu
and Weng, 2016). Despite the existence of numerous studies that used Remote Sensing
images to assess quantitatively the LULC changes in urban settings, the utilization of
multi-temporal satellite images combined with ground consistent reference samples

remain less investigated, especially in Burkina Faso.

2.3.2. Land surface temperature retrieval

The lack of temperature stations to estimate LST over most of the urban areas makes its
study challenging. The satellite data offer a proxy of LST through the thermal infrared
images (Heat and Protocol, 2015). Satellites record a series of images over different
spectral range and some of them focus on the longwave radiations emitted by the earth’s
surface. So, the thermal sensors capture the radiation emitted from the ground to estimate
the surface temperature, the surface emissivity, the soil moisture and the

evapotranspiration (Sekertekin and Bonafoni, 2020). Many research works have treated
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the subject of deriving LST through Satellite thermal images. Liu and Zhang (2011)
combined data from Landsat and ASTER to assess the UHI in Hong Kong. The
methodology employed used two algorithms including mono-window and split-window

to determine the LST and correlate it with biophysical indices in the study area.

The correlation between the LST and the Normalized Difference Vegetation Index
(NDVI) and the Normalized Difference Built-up Index (NDBI) indicated that the
vegetated lands weaken the UHI effect, while the built-up surfaces contribute to its
increase. Stroppiana et al. (2014) used Moderate Resolution Imaging Spectroradiometer
(MODIS) 8 days LST product at 1 km spatial resolution to establish the correlation
between the LST, LULC, topography and solar radiation in Italy. The results showed that
the topography and LULC types influence the surface temperature with its variability
changing with the season. Satellite based LST was also used reliably to predict the
average air temperature within areas with limited coverage in ground observation stations,

by the means of mixed model regression technics (Kloog ef al., 2014).

Landsat thermal infrared data have been widely used to assess the surface temperature in
various region of the world. Pal and Ziaul (2017) used Landsat TM, Landsat OLI and
TIRS data to detect LULC and LST in India, while Mustafa ef al. (2020) used Landsat
time-series imagery to study the impact of urban renewal on LST changes, employing
single-channel algorithm. Other studies also made a comparative analysis between LST
from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and
that from Landsat. In most cases, the two sensors presented a similar pattern for different
classes of surface temperature (Boori ef al, 2015). The previous research studies have
used various sensors data, such as ASTER, MODIS-Terra, Landsat TM, ETM+ and TIRS
to assess the spatio-temporal trend of LST in diverse regions of the world. However,

studies related to the assessment of LST in the study area are lacking.
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2.3.3. Urban LULC changes and LST

Many research works have been done all over the world on the relationship between
LULC and LST (Kayet et al., 2016; Ali et al., 2017; Y. Deng et al., 2018; Fonseka et al.,
2019; Shi et al., 2021). For example, it was demonstrated that deriving LST from satellite
images is a challenging task because of the atmospheric absorption and the different
emissivity levels of earth surface materials (Boori et al., 2015). Most of the studies made
a correlation analysis between LST and LULC through spectral indices such as NDVI
and NDBI. The findings showed that the NDVTI has a negative correlation with the LST,
while the NDBI showed a positive correlation (Pal and Ziaul, 2017; Al Kafy et al., 2019;
Barbierato et al., 2019; Guha et al., 2020; Ramaiah et al., 2020; Shi et al., 2021). The
built-up surfaces affect the LST within vegetated areas, mainly during heatwaves, and
then contribute to making the cooling effects of urban vegetation non-linear (Alavipanah
et al., 2015). In a similar way, urban areas with high building and population densities

combined with rapid landscape changes exhibit high LST values (Qiao ef al., 2020).

In West Africa, some authors have also investigated the relationship between the LULC
and the LST (Lindén, 2011; Di Leo ef al., 2016; Ogunjobi et al., 2018; Dissanayake et
al., 2019a; Tafesse and Suryabhagavan, 2019; Stemn and Kumi-Boateng, 2020). For
instance, Stemn and Kumi-Boateng (2020) examined the LST changes and its effects on
UHI in Ghana, employing Multi-temporal Landsat images to assess the changes in the
two variables in the area. The results showed that LST and UHI have increased because
of the growth in urban settlements and mining activities. Di Leo et al. (2016) also
investigated the role of green infrastructure in LST mitigation in Bobo-Dioulasso using
Landsat imagery. The results showed a concommitant rising trend of urbanisation and
LST in the city. The green infrastructure were proved to lower the LST compared to the

surrounding impervious land. Furthermore, the impact of urban surface characteristics

38



and socio-economic variables on LST’s spatial variation was investigated in Lagos City,
Nigeria (Dissanayake et al., 2019a). The results showed that rapid urbanisation in the area

and the economic development have changed the distribution of the LST.

The previous research focused on the correlation between the LST and some spectral
indices including NDVI and NDBI. A deeper analysis on the LST patterns regarding the
LULC classes proportion and changes at the pixel scale was not performed, especially in

the study area.

2.3.4. LST and diseases prevalence

In the context of climate change, the study of the link between climate parameters and the
outbreak of some diseases are necessary to develop mitigation/adaptations strategies.
Several research studies focused on the impact of climatic parameters and diseases
incidence. Some studies have established that air temperature influences the development
of the malaria and dengue vectors, the maturation temperatures of which vary between
22°C (Plasmodium malariae) to 25°C (Plasmodium vivax), 30°C (plasmodium vivax) and
35°C (dedes. Aegypti, Aedes albopictus and Aedes polynesiensis) (Chastel, 2006). In the
past, the prevalence of Plasmodium falciparum malaria epidemic occurred in countries
such as Zambia, Colombia, Madagascar, Pakistan, were attributed to global warming. In
particular, an increase in the temperature extreme values could modify the distribution of

malaria and dengue (Githeko et al., 2000).

In Bobo-Dioulasso, Burkina Faso, air temperature was found to be negatively correlated
with malaria prevalence (Millogo ef al., 2022). Despite the rising trend of air temperature
due to climate change, there is not a known direct relationship with the Plasmodium

falciparum malaria and dengue incidence (Githeko et al., 2000). A global recession of
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these diseases is often explained by insufficient disease control actions coupled with a

rapid urbanisation and economic growth (Gething et al., 2010).

On the contrary, meningitis is found to have a positive correlation with temperature
variation, in such a way that when the temperature increases, the risk of meningitis
increases (Chen et al., 2022). Meanwhile, there has not been significant research on the
relationship between air temperature and diseases. Quite interestingly, literature search

yielded no results for the nexus between LST and diseases incidence in the area.

2.3.5. Future LULC and LST prediction

The urbanisation related LULC change is getting increased and to comprehend the trends
of different LULC classes ahead of time, prediction operations need to be performed.
Most of the models used to predict future LULC were based on the combination of
Cellular Automata (CA) and Markov Chain (MC) models (Rimal ef al., 2017; Hamad et
al., 2018; Faichia et al., 2020; Tariq and Shu, 2020) or MC and Neural Network (NN)
models (Lukas et al., 2023). The individual models were not capable of providing the
quantity of future changes in LULC and the spatial distribution segment. For instance,
the MC is a stochastic model that computes the state of a system with random variables
that change through time (Soesbergen, 2016). MC determines the transitions probability
and predict quantity of land that would change from the latest date to the predicted date
(Dadhich and Hanaoka, 2011). The CA model is a spatial grid-based model where each
change state is a function of time according to a defined set of rules that includes the

neighbouring cells.

The combined CA-MC model simulation process is such a way that the MC determines
the quantity of land that would change from the latest date to the predicted date and the

output is a probability matrix file that is used by the CA to evaluate the spatial change
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(Rimal et al., 2018). The couple MLP-NN-MC model was widely used for LULC future
prediction (Leta et al., 2021; Mungai et al., 2022). The MLP-NN is a robust machine
learning algorithm which is capable of modelling spatially many transition potentials at
once (Eastman, 2020a). The coupled models performed well in TerrSet environment with
k statistics values greater than 80% in all studies, indicating the ability of the model to
predict future LULC changes. In Burkina Faso, Yangouliba et al. (2022) used MLP-MC
model in TerrSet Land Change Modeler (LCM) to predict future LULC in the Nakambe
River Bassin. The findings revealed an increase in anthropogenic surfaces such as built-
up at the expense of natural vegetated areas. Other customized models including
SLEUTH model (Sakieh et al., 2015), Conversion of Land use and its Effect (CLUE)
model (Moulds et al., 2015) and Patch-generating Land Use Simulation (PLUS) model

(Deng and Quan, 2022) were also employed to simulate future LULC changes.

2.4. Examples from Other Regions

The link between urban LULC, topography and LST has been investigated in other
regions of the planet. Indeed, in Asia, an investigation on the impacts of LULC changes
on LST in Beijing city was conducted by Jiang and Tian (2010). The Temperature-
vegetation index (TVX) approach was applied with Landsat images to assess the link
between LULC change and LST. The findings revealed that LULC change towards built-
up surfaces was a key driver of increasing LST. Similarly, the correlation between the
LST and topographic elements was studied in Hangzhou, China by Peng et al. (2020).
The findings showed that the elevation and slope are negatively correlated with LST,
while shaded relief is positively correlated. In addition, Estoque et al. (2020) conducted
heat-health risk assessment in Philippine cities using MODIS daytime and night-time

LST product and socio-ecological indicators. The results indicated that UHI effects are
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more pronounced in the core area of the cities where built-up and other impervious
surfaces occupy a larger area than open spaces and vegetation. Moreover, the heat-health
risk occurs during daytime and night-time as well, with a higher impact during the day.
The study emphasized the need to consider both daytime and night-time LST in heat

health risk assessment research.

In Europe, Alavipanah et al. (2015) used LULC and LST data coupled with statistical
methods to study the role of vegetation in mitigating LST in Munich, Germany. The
findings indicated a high cooling effect of vegetation in the areas with 70-80% of
vegetation cover within a grid cell. Moreover, it was demonstrated that the LST within
the vegetated areas is influenced by the surrounding built-up features. The study
concluded that in terms of mitigating urban LST by means of greening areas, there is not
a linear relationship between the lowest/highest LST and the amount of greening to
develop. In Italy, MODIS data was used by (Stroppiana et al., 2014) to investigate the
variability of LST regarding topography, LULC and solar radiation. The findings showed
that topography strongly influenced LST variability and the correlation between LST and
solar radiation is strong when coupled with the topography variable. Like findings from

other studies, urbanised areas showed an increasing LST trend.

In America, the response of UHI to urban expansion in the United States was assessed by
Li et al. (2017). The study highlighted that the urban area size variation influences the
UHI patterns. Moreover, it was demonstrated that the variation of UHI regarding the
increase in size of an urban area is significant when the surrounding landscape has
homogenous thermal characteristics. The driving forces of LST anomalous in Northern
America were also researched. The findings indicated that the vegetation distribution and

atmospheric water vapour influenced the changes in LST (Yan et al., 2020).
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In Africa, few studies have investigated the nexus between LULC and LST and the related
effects on human health. A study in Ethiopia on the link between LULC changes and LST
showed that the development of impervious surfaces at the expense of vegetation areas,
leads to an increasing in LST and consequently the UHI intensification (Tafesse and
Suryabhagavan, 2019). Employing Gradient analysis and Partial Least Square (PLS)
regression analysis technics, Dissanayake et al. (2019a) assessed the spatial patterns of
LST over Lagos ‘city, Nigeria. The results showed that the LST distribution changed over
the study period due to the variations in characteristics in the urban environment and the
influence of economic activities. In Addis Ababa, Ethiopia, the assessment of the impact
of landscape structure on LST variation, through gradient analysis and intensity
calculation with Landsat images, showed that the impervious surfaces are the major
impacting variable and its fraction declines from the city centre towards the urban fringe

(Dissanayake et al., 2019b).

In Burkina Faso, very few studies were conducted on the subject matter. Indeed, Di Leo
analysed the role of green infrastructure in LST mitigation in Bobo-Dioulasso, using
Landsat thermal images (Di Leo et al., 2016). The findings showed that the green areas
displayed lower LST than the other LULC units. In terms of surface energy budget,
Ouagadougou city experienced a reduction of albedo against an increasing trend of
Sensible heat fluxes toward the downtown, due to the multiplication of concrete surfaces
(Offerle et al., 2005). In addition, the evapotranspiration from vegetated areas is seen to
be responsible for night cooling while the proximity of open water is a key factor in

daytime cooling in hot-dry cities (Lindén, 2011).
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2.5.  Overview and Key Issues of the Study

The previous studies emphasized the spatiotemporal variation of LST and its relationship
with LULC in urban areas. Remotely sensed and ground observations data were used to
map LULC, through supervised and unsupervised classification methods, to assess the
LST patterns. In the study area, an unsupervised method was done with Landsat data to
map the LULC and retrieve the surface temperature in Bobo-Dioulasso (Di Leo et al.,
2016). In Ouagadougou, observation data were used to characterize the nocturnal cool
island of the city (Lindén, 2011). Overall, these studies focused on one city without any
comparison possibility with others. Again, these studies did not undertake time series
analysis of LULC change and LST trends for the sites that were investigated. In addition,
machine learning algorithms combined with cloud computing platform have not been
used to map LULC in the study area. Moreover, the response of LST to rapid urbanisation
was not researched in the study area. More importantly, only a few research studies
investigated the link between air temperature and diseases such as malaria, dengue,

meningitis.

Of significant interest to the present research, however, is that the link between the urban
LULC change induced LST and the aforementioned diseases has never been done in the
specific study sites chosen for this work. It remains then a relevant research area since
many African cities are growing rapidly with significant effects on LST patterns. The
present research attempts to fill these gaps by using Landsat time-series surface
reflectance imagery, MODIS Aqua LST product with machine learning algorithms to
determine the LULC evolution and derive the urban LST. The relationships between the
LULC dynamics and LST and that between some diseases (malaria, dengue and

meningitis) and LST have been investigated.
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CHAPTER THREE

3.0. MATERIALS AND METHODS

3.1. Description of Materials
This subsection presents the different datasets used in the research. It includes remote

sensing data, meteorological data, ground reference and socio-economic datasets.

3.1.1. Description of remote sensing data

For this research, the remote sensing data included Landsat images, MODIS LST images
and Shuttle Radar Topographic Mission Digital Elevation Model Version 3 (SRTM V3)
image. Landsat satellite images ranging from 2003 to 2021, for the sensors Thematic
Mapper (TM) carried by Landsat 5, Enhanced Thematic Mapper Plus (ETM+), carried
by Landsat 7, and Operational Land Imager (OLI) carried by Landsat 8 were used.
Landsat 5 and 7 acquire data in descending (daytime) mode, while Landsat 8 operates
both in descending and ascending (occasionally) mode. For this study, the images from
the daytime mode were used. In addition, MODIS Land Surface Temperature (LST) from

the Aqua satellite was used to compute the LST over the study area.

The present research used MODIS Aqua rather than Terra because it provides both day
and night-time LST data, passes over the study area around the peak emission time (1:30
pm). Aqua also has a daily temporal resolution, while other satellites such as Landsat
sensing time is around 10:30 am and does not provide night-time LST and has a coarse
temporal resolution of 16 days. Despite its coarse spatial resolution, MODIS Aqua is
useful for surface temperature study. Furthermore, the 30 metres spatial resolution SRTM
image was used to generate the topographic elements (elevation, slope, aspect) of the

study area. These topographic elements were considered as predictors in the image
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classification to help enhance the discrimination level between the different LULC
classes. The choice of SRTM was motivated by the fact that it provides higher vertical
accuracy (than ASTER for instance) digital elevation model of the earth (Farr et al., 2007,
Forkuor and Maathuis, 2012). The voids have also been filled in this version of the dataset
using non-commercial data such as ASTER Global Digital Elevation Model (GDEM)
version 2 and Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010)

(NASA, 2000). Table 3.1 shows the summary of the remote sensing data used.

Table 3.1.: Summary of the Remote Sensing Data Used

Sensor Resolution Period Usage Source
Landsat TM 30m 2003-2012
Extraction of
Landsat ETM+ 30 m 1999-2021  surface reflectance
information Google
Landsat OLI 30 m 2013-2021 Earth
Engine Data
MODLISSTAq“a 1000m  2003-2021  LST computation  Catalogue
Image SRTM Generation of
V3 30m 2000 elevation and slope

Source: Author’s field survey (2022)

3.1.2. Description of meteorological data

The meteorological data required for this research included daily air temperature data and
daily rainfall data. Ground observation datasets involving daily rainfall and daily air
temperature datasets were collected from the National Meteorological Agency (ANAM)
of Burkina Faso and used for the study area description. Additional datasets including
reanalysis (model data combined with observation data) hourly air temperature data were
collected from the European Centre for Medium-Range Weather Forecasts Reanalysis
version 5 (ECMWEF/ERAS) and utilized to establish the relationship between 2 m above

ground air temperature and LST. The reanalysis data have an original spatial resolution
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of 11,132 metres and ranged from 2003 to 2021 as the ground station data. Table 3.2

presents the details of the meteorological data.

