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ABSTRACT 

Rising temperature is one of the direct indicators of global climate change. To 

investigate how the rising global temperature will affect the spatial pattern of rainfall 

and consequent flood and drought in West Africa,  precipitation and potential 

evapotranspiration variables from ten Global Climate Models (GCMs) under the 

RCP8.5 scenario were downscaled by the Rossby Centre regional atmospheric model 

(RCA4) from the Coordinated Regional Climate Downscaling Experiment (CORDEX) 

and analysed at four specific global warming levels (GWLs) (i.e., 1.5℃, 2.0℃, 2.5℃, 

and 3.0℃) above the pre-industrial level. This study utilized four indices: the 

standardized precipitation evapotranspiration index (SPEI), the precipitation 

concentration index (PCI), the precipitation concentration degree (PCD), and the 

precipitation concentration period (PCP) to explore the spatio-temporal variations in the 

characteristics of precipitation concentrations. Additionally, studying the impact of the 

four GWLs on consecutive dry days (CDD), consecutive wet days (CWD), and 

frequency of the intense rainfall events led to a better understanding of the 

spatiotemporal pattern of extreme precipitation. The onset of rainfall comes one month 

earlier in the Gulf of Guinea compared to the historical period, with increasing rainfall 

intensity in the whole study domain. To encourage adaptation to the various changes in 

climate in general, and particularly in respect of rainfall, the study proposes two 

adaptation methods that can be implemented at the local (country) level, as well as some 

mitigation and adaptation strategies at the regional level. More practically, to analyze 

flood events which became more frequent since 2000 in West Africa, this research 

improve on previous analysis by designing an experimental work using the coupled 

atmosphere-hydrology modeling system WRF-Hydro over Ouémé-river basin in Benin 

for the period 2008-2010. Such a coupled model allows exploring the contribution of 
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atmospheric components into the flood event, and its ability to simulate and predict 

accurate streamflow. The potential of WRF-Hydro to correctly simulating streamflow 

in the Ouémé-river basin is assessed by forcing the model with operational analysis 

dataset from the ECMWF. Atmospheric and land surface processes are resolved at a 

spatial resolution of 5 km. The additional surface and subsurface water flow routing are 

computed at a resolution 1:10. Key parameters of the hydrological module of WRF-

Hydro were calibrated offline and tested online with the coupled WRF/WRF-Hydro. As 

a result, WRF-Hydro was able to simulate the discharge in Ouémé river on offline and 

fully-coupled modes with a Kling-Gupta Efficiency (KGE) of 0.70 and 0.76 

respectively. In fully-coupled modes, the model captures the flood event that occurred 

in 2010 in the catchments of interest. The uncertainty of atmospheric modeling on 

coupled results is assessed with the stochastic kinetic-energy backscatter scheme 

(SKEBS) by generating an ensemble of 10 members for three rainy seasons. It shows 

that the coupled model performance in terms of KGE ranges form 0.14-0.79 and 0.13-

0.75 at Savè and Bétérou respectively. This ability in realistically reproducing observed 

discharge in the Ouémé-river basin demonstrates the potential of the coupled WRF-

Hydro modeling system for flood forecasting applications. 
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RÉSUMÉ 

L'élévation de la température est l'un des indicateurs directs du changement climatique 

mondial. Pour étudier l'impact de la hausse de la température globale sur la 

configuration spatiale des précipitations, les inondations et la sécheresse qui sévissent 

en Afrique de l'Ouest, les variables de précipitations et d'évapotranspiration potentielles 

de dix modèles climatiques globaux (MCG) du scénario RCP8.5 ont été réduites en 

échelles avec le modèle atmosphérique regional du Centre Rossby (RCA4), disponible 

dans la base de l‘Expérience de réduction d'échelle climatique coordonnée (CORDEX) 

et analysé à quatre niveaux de réchauffement planétaire (GWL) spécifiques (c.-à-d. 1,5 

℃; 2,0 ℃; 2,5 ℃ et 3,0 ℃) au-dessus du niveau pré-industriel. Cette étude a utilisé 

quatre indices: l'indice normalisé de précipitations et d'évapotranspiration (SPEI), 

l'indice de concentration de précipitation (PCI), le degré de concentration de 

précipitation (PCD) et la période de concentration de précipitation (PCP) pour explorer 

les variations spatio-temporelles des caractéristiques de la concentration des 

précipitations. De plus, l'étude de l'impact des quatre GWLs sur les jours secs 

consécutifs (CDD), les jours pluvieux consécutifs (CWD) et la fréquence des épisodes 

de précipitations intenses a permis de mieux comprendre le schéma spatio-temporel des 

précipitations extrêmes. Comme resultas, il et à retenir que le début des précipitations 

survient un mois plus tôt dans le golfe de Guinée par rapport à la période historique, 

avec une intensité croissante des précipitations dans l'ensemble du domaine d'étude. 