Table 3.2.: Details of the Meteorological Data Used for the Study

Data type Resolution Usage Source
Air temperature data . Study area Natlonall
(min, max) Daily description Meteorologlcal
’ Agency-Burkina Faso
Air temperature Air temperature
reanalysis data Hourly trend analysis, LST
(mean) gap-filling
ECMWF/ERAS-Land
Surface latent heat Hourly (Google Earth Engine
flux Energy budget Data catalogue)
Surface sensible heat patterns
Hourly description
flux
Study area National
Rainfall data Daily yar Meteorological
description

Agency-Burkina Faso

Source: Author’s field survey (2022)

3.1.3. Description of reference samples and socio-economic data

The reference samples were collected using Very High Resolution (VHR) images from
Google Earth Pro. Moreover, statistical data on temperature-related diseases (reported
cases) were gathered from the Ministry of Health, Burkina Faso, to assess the health

impact of LST. Table 3.3 shows the details of the socio-economic and reference data used.

Table 3.3.: Details of Socio-Economic Data Used for the Study

Data type Resolution Usage Source
Temperature-related District LST and diseases  Ministry of health,
disease statistics level relationship Burkina Faso
Reference samples LULC Google Earth Pro

Yearly

(training and testing) classification VHR images

Source: Author’s field survey (2022)
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3.2.  Description of Methods of Data Collection
In this subsection, the different methods employed in the data collection process are
described. The subsection involves three sub-subsections: remote sensing data collection

methods, meteorological data collection methods and field data collection methods.

3.2.1. Remote sensing images collection

For this study, the satellite images from Landsat 5, Landsat 7, Landsat 8 OLI, provided
by the United States Geological Survey (USGS) were freely assessed from Google Earth
Engine (GEE) data catalogue (https://code.earthengine.google.com). A search was made
through Landsat collections, from 1% October to 31% December, each year, to identify the
available images covering Ouagadougou Metropolitan area and Bobo-Dioulasso
Metropolitan area as well. That procedure allowed for the collection of the longest

possible time-based urban land use history of the study area (Hackman et al., 2020).

Landsat satellites have a repeat cycle of sixteen (16) days, which means that the entire
Earth is covered every sixteen days. The study area is covered by three Landsat scenes
with the following references according to the Worldwide Reference System (WRS)
version 2: path 195, row 51 for Ouagadougou and path 197, row 52; path 196, row 52 for
Bobo-Dioulasso (Figure 3.1). Ouagadougou is sensed on cycle day number 4, between
09:30 am and 10:30 am, while the satellite passes over Bobo-Dioulasso on cycle day
number 2 between 10:05 am and 10:38 am. That means, in a month there is a maximum

of two images covering the study area.
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Figure 3.1.: Localisation of Landsat Scenes and MODIS Tiles Covering the Area

Source: Author’s field survey (2022)

Landsat 5 and Landsat 7 have both four Visible Near Infrared (VNIR) bands namely Blue
(band 1), Green (band 2), Red (band 3) and Near-Infrared (band 4) at 30 m spatial
resolution. They also have two Short-wave Infrared (SWIR) bands: SWIR 1 (band 5
SWIR 2 (band 7) and one thermal band (band 6) with an original spatial resolution of 60
metres, which was resampled to 30 metres for harmonization purpose with the other
spectral bands. In addition to these bands, Landsat ETM+ has a panchromatic band (band

8) with 15 metres spatial resolution.

Landsat 8 carries two sensors namely Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS). The OLI sensor comprises one coastal aerosol band (band 1);
four VNIR bands: Blue (band 2), Green (band 3), Red (band 4) and Near-Infrared (band
5); two Short-wave Infrared (SWIR) bands: SWIR 1 (band 5 SWIR 2 (band 7); one Cirrus

band (band 9), all at 30 metres spatial resolution (USGS, 2019). It also records images

49



for one panchromatic band (band 8) at 15 m spatial resolution. The TIRS sensor collects
data for two thermal bands (band 10 and band 11) at 100 metres original spatial resolution,
resampled to 30 metres (USGS, 2019). The VNIR and SWIR bands were used to assess

the LULC dynamics in the study area, from 2003 to 2021.

In addition to Landsat images, MODIS LST data (Tile h17v7) were used for analysing
the LST patterns in the study area. MODIS is a sensor onboard polar-orbiting satellites,
Aqua and Terra. The Terra platform was launched in December 1999 and Aqua was
launched in May 2002 (Chang et al., 2018). The Terra equatorial crossing time is around
10:30 am in descending mode and 10:30 pm in ascending mode, while Aqua overpass
time is around 1:30 pm in ascending mode and 1:30 am in descending mode (Wan et al.,
2004). It has 36 spectral bands with wavelengths ranging from 410 nm to 14,400 nm
(Xiong et al., 2006). The bands’ spatial resolutions vary from 250 metres (bands 1-2) to

500 metres (bands 3-7) and 1,000 metres (bands 8-36) (Xiong et al., 2006).

For this research, Google Earth Engine (GEE) platform was used. GEE is a cloud-based
geospatial analysis platform which provides easy and instant access to satellite products
and the necessary computing resources for direct processing on the platform (Parastatidis
et al., 2017), without the need for downloading and storing in local system (Gorelick et
al., 2017). There are many types of data in the GEE catalogue, but for this research two
types of datasets were used: Landsat 5 - TM, Landsat 7 - ETM+, Landsat 8 - OLI surface

reflectance data and MODIS Aqua daytime and night-time LST product.
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3.2.2. Meteorological data collection

The air temperature and rainfall datasets were collected from the National Meteorological
Agency-Burkina Faso. The required meteorological data for this study are daily tabular
datasets covering the areas of Ouagadougou and Bobo-Dioulasso. The ERA 5-Land
reanalysed hourly air temperature data were also extracted from GEE Data Catalogue.
The hourly data were aggregated into daily datasets in GEE platform and exported for

further time-series analyses.

3.2.3. Reference samples and socio-economic data collection
The field survey consisted of reference samples (training and testing) collection for LULC

classification. Statistical data on temperature-related diseases were also collected.

3.2.3.1. Reference samples collection

The reference samples were collected by observing a minimum mapping unit of 30 x 30
metres of homogeneous landscape (Forkuor ef al., 2018) to match the Landsat satellites
images resolution (30 m). A point was then picked at the centre of each homogenous unit.
The samples were collected from Google Earth Pro version 7.3.6.9345 high-resolution

images through on-screen digitization.

In total, four years were considered for the LULC analysis with an epoch of six years:
2003, 2009, 2015 and 2021. The classification scheme used in this study is composed of
five LULC classes including built-up, bare land, forest, agricultural land and water (Table
3.4). Agricultural areas were combined with shrub land to have agricultural land class.
This is because of the fact that agricultural areas look like savannah parks in the case of
cultivated areas or shrubs in the case of fallow lands. This similarity implies a spectral

confusion between the two classes in the region. The class considered as bare land is
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composed of areas cleaned for construction or used for public activities such as football,

and meetings (Hackman et al., 2020) or untarred roads.

Table 3.4: Land Use/Land Cover Classification Scheme and Description

LULC classes Description

Area dominated by urban, peri-urban and rural settlements

Built- : .
urt-up including pavement, tarred roads, and other concrete surfaces
Bare land Surface without vegetation, building or water, untarred roads
Forest Area occupied by urban parks, forests

Cultivated lands including seasonal, permanent crops and

Agricultural land fallows, shrubland, grassland

Water Rivers, dams, lakes

Source: Adapted from Di Gregorio et al. (2000); Appiah (2016)

For the purposes of quantitative analyses and comparison, homogenous point samples
were collected throughout the four years. Given that the area is in continuous urbanisation
and most of the LULC classes are being transformed to built-up areas, a change logic was
adopted to collect the samples. Thus, for the built-up class, the earliest image was used
as reference, assuming that in urban areas the conversion from other classes to built-up is

irreversible.

Moreover, to ensure that the samples are consistent throughout the period, the “Show
historical imagery” tool in Google Earth Pro was employed to move forward, year after
year, in order to record the pixels that remained built-up from 2003 to 2021. For the other
classes (water, forest, bare land and agricultural land), the latest image was used making
sure that the class of each sample is the same throughout the time series by going back in
time and retaining the consistent pixels for the analysis. It is important to note that points

features were created instead of polygons, because GEE treats polygons by transforming
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them into spatial points and more attention has to be paid to digitize same-size polygons

to get strong autocorrelation between pixels within each one (Abu et al., 2021).

In total, 289 and 144 homogeneous and consistent samples were collected in
Ouagadougou and Bobo-Dioulasso, respectively (Figure 3.2). Ouagadougou has more
samples than Bobo-Dioulasso because more cloud-free historical high-resolution images
were found over this area. However, in Bobo-Dioulasso, only the central area (urban core)

was covered by clear images.

-1.60 -1.50 140 -4.60 -4.40 -4.20 -4.00
OUAGADOUGOU BOBO-DIOULASSO

12.50

12.40
1120 11.40

12,30

11.00

12.20

-160 150 -1.40

Composite image Samples Bobo [144] Samples Ouaga [289] A
SOUTCEGEQFESE; r?h F?r';'s B NIR » Agric. land [34] @ Agric. land [58]
" Red e Bare land [15] ® Bare land [15]
Il Green e Built-up [43] ® Built-up [136]
__ Limit of e Forest [32] s Forest [50]
study area * Water [20] = Water [30]

Figure 3.2: Distribution of Reference Samples in the Study Sites

Source: Author’s field survey (2022)

3.2.3.2. Socio-economic data collection
Data on selected temperature-related diseases were collected from the Ministry in charge
of Health, Burkina Faso. The data were composed of monthly reported cases of malaria,

dengue fever and meningitis from 2017 to 2021, based on data availability.
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3.3.  Description of Methods of Data Analysis
This subsection presents the data analyses processes, the specific methods used and the
software or tools as well. It also comprises the methodological flowcharts describing

graphically the steps followed to achieve each objective of the study.

3.3.1. Data analysis for land use/land cover dynamics assessment
To assess the dynamic of LULC, the analyses consisted of the pre-processing and
processing of satellite images, the LULC classification and the accuracy assessment. An

intensity analysis was carried out to capture the different LULC classes changes pattern.

3.3.1.1. Satellite images pre-processing

For this research, GEE platform was used for the LULC mapping. The satellite images
for the LULC mapping were collected from Landsat 5 TM, Landsat 7 ETM+ and Landsat
8 OLI sensors, provided by the USGS. All the images were surface reflectance data from
the Level 2 Collection 2 Tier 1 datasets, which are the second-generation of Landsat pre-
processed products. Indeed, prior to their ingestion into GEE Data Catalogue, the images
were pre-processed to at-surface reflectance level through the Landsat Ecosystem
Disturbance Adaptative Processing System (LEDAPS) in the case of Landsat 5 and
Landsat 7 and the Landsat Surface Reflectance Code (LaSRC) in the case of Landsat 8

OLI (USGS, 2020).

Additional pre-processing tasks including scaling and cloud masking were performed on
the images. Regarding the scaling procedure, the scale factor and offset value provided
in the bands description in the GEE catalogue were used to reconstitute the surface
reflectance values of the images. A cloud masking, using the Quality Assessment (QA)

band, was also done on images with low cloud cover (<10 per cent). Furthermore, in May
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2003, the Scan Line Corrector (SLC) onboard the Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) instrument failed (Singh and Prasad, 2015). The function of the SLC was
to compensate for the forward motion of the satellite during data acquisition. This failure
has resulted in data gaps (about 22 per cent of data lost) on each Landsat 7 scene and
removed its capacity to provide spatially continuous fields, but the remaining spectral
information maintains the same radiometric and geometric quality as images collected

before the instrument’s failure (Yin ef al., 2017; Asare et al., 2020).

Many methods such as Weighted Linear Regression (WLR), integrated with Laplacian
Prior Regularization Method (LPRM), Localized Linear Histogram Matching (LLHM),
Neighbourhood Similar Pixel Interpolator (NSPI), Geostatistical Neighbourhood Similar
Pixel Interpolator (GNSPI) and Multiple-Point Geostatistics (MPS) have been developed
to fill the gaps. For this research, the USGS Landsat 7 gap-filling method was employed

to fill the gaps in GEE platform (USGS, 2004).

3.3.1.2. Satellite images processing

For the LULC mapping, six atmospherically corrected surface reflectance bands, namely,
Blue, Green, Red, Near-Infrared, and Shortwave-Infrared band 1 (SWIR 1) and
Shortwave-Infrared band 2 (SWIR 2) were used. Assuming that the land cover type and
configuration remained the same in both rainy and dry seasons, the median image for the
October-December period for each year was computed from the image collections
obtained for each classification year. In addition to the spectral bands, additional inputs
composed of topographic derivatives (elevation, slope), as well as vegetation and some

land cover specific indices were computed.

The vegetation indices useful to discriminate vegetation from other LULC classes include

the Normalized Difference Vegetation Index (NDVI) (Hackman et al, 2020) and

55



Enhanced Vegetation Index (Forkuor ef al., 2018). Dry Built-up Index (DBI), Dry Bare-
soil Index (DBSI) and Normalized Difference Built-up Index (NDBI) (Rasul ez al., 2018),
Bare Soil Index (BSI) and Soil Adjusted Vegetation Index (SAVI) (Polykretis et al.,
2020), and Normalized Difference Water Index (NDWI) (Kafy et al.,, 2020) were the
biophysical indices used. SAVI is used to correct NDVI for the influence of soil
brightness in areas with low vegetation cover. BSI is used to show the difference between
agricultural and non-agricultural land due to its ability to detect bare soil and fallow lands
(Polykretis et al., 2020). DBI and DBSI are used in combination with NDBI to help
distinguish between built-up class and bare land class, rather than using only NDBI due
to its inability to distinguish between the two units in dry climate (Rasul et al., 2018), as

in the context of Burkina Faso.

Furthermore, Principal Component Analysis (PCA), a statistical approach that reduces
the dimensionality of large datasets, was performed on the median images to extract the
main uncorrelated bands that contain most of the spectral information (Tassi and Vizzari,
2020). In sum, the predictors used for the image classification were composed of the
median images, the vegetation and biophysical indices, the topographic elements
(elevation and slope, derived from DEM image at a spatial resolution of 30 m) and the
three Principal Component (PC). Table 3.5 presents the description of the different

predictors used for LULC mapping.
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Table 3.5: Details of the Predictors Used in the Image Classification. All predictors
are calculated on a spatial resolution of 30 m. p. represents the reflection in band x.

Predictor Computation equation Description

med(Blue) Median from October to December Median band of au blye bands in
the period

med(Green) median from October to December Median bgnd of all'green bands

in the period

med(Red) median from October to December Median band of al.l red bands in
the period

med(NIR) median from October to December Median band of al! NIR bands in
the period

med(SWIR 1)

median from October to December

Median band of all SWIR1
bands in the period
Median band of all SWIR2

med(SWIR 2) median from October to December . .
bands in the period
Elevation Automatic Elevation level
Slope Automatic Slope classes
PC1 PCA First principal component
PC2 PCA Second principal component
PC3 PCA Third principal component
PNIR — PRED Index to differentiate vegetation
NDVI _—
PnIrR t PRED class from others

SAVI 1.5% (Pnir ~ PreD) Index to account for soil noise

(Pnir + Prep + 0.5)
NDWI PGreen — PNIR Index to discriminate water class

PGreen T PNIR from others

Pswir1 — PNIR Index to distinguish built-up for
NDBI —_

Pswiri + PNIR other classes

PBLUE — PTIR Index to distinguish between
——— = NDVI
DBI PeLUE + PTIR built-up and bare land
DBSI Pswir1 — PGREEN NDVI Index to distinguish between
Pswiri + PGREEN built-up and bare land
Source: Author’s data analysis (2022)
3.3.1.3. Land Use/Land Cover classification

The image classification was performed using machine learning algorithms. Then, the
collected reference datasets were divided into training and testing set to avoid overfitting
(Gholamy et al., 2018). In general, the best results are obtained with 70 per cent — 80 per

cent of the samples assigned to training sets and 20 per cent — 30 per cent of the data for
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testing sets. For this study, 80 per cent of the samples were used to train the model and
20 per cent were used for testing. A pixel-based image classification method was applied
using three different supervised classifiers available in GEE: Random Forest (RF),
Support Vector Machine (SVM), and Gradient Tree Boost (GTB). RF is a supervised
machine learning algorithm founded on an ensemble of classification trees which
employs bagging operation to generate multiple decision trees (ntree) based on a
randomly selected subset of training data. Each tree is then grown to its maximum size
based on a bootstrapped sample from the training dataset without any pruning, and each
node is split using the best among a subset of input variables (mtry) (BREIMAN, 2001).

The classification is performed by using the most voted class from each tree predictor.

SVM is a non-parametric supervised learning algorithm considering that for a nonlinear
separable dataset, consisting of points from two classes, all the points of one class can be
separated from those of the other class by using an infinite number of hyperplanes. The
best hyperplane with the largest margin between the two classes is selected by using a
subset of training samples known as support vectors (Cracknell and Reading, 2014). RF
and SVM have high performance in time-series image classification (Nery et al., 2016),
achieving good accuracies in several studies conducted in the region (Zoungrana et al.,
2014, Zoungrana et al.,2015; Forkuor et al., 2015, Forkuor ef al.,2018). GTB is a gradient
boosting algorithm that uses regression trees as weak classifiers. The weak learners

measure the error in each node, split the node and return the values (Son et al., 2015).

3.3.14. LULC post-classification majority filtering
After producing the LULC maps from the different classifiers and in order to improve the
final results, the LULC images were converted to an image collection and a vertical

majority filtering (using the mode function) was performed to have a single classified
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image. To perform the image classification in GEE, numbers were assigned to each class
(0: water, 1: Built-up, 2: Agricultural land, 3: Forest, 4: Bare land). Thus, the majority
filtering process consisted of a spatial overlay of the outputs of the different classifiers
after which, for each pixel, the most frequently occurring LULC class (the corresponding

number) across the collection was selected as the final pixel label.

In other words, the majority voting calculated the most common class at each pixel level
across the image collection. When there is one majority vote (for example: 1,1,3), the
majority value is returned (the majority pixel value is 1). In case there are multiple mode
values (not applicable for this study, because it used three classifiers) or there is no
majority vote (for example: 2, 1, 5), the minimum pixel value is returned (the minimum
value is 1). Naboureh et al. (2020) found an improvement in LULC maps when applying
majority voting with random under sampled SVM classifications. Figure 3.3 presents how

the mode filter works in GEE under different conditions of majority voting.

<
| 1
| 1 Multiple majority values i
- Mode filter ; >
! value
| 1
5

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.3: Majority Filter Process

Source: Author’s data analysis (2023)

The accuracy of the majority voting was assessed using 1 000 random points. The pixel
values of the random points were extracted from the majority vote image and each of the

individual classifier results. The overall accuracy of each majority image was calculated
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by dividing the number of majority pixels to the total number of pixels. The accuracies

of the majority filtering results are presented in table 3.6.

Table 3.6: Majority Filtering Overall Accuracy

Year Ouagadougou Bobo-Dioulasso
2003 0.88 0.84
2009 0.89 0.86
2015 0.82 0.88
2021 0.86 0.93

Source: Author’s data analysis (2023)

The final classification comes with “salt and pepper” effects due to misclassified pixels.
Consequently, a post-classification horizontal majority filter (with a 3x3 neighbourhoods)

was applied to replace the isolated pixels with the most common pixel values.

3.3.1.5. Land Use/Land Cover accuracy assessment

The accuracy of each classified map was assessed using the error matrix (Table 3.6),
which is a two-entry table comparing the classified map to the actual data. Based on the
different error matrices generated from the four time points classified maps, the LULC

classification accuracy metrics were computed.

Table 3.7: Error Matrix Design

Actual
1 2 .. J q Total ti+

= 1 i AP 1 tig t+
= 2 11 12 bj tq b+
= . . . .
51
=
g i ti1 to tj tiq tir
@)

q tq] tq2 e tqq tq+

Total t+j t+1 t+2 t+j t+q

Source: Adapted from Mas et al. (2014)
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The LULC maps accuracy metrics including overall accuracy (OA) and kappa coefficient
(k) were computed based on the error matrix. The overall accuracy is the proportion of
all pixels correctly classified in their categories (Mas et al, 2014). It is computed

according to Equation (3.1).

q ..
04 = 2=« 100 3.1)

N

where ¢ is the number of LULC classes, t;; is the number of pixels of class i correctly
classified in class /, N is the total number of pixels in the study area.

The kappa coefficient which is known to be more robust than the O4 because it takes into
consideration the agreement occurring by chance (Loosvelt et al, 2012) was also
calculated. A value of k below 0 indicates no agreement between the classified map and
the observations, 0-20% means a slight agreement, 21-40% corresponds to a fair
agreement, 41-60% is a moderate agreement, 61-80% shows a substantial agreement, and
81-100% indicates an almost perfect agreement (Loosvelt et al., 2012). The kappa
coefficient is computed following Equation (3.2).

Kk = NEL =3 (tiste))
N2—2?=1(ti+t+j)

(3.2)

Where t;, is the total number of classified pixels in class 7, and t, ; is the total number of

prediction pixels in class j. N is the total number of prediction pixels.

3.3.1.6. Land Use/Land Cover intensity analysis

Intensity analysis is a mathematical framework that compares a uniform intensity to
observed intensities of temporal changes among categories (Pontius et al, 2013).
Uniform intensity is defined as the hypothetical change intensity when the overall change
occurred during a time interval was uniformly distributed, from the beginning to the end

of the interval (Aldwaik and Pontius, 2012). In this study, the categories refer to the
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different LULC classes, namely built-up, agricultural land, forest, bare land and water.
Based on the classified maps years, the time intervals include 2003 - 2009, 2009 - 2015,
2015 -2021. Intensity analysis takes place at three levels including interval level, category
level and transition level (Quan et al., 2019). To perform intensity analysis, in this study,
the equations based on Aldwaik and Pontius (2012) were used. The following
mathematical notations were used: Y; corresponds to the year at time point #; Y+, is the
year at time point #+1/. J is the number of categories; j is the index for a category at the
latter time point of an interval; i is the index for a category at the initial time point of an
interval; n is the index of the gaining category for the selected transition; Cy;is the size of
transition from category i to category j during interval Y;- Yi+;; Cin is the size of annual
transition from 7 to n during interval Y;- Y;+7; Cryj is the size of transition from n to j during

interval Y;-Y:+;. Cun 1s the size of annual gain of n during interval Y;-Y;+;.

The interval level analyses the overall change size and the annual change intensity of the
whole area in each time interval (Quan ef al., 2019). The annual change intensity of the
study area during time interval ¢ (S;) is computed through Equation (3.3). Equation (3.4)
shows how to compute uniform change intensity during time interval ¢ (Ur). If Si< Ur

then the change is slow. In case S;> Urthen the change is fast.

change during interval t Zle[(z:{:l Ctij)—Crijl

Sp = . — x 100 = S x 100 (33)
study area sizexinterval t duration Yey1— Ye) (ijl Yi_1 Ceif)
. . T-1,vJ I c...
__ change during all intervals _ Yt=i (ijl ijl tij) % 100 (3 4)
T — study area sizexstudy duration - (Yr— Y1)(Z§:1 2{21 Ceij) .

The category level compares the variation in size and intensity of gross gains and gross
losses across categories during each time period (Quan et al., 2019). The loss intensity
(Ls) from a category i is the lost percentage of the start size of that category i during the
time interval t (Equation 13). The gain intensity (Gy) to a category j corresponds to the
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percentage of the end size of that category j that gained during the time interval ¢ and is
computed according to Equation (3.5). The intensity of a uniform change during time
interval ¢ is defined by S;is given by equation (3.6). If L; < S; or G; < S, then the loss
from category i or gain to category j during time interval ¢ is dormant. If L; > S; or G, >

S, then the loss from category i or gain to category j during time interval 7 is active.

Lt‘ _ loss of category i during interval t % 100 = 2{=1 Ctij—Ctii
P = = —=

interval t duration x size of category i at start time (Yee1—Yr) Z{_l Ctij

x 100 (3.5)

. Z{:i Ctij—Ctij

- gain of category j during interval ¢
tJ" interval t duration x size of category j at end time (Yeg1— Yp) Zle Ceij

x 100  (3.6)

The transition level computes for each time interval how each category’s transitions vary
in size and intensity across (Pontius ef al., 2013). The transition intensity from category i
to category n during time-interval t (R;,), where i is different from n, is defined by
equation (3.7). Equation (3.8) presents the uniform or hypothetical transition intensity to
category n during time interval t (Wy). In case Riin< Wiy, then the gain or loss of n avoids

i during interval ¢. If Rin > Wi, then the gain or loss of n targets 1 during time interval t.

R __transition area from category i to n during interval t X 100 __ Ctin X 100 (3 7)
tin — : : : : : - .
interval t duration X size of category i at start time (Yee1—Yp) Z§=1 c“-j
gain of category n during interval t X 100 Z{=1 Ctin—C¢nn X 100
Wiy = = (3.9)

interval t duration X size of non category n at start time o (Yep1—Ye) 21:1[(2{:1 Ctij)—Ctnjl

To perform the intensity analysis, the “OpenLand” package (Exavier and Zeilhofer, 2020)
in R environment was used. The LULC outputs from the four years were used as input
data in the “ContingencyTable” function to generate a cross-tabulated matrix comprising
the quantity of changes in square kilometre from one category to another between two
consecutive time points. This cross-tabulated matrix was utilized as input in the

“intensityAnalysis” function to compute the interval, category and transition levels of
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changes that have occurred between the different categories, during the three-time

intervals. Figure 3.4 presents the overall methodological flowchart for LULC mapping in

the study area.
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3.3.2. Data analysis for LST and air temperature trend assessment
To assess LST and air temperature trend, the analysis consisted of LST missing data
assessment and LST gap-filling. LST and air temperature trend and LST and air

temperature relationship were also performed.

3.3.2.1. LST missing data assessment

Satellite LST is vital for climatological and environmental studies, but the available
dataset are not continuous in time and space due to cloud cover (Shiff et al., 2021).
Indeed, MODIS produces daily both daytime and night-time, almost global coverage,
LST data at a spatial resolution of 1 km. However, the datasets are often discontinued due
mainly to cloud cover. In this research, the daily LST data extracted from MODIS thermal
imagery were analysed to detect missing data. The missing values in each dataset from

2003 to 2021 are presented in Figure 3.5.
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Figure 3.5: Missing LST Data

Source: Author’s data analysis (2022)
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The figure 3.5 shows that over the site of Ouagadougou, there was 36% daytime and 40
% night-time missing LST data. In Bobo-Dioulasso, the missing data was estimated at
37% and 48% during daytime and night-time, respectively. Indeed, these daily missing
data over the urban area could alter the quality of monthly, seasonal and yearly average
LST computation (Li et al., 2018). For example, there are months with more than five
missing daily data, and to include them in the calculation of monthly means, a gap-filling
operation was performed to compute the missing data based on the observed daily LST

values (Anderson and Gough, 2018).

3.3.2.2. LST gap-filling

To fill the data gaps and produce a continuous LST, different interpolation methods
including the use of available early observations data or data from nearby pixels to
compute LST in pixels with data gaps (Jin and Dickinson, 2000), as well as air
temperature to LST relationships (Shiff et al, 2021) were used. For this research, an
approach combining the 1-km MODIS LST product with the 0.1°x 0.1° ERAS5-Land 2
meters above ground air temperature datasets were used to produce a spatiotemporally
continuous gap-filled LST of MODIS at the spatial resolution of 1-km. The method was
based on the following considerations: Firstly, daily minimum LST and air temperature
values are recorded in early morning while the air temperature peak occurs 1-3 hours after
LST maximum at noon (Good, 2016); secondly, LST under cloud coverage is close to 2-
m air temperature value; thirdly, LST at a specific time and location involves two
components: the long-term mean (climatology) and the deviation from that climatology

(anomaly) due to weather conditions (Shiff ef al., 2021).

So, a Temporal Fourier Analysis (TFA) was performed on the daytime and night-time

existing LST values and the 2 metres above ground air temperature data as well. TFA is
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a mathematical method that decomposes a time-dependent periodic phenomenon into
series of sinusoidal functions, each defined by unique amplitude and phase (Jakubauskas
and Legates, 2000). It describes the seasonal cycles of temperature in terms of annual, bi-
annual and tri-annual components or harmonics, and the combination of those
components is considered as the climatology in the present study. The application of TFA
in both temperature variables resulted in LST and air temperature climatology values
from 2003 to 2021. Based on the daytime and night-time climatology values, the air
temperature anomaly was computed. To proceed to the gap-filling, the cloud free daytime
and night-time LST climatology values were added, respectively, to the daytime and
night-time air temperature anomalies to generate the daytime and night-time continuous

LST values of the study sites, as shown in Equation (3.9) (Shiff et al., 2021).

LSTunder_cloud = LSTclim + Tanomaly (3-9)
Where LSTunder cioua1s the value of missing LST, LSTein 1s the climatological clear sky

mean LST and Tanomary 1s the anomaly value of 2-m air temperature.

To assess the performance of the derived continuous LST model, the commonly used
statistical metrics including Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) (Bartkowiak et al., 2019) were calculated with the daytime and night-time cloud
free pixel LST values. In addition, Pearson correlation was performed to evaluate the

strength of the relationship between the two datasets. Table 3.8 presents the error metrics.

Table 3.8: Error Metrics of MODIS Gap-Filled LST Dataset

Ouagadougou Bobo-Dioulasso
RMSE MAE Pearson RMSE MAE  Pearson
LST Day 3.84 2.00 0.83 4.11 2.42 0.84
LST Night 2.23 1.21 0.89 1.38 0.69 0.90

Source: Author’s data analysis (2022)
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The RMSE ranges between 1.38 and 4.11, while the MAE fluctuates between 0.69 and
2.42. For the correlation, all the coefficient values are greater than 80 per cent. These
values are acceptable, because they are within the validation interval of previous research
work which performed models’ performance assessment using similar metrics (Kou et
al, 2016; Malamiri et al., 2018; Shiff et al, 2021). After validating the computed
continuous daytime and night-time LST data, they were used to fill only the missing
values in the MODIS LST product, through blending method, to produce a spatio-

temporal continuous LST datasets.

3.3.2.3. LST and air temperature trend analysis

The trend of air temperature and LST dataset from 2003 to 2021, was computed through
the non-parametric Mann-Kendall’s trend test. The Mann-Kendall test is one of the most
popular non-parametric trend test based on observational ranking and is less sensitive to
outliers (Yadav et al., 2014). It is used to analyse time-series data for consistently
increasing or decreasing trends detection. It works for all distributions, which means the
data need not meet a normal distribution. The purpose was to determine if the
temperatures time series exhibited a significant monotonic increasing or decreasing trend,

using a threshold (p-value) of 0.05 (95 per cent Confidence Interval).

To perform a trend test in a dataset without any autocorrelation, the levels of serial
correlation of the seasonal and yearly time series datasets were investigated. The presence
of serial correlation among the datasets was verified visually, using the Auto-Correlation
Function (ACF) functions in R environment, which compute the autocorrelation in the
dataset. The Bias corrected Prewhitening (bcpw) function from the Modified Versions of
Mann-Kendall and Spearman's Rho Trend Tests package (modifiedmk) was applied to

the datasets with autocorrelation before running the trend (Patakamuri and O’Brien,
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2021). For the yearly and seasonal temperatures trend, the Mann-Kendall Test of Time
Series Data Without Modifications (mkttest) function was used (Patakamuri and O’Brien,

2021), because no significant autocorrelation was found within the datasets.

3.3.24. LST and air temperature relationship

To assess the relationship between the LST and 2-m above ground air temperature two
multivariate statistical methods were used. First of all, the datasets were checked to test
the normality assumption (Ghasemi and Zahediasl, 2012). The normality test was
performed through quantile-comparison plot (Figure 3.6) and Kolmogorov-Smirnov (KS)

Test (for more than 5 000 entries).
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Figure 3.6: Quantile-Comparison of Temperature Datasets

Source: Author’s data analysis (2023)
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The visualisation of the plot indicated a non-normal distribution of the datasets for both
cities, because the points do not follow the diagonal reference line. In addition, the p-
values of the KS test are greater than the threshold value of 0.05 for both sites, then the
datasets do not meet the normal distribution. However, according to the central limit
theorem, “sample means are approximately normal for moderately large sample sizes
even if the original populations are non-normal” (Elliott and Woodward, 2007).
Therefore, with such a large sample size (the dataset has more than 6,000 entries) and
given that the dataset is composed of two groups (LST and air temperature) of quantitative
variables, a t-Test was performed to compare them in terms of mean values, following a

simple conservative approach (in case of unequal variances).

In addition, Spearman correlation was performed to assess the degree of relationship
between the two variables. The values are comprised between -1 and +1, indicating a
positive correlation when the ranks of the two variables increase at the same time, whereas
the correlation is negative when the rank of one variable increases as the other one
decreases (Patra et al., 2018). A value of zero or close to zero means no relationship

between the two variables.