Pour encourager l’adaptation aux divers changements climatiques en général, et en 

particulier en ce qui concerne les précipitations, l’étude propose deux méthodes 

d’adaptation pouvant être mises en œuvre au niveau local (pays), ainsi que des stratégies 

d’atténuation et d’adaptation au niveau régional (Ouest Africain). Plus concrètement, 

afin d'analyser les inondations devenues plus fréquentes depuis 2000 en Afrique de 



 
 

x 

l'Ouest, cette étude améliore les analyses précédentes en concevant un travail 

expérimental utilisant le système de modélisation couplé hydrologie-atmosphère WRF-

Hydro sur le bassin de l'Ouémé au Bénin sur la période 2008-2010. Un tel modèle couplé 

permet d'explorer la contribution des composants atmosphériques dans la crue et sa 

capacité à simuler et à prédire un débit précis. La potentialité du modèle WRF-Hydro à 

simuler correctement le débit dans le bassin de la rivière Ouémé à Savè est évalué en 

forçant le modèle avec un ensemble de données d'analyse opérationnelle du ECMWF. 

Les processus atmosphériques et de surface sont résolus à une résolution spatiale de 5 

km. Le débit supplémentaire des écoulements d'eau de surface et souterraine est calculé 

à une résolution de 1:10. Les paramètres clés du module hydrologique WRF-Hydro ont 

été calibrés hors ligne (mode non-couplé) et testés en ligne (mode couplé) avec le 

couplage WRF/WRF-Hydro. WRF-Hydro a ainsi pu simuler le débit de la rivière 

Ouémé à Savè en mode déconnecté et entièrement couplé avec un rendement Kling-

Gupta (KGE) de 0,70 et 0,76 respectivement. En mode totalement couplé, le modèle 

prend en compte les inondations survenues en 2010 dans les bassins versants étudiés. 

L'incertitude de la modélisation atmosphérique sur les résultats couplés est évaluée avec 

le schéma de rétrodiffusion d'énergie cinétique stochastique (SKEBS) en générant un 

ensemble de 10 membres pour trois saisons de pluie. Les results montrent que les 

performances du modèle couplé en termes de gammes de KGE sont respectivement de 

0,14 à 0,79 et de 0,13 à 0,75 à Savè et à Bétérou. Cette capacité à reproduire de manière 

réaliste les débits observés dans le bassin de la rivière Ouémé démontre la potentialité 

du système de modélisation couplé WRF/WRF-Hydro pour les applications de prévision 

des crues. 
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CHAPTER ONE  

INTRODUCTION 

 Background of the Study 

Africa is one of the most vulnerable continents to climate change and climate variability, 

a situation aggravated by the interaction of ‘multiple stresses’, occurring at various 

levels, and low adaptive capacity (high confidence). In its 5th report, the 

Intergovernmental Panel on Climate Change (IPCC) stresses the increment of the 

number of extreme weather events for the 21st century due to climate change (IPCC, 

2014). Tropical countries of West Africa are threatened particularly by climatic hazards, 

such as droughts, floods, high winds, the elevation of the sea level, etc. Among them, 

extreme meteorological events such as droughts and floods are the most important in 

terms of damages and impacts and represent an important limitation for the development 

of the poorest countries in West-Africa. In most of these developing countries, 

agriculture remains the main economic activity, and farming practices are mainly 

represented by agriculture, which depends strongly of rainfall (Rosegrant et al., 2002). 

Some studies referred to an investigation of these weather events. First of all, it turns 

out important to improve our understanding of droughts and floods. There is no standard 

definition about these extreme weather events, but for our understanding, drought could 

be defined as a series of years in which rainfall is significantly below average over an 

area. According to the dictionary Encarta, drought is a prolonged period of abnormally 

low rainfall, leading to a shortage of water. For Sivakumar et al. (2011) drought is 

defined as a normal, recurrent feature of climate characterized by a deficiency in 

precipitation over an extended period (usually a season or more), resulting in a water 
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shortage for some activities or some group. Dai (2011) and Kundzewicz (1997) are also 

closed to Sivakumar's et al., (2011) definition by explaining that drought is a recurrent 

and natural climatic event caused by below normal precipitation compared to the long-

term average and extending over a long period of time. It is important not to confuse 

drought and aridity. For White et al. (1993), aridity should be defined as a permanent 

feature of drought in areas with low rainfall, then aridity represents the consequence of 

drought in a particular area. This deficiency of precipitation has an impact on both 

surface water and groundwater resources and leads to reduction in water supply and 

quality, reduced agricultural productivity, diminished hydro-electric power generation, 

disturbed riparian and wetland habitats, as well as reduced opportunities for certain 

recreational activities (Vicente-Serrano et al., 2012). The drought can then be 

characterized according to 4 types namely: Meteorological, hydrological, soil moisture 

and socio-economic droughts (e.g. Richard, 2002). This classification of drought is 

strongly linked to the time over which the water deficits accumulate (Gurrapu et al., 

2014; Wilhite and Glantz, 1985). Therefore, timescales represent the basis of 

classification of drought into various types: 1-month timescale for meteorological 

drought, 3-6-month for an agricultural and 12-month timescale for hydrological 

droughts (Homdee et al., 2016; Vicente-Serrano et al., 2010). 

As oppose to drought, the flood can be defined as an event in which the volume of water 

expected and the flood crest is much above average. For the Encarta dictionary, the flood 

is an overflow of water that submerges land that is usually dry; whilst the glossary of 

meteorology defines the flood as the overflowing of the normal confines of a stream or 

other body of water, or the accumulation of water over areas that are not normally 

submerged. The main cause of floods (including fluvial floods, flash floods, urban 

floods, pluvial floods, etc.) are intense and/or long-lasting precipitation and are affected 
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by various characteristics of precipitation, such as its intensity, duration, amount, and 

timing. Therefore, floods result from abundant rainfall and have consequences such as 

loss of human life, damage to property, destruction of crops, loss of livestock, and 

deterioration of health conditions owing to waterborne diseases which both individuals 

and communities. Such consequences, affect directly social, economic, and 

environmental domains. 

The drought that affected West African countries at the beginning of the 1970s, which 

peaked in the mid-1970s and lasted for several decades, causing millions of population 

displacement is known as one of the most undisputed and largest recent climate changes 

recognized by the climate research community (Dai et al., 2004) and is well documented 

in terms of rainfall variability (Le Barbé et al., 2002; Lebel and Ali, 2009; Paturel et al., 

1998). To investigate on drought, some authors (e.g. : Kasei et al., 2010) studied the 

temporal characteristics of meteorological droughts in the Volta basin, a semi-arid 

region in West Africa; their works analyzed drought intensity, areal extent and 

recurrence frequency using the standardized precipitation index (SPI). Kasei et al. 

(2010) found that during the period 1961-2005 there were five years within that period 

(1961, 1970, 1983, 1992 and 2001) where 75% of West Africa was under historical 

droughts. The criterion is that SPI was lower than -2 (case of extreme drought). 

According to Fontaine and Janicot, (1996) drought over all of West Africa is associated 

with the growth of positive SST anomalies in the Eastern Pacific and in the Indian 

Ocean, and negative SST anomalies in the Northern Atlantic and in the Gulf of Guinea. 

In contrast, drought limited to the Sahel corresponds mostly to a northward expansion 

of positive SST anomalies in the South Atlantic, and negative SST anomalies in the 

North Atlantic. Flooding overall West Africa is mainly associated with positive SST 

anomalies in the North Atlantic. L’Hôte et al. (2002) investigated on drought in West-



 
 

4 

Africa on the period 1896-2000, they clearly found the drought events occurred in 1969 

and 1970 over the Sahel area. Statistical results of this research also illustrate that the 

drought was not over at the end of 2000 in the whole West-Africa.  

According to some authors, it is possible to identify a given threshold characteristic of 

drought (known as a peaks-under-threshold) or flood (a peaks-over-threshold). This 

definition was used by Petrow and Merz (2009) to provide a spatial pattern of high flow 

(flood) trend in Germany (Figure 1.1), and (Fiala et al., 2010; Fleig et al., 2006; Sung 

and Chung, 2014; Van De Giesen et al., 2010) for a spatial trend of low flow (drought). 