3.3.2.5. Estimation of surface urban heat island intensity

The Surface Urban Heat Island (SUHI) was assessed in this study as the LST difference
from the average LST of the whole area. SUHI intensity over the study area was
quantified using the Relative surface temperature (7z) concept (Xu et al., 2013). It is a
relative concept calculated by subtracting the average LST value of the whole area from

the LST value of each pixel and dividing by the average LST, as shows in Equation (3.10).
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LST;—LST,
TR = T (310)

Where, LST; is the surface temperature value for a pixel i, LST, is the average surface

temperature value of the area.

After the computation of the 7k, the values were grouped into classes and the
corresponding SUHI intensities were defined (Table 3.9). Figure 3.7 shows the

methodological flowchart for LST and air temperature analysis.

Table 3.9: SUHI Intensity Definition

Relative surface temperature (°C) SUHI intensity level
<0 Weak heat island
0-0.05 Moderate heat island
>0.05 Strong heat island

Source: Adapted from Xu et al. (2013)
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3.3.3. Data analysis for LULC and LST relationship

A fractional cover analysis was done, using the “aggregate” function in R to extract the
proportion of each LULC class per pixel for the assessment of the relationship between
the LULC dynamics and LST trend. Indeed, the algorithm takes a classified high-
resolution image (LULC from Landsat images), downscales it and calculates the fraction
of a given land cover class within each coarse pixel. To perform that analysis, the LULC
maps for 2003, 2009, 2015 and 2021 were reclassified to have two homogeneous classes:
built area and non-built area (Table 3.10). The objective is to evaluate the implication of
human footprint (built-up areas) in LST intensification and the contribution of natural

areas (non-built-up) to lower the LST values in urban settings.

Table 3.10: Reclassified Homogeneous LULC Classes

LULC classes Reclassified
Built-up .
Built-
Bare land uti-up
Forest
Non-built-
Agricultural land on-bur-up
Water

Source: Author’s data analysis (2022)

The spatial resolution of the LULC images was set to 900 metres instead of 1,000 metres
as the LST images because the aggregate function accepts integer multiple factors (a
factor of 30 was applied). The aggregate function was used in the R environment to
calculate the proportion of each LULC class within 900x900 square metres pixels. After
the computation of the proportions, the LULC datasets were stacked with the LST images.
In addition, a grid layer of 900900 square metres was created. Using the stacked layer
together with the grid layer, the built and non-built cover ratio and the equivalent LST

values per pixel were extracted through the “Zonal statistics” tool in QGIS. The coverage
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rates were then grouped into 5 classes (0 per cent -20 per cent, 20-40 per cent, 40-60 per

cent, 60 per cent -80 per cent, and 80 per cent -100 per cent) to examine the LST patterns.

Furthermore, statistical analyses comprising median differences and Pearson correlation
were performed to show the correlation between the LST and the different LULC rates,
and the cooling effects of non-built surfaces. Indeed, to show the impact of non-built
pixels on urban cooling, the median LST value of each of the five non-built coverage
classes (0 per cent -20 per cent, 20 per cent -40 per cent, 40 per cent -60 per cent, 60 per
cent -80 per cent, and 80 per cent -100 per cent) was subtracted from the median LST
value of the fully built-up pixels (Alavipanah et al., 2015). The higher the median
difference, the higher the cooling effect of the concerned non-built cover rate. The
methodological flowchart for assessing the relationship between LULC and LST is

presented in Figure 3.8.
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3.3.4. Data analysis for LST and diseases relationship

The derived LST data and the reported cases of selected temperature-related diseases,
including Plasmodium falciparum malaria, dengue fever and meningitis, collected from
the Ministry of Health at district level were used. The choice of the diseases is motivated
by the fact that in the literature, investigations were only made on the link between the
air temperature and diseases such as Plasmodium falciparum malaria (Chastel, 2006;
Gething et al., 2010; Millogo et al., 2022), dengue (Chastel, 2006) and meningitis (Chen

et al., 2022).

Moreover, these diseases are all considered as potential epidemic diseases under
monitoring in the National health system of Burkina Faso (Ministére de la santé, 2012).
The urban area in the two cities were considered for the analyses because the statistical
datasets on the diseases were full of gaps, particularly concerning the peripheral areas.
The urban areas were divided into 5 and 3 zones respectively for Ouagadougou and Bobo-
Dioulasso in line with the spatial coverage (district level) of the data received. Later on,
“Zonal statistics” tool was employed in QGIS software to extract the average annual Land

Surface Temperature values for each zone.

The generated mean LST values were used with the reported case statistics for each
disease to perform a correlation analysis in R environment applying Spearman method,
which is a non-parametric method, because the data did not follow a normal distribution.

Figure 3.9 presents the flowchart for assessing the relationship between LST and diseases.
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3.3.5. Data analysis for future LULC and LST prediction

3.3.5.1. Future LULC prediction

The future prediction of LULC was performed using Land Change Modeler (LCM), an
integrated software embedded in TerrSet package (Eastman, 2020b). LULC simulation
in LCM follows an empirical stepwise process including change analysis, transition
potential modelling, and prediction (Eastman, 2020b). The process is based on the
historical changes between time 1 (t1=2009) and time 2 (t2=2015) to predict the future
LULC in both cities. The change analyses showed that anthropogenic actions are
increasing in both studied cities, through the development of built-up areas. To
comprehend the patterns of change in the area, the spatial trend tool in LCM was used to

produce trend maps following a 9" order polynomial function (Eastman, 2020b).
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LULC future prediction needs to consider independent variables (earliest and latest
images) and some main driver variables. The common driver’ variables used in LULC
simulation in LCM included distance from river, distance from road, distance from urban
(settlement area), elevation, slope (Mungai et al, 2022) and evidence likelihood

(Yangouliba et al., 2022). Table 3.11 describes the contribution of the driver’ variables.

Table 3.11: LULC Change Drivers

Variable Description
Elevation Physical constraint to LULC change
Slope Physical constraint to LULC change

. . Dynamic variable that provides convenience to access
Distance from rivers . .
resources while changing LULC
Dynamic variable that expresses accessibility and drives
urban expansion
The closer the land to an existing settlement area, the
easier it is for that land to change to built-up surface
Expresses the likelihood of finding change between built-

up and all other LULC class in a pixel

Distance from roads

Distance from urban

Evidence likelihood

Source: Adapted from Leta ef al. (2021) and Girma et al. (2022)

LCM has a set of models for predicting LULC potential transitions based on the driver
variables and the independent LULC maps. The most common used is the Multi-Layer-
Perceptron Neural Network (MLP-NN) (Mungai et al., 2022). For this study, the MLP-
NN was used because of its ability to model many non-linear transitions’ potential at once
(Eastman, 2020a). This model also showed good performance in predicting future LULC
in the region (Yangouliba et al.,, 2022). Based on the selected driver variables and the
major LULC transition between 2009 and 2015, the model was trained to simulate the
LULC maps for 2021 in order to assess the model’s ability to predict future LULC in the
study area. Thus, the agreement between the simulated and classified LULC maps of 2021

were evaluated through the VALIDATE module in IDRISI GIS Analysis. The validation
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metrics used were the k statistics including the overall accuracy (K,,) and the model’s

ability to identify correct locations (Kjocaiiny) (Sibanda and Ahmed, 2020).

To predict future LULC in the study area, the Business As Usual (BAU) scenario was
used within a Markov Chain model. This scenario is the one that follows the normal
course of land use activity in the area and involves predicting what the landscape would
look like in 2027 and 2050 if the nature of urban development remains unrestricted,
dominated by the development of built-up surface at the expense of natural areas. 2027 is
the following year based on the six years epoch as considered in historical LULC analysis,
while and 2050 corresponds to the target year for reaching global net zero CO» emission
to limit the warming level to 1.5°C (IPCC, 2023). Figure 3.10 presents the flowchart for

future LULC prediction.

3.3.5.2. Future LST prediction

The correlation analyses performed between LST and built-up rate and LST and non-
built-up rate in Objective 3 showed that the two variables had a strong linear relationship
with LST. A Multiple Linear Regression (MLR) model was then built using the historical
LST and LULC data for the years 2009 and 20015 as shown by Equation (3.11) (Estoque
and Murayama, 2017; Sekertekin and Zadbagher, 2021). In order to evaluate the model
accuracy, for predicting future LST, LST maps of 2021 was simulated and compared with

the initial LST maps of 2021, using Kappa Index of Agreement.

LST = ay + a4 X built_up + a, X non_built_up + e (3.11)
Where LST corresponds to the LST value of a pixel, a, is the intercept of the regression
line, a; is the regression coefficient of built-up, a, is the regression coefficient of non-

built-up and e is the residual standard error. Afterwards, the predicted LULC maps of
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2027 and 2050 were reclassified into two classes namely built-up and non-built-up. The
proportion of each class per pixel of 900 x 900 square metres was also calculated. The
LST maps for 2027 and 2050 were then predicted using the MLR model with the

independent variables being built-up and non-built-up rate of the respective years (Figure

3.10).
Actual LULC LULC 2009 LULC 2015 Driver Raw data
2021 (T1) (T2) Variables | | _
: : Process
é ________________ _: [j Process
L5 Change Analysis &— output

T 2 ‘ C] Final
i result

Change Map
(T2-T1)

..................

Built-up and non
-built-up rate for
2027 and 2050

K statistics

Figure 3.10: Flowchart for Future LULC and LST Prediction

Source: Author’s data analysis (2023)
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CHAPTER FOUR

4.0. RESULTS AND DISCUSSION

4.1. Results

The results section is composed of five subsections based on the objectives of the study.
It presents firstly the results of the LULC dynamics assessment in Ouagadougou and
Bobo-Dioulasso. Secondly, the findings on the LST and air temperature trend analysis
across the study area are presented. Thirdly, the results on the correlation between LST
and urban LULC changes are presented. The fourth subsection presents and analyses the
results on the relationship between the distribution of LST and the prevalence of
temperature-related diseases in the two cities. The last subsection presents the findings

related to the future predictions of LULC changes and LST in the study area.

4.1.1. Land use/land cover dynamics assessment

4.1.1.1. Land use/land cover spatial distribution

The LULC maps of Ouagadougou (Figures 4.1) show that the dominant classes are
agricultural land and built-up area. There was a continuous expansion of settlement areas
from the inner city towards the peripheral areas at the expense of other land uses such as
agricultural areas. Being the two main land use classes in the area, they have a negative
correlation in terms of spatial growth. While built-up is expanding in the area, agricultural
lands are decreasing, indicating the intensification of human footprint throughout the
years. Other LULC classes such as water bodies, forest and bare land were also present
in the maps. In Bobo-Dioulasso, agricultural land, forest and built areas are the most
represented (Figure 4.2). Like Ouagadougou, the settlement areas in Bobo-Dioulasso kept
growing, at the expense of natural landscape such as forest areas. The expansion of built-
up areas towards the northern part of Bobo-Dioulasso’s city is due to the development of
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a new estate, named “Bobo 20107, beginning from year 2007. The water bodies and bare

land areas occupy small surfaces in the maps.
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Figure 4.1: LULC Distribution in Ouagadougou
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Figure 4.2: LULC Distribution in Bobo-Dioulasso
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4.1.1.2. Land use/land cover classification accuracy

The accuracies of the classified LULC images were assessed using the overall accuracy
and the kappa coefficient. The individual classifications overall accuracy varied between
0.8 and 0.94 performed by the Random Forest (RF) classifier, respectively in 2021 and
2003 in Ouagadougou. In Bobo-Dioulasso, the minimum accuracy was achieved by RF
in 2015 (0.66) while the maximum was performed by the Support Vector Machine (SVM)
classifier in 2003 (0.77). The majority voting results showed smoothed overall accuracies
and kappa coefficients for all the years in Ouagadougou (Table 4.1). However, there is an
improvement for both metrics, compared to the results of all the individual classifiers, for
year 2009. For Bobo-Dioulasso, the majority filtered images presented stable (2009 and
2015) to totally improved values (2003 and 2021) compared to the individual classifiers

for the overall accuracy and the kappa coefficient (Table 4.2).

Table 4.1: LULC Accuracy Metrics in Ouagadougou

Year RF GTB SVM Majority RF GTB SVM Majority
Overall Accuracy kappa coefficient

2003 0.94 0.89 0.82 0.87 0.9 0.81 0.69 0.79

2009 0.81 0.8 0.85 0.87 0.68 0.66 0.74 0.79

2015 0.85 0.87 0.85 0.85 0.74 0.77 0.75 0.77

2021 0.8 0.83 0.92 0.82 0.66 0.72 0.87 0.72

Source: Author’s data analysis (2023)

Table 4.2: LULC Accuracy Metrics in Bobo-Dioulasso

Year RF GTB SVM Majority RF GTB SVM Majority
Overall Accuracy kappa coefficient

2003 0.66 0.71 0.77 0.81 0.52 0.6 0.7 0.75
2009 0.74 0.71 0.74 0.74 0.63  0.58 0.64 0.64
2015 0.66 0.74 0.74 0.74 052  0.64 0.63 0.64
2021 0.71 0.78 0.71 0.85 0.57  0.69 0.59 0.79

Source: Author’s data analysis (2023)
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4.1.1.3. Land Use/Land Cover trend

The landscape units have changed in different ways in Ouagadougou and Bobo-
Dioulasso, between 2003 and 2021. In Ouagadougou, the built area occupied 32.75 per
cent, 35.95 per cent, 46.86 per cent and 58.34 per cent of the total landscape for 2003,
2009, 2015 and 2021 respectively (Table 4.3). Conversely, the agricultural land areas
experienced a decreasing trend represented by 65.45 per cent, 60.86 per cent, 50.13 per
cent and 37.80 per cent of the area for 2003, 2009, 2015 and 2021 respectively. These
figures indicate a linear increase of 78.13 per cent for built area against a decrease of
42.25 per cent in agricultural land between 2003 and 2021. The forest areas experienced
a global increase of 55.56 per cent, while the water bodies increased by 2.84 per cent due
to the construction of a new dam in the northern part of Ouagadougou in 2007. Bare land

surfaces also increased and occupied more than 19 per cent of the area in 2021.

Table 4.3: Proportion of LULC Classes in Ouagadougou (% of the total area)

LULC class 2003 2009 2015 2021
Built 32.75 35.95 46.86 58.34
Agricultural land 65.45 60.86 50.13 37.80
Forest 0.81 0.67 1.22 1.26
Bare 0.39 1.71 0.98 1.98
Water 0.60 0.81 0.81 0.62

Source: Author’s data analysis (2023)

In Bobo-Dioulasso, like Ouagadougou, the built areas continuously increased during the
study time span. The built-up areas represented 4.10 per cent, 5.19 per cent, 6.36 per cent
and 9.86 per cent of the total area for 2003, 2009, 2015 and 2021 respectively (Table 4.4),
corresponding to a variation of +140.7 per cent during the study period. Unlike
Ouagadougou, the trend of agricultural lands was not linear in Bobo-Dioulasso. While

there was a gradual and consistent growth between 2003 and 2015 represented by 79.59
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per cent (2003), to 79.85 per cent (2009) and 84.99 per cent (2015), a decline to 80.69 per
cent was recorded for 2021. The decrease of agricultural land in 2021 could be due to the
0.68 per cent increase of forest area after a continuous decline from 15.58 per cent (2003)
to 8.51 per cent (2015). The bare land had a global increase, whereas the water bodies

decreased across the study period.