Alternatively, meteorological indices such as the SPI, and Palmer Drought Severity 

Index (PDSI  : Palmer, 1965) are used commonly to quantify hydrological drought (e.g.: 

Joetzjer et al., 2013 and Zhai et al., 2010 used the SPI , whilst Abatzoglou et al., 2014 

used the PDSI). These meteorological approaches were also used by Garner et al., 

(2015), Teuling et al., (2013) and Trambauer et al., (2014); they found numerous 

thresholds, which allow identifying extreme river flow events. A recent agreement that 

there is increasing of rainfall since the beginning of the 2000s was found by L’Hôte et 

al., (2002) and Lebel et al., (2009), while Descroix et al., (2012) and Panthou et al., 

(2014) showed an intensification of the rainfall regime in the Sahelian region since the 

2000s, characterized by a greater contribution of extreme precipitation to the annual 

total rainfall (Ezenwaji et al., 2017).  
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Figure 1.1 : Spatial distribution of trends in seasonal peak-over-threshold frequency – 

WPOT3F (winter, left map), SPOT3F (summer, right map) (upward arrows: significant 

increasing trend; downward arrows: significant decreasing trend; circles: no significant 

trend; size of arrows: relative change within 52 years; Mann–Kendall test, 2-sided 

option; 10% significance level). Source : Petrow and Merz (2009) 

  
the upward trends of AMAXF in the Danube basin are mainly dom-
inated by upward trends in summer floods. However, also the fre-
quency of floods (POT3F) increased significantly at many gauges,
especially along the main river Danube, which is visible in both
seasonal POT3F. An increasing frequency in the winter is supposed
to be caused by higher winter temperatures, and hence, earlier
snow melting in the mountain ranges.

The annual maxima for the Elbe gauges showed a small number
of significant changes with a similar share of upward trends in
winter (AWMAXF) and downward trends in summer (ASMAXF).
Increasing trends in the winter maxima were mostly found in the
Saale catchment, which is the most western sub-catchment of
the Elbe river basin and which shows a similar trend pattern as
the neighbouring Weser catchment. The sites with decreasing
trends in summer flood magnitude are rather randomly distributed
in space.

The spatial and seasonal coherence of the results suggests that
the observed changes in flood behavior are climate-driven. This
conclusion is further supported by the missing relation between
significant changes in the discharge series and basin area. Impact
of land-cover changes or of river training works would be expected
to show scale-dependency. However, from our analysis we con-
clude that there are no preferred spatial scales where significant
changes could be detected.

Therefore, it is interesting to evaluate, whether or not our re-
sults are in line with studies on changes in climate. To this end,
our results are qualitatively compared to those of recent investiga-
tions that analyze changes in atmospheric circulation patterns. It
has been shown that there is a close link between the occurrence
and persistence of atmospheric circulation patterns and floods in
Germany (e.g., Bárdossy and Caspary, 1990; Pfister et al., 2004a;
Petrow et al., 2007).

Gerstengarbe and Werner (2005) compared daily data of two
time periods (1881–1910 and 1975–2004) and found for the sum-
mer large upward trends in the frequency of circulation patterns
from the south (tripled frequency with a step change in the
1940s). During the same time period the north-westerly patterns
decreased at the same magnitude (Mittelgebirge Weser, Elbe).
Gerstengarbe and Werner (2005) found small decreases for the
summer in the westerly, northern and easterly circulation patterns.

For the winter, Gerstengarbe and Werner (2005) found increas-
ing trends of westerly atmospheric circulation types. Additionally,
a longer duration period of the persistence of the circulation pat-
terns was observed. This yields a larger flood hazard through circu-
lation patterns which are generally not very prone to cause flood

Fig. 7. Spatial distribution of trends in seasonal peak-over-threshold frequency – WPOT3F (winter, left map), SPOT3F (summer, right map) (upward arrows: significant
increasing trend; downward arrows: significant decreasing trend; circles: no significant trend; size of arrows: relative change within 52 years; Mann–Kendall test, 2-sided
option; 10% significance level).

Table 3
Percentages of gauges showing significant trends; bold numbers indicate field
significance.