Table 4.4: Proportion of LULC Classes in Bob-Dioulasso (% of the total area)

LULC class 2003 2009 2015 2021
Built 4.10 5.19 6.37 9.87
Agricultural land 79.59 79.85 84.99 80.69
Forest 15.58 14.25 8.51 9.19
Bare 0.11 0.10 0.07 0.19
Water 0.62 0.62 0.06 0.06

Source: Author’s data analysis (2023)
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Figure 4.3 presents the evolution of LULC classes in the cities between 2003 and 2021.
The figure shows a rapid expansion of built-up surfaces in Ouagadougou. The built-up
expansion rate varied from 0.53 between 2003 and 2009 to 1.82 between 2009 and 2015
and achieved 1.91 between 2015 and 2021. In Bobo-Dioulasso, the same trend applies
but at a slower pace compared to Ouagadougou. The expansion rate fluctuated from 0.18

to 0.2 and 0.58 between 2003 and 2009, 2009 and 2015 and 2015 and 2021, respectively.
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Figure 4.3: Land Use/Land Cover Evolution Between 2003 and 2021

-

4.1.1.4. Land use/land cover intensity analysis

The generated LULC maps for the years 2003, 2009, 2015 and 2021 were overlayed to
create a transition matrix for each time interval. The matrices present the rates of
change/conversion between the different LULC categories as a percentage of the total
area. The diagonal entries represent persistence values of classes, while the off-diagonal
entries indicate changes from one class to another. The last row represents the gross gains
per category at the final year, while the last column indicates the gross loss for each

category at the final year. Table 4.5 presents the transition matrix for Ouagadougou.
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Table 4.5: Transition Matrices in Ouagadougou (% of total area)

2009

Agricultural ~ Bare Built  Forest Water Initial  Overall

total loss
Agricultural 55.80 0.61 8.48 0.23 0.33 65.45 9.64
Bare 0.05 0.18 0.16 0.00 0.00 0.39 0.21
" Built 4.47 0.93 27.29 0.00 0.06 32.75 5.46
§ Forest 0.34 0.00 0.01 0.44 0.03 0.81 0.37
Water 0.20 0.00 0.01 0.00 0.40 0.60 0.20
Final Total 60.86 1.71 35.95 0.67 0.81 100.00
Overall gain 5.06 1.54 8.66 0.23 0.41 15.90
2015
Agricultural ~ Bare Built  Forest Water Initial - Overall
total loss
Agricultural 47.23 0.16 12.55 0.69 0.23 60.86 13.63
Bare 0.19 0.50 1.02 0.00 0.00 1.71 1.21
o Built 243 0.32 33.19 0.00 0.01 35.95 2.76
§ Forest 0.15 0.00 0.02 0.49 0.02 0.67 0.18
Water 0.14 0.00 0.09 0.03 0.55 0.81 0.26
Final Total 50.13 0.98 46.86 1.22 0.81 100.00
Overall gain 2.90 0.48 13.68 0.73 0.26 18.05
2021
Agricultural ~ Bare Built  Forest Water Initial - Overall
total loss
Agricultural 34.22 0.28 15.07 0.55 0.02 50.13 15.91
Bare 0.05 0.33 0.59 0.00 0.00 0.98 0.64
“ Built 2.82 1.37 42.62 0.04 0.02 46.86 4.25
= Forest 0.56 0.00 0.03 0.61 0.01 1.22 0.61
a Water 0.14 0.00 0.04 0.06 0.57 0.81 0.23
Total 37.80 1.98 58.34 1.26 0.62  100.00
Overall gain 3.58 1.65 15.73 0.65 0.05 21.64

Source: Author’s data analysis (2023)

The major transitions observed in Ouagadougou were from agricultural land to built-up,
during the three periods. The rate of conversion of agricultural land to built-up area was
higher between 2003 and 2009 (4.47 per cent of the landscape) and relatively low during
the other two periods. The conversion of built-up areas to agricultural lands, shown in the
matrices, could be explained by misclassification errors.

As for Bobo-Dioulasso, the major transitions were from agricultural to forest areas (Table

4.6). The results show that 6.24 per cent of the total landscape was converted to forest
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land from 2003 to 2009, 8.23 per cent from 2009 to 2015, and 3.95 per cent from 2015 to

2021.
Table 4.6: Transition Matrices in Bobo-Dioulasso (% of total area)
2009
Agricultural Bare  Built Forest Water Initial Overall
total loss
Agricultural 73.27 0.05 1.36 491 0.00 79.59 6.32
Bare 0.05 0.03 0.03 0.00 0.00 0.11 0.08
" Built 0.30 0.01 3.79 0.00 0.00 4.10 0.31
§ Forest 6.23 0.00 0.01 9.34 0.00 15.58 6.24
Water 0.00 0.00 0.00 0.00 0.62 0.62 0.00
Final Total 79.85 0.10 5.19 14.25 0.62 100.00
Overall gain 6.58 0.06 1.40 491 0.00 12.95
2015
Agricultural Bare  Built Forest  Water Initial Overall
total loss
Agricultural 75.88 0.03 1.61 2.32 0.01 79.84 3.96
Bare 0.05 0.03  0.01 0.00 0.00 0.10 0.06
o Built 0.44 0.00 4.74 0.00 0.00 5.19 0.45
§ Forest 8.23 0.00  0.01 6.00 0.02 14.25 8.25
Water 0.39 0.00  0.00 0.20 0.03 0.62 0.59
Final Total 84.99 0.07  6.36 8.51 0.06 100.00
Overall gain 9.11 0.04 1.62 2.52 0.03 13.31
2021
Agricultural Bare  Built Forest  Water Initial Overall
total loss
Agricultural 76.47 0.12  3.77 4.63 0.00 84.99 8.52
Bare 0.01 0.06  0.00 0.00 0.00 0.07 0.01
“ Built 0.27 0.01 6.08 0.00 0.00 6.36 0.28
§ Forest 3.94 0.00  0.01 4.56 0.00 8.51 3.95
Water 0.00 0.00  0.00 0.00 0.06 0.06 0.00
Final Total 80.69 0.19  9.86 9.19 0.06 100.00
Overall gain 4.22 0.13  3.78 4.63 0.00 12.76

Source: Author’s data analysis (2023)

a. Interval level
Figure 4.4 presents the graphical representation of the interval level analysis results,

which compare annual changes in intensity for all the area within each time interval.
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A fast annual change in intensity was recorded in Ouagadougou between 2015 and 2021
(3.61 per cent per year against 3.09 per cent as uniform intensity), while in Bobo-
Dioulasso it was fast between 2009 and 2015 (2.22 per cent, compared to a uniform
intensity of 2.17 per cent). During the two other time periods, 2003-2009 and 2009 - 2015
for Ouagadougou, and 2003 - 2009 and 2015 - 2021 for Bobo-Dioulasso, the annual

intensity of change was slow.

I sluwlfast
217% |3.09% . Quagadougou

= = Uniform intensityin OQuagadougou

Time interval

slow I fast

|
2003-2009 - _ | Uniform intensity in Bobo-Dioulasso
_ | H|

1 2 3

Annual change (% of domain)

o

Figure 4.4: Interval Level Changes of Land Use/Land Cover Categories.

b. Category level
The category level analysis plots present the size and annual intensity of change of each
category’s gain relative to the size of the category at the interval’s end time point. It also
shows the size and annual intensity of each category’s loss in relation to the size of the
category at the interval’s initial time point. The dotted vertical lines represent the uniform
intensity rate, which provides information on the patterns of each category if the changes

were uniform, for every time interval.

Figures 4.5a and 4.5b present the graphical outputs of category analysis for each time
interval in Ouagadougou. Built-up class was the largest gainer for all the time intervals,
followed by bare and agricultural lands. The gain for built-up area increased continuously,
from 8.6 per cent in 2003 - 2009, 13.68 per cent in 2009 - 2015 to achieve 15.73 per cent

of the total landscape in 2015 - 2021. As for the annual change intensity, the uniform
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intensity (S;) values indicated an intensification of change from 2003 - 2009 (2.65 per
cent) to 2015 - 2021 (3.61 per cent). Bare land, forest and built-up had active changes
during the three-time intervals, with bare land having the most active gain (G, > ;) in
2003 - 2009 and 2015-2021, while forest gain was very active between 2009 and 2015
and 2015 and 2021. Water class showed active gain between 2003 and 2009 and 2009
and 2015. Concerning agricultural category, the gain intensity was dormant (G, < S;)

throughout the study period.

In terms of loss in Ouagadougou, agricultural land had the largest loss in terms of area
during the three-time intervals, followed by built-up and bare lands. Agricultural land loss
consistently increased from 9.64 per cent in 2003 — 2009 to 13.63 per cent in 2009 - 2015
and 15.91 per cent in 2015 - 2021. The active loss rates were recorded by agricultural,
forest, bare land and water during 2009 - 2015 and 2015 - 2021. Built-up class was
dormant, except in 2003 - 2009, where it showed a marginal loss in favour of bare land.
Looking at the behaviour of each bar regarding the uniform rate, it emerged that less than
half of the bar length for agricultural lands in 2009 - 2015 and 2015 - 2021 extend beyond
the uniform rate, showing that the large size of area occupied by agricultural land in 2009
and 2015 is the cause of its large loss. In the period 2003 - 2009, more than 50 per cent
of forest and water bar lengths exceed the uniform rate, indicating that active change
intensity is the reason explaining the two categories’ loss sizes. In each time interval,
more than half of the bare land went beyond the uniform line, indicating that active
intensity is more important than the size of bare land at the start time to explain the size

of bare land’s loss.

Figures 4.5c and 4.5d show the category level analysis plots in term of size and intensity
of change for Bobo-Dioulasso. The larger gainers, in size, were respectively agriculture,

forest and built-up during the three periods. The gains in agricultural land increased from
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2003 (6.58 per cent) to 2015 (9.11 per cent) and decreased in 2021 (4.22 per cent) at the
expense of forest area, which nearly doubled its gain compared to 2015 (2.52 per cent to
4.63 per cent). Built-up surface gains increased regularly during the different time
intervals, going from 1.4 per cent in 2003 - 2009 to 1.62 per cent in 2009 - 2015 and 3.78
per cent in 2015 - 2021. The uniform rate showed a quasi-stationary change’s intensity
during the different time intervals. As for the gain intensity, bare land, forest, and built-
up areas experienced the most active changes (G > S;). Agricultural change was dormant
throughout the study period. In terms of loss, agricultural and forest areas were the larger
losers. The intensity of loss for the forest category was active during the three periods.
Bare land also experienced active loss during 2009 - 2015 and 2015 - 2021. The large
loss in forest and bare areas could be explained by the very active change intensity

because more than 50 per cent of the bar lengths exceed the uniform intensity rate.
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Figure 4.5: Category Level Changes of Land Use/Land Cover: (a) Gain in
Ouagadougou, (b) Loss in Ouagadougou, (c) Gain in Bobo-Dioulasso, (d) Loss in
Bobo-Dioulasso

c. Transition level
Figure 4.6 shows the transition level changes for built-up gain and agricultural loss in
Ouagadougou and Bobo-Dioulasso. The transition level analyses focused on built-up and
agriculture categories because they are the dominant classes throughout the four time
points. The gain and loss intensities are analysed regarding the deviation of each

category’s intensity from the uniform intensity. When a category’s intensity is higher than
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the uniform intensity, the transition targets that category; and when a category’s intensity

is less than the uniform intensity value, the transition avoids that category.

In Ouagadougou, the gain of built-up area targeted bare and agricultural lands (Rsin> W)
in all the time intervals (Figure 4.6a). The other classes were avoided (R:in < Wi). The
major transition to built-up category came from bare land, with an increasing intensity
(R:in) going from 6.81 per cent in 2003 - 2009 to 9.91 per cent in 2009 - 2015 and 10.04
per cent in 2015 - 2021. That could be explained by the greater transition intensity of bare
land which largely exceeds the uniform line. As for agricultural loss, it targeted forest in
all the time intervals, while in 2003 - 2009, and 2009 - 2015, water was also converted to
agricultural land (Figure 4.6b). In addition, between 2003 and 2009 and 2015 and 2021
bare land and built-up areas, respectively recorded some gains from agricultural land. The

major gainer from agriculture was forest, with a peak intensity in 2009 - 2015.

In Bobo-Dioulasso, the built-up class only gained from bare and agricultural lands (Figure
4.6¢). Indeed, the bare land class was targeted in 2003 - 2009 and 2009 — 2015 (Ri»=4.61
per cent and 1.34 per cent respectively), while in 2015 — 2021 the agricultural class took
over and started getting targeted (R:» = 0.74 per cent) by built-up. The explanation for
such a situation could be that people used all the bare land areas for building and started
exploiting agricultural lands. It could also be caused by classification errors resulting in
a confusion between bare and agricultural lands. The loss of agricultural land area
occurred in favour of forest, bare land and built-up (Figure 4.6d). The loss targeted (Riin
> W) bare land and forest. Built-up gain from agricultural was avoided in Bobo-
Dioulasso. This could be explained by the fact that the over-exploited agricultural areas
got degraded with similar spectral characteristics as bare land. A few of these areas are

used for building, pavement, road construction.
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Ouagadougou, (b) Loss of agricultural in Ouagadougou, (c) Gain of Built in Bobo-
Dioulasso, (d) Loss of Agricultural in Bobo-Dioulasso

4.1.2. LST and air temperature trend assessment

4.1.2.1. Spatial distribution

of day and night LST

Figures 4.7 and 4.8 show the spatial distribution of yearly daytime, and night-time LST

in Ouagadougou and Bobo-Dioulasso, respectively. The daytime LST showed high

values in the city centre, the CBD area, while the outskirts recorded relatively low values

with scattered hot spots of moderate to high LST values across the area. The high values
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in the CBD are due to the presence of concrete surfaces across that area. In Ouagadougou,
the yearly minimum day LST was 39.03°C and was recorded in 2008, while a maximum
value of 40.52°C was recorded in 2021. For Bobo-Dioulasso, the minimum daytime LST
was 37.55°C, recorded in 2012, whilst the maximum recorded was 38.60°C in 2021. The
coolest year in terms of daytime LST was 2008 for Ouagadougou and 2012 for Bobo-

Dioulasso. Both sites experienced their hottest LST in 2021.

The night-time LST figures present persistent heat island, which got increased over time,
in the city centre. Unlike the daytime LST, the night-time one exhibits hot spots only at
the CBD area of both cities. This situation can be explained by the increases in heat
storage due to expanding concrete surface. In Ouagadougou, the minimum annual night-
time LST recorded was 19.60°C in 2008, while the maximum was 21.31°C in 2021. For
Bobo-Dioulasso, the minimum night-time LST was 19.33 in 2008, and the maximum
recorded was 20.49°C in 2021. During the study period, the minimum and the maximum
LST, in both sites, were recorded in 2008 and 2021 respectively. In addition,
Ouagadougou experienced higher LST values than Bobo-Dioulasso throughout the

period, due to the high rate of concrete surface expansion, mainly built-up surfaces.
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4.1.2.2. Spatial distribution of yearly mean LST

Figures 4.9 and 4.10 present the distribution of yearly mean surface temperature in
Ouagadougou and Bobo-Dioulasso, respectively. Like the daytime and night-time LST,
the mean maps show a persistent heat island in the cities’ centres. The minimum yearly
average LST recorded in 2008 were 29.33°C in Ouagadougou and 28.49°C in Bobo-
Dioulasso. As for the maximum values, they were recorded in 2021 with 30.84°C in

Ouagadougou and 29.51°C in Bobo-Dioulasso.
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4.1.2.3. Temporal trends in LST

Figure 4.11 which shows the evolution of yearly mean surface temperature indicates an
increasing trend of LST from 2003 to 2021 for both cities. In Ouagadougou, the LST
values are higher than they are for Bobo-Dioulasso. To give a deeper insight into the
trends for the two sites, seasonal analysis was performed (Figure 4.12). Figure 4.12 shows
that the surface temperature is increasing across all climatological seasons except June-
July-August (JJA) and December-January-February (DJF) which show decreasing trends,
respectively for Ouagadougou and Bobo-Dioulasso. Looking at the Mann-Kendall trend
test metrics (Table 4.2), it appears that the yearly average LST exhibits a non-significant
increasing trend with a Sen’s slope of 0.18°C in Ouagadougou against 0.10°C in Bobo-

Dioulasso. That shows that the yearly LST is increasing at a faster rate in Ouagadougou



than Bobo-Dioulasso. Only the March-April-May (MAM) season shows a significant
trend with a probability value (p —value) of 0.009, which is less than 0.05 in
Ouagadougou. In Bobo-Dioulasso, all the p —values are more than 0.05, meaning that the
trend is non-significant. The seasonal analysis highlighted that the yearly LST increases
is mainly driven by the MAM season (Figure 4.14) with a mean variation of 0.05°C for
Ouagadougou as against 0.03°C for Bobo-Dioulasso (Table 4.7). Despite its non-
significant trend in the areas, the September-October-November (SON) season also

contributes to the global yearly increasing trend of LST.

=~ QOuagadougou
Bobo-Dioulasso

31

30

LST (°C)

29

28
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Years

Figure 4.11: Yearly Mean LST Evolution from 2003 to 2021
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Table 4.7: Mann Kendall Trend Test Metrics for Surface Temperature

Ouagadougou
Yearly
Seasonal average
average
DJF MAM JJA SON
Z value 0 2.59 -0.48 1.04 1.82
Sen's slope  -0.00084 0.05 -0.01 0.030 0.018
P value 1 0.009 0.62 0.29 0.068
Trend Increasing  Increasing  Decreasing Increasing Increasing
Bobo-Dioulasso
Seasonal average Yearly
average
DJF MAM JJA SON
Z value -0.27 1.75 0.07 1.12 1.26
Sen's slope -0.02 0.03 0.001 0.038 0.010
P value 0.77 0.08 0.94 0.26 0.20
Trend Decreasing Increasing Increasing Increasing Increasing

Source: Author’s data analysis (2023)

4.1.2.4. Temporal trends in air temperature

Figure 4.13 presents the yearly trends in air temperature across Bobo-Dioulasso and
Ouagadougou. There is an increasing trend in air temperature throughout the study time
span over the two areas. The minimum yearly values recorded were 28.04°C in
Ouagadougou and 27.04°C in Bobo-Dioulasso in 2008. The maximum values were
recorded in 2021 with 29.32°C for Ouagadougou and 28.17°C for Bobo-Dioulasso. The
Mann-Kendall test showed that the yearly temperature trend is non significant, because
the p —values are greater than 0.05 for both cities (Table 4.8). The trend was more
pronounced in Bobo-Dioulasso than Ouagadougou, regarding the respective Sen’s slope

values of 0.014°C and 0.018°C.

The seasonal trend (Figure 4.14) showed an increasing trend for all climatological

seasons, except the DJF season which depicted a decreasing trend for both cities. The
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MAM season showed the highest trend with a p —values of 0.012 for Ouagadougougou
and 0.021 for Bobo-Dioulasso (Table.4.8). It was followed by the JJA season which
presented a non-significant trend.

As for the surface temperature, the yearly global trend is engineered by the MAM season

which showed an average temperature increase of 0.052°C in Ouagadougou and 0.047°C

in Bobo-Dioulasso during the study period.
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Figure 4.13: Yearly Mean Air Temperature Evolution
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Table 4.8: Mann Kendall Trend Test Metrics for Air Temperature

Ouagadougou
Seasonal average Yearly
average
DJF MAM JJA SON
Z value -0.350 2.519 0.630 0.140 1.050
Sen's slope -0.006 0.052 0.014 0.003 0.014
P value 0.726 0.012 0.529 0.889 0.294
Trend Decreasing Increasing Increasing Increasing Increasing
Bobo-Dioulasso
Seasonal average Yearly
average
DJF MAM JJA SON
Z value -0.210 2.309 1.749 0.280 1.679
Sen's slope -0.011 0.047 0.023 0.014 0.018
P value 0.834 0.021 0.080 0.780 0.093
Trend Decreasing Increasing Increasing Increasing Increasing

Source: Author’s data analysis (2023)

4.1.2.5.

The LST anomaly between the city centre and the surrounding areas showed high values
in the city core. During the study period, the daytime SUHI, at 1 square kilometre pixel
scale, fluctuated between -0.098°C (2017) and 0.071°C (2015) in Ouagadougou, while in
Bobo-Dioulasso, it oscillated between -0.092°C (2004) and 0.072°C (2019) Concerning
the night-time SUHI, the values varied between -0.073°C (2021) and 0.11°C (2007) in
Ouagadougou, and between -0.069°C (2011) to 0.080°C (2009) in Bobo-Dioulasso. Like
the LST, the SUHI maps showed heat hotspots at the city centre and relatively cool
hotspots at the surrounding areas. SUHI is more pronounced during night-time with a
strong heat island covering the inner city, particularly in Ouagadougou (Figure 4.15). In

Bobo-Dioulasso, strong heat island is found in the city centre and water areas during

night-time (Figure 4.16).

Spatial distribution of SUHI in the study area
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4.1.2.6. SUHI trend in the study area

The SUHI intensity, plotted according to the distance from the city centre, showed that
the closer it is to the centre, the higher the intensity (Figure 4.17). The dotted horizontal
line indicates the 0 zero value. There was a uniform trend throughout the study period
with differences between daytime and night-time. Daytime SUHI increased in the inner
city (1 — 6 kilometres for Ouagadougou and 1 — 3 kilometres for Bobo-Dioulasso). The
break at 2 kilometres in Ouagadougou indicates the urban dams and forest areas. After
the peak at 6 kilometres and 3 kilometres in the respective cities, the SUHI decreased up
to 20 kilometres with some breaks due to water and forest areas. During night-time, the
SUHI decreased from the city centre towards the periphery, with some breaks in Bobo-

Dioulasso.
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4.1.2.7. Correlation between LST and air temperature

In order to establish the relationship between LST and 2 metres above ground air
temperature, a t-Test was performed to study the difference in mean values of the two
variables. Table 4.9 presents the results of the test. The p —value of the test is less than
0.05 in both cities, indicating that there is a significant difference between the LST and
the air temperature in terms of mean values. The average difference was 1.42 for
Ouagadougou and 1.38 for Bobo-Dioulasso. The 95 per cent confidence interval lies
between -1.54 and -1.31 for Ouagadougou and between -1.49 and -1.26 for Bobo-
Dioulasso, which exclude the value zero. Based on the confidence interval, there is a

significant difference between the mean values of the two datasets.

Table 4.9: Outputs of T-Test Between Surface and Air Temperature

Metric Ouagadougou Bobo-Dioulasso
Confidence interval -1.54 to -1.31 -1.49to -1.26
F-statistics 0.57 0.36
Mean LST 30.07 29.08
Mean air Temp. 28.65 27.70
p-value P<0.05 P<0.05
Mean difference 1.42 1.38

Source: Author’s data analysis (2022)

Furthermore, a correlation analysis was performed to determine the level of relationship
between LST and 2 metres above ground air temperature. The scatterplots presented in
Figure 4.18 show a non-linear regression between air temperature and LST. The two
variables have a strong positive correlation in both cities throughout the study time span.
The Spearman correlation coefficient was 0.76 in Ouagadougou and 0.83 in Bobo-
Dioulasso. Then, the correlation analysis showed a significant (p<0.05) positive

correlation between the variables, indicating that when the LST increases, the air
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temperature also increases. Thus, the coefficients of determination R? showed that 58 per
cent and 69 per cent of the increase in air temperature in Ouagadougou and Bobo-

Dioulasso respectively, from 2003 to 2021, could be explained by the increase of the LST

during the period.
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Figure 4.18: Daily LST and Air Temperature Regression

4.1.3. Land Use/Land Cover and LST relationship

4.1.3.1. Land Use/Land Cover and LST patterns

Figures 4.19 and 4.20 present the spatial distribution of the pure pixels (100 per cent built
and 100 per cent non-built) in relation to LST. The pixels that are covered by pure built-
up class increased while the pure non-built-up pixels decreased from 2003 to 2021 in both
cities. The number of pure built-up pixels were 55, 39, 67, and 67 respectively in 2003,
2009, 2015 and 2021 for Ouagadougou (Figure 4.19). For Bobo-Dioulasso, the number
of pure built-up pixels varied from 15 in 2003 to 21 in 2009, 29 in 2015, and reached 44

in 2021 (Figure 4.20). The expansion in the number of pure built-up pixels co-occurred
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with the increasing of LST from the city core towards the outskirts, at the expense of the
pure non-built pixels. The relative low number of built-up pixels in Bobo-Dioulasso
compared to Ouagadougou indicates a more rapid concrete surface formation and then
higher LST values in Ouagadougou than Bobo-Dioulasso. Thus, there is a close link
between the type of LULC within a 900900 square metres grid and the average

temperature at the surface at this grid.
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Figure 4.21 presents the fluctuation of LST according to the percentage of built and non-
built coverage in each 900 x 900 square metres grid. Indeed, the pixels covered totally by
built-up area have a high surface temperature, while the temperature is low for those with
of 100 per cent non-built coverage. Globally, when the non-built-up coverage increases,
the LST shows a regressive variation. A large proportion of non-built-up area in a pixel
indicates a decrease in LST while a larger built-up area implies an increase of surface
temperature. The LST variation pattern regarding the rate of built-up and non-built-up

coverage in a pixel was linear in Ouagadougou throughout the study period.

However, in Bobo-Dioulasso, particularly in 2003 and 2009, the pattern was non-linear.
This could be due to the intervention of other factors influencing the LST such as soil

moisture, wind or high heat capacity surfaces in areas with higher non-built-up cover in
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Bobo-Dioulasso. The difference in LST between a fully built-up pixel and an entirely
non-built-up pixel varied from 1.47°C to 1.87°C in Ouagadougou against 1.02°C to
1.27°C in Bobo-Dioulasso. These different values experienced decreases from 2003 to

2021 in both cities, showing that the LST in all LULC classes increased.
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Figure 4.21: Built-Up and Non-Built-Up Surface Temperature Patterns

The analysis of LST and LULC patterns showed that the built-up areas present higher
LST than non-built-up areas such as forest, water bodies and farmland. The LST trend
throughout the study period showed that Ouagadougou was warmer than Bobo-
Dioulasso, because Ouagadougou had greater built-up cover, compared to other LULC

classes, than Bobo-Dioulasso. Indeed, the built-up cover varied from 32.75 per cent in
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2003 to 35.95 per cent in 2009, 46.86 per cent in 2015 and 58.34 per cent in 2021 for
Ouagadougou. However, for Dobo-Dioulasso, the built-up area occupied 4.10 per cent,
5.19 per cent, 6.36 per cent and 9.86 per cent of the area in 2003, 2009, 2015 and 2021

respectively.

At the pixel scale, the LST increased with the proportion of built-up (settlement and bare
land) within the pixel, while decreasing with the non-built cover rate. There was a
decrease in the average LST difference between a pixel fully covered by built-up and a
pixel entirely covered by non-built-up class, indicating a general warming of all the

landscape units.

4.1.3.2. Correlation between LST and LULC rate

The correlation between LST and LULC rates was performed to measure the strength of
relationship existing between the two variables. Figure 4.22 shows the scatterplots and
the correlation statistics between LST and built-up cover rate in a grid of 900x900 m?.
The figures show that there is a positive relationship between the LST and the different
built cover rates: the higher the built cover rate in a pixel, the higher the corresponding
LST value. The strength of correlation was moderate (Schober and Schwarte, 2018) for
all the four years, with a correlation coefficient varying from 0.44 to 0.64 for
Ouagadougou against 0.49 to 0.61 for Bobo-Dioulasso. Indeed, 19.36 per cent to 40.96
per cent of the LST increases in both cities, from 2003 to 2021, was due to the

predominance of built-up cover in the area.
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Figure 4.22: Correlation Between LST and Built-Up Cover Rate

Concerning the non-built-up cover, the correlation with the LST is negative (Figure 4.23).
The correlation coefficients varied between -0.41 and -0.6 for Ouagadougou against -0.49
and -0.59 for Bobo-Dioulasso, showing a moderate negative correlation for both cities.
The presence of non-built-up surface within a given pixel contributes to reduce the LST

of that pixel: the higher the non-built-up proportion in the pixel, the lower the LST value.

Thus, from 2003 to 2021, 16.81 per cent to 36 per cent of the urban cooling related to
surface temperature was linked to the presence of non-built-up lands such as forest,

agricultural land and water bodies. Like the case of the built-up cover, the strength of the

correlation decreased from 2003 to 2021 in the two cities.
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Figure 4.23: Correlation Between LST and Non-Built-Up Cover Rate

4.1.3.3. Cooling effects of non-built cover

Figure 4.24 shows the cooling effects of non-built-up surfaces in the study area from 2003
to 2021. The figure informs that the higher the median difference, the higher the cooling
effect of the non-built cover rate. The non-built-up pixels' contribution to cooling varies
according to the sites. It was lower in Bobo-Dioulasso (0.29 - 1.39°C) than in
Ouagadougou (0.74 - 1.94°C). The highest contribution of non-built-up class to cooling

was recorded in 2009 for Ouagadougou and 2003 for Bobo-Dioulasso.
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Figure 4.24: Contribution of Non-Built-Up Cover to Urban Cooling

In Ouagadougou, the cooling effect of non-built-up surface decreased from 2003 to 2021.
With at least 21 per cent -40 per cent of non-built-up coverage in a pixel of 900900
square metres, a surface cooling of more than 1°C was produced across the four years.
However, in Bobo-Dioulasso, the non-built-up effect on cooling was not linear
throughout the years. In 2003, 2009 and 2021, the cooling declined between 21 per cent
coverage and 80 per cent coverage, and later peaked with 81 per cent -100 per cent
coverage. Only the year 2015 showed a regular pattern in terms of cooling effects of non-
built-up coverage. More than 1°C of surface cooling was achieved with 21 per cent -40
per cent coverage in 2003, 61 per cent -80 per cent coverage in 2015, while 2009 and

2021 surface cooling was less than 1°C for all the five non-built-up cover classes.

4.1.4. Relationship between LST and diseases

The relationship between LST and the number of reported cases of malaria, dengue and
meningitis was computed. The monthly reported cases from the five districts of
Ouagadougou and the three districts of Bobo-Dioulasso were used with the yearly mean

surface temperature per district.
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4.1.4.1. Evolution of selected public diseases reported cases from 2017 to 2021

Figures 4.25 and 4.26 present the evolution of the reported cases per month in
Ouagadougou and Bobo-Dioulasso respectively. In Ouagadougou, malaria exhibited one
peak in October, and dengue showed a peak between October and November. In Bobo-
Dioulasso, malaria showed two peaks during the year: one in February and the other one
in October, while dengue’s peak was found between October and November as in
Ouagadougou. As for meningitis, the figures show two peaks in both cities, one occurring
between February and May, and a second one in October. The peak occurrence of the
diseases corresponds to the dry hotter periods of the year when the surface receives and
stores more solar radiation. The energy stored could serve to create suitable environment

for the diseases’ vectors evolution.
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Figure 4.25: Evolution of Monthly Reported Cases in Ouagadougou
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Figure 4.26: Evolution of Monthly Reported Cases in Bobo-Dioulasso

4.1.4.2. Correlation between surface temperature and selected public diseases

The level of the relationship between LST and diseases was assessed through a correlation
analysis. Figure 4.27 presents the scatterplot of the correlation between LST and the
diseases in Ouagadougou and Bobo-Dioulasso from 2017 to 2021. Malaria and dengue
had a weak to negligible correlation with LST in the two cities. In the districts of
Bogodogo, Nongr-Massom, Sig-Noghin, Do and Konsa when the LST increased, the
number of reported malaria cases decreases. In the case of dengue, all the districts except
Nongr-Massom and Konsa showed an increase in the number of cases when the surface
temperature increases. Concerning the meningitis, the scatterplots indicate a strong
positive correlation (Do) to moderate positive correlation (Dafra, Konsa, Sig-Noghin),

and negligible negative correlation (Baskuy, Bogodogo, Boulmiougou, Nongr-Massom)

with the surface temperature.
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4.1.5. Future LULC and LST patterns

4.1.5.1. Driving variables for LULC changes

The LULC changes driver variables considered for the prediction were composed of
distance from river, distance from road, distance from urban, elevation, slope and
evidence likelihood for Ouagadougou (Figure 4.28) and Bobo-Dioulasso (Figure 4.29).

These variables were considered to run the transition potentials different LULC classes.

Distance from river Distance from road

<0.00 <0.00
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Figure 4.28: LULC Change Driver Variables in Ouagadougou
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Figure 4.29: LULC Change Driver Variables in Bobo-Dioulasso

4.1.5.2. Model validation

To validate the MLP-NN-MC model, the LULC maps of 2021 were simulated using the
changes between 2009 and 2015. The accuracy assessment performed showed an overall
accuracy (K,o) of 0.80 and 0.92 for Ouagadougou and Bobo-Dioulasso respectively. The
model ability to identify correct locations of changes (Kiocaliny) Was evaluated at 0.75 for
Ouagadougou and 0.92 for Bobo-Dioulasso.

Though there are some discrepancies between the simulated and classified maps of 2021,
the accuracy values achieved indicate that the model performs well in predicting future
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LULC changes. Figure 4.30 presents the classified and simulated maps for 2021 in

Ouagadougou (4.30a) and Bobo-Dioulasso (4.30b).
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Figure 4.30: Classified and Simulated LULC for 2021 in Ouagadougou (a) and
Bobo-Dioulasso (b)

The comparison between the classified and simulated maps of 2021 showed an

underestimation of built-up and bare land areas, while agricultural lands were
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overestimated in both cities (Table 4.10). The model revealed a decreased in forested area

in Ouagadougou against an increase in Bobo-Dioulasso.

Table 4.10: Area Statistics of Classified and Simulated LULC of 2021

Ouagadougou

LULC 2021 classified 2021 simulated Difference

class km? % km? % km? %
Built-up 566.00 58.34 560.55 57.78 -5.45 -0.56
Agricultural 366.67 37.79 386.06 39.79 19.39 1.99
Forest 12.22 1.26 11.84 1.22 -0.38 -0.04
Bare land 19.24 1.98 3.85 0.39 -15.40 -1.58
Water 5.98 0.61 7.82 0.80 1.84 0.119

Bobo-Dioulasso

LULC 2021 classified 2021 simulated Difference

class km? % km? % km? %
Built-up 175.33 9.86 143.54 8.07 -31.80 -1.79
Agricultural  1434.01 80.69 1436.30  80.82 2.29 0.13
Forest 163.33 9.19 195.06 10.97 31.72 1.78
Bare land 3.44 0.19 1.23 0.07 -2.22 -0.12
Water 1.04 0.05 1.04 0.06 0.00 0.00

Source: Author’s data analysis (2023)

4.1.6. Future LULC patterns

The projection of LULC under the BAU scenario in both cities showed that the built-up
class will continue to extend towards the peripheral areas. There will also be a persistence
and densification of built-up areas in the inner city. Figure 4.31 shows the spatial

distribution of the different LULC classes in 2027 and 2050 for both cities.
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Figure 4.31: Predicted LULC for 2027 and 2050 Under BAU Scenario in
Ouagadougou (a) and Bobo-Dioulasso (b)

The prediction of LULC based on the BAU scenario revealed that, in Ouagadougou, the
landscape will be dominated by built-up class with 65.27 per cent of coverage in 2027
and 78.65 per cent in 2050 (Table 4.11). The increasing trend of built-up areas will be
experienced at the expense of agricultural lands which will occupy only 19 per cent of

the landscape in 2050. In Bobo-Dioulasso, the major future changes will concern the
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built-up class whose extent will increase and cover 9.56 per cent and 13.85 per cent of
the area in 2027and 2050, respectively. As in Ouagadougou, agricultural class in Bobo-
Dioulasso will decrease but remain the dominant class in 2050 with 73.74 per cent of

coverage.