% of gauges with

Increasing trend Decreasing trend No trend

AMAXF 28 1 71
AWMAXF 23 0 77
ASMAXF 10 10 80
POT1M 17 2 81
POT3M 5 2 93
POT3F 25 1 74
SPOT3F 2 1 97
WPOT3F 17 0 83

138 T. Petrow, B. Merz / Journal of Hydrology 371 (2009) 129–141
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An investigation on the implication of the concentration and variability of rainfall on 

flood over Awka Urban Area (Nigeria) using the precipitation concentration index (PCI) 

by Ezenwaji et al. (2017) showed that the area is having reasonable floods with 

consequent pollution. Precipitation extremes are in close relation with flood events and 

droughts (Cancelliere et al., 2007; Jiang et al., 2013; Kundzewicz, 1997; Tsakiris and 

Vangelis, 2004 and Zhao et al., 2012). Therefore, the exploration of the spatial and 

temporal patterns of drought/ flood precipitation using SPEI and PCI indices 

respectively, and the analysis of both precipitation concentration and drought/flood 

classification trends across the study area using the t-test should contribute to a better 

understanding on the projection of future drought/flood episodes in West Africa. 

As an illustration, many West African countries such as Benin, Burkina Faso, Cote 

d’Ivoire, Niger, Senegal, and Togo suffered from catastrophic floods with severe 

consequences as loss of life, property, and damage (Hounkpè et al., 2015). For example, 

Nouaceur et al., (2013) studied seperatly the influences of climate change and the floods 

of 2003, 2005, 2007, 2008, 2009 and 2012 on the populations of the cities of Nouakchott 

(Mauritania) and Ouagadougou (Burkina Faso). But the research did not evaluate the 

impact of climate change on floods. Ouémé-river (in Benin) also in September-October 

2010 experienced dramatic flooding, which affected 680,000 people, leading to 43 

deaths (UNHCR, 2010). During this event, 55 out of 77 Benin municipalities including 

Cotonou were flooded. Similarly, in 2012 some southern and northern municipalities 

(Cotonou, Abomey-Calavi, Malanville, Karimama, etc.) were flooded. In an 

investigation on the impacts of dramatical floods over the southern part of Benin, 

Sossou-agbo (2013) showed that flood events that occurred in 2003, 2007, 2009 and 

2010, have affected most the agroecological areas such as Zangnanado, Ouinhi, Bonou, 

Adjohoun, Dangbo, and Aguégué, whilst Godonou (2010) assessed the environmental 
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risks of the dramatical floods of 2010 at Dogbo, Lalo and Lokossa (Benin). In another 

study, Wallez (2010) studied the floods in Cotonou without involving climate 

variability. The spatial and temporal changes in runoff regime may increase flood 

vulnerability in a river basin. However, for operational reasons, hydrological models are 

ineffective in simulating this process (Delestre, 2011). Generally, this type of model 

uses Saint-Venant equations whose unknowns are the speed and the level of water. 

Afouda (1980) had conducted modeling of runoff through the equations of Saint-Venant 

in the 1980s in the city of Cotonou. However, his study solved these equations in one 

dimension, and the overall topography of the study area was not considered. 

In this study, some climate indices were used to investigate probable present and future 

locations of extreme weather events over West-Africa. A narrow analysis of flood 

events in Ouémé-river basins was established. Therefore, the coupled atmospheric-

hydrology modeling system WRF-Hydro was used to assess the West African extreme 

climate and provide a predicting tool for future floods, which can aid early warning 

policies to limit or avoid negative impacts of these extremes. 

 Statement of the problem and research questions 

The anthropogenic influences on climate are progressively affecting the frequency and 

intensity of extreme climate events (extreme temperatures, extreme precipitation, 

droughts, flood, etc.) in some regions of the world (IPCC, 2012, 2014). Africa is one of 

the continents most exposed to the effect of climate. Some investigations led in Africa, 

especially in West-Africa illustrate its vulnerability to climate change. For instance, a 

joint study led by the United Nations Environment Program (UNEP) and some other 

programs explained that climate change could potentially have profound implications 

for food security and regional stability. The same study analyses the regional trends of 
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climate change in temperature, rainfall, droughts and flooding over the past four 

decades, and their implications for the availability of natural resources, livelihoods, 

migration, and conflict in 17 West African countries. The analysis has detected 

significant changes in regional climatic conditions, including an overall rise in mean 

seasonal temperature from 1970 to 2006 of approximately 1 °C, with a greater increase 

of between 1.5°C to 2°C observed in eastern Chad and northern Mali and Mauritania. It 

has been noticed that the frequency of floods and the area covered by flooding have 

increased in some parts of West-Africa over the past three decades especially southern 

Burkina Faso, western Niger and northern Nigeria experiencing more than ten floods 

events. 