Table 4.11: Area Statistics of Predicted LULC of 2027 and 2050

LULC Ouagadougou Bobo-Dioulasso
class 2027 (%) 2050 (%) A% 2027 (%) 2050 (%) A%
Built-up 65.27 78.65 13.38 9.56 13.85 4.29
Agricultural 32.45 19.09 -13.36 78.41 73.74 -4.67
Forest 1.22 1.22 0.00 11.89 12.27 0.38
Bare land 0.25 0.23 -0.01 0.07 0.07 0.00
Water 0.80 0.80 0.00 0.06 0.06 0.00

Source: Author’s data analysis (2023)

4.1.7. Future LST patterns based on predicted LULC

Based on the predicted LULC for 2027 and 2050, the LST maps for the same years were
generated using a multiple linear regression model. The regression models built based on
the LST and LULC rate of the years 2003, 2009, 2015 and 2021 are presented in Equation

(4.1) and Equation (4.2) respectively for Ouagadougou and Bobo-Dioulasso.

LST = 30.13 4+ 0.0073 X built_up — 0.0047 X non_built_up + 0.68 4.1

LST = 29.47 + 0.006 X built_up — 0.0014 X non_built_up + 0.48 4.2)

The results of the LST prediction for 2027 and 2050 in the two cities are presented in
Figure 4.32. The predicted LST showed an increase in 2027 and 2050 in both cities. The

increase will be about 0.3°C and 0.14°C respectively for the periods 2021 — 2027 and
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2027 —2050 in Ouagadougou. In Bobo-Dioulasso, the increase was 0.32°C between 2021

and 2027 and 0.01°C for 2027 — 2050.
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Figure 4.32: Trend in Mean LST for 2021, 2027 and 2050 Under the BAU Scenario

in Ouagadougou and Bobo-Dioulasso
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4.2. Discussions

4.2.1. LULC change in the study area

The analysis of LULC patterns revealed that the landscape experienced changes towards
built-up area increase at the expense of agricultural lands (i.e., cultivated lands including
seasonal, permanent crops and fallows, shrubland, grassland) and bare land in
Ouagadougou and in Bobo-Dioulasso. These dynamics indicate ongoing urbanisation

induced human footprint intensification in the areas.

The urbanisation process in the area is characterized by the horizontal expansion of the
cities and an increasing population due to natural growth, rural-urban migration and
smaller town to larger city migration. For example, it is estimated that in 2019, 45.1 per
cent and 19.1 per cent of the country’s total urban population lived in the Centre Region
(with Ouagadougou as the biggest city) and the Haut-Bassins region (with Bobo-
Dioulasso as biggest city), respectively (INSD, 2022a), with a net migration rate of 4 per
cent per year in Ouagadougou (Sory, 2019). This rapid urban population growth could be
one of the driving factors of the landscape changes, as rapid population increase causes
high demand in land and consequently leads to LULC changes (Al Kafy ef al., 2019). The
changes in LULC classes in favour of built-up areas were also recorded in other urban
settings (Mahmoud et al., 2016; Bhat et al., 2017; Rimal et al., 2018). Furthermore, the
conversion of agricultural land to roads (a component in built-up class) causes the
displacement of arborists with their trees to resettle along the road-faced walls of some

administrations.
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4.2.2. Built-up expansion in the study area

The city of Ouagadougou is experiencing a rapid settlement expansion (Figure 4. 33),
while in Bobo-Dioulasso, the built-up area is rather increasing slowly (Figure 4.34). The
cities have extended beyond their administrative boundaries into surrounding districts or
villages, particularly in Ouagadougou. A similar situation was reported for Kumasi
metropolitan city (Ghana), where urban development was found to have gone beyond its
official boundaries (Hackman et al., 2020). The expansion of built areas varies according
to the district and is more and more pronounced towards the city outskirts. If the current
situation remains unchanged, the built-up areas ‘expansion will continue towards the
peripheral zones in 2027 and 2050. This result is in agreement with the study of
Yangouliba et al. (2022) which concluded that built-up area will experience a continuous

spatial growth up to 2050 under BAU scenario.
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Figure 4.33: Built-Up Expansion Between 2003 and 2021 in Ouagadougou
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Figure 4.34: Built-Up Expansion Between 2003 and 2021 in Bobo-Dioulasso

Given the adverse effects of climate change, causing difficulties in finding alternative
non-agricultural livelihood options, the rural population migrate to the cities to look for
new sources of livelithood. Once in the city, not having resources to afford good housing,
they settle in the peripheral slum’ areas, making the city expand horizontally. Since new
population is coming into the city, the number of inhabitants increased year by year. It is
reported that Ouagadougou welcomes around 100,000 additional people per year (Boyer
and Delaunay, 2009) and given the insufficient housing offer policy, most of the

newcomers establish their houses in the peri-urban areas. This situation contributes to the

development of informal neighbourhoods around the city.

Furthermore, since 2009 there is a land speculation process driven by private real estates
companies. Indeed, with the authorizations from the government agencies, they buy land

at low-cost prices from farmers in the peripheral areas, subdivide into plots and sell to

130




individuals. From 2009 to 2019, a total of 275 land/real estate development approvals
were issued to private companies (Sory, 2019). This context of high demand of land for
construction linked to population growth leads to an increasing expansion of built-up

areas (Niya et al., 2019).

The rapid expansion of built- up areas has potential negative implications on urban
agricultural production. This is because areas previously used for urban gardening, water
pathways and urban green areas are being converted to concrete buildings. That
conversion process also leads to an increase in impervious surfaces exposing the
population to hazards such as flooding and Urban Heat Island (Gogoi et al., 2019). In
addition, the rapid urban settlement expansion has resulted in limited goods and services
provision in the peripheral areas (Turok and McGranahan, 2013), highlighting the
inadequacy between urban development and economic growth in most of the developing
world’s cities (Cohen, 2006). The World Bank revealed that in unplanned areas around
cities, the quality of life is deteriorated due to the poor housing systems, insufficient road
network, and inadequate water and sanitation supply (World Bank, 2002). This situation
was also reported by the United Nations which stated that rapid urban growth and its
inherent consequences are common phenomenon in many African cities because they are

expected to record the highest growth rate in the coming 30 years (United Nations, 2018).

The LULC dynamics may have some uncertainties due to the low number of samples and
the aggregation of some classes into one (as in the case of seasonal croplands, permanent
croplands, fallow lands, shrublands and grasslands which were combined to form the
agricultural land class). In this study, more samples were collected in Ouagadougou than
Bobo-Dioulasso due to the limited availability of clear high-resolution historical images

in Google Earth Pro. This situation may have affected the accuracy of the produced LULC
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maps, particularly for Bobo-Dioulasso, which showed low overall accuracies across the
four years. In addition, the majority filtering bias is towards the classes labelled with least
values (minimum values were returned in cases where there are no majority votes).
However, the bias level is relatively low given the high accuracy values of the majority
filtered images (> 80% in both sites), and the fact that the area is dominated by built-up

(in Ouagadougou) and agricultural lands (in Bobo-Dioulasso).

Despite these limitations, this study is a valuable spatial decision tool in terms of LULC
for regulating built-up expansion by promoting vertical building policy and preserving
natural surfaces within urban areas. Given the increasing population growth in urban
areas which increases the housing demand, a low-income housing policy could mitigate
urban sprawl. The use of high spatial resolution images with more reference samples can

improve the accuracies and allow more detailed LULC classification in the area.

4.2.3. LST and air temperature relationship in the study area

4.2.3.1. Trends in LST and air temperature in the study area

The rapid urbanisation occurring in the study leads to a modification of the thermal
conditions of surface materials which causes an unbalanced energy budget over urban
areas. Consequently, LST values are increasing, mainly in urban core where the surface
is covered by impervious materials. The findings from this research showed that LST is
continuously increasing in both cities. LST showed an increasing trend, which is naturally
greater in Ouagadougou, the most urbanised area of the country, than Bobo-Dioulasso.
The continuous increase of LST in the urban area was particularly persistent in the city
centre where consistent heat island was formed because of the dominance of impervious
surfaces. Conversely, the peripheral areas, mainly occupied by non-concrete surfaces

including cultivated lands including seasonal, permanent crops and fallows, shrubland
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and grassland, exhibited a relatively low LST values. Unsurprisingly, the positive trend
of LST in both cities will continue as the LULC is changing towards the expansion and
densification of built-up areas. The results of this study are in line with the global LST
trend, which increased by 0.2°C per decade during the past 25 years (ESA, 2022). They
are in agreement with the studies of Tafesse and Suryabhagavan, (2019) and Singh et al.
(2017) which showed that the development of impervious surfaces at the expense of
vegetation due to urbanisation leads to increases in LST in the urban core. These findings
are also in line with results from similar studies on urban LST patterns in Nigeria (Fashae
et al., 2020) and in Ghana (Stemn and Kumi-Boateng, 2020) which highlighted that LST
in the urban core is higher than the peripheral areas. Moreover, these results also confirm
the findings of Di Leo et al. (2016) who concluded that LST values are lower in vegetated

areas than adjacent impervious lands.

The seasonal patterns showed that the global increase of LST throughout the study period
is driven by the March-April-May (MAM) season. This is because the MAM season
corresponds to the dry and hot periods in the region where the net radiation is greater in
the inner city, because of general clear sky conditions, and particularly the low surface

reflectance due to the predominance of high heat storage materials (Offerle et al., 2005).

Like the LST, the 2 meters above ground temperature also experienced an increasing
trend between 2003 and 2021 in both study sites. The increasing air temperature in both
sites is in agreement with regional and global studies, which showed rising average
temperatures in the area (Ilori and Ajayi, 2020; IPCC, 2021). The inherent consequences
of urbanisation such as population growth and LULC changes towards built-up surfaces,
caused an increase of Greenhouse gas emission in the atmosphere. In fact, the use of fossil

fuel (for energy production, transportation, factories), the production of waste, and
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domestic heating contribute to increase the urban environmental temperature, as found

by Rimal et al. (2017).

4.2.3.2. Trends in SUHI in the study area

The high increase of LST in urban core compared to the surrounding areas causes an
intensification of SUHI. The results of this research showed that SUHI intensity values
increased towards the inner cities. This situation could be explained by the presence of
administrative, business and habitation areas, which operate mainly on concrete and
water-resistant surfaces. This finding agrees with that of Simwanda et al. (2019) who
concluded that in growing cities in Africa , the CBDs exhibit high SUHI intensities. In
the CBD area, large high thermal capacity surfaces are exposed to solar heating because
of the vertical structure of buildings, while the peripheral rural areas heat rapidly with a

limited heat storage due to low heat capacity as showed by Offerle et al. (2005).

Similar results were found by Dewan et al. (2021) who demonstrated that the major
drivers of SUHI increase in the urban core included insufficiency of vegetation and
expanded built-up cover. At night-time, the water bodies and wetlands showed high
SUHI, while vegetated areas presented a low SUHI, because of the high heat capacity of
water, which takes long time to absorb the heat and releases it back slowly in the
atmosphere. These findings agrees with the result of Lindén (2011), which concluded that
open water contributes to daytime cooling, while evapotranspiration from vegetation is
responsible for night time cooling. Furthermore, Mirzaei et al. (2020) showed that water
bodies and vegetation contribute to regulating the surface temperature and consequently

the air temperature in urban settings.
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Urban areas comprise complex landscapes of different size materials which record
different LST values. A limitation of the study is related to the coarse spatial resolution
of MODIS data (1000 m) used which did not allow a detailed mapping to extract the LST

values of smaller urban surface units.

Nevertheless, this research showed the areas where LST is high and those with low values
in the study area and in urban settings in general. Like air temperature, LST and SUHI
increase constitute a threat to urban environment and inhabitants. Then, LST and SUHI
mitigation strategies should be developed through the development of non-concrete

surfaces in urban core areas mainly, to reduce the LST differences with the surroundings.

4.2.3.3. Correlation between LST and air temperature

In the study area, LST was higher than 2 m above ground air temperature, and the 2
variables had a strong positive correlation, meaning that when LST increases, air
temperature also increases. It is found in literature that LST is often higher than the
ambient air temperature measured by weather stations and felt by humans (Heat and
Protocol, 2015), but the two variables vary at the same direction and have a positive
correlation (Guha et al, 2020). The average difference between the LST and air
temperature (A) is relatively higher in Ouagadougou (1.42°C) than Bobo-Dioulasso
(1.38°C). A is driven by shortwave incoming solar radiation, soil moisture, vegetation
cover and therefore the partitioning of energy into Latent Heat Flux (LHF) and Sensible
Heat Flux (SHF) (Forzieri et al., 2018). Thus, the lower the average SHF, the lower the
LST and consequently A. The cities are located in low latitudes and are all constantly
exposed to quasi-vertical incidence of solar radiation throughout the year, which implies
high average LST and air temperature as showed by Gogoi et al. (2019). In addition, the

quasi-similarity of A in the two cities could be explained by the fact that both experience
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the same climatic conditions, except that Bobo-Dioulasso has less built-up cover

indicating a higher LHF than Ouagadougou (Figure 4.35).
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Figure 4.35: Partition of Energy in Latent and Sensible
Heat Fluxes in the Study Area

Air temperature gets more and more warmer due to Greenhouse gases accumulation in
the atmosphere. The positive correlation found between LST and 2 m above ground air
temperature shows that the surface thermal conditions can contribute to increase air
temperature. This finding is then a key information for policy implementation towards

LST mitigation to avoid urban atmospheric warming intensification.

4.2.4. Relationship between LULC rate and LST

LULC changes influence LST so that concrete surfaces exhibit high values compared to
naturally undisturbed areas. Therefore, areas where the human footprint is high in terms
of built-up surfaces, record high LST values while zones with natural cover show low

LST. The findings from this study showed that the patterns of LST in both cities is mainly
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dependent on the LULC types and dynamics, which modify the surface thermal properties
through the increase of built-up areas. LST increased while the proportion of built-up
increased in a pixel. This could be explained by the increasing of low albedo materials
(for instance, building, pavement, asphalt for tarred roads) at the surface, implying low
reflection of incident radiation as confirmed by Andrés-Anaya et al. (2021). Indeed,
between 2017 and 2020, 130 km and 8 km of tarred roads were planned to be built in
Ouagadougou and Bobo-Dioulasso respectively (PNDES, 2016). These results
corroborate that of Simwanda er al. (2019), who found in Lagos (Nigeria), Lusaka
(Zambia), Nairobi (Kenya) and Addis Ababa (Ethiopia) that cities having high proportion
of impervious surfaces such as built-up were the warmest. In addition, other variables
such as decrease of vegetation cover and soil moisture (reduction of water body, increased
runoff) have the potential to reduce the LHF and consequently increase the SHF resulting

in an increase of LST (Mitchell, 2011; Kandel, 2015; Jiang et al., 2015).

Built-up surfaces were positively correlated with LST for Ouagadougou and Bobo-
Dioulasso. Previous studies which assessed the link between LST and NDBI also found
a positive correlation (Pal and Ziaul, 2017; Imran et al., 2021). The correlation coefficient
value decreased from 2003 to 2021 in Ouagadougou and Bobo-Dioulasso, meanwhile the
LST values increased. This could be explained by the fact that there is an expansion of
built-up area towards the city’s outskirts and these surfaces are mixed with natural
landscape having less heat capacity. Then, although considered as built-up areas in the
classification given the pixel size, they have low LST values because the LST is the
average skin temperature of the different LULC units at the pixel level (built-up fraction
is low at the periphery of the city). This result is in line with that of Dissanayake et al.
(2019) who found that impervious surfaces are key contributors to LST increase and its

fraction declines from the city centre to the surrounding areas. On the contrary, non-built-
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up areas showed a negative correlation with LST during the study period. This result is
in agreement with other studies which related LST and LULC using spectral indices such
as NDVI and NDWI, and found a negative correlation (Guha et al., 2020; Imran et al.,

2021; Shi et al., 2021).

In both study sites, the correlation strength between non-built-up rate and LST decreased
as in the case of built-up areas. This situation could be explained by the influence of
surrounding built-up surfaces on the non-built-up areas’ LST. Indeed, the non-built
landscape mainly occupied by agricultural, forest and water bodies are affected by the
neighbouring built-up areas which absorb and reemit huge amounts of heat in the
atmosphere. This findings agree with that of Alavipanah et al. (2015) who noted that the

LST within urban vegetation areas is influenced by LST in the surrounding built-up areas.

In terms of cooling effect, the non-built-up classes’ contribution was significant during
the study time span. The contribution to urban cooling of non-built-up areas was non-
linear in Bobo-Dioulasso, unlike Ouagadougou. Nevertheless, an increase in cooling was
produced while the non-built-up cover rate within a pixel increased. This is in line with
the studies of Di Leo ef al. (2016) and Shi ef al. (2021) which showed that non-built-up
classes such as vegetation can attenuate the warming effects of built-up surfaces. In
Germany, Alavipanah et al. (2015) also demonstrated that strong cooling effect was

observed in areas with more vegetation coverage.

These findings clearly show that built-up expansion is the main driver of LST increase in
the study area. This is one more raison of the negative influence of urban sprawl on the
environment. It can be used to promote LULC policy which integrates non-built-up
surfaces development or restauration, particularly in the urban core where built-up

proportions are the highest.
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4.2.5. Correlation between LST and selected public diseases

LST increase and its inherent SUHI deteriorate urban dwellers thermal comfort and create
a suitable environment for temperature-related diseases prevalence. This research found
that the peak occurrence of malaria and dengue corresponds to the dry season,
immediately after the rainy season. In the urban area, malaria occurs at any time during
the year, because of the persistence of SUHI, which keeps the surface warm enough to
favour the development of the diseases-carrying vector. For example, the malaria vector
can survive and evolve under temperatures between 20 to 25°C (Chastel, 2006). A similar
situation is applicable to dengue that has a rapid development when the temperature is
between 30 to 35°C. Despite the absence of established direct relationship between the
temperature rise and diseases prevalence such as malaria and dengue, the increase of
urbanisation trend associated with the intensification of extreme weather events such as

drought and floods could increase these diseases in Africa and Asia (Githeko et al., 2000).

As for meningitis, the positive correlation with LST indicates that when the LST
increases, the number of reported cases also increase, particularly during the dry season
(February, March, April, October). This is in line with the pattern of meningitis regarding
air temperature, as shown by Chen et al. (2022). Considering that the LST influences the
air temperature by contributing to its increase, LST could also contribute to intensify
meningitis outbreak. The impact of LST on public health can be summarized as follow:
the emission of heat after sunset creates a suitable ecological environment for the vectors
of certain diseases to develop. For example, the malaria vector likes a warm environment
because when the heat emitted by the surface heats the water spots, it creates a liveable
environment for the vector. That situation leads to extension in the lifespan of the vector

in the year, since the urban surface is getting much warmer and Greenhouse effect is
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increasing. On the horizon 2050, LST values will continue to increase and then have a

consequent influence on diseases prevalence in the study area.

A limitation of this assessment of the correlation between LST and diseases is the use of

district level aggregated data instead of patient based. Although that limitation, the

findings show a strong correlation between LST and meningitis prevalence in Bobo-

Dioulasso. This result can serve as guide to the Ministry of Health to investigate in detail

the link between LST and meningitis.

4.3.

Summary of Key Findings

From the foregoing discussions, the following were observed:

ii.

1il.

The dominant LULC class in Ouagadougou is built-up areas, indicating an
expansion of residential areas. In Bobo-Dioulasso, conversely, agricultural areas
were dominant, even if they experienced a non-steady trend during the study
period. The intensity analysis showed that Ouagadougou experienced a fast
annual change intensity between 2015 and 2021, whereas in Bobo-Dioulasso, a
fast change in intensity was recorded during the period 2009 — 2015. The main
transitions were towards built-up surfaces at the expense of agricultural and bare
lands in both sites.

The future projection results showed that, under BAU scenario in both cities, the
built-up areas will continue to expand towards the peripheral zones at the expense
of agricultural and forest areas in 2050.

The comparative trend analysis of LST and air temperature showed an increasing
trend of both variables in the two cities. The global increase is driven by the March
— April — May season, which presented a significant increase in Ouagadougou.

So, this season is suitable for LST trend analysis in the region.
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1v.

Vi.

The relationship analysis carried out revealed a stronger positive correlation
between the LST and ambient temperature in Bobo-Dioulasso than Ouagadougou.
The study also found that the SUHI presented high intensities in the urban core in
both cities with higher night-time values in Ouagadougou. This tendency will
continue in the future if the current LULC changes trend under the BAU persists
in the area.

The correlation analysis between LULC changes and LST, revealed a positive
correlation between LST and built-up areas, while non-built-up surfaces presented
a negative correlation with LST in the study area. The non-built-up surfaces
contribute to environmental cooling with a greater effect in Ouagadougou than
Bobo-Dioulasso.

The assessment of the link between LST and diseases showed that Plasmodium
falciparum malaria and dengue cases have a weak correlation with LST in both
cities. However, meningitis exhibited a moderate to strong positive correlation
with LST, particularly in Bobo-Dioulasso. The increase in LST lead to an increase
in meningitis prevalence. Thus, an increase in meningitis cases is expected in the

future as the current trend of LST continues in both cities.
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CHAPTER FIVE

5.0. CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

The research combined remote sensing, GIS and statistical data and analyses techniques
to investigate the impacts of urbanisation induced LST in Ouagadougou and Bobo-

Dioulasso, Burkina Faso.

The results showed that LULC changes during the study period was characterized by an
expansion of built-up area, bare land, forest and water body, against a reduction of
agricultural lands in Ouagadougou. In Bobo-Dioulasso, the built-up area, agricultural
lands and bare land increased, while forest and water body decreased. In Ouagadougou,
the increase in built-up area (78.13 per cent and bare land combined with the reduction
of agricultural lands (42.25 per cent) indicated the advanced state of imperviousness of
the area. In Bobo-Dioulasso also, in addition to an increase in built-up area (140.7 per
cent), the degradation of forested areas is evidence of human footprint expansion in the
area. Under the BAU scenario, built-up areas will continue to expand and cover about 78
per cent and 13 per cent of the landscape in 2050 respectively in Ouagadougou and Bobo-
Dioulasso. The intensity analysis showed that Ouagadougou experienced greater annual
change intensity, which peaked in the 2015-2021 period with 3.61 per cent of landscape
area change per year. In Bobo-Dioulasso the maximum change intensity was recorded in
2009-2015 with 2.22 per cent of area change per year. The transition of changes was

towards built-up surfaces, at the expense of bare and agricultural lands in both cities.

The assessment of LST patterns indicated an increasing trend with a persistent heat island
in Ouagadougou and Bobo-Dioulasso from 2003 to 2021. The seasonal analysis showed

an increase of LST in the MAM and SON seasons, while the DJF and JJA seasons saw a
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decrease in LST in both cities during the study period. The yearly LST increase during
the period was driven by the MAM season, which showed a statistically significant trend
in Ouagadougou against a non-significant trend in Bobo-Dioulasso. Strong UHI intensity
was noted in the inner city, mainly during night-time in Ouagadougou. Meanwhile, the
LST values were strongly correlated with the air temperature values throughout the study
time span with a greater correlation coefficient in Bobo-Dioulasso (R=0.83) than
Ouagadougou (R=0.76). Concretely, LST and air temperature increased in the area, while

LST contributed positively to the air temperature trend.

The relationship between the LULC change and LST in the two cities, at pixel scale,
showed a moderate to high positive correlation with built-up proportion, while the non-
built-up class rate was negatively correlated. The difference in LST between a fully built-
up pixel and a fully non-built-up pixel varied between 1.47°C and 1.87°C in
Ouagadougou against 1.02°C and 1.27°C in Bobo-Dioulasso. This difference in values
experienced gradual decreases from 2003 to 2021 in both cities, showing that LST in all
LULC classes increased. In terms of cooling effects, the non-built classes contribution
varied according to the sites during the four years (2003, 2009, 2015 and 2021). It was
lower in Bobo-Dioulasso (0.29 - 1.39°C) than in Ouagadougou (0.74 - 1.94°C). The
highest contribution of non-built class to cooling was recorded in 2009 in Ouagadougou

and in 2003 in Bobo-Dioulasso.

The analysis of the correlation between Plasmodium falciparum malaria, dengue and
meningitis cases and LST showed strong to negligible correlation according to the
disease. Plasmodium falciparum malaria and dengue had a weak to negligible correlation
with LST in the two cities. For meningitis, the correlation was moderate in the districts

of Dafra and Konsa (Bobo-Dioulasso) and Sig-Noghin (Ouagadougou). Only the district
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of Do in Bobo-Dioulasso presented a strong correlation with the LST. With LST predicted
to continue increasing into the future, the prevalence of these diseases (especially

meningitis) may increase.

5.2. Recommendations
Based on the findings of the study, the following recommendations are suggested. They

are made for policy improvement, performance improvement, and for further research.

The LULC changes were dominated by built-up gain at the expense of naturally
undisturbed areas, with higher change intensity in Ouagadougou than Bobo-Dioulasso.
The same tendency of change will continue in 2027 and 2050 if the current situation
persists under the business-as-usual scenario. This LULC change profile causes the
multiplication of water resistant and high solar radiation absorbers materials in the area,
leading to an increase in LST. The LULC maps produced for Ouagadougou and Bobo-
Dioulasso should serve as decision making tools that would inform the urban planners in
both cities of the rate at which land conversion into built-up surfaces occur. Consequently,
the Ministry in charge of Urban Planning can use these findings to improve the housing
policy in Burkina Faso. Rather than allowing individual housing, which contribute to
urban sprawl, LST increase and are not affordable for low-income people, the Ministry
can promote and implement collective low-income green housing developments. This
policy will allow more people to afford houses and will contribute to mitigate urban

sprawl and LST.

The SUHI exhibited strong intensity values in the urban core, from 1 to 6 km and 1 to 3
km from the centre respectively in Ouagadougou and Bobo-Dioulasso. The difference in
LST between a pixel fully covered by built-up and a pixel covered by non-built-up area

decreased, indicating an increase in all LULC classes. In addition, LST increase lead to
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air temperature increase in the two cities. These findings can inform the Ministry in
charge of Urban Planning to integrate non-urban landscape development in real estate
project implementations to mitigate LST. The Ministry of Environment should ensure
that real estates development agencies incorporate green areas such as street trees and
house trees to increase non-built-up surfaces cover in urban settings. Moreover,
afforestation activities should be conducted in urban areas, instead of rural areas only,
mainly along tarred road to cut off solar radiation with the hope of reducing the current
and future LST in the two cities. These green activities will contribute to reduce the rate
of built-up coverage per surface unit for LST and consequently air temperature

mitigation, towards achieving sustainable cities.

Further research should be conducted on urban LST trend using longer historical datasets
to be able to relate it to climate change. Future investigation could assess the long-term
correlation between LST and air temperature for LST-air temperature complementation
modelling. This study also suggests the use of detailed datasets on public diseases, in
particular meningitis (data on each patient location) for a modelling of population

vulnerability to LST.
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5.3. Contribution to Knowledge

The study revealed that Ouagadougou experienced more rapid changes in LULC than
Bobo-Dioulasso, with a maximum annual change intensity of 3.61 percent recorded
between 2015 and 2021 as against 2.22 per cent in Bobo-Dioulasso for the period 2009 —
2015. The transition of changes was towards built-up areas, which gains targeted bare
land and agricultural lands in both cities. This situation has led to the increase of built-up
surface in Ouagadougou by 78.12 per cent, while 42.24 per cent of the agricultural land
area was lost. However, in Bobo-Dioulasso, the built-up area has increased far more by
140.67 percent and the agricultural land areas experienced a gain of 1.38 per cent

compared with the 2003 baseline.

Both cities experienced an increasing trend in LST and air temperature (z value >0) with
a greater increase in Ouagadougou than Bobo-Dioulasso, due to urbanisation. The global
yearly trend was supported by the March-April-May (MAM) season, which shows a
statistically significant trend in Ouagadougou (p-value=0.009). The LST and air
temperature exhibited a stronger correlation in Bobo-Dioulasso (R=0.83) than in
Ouagadougou (R=0.76). In the study area, at the pixel level, the built-up proportion
showed a moderate positive correlation with the LST (0.44<R<0.64 in Ouagadougou,
0.49<R<0.61 in Bobo-Dioulasso), while the non-built-up proportion was negatively

correlated with LST (-0.41<R<-0.6 in Ouagadougou, -0.49<R<-0.59).

The difference in LST between a fully built-up pixel and a fully non-built-up pixel
decreased from 2003 to 2021 in both cities indicating that the LST increased in all LULC
types throughout the study period. The contribution of the non-built-up class to urban
cooling was lower in Bobo-Dioulasso (between 0.29°C and 1.39°C) than in Ouagadougou

(between 0.74°C and 1.94°C). The research also found that malaria and dengue fever had
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a weak correlation with LST (R<0.4), while meningitis presented a moderate correlation
in the districts of Dafra (R=0.56) and Konsa (R=0.49) in Bobo-Dioulasso) and Sig-
Noghin (0.66) in Ouagadougou. Only the district of Do in Bobo-Dioulasso showed a
strong correlation (R=0.86) with the LST. With projected increases in LST under the

business-as-usual scenario, the prevalence of temperature-related diseases may increase.

In summary, the study area experienced an increase in human footprint, which contributed
to the intensification the LST which is an environmental threat to urban dwellers. These
findings constitute a useful decision support for sustainable urban planning. It is therefore
recommended that afforestation should be vigorously pursued at all governmental levels
to step down the LST in the two cities. While sponsored research should be carried out to

deepen the knowledge on LST and epidemic in the nation.
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APPENDICES

APPENDIX A: LULC intensity analysis / Category level metrics in Ouagadougou

Uniform
Gross Loss Gain Loss Gain
Loss Gross Gain Intensity  Intensity Category Behaviour Behaviour
Intensity

Category level Intensity Analysis for interval: 2003 - 2009

Built-up 9813.667  15551.833 0.028 0.040 0.026 Active Active
Agricultural land 17324.333  9087.667 0.025 0.014 0.026 Dormant Dormant
Forest 672.833 413.333 0.077 0.058 0.026 Active Active
Bare land 383.333 2761.000 0.091 0.149 0.026 Active Active
Water 363.667 744.000 0.056 0.085 0.026 Active Active
Category level Intensity Analysis for interval: 2009 - 2015

Built-up 4960.500  24568.667 0.013 0.049 0.030 Dormant Active
Agricultural land 24489.333  5217.833 0.037 0.010 0.030 Active Dormant
Forest 322.167 1319.333 0.045 0.100 0.030 Active Active
Bare land 2182.333  858.000 0.118 0.081 0.030 Active Active
Water 473.167 463.667 0.054 0.053 0.030 Active Active
Category level Intensity Analysis for interval: 2015 - 2021

Built-up 7627.833  28252.833 0.015 0.045 0.036 Dormant Active
Agricultural land 28586.000 6423.833 0.053 0.016 0.036 Active Dormant
Forest 1092.000  1162.167 0.083 0.086 0.036 Active Active
Bare land 1156.167  2963.333 0.110 0.139 0.036 Active Active
Water 421.833 81.667 0.049 0.012 0.036 Active Dormant
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APPENDIX B: LULC intensity analysis / Category level metrics in Bobo-Dioulasso

Uniform
Gross Loss Gross Loss Gain Category Loss Gain
Gain Intensity Intensity Behaviour Behaviour
Intensity

Category level Intensity Analysis for interval: 2003 - 2009

Built-up 1019.667 4618.000  0.013 0.045 0.022 Dormant Active
Agricultural land 20813.333 21650.000 0.013 0.014 0.022 Dormant Dormant
Forest 20545.000 16155.667 0.067 0.057 0.022 Active Active
Bare land 252.167 206.000 0.117 0.110 0.022 Active Active
Water 0.000 0.500 0.000 0.000 0.022 Dormant Dormant
Category level Intensity Analysis for interval: 2009 - 2015

Built-up 1470.333 5340.167  0.014 0.042 0.022 Dormant Active
Agricultural land 13042.500 29981.333  0.008 0.018 0.022 Dormant Dormant
Forest 27153.000 8278.000  0.097 0.049 0.022 Active Active
Bare land 204.333 118.500 0.109 0.087 0.022 Active Active
Water 1939.833 92.000 0.158 0.080 0.022 Active Active
Category level Intensity Analysis for interval: 2015 - 2021

Built-up 930.500 12441.167  0.007 0.064 0.022 Dormant Active
Agricultural land 28049.500 13891.000 0.017 0.009 0.022 Dormant Dormant
Forest 13000.833 15238.167 0.077 0.084 0.022 Active Active
Bare land 25.667 436.167 0.019 0.114 0.022 Dormant Active
Water 0.000 0.000 0.000 0.000 0.022 Dormant Dormant
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