It is known that flood and drought impact on both individuals and communities, and 

have social, economic, and environmental consequences. Their consequences, both 

negative and positive, vary greatly depending on their location, duration, intensity and 

frequency. Among the negative consequences for individuals we have, loss of human 

life, damage to property, destruction of crops, loss of livestock, and deterioration of 

heath conditions owing to waterborne diseases. As communities get damaged, people 

are forced to leave their homes and normal life is disrupted. Some economic activities 

may come to a standstill as well. Particularly, the flood can traumatize victims and their 

families for long periods of time, and lead to psychological impacts. Knowing the spatial 

and temporal extent of the extreme event will help reduce the impacts of its 

consequences. A reliable flood forecasting system and drought warning over West 

Africa will also help adequate implementation management systems. With this, decision 

makers can take actions for addressing the disaster risk management. This study tasks 

to understand and implement the rainfall-run complexity and provide a reliable flood 
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forecasting and drought warning system over selected West African cities through 

extreme events study. The following questions were addressed: 

i. Does climate change affect hydrometeorological parameters such as precipitation, 

temperature and discharge over West Africa? 

ii. What will be the trend of flood and drought events in future climate? 

iii. Is WRF-Hydro capable of improving precipitation, flood and drought forecasting? 

 Aim and objectives 

The aim of the study is to use a regional climate model to improve our understanding of 

rainfall producing systems and predicts flood and drought in some cities in West Africa.  

The specific objectives are to: 

1. investigate extreme climate events and establish their trend according to projected 

Global Warming Levels (GWLs) using climate indices; 

2. calibrate and validate hydro-atmospheric dynamic model over the study area; 

3. simulate flood and drought characteristics under historical periods; and 

4. perform seasonal forecasting of rainfall and discharge using reforecast dataset. 

 Innovation  

The study innovates by investigating the spatial distribution of potential extreme climate 

events over West-Africa both for present and future periods for various global warming 

levels. It is an extension and adding values to some studies over the same region (e.g.: 

Diasso and Abiodun, 2015; Oguntunde et al., 2017). It is also the third times that the 

coupled atmospheric-hydrology modeling system WRF-Hydro is used over West-Africa 

after the one of Arnault et al., (2016) and Naabil et al. (2017). But in the present case, 
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it is the first times it is implemented for flood prediction on a basin over the region. 

Finally, focusing on the period 2008-2010, the study establishes WRF-Hydro as reliable 

flood forecasting model. 

 Structure of the thesis 

This thesis is organized into five chapters. Chapter one provides the general 

introduction, the statement of the problem leading to the present study and some 

research questions which can derive from it. This chapter also details the objectives of 

the work and the innovation for the scientific community. Chapter two presents the 

literature relevant to the research areas. It discusses the West African climate system, 

defines extreme climate events (Flood and drought), exposed methods for their 

investigation. Chapter three enumerates the methodology used in the study. It presents 

the study area, the data used and methods adopted for investigation on flood and drought 

events. Chapter four presents and discusses the results obtained during these researches. 

It discusses the spatial repartition of potential flood and drought area, enhances the flood 

predictability skill with WRF-Hydro model. The last chapter (Chapter five) is dedicated 

to the conclusion, the limits and perspectives for future researches related to the same 

field. 
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CHAPTER TWO  

LITERATURE REVIEW 

Drought and subsequent floods have been experienced in West Africa over the last few 

decades especially since 2002, altering the annual rainfall cycles (Tschakert et al., 

2010). This chapter illustrates different methods used to study these weather events.  

 West African climate systems 

The West African climate is dominated by the monsoon which is a large-scale 

circulation characterized by seasonal changes in wind direction mainly caused by the 

continent-maritime temperature contrast  (Afiesimama et al., 2006). The climate system 

of West Africa is mainly influenced by two major air mass systems at low-level; the 

south-west maritime air called the monsoon and the north-east continental air. The dry 

season is mainly influenced by the north-east trade winds known as Harmattan from 

Sahara desert and the wet season is mainly influenced by the southern monsoon, with 

the changing position of the Inter-tropical discontinuity (ITD). During the rainy season 

from June to September (West African Monsoon period, Klutse et al., 2015) in the West 

Africa Sahel, the ITCZ is associated with a very large convective available potential 

energy (CAPE) and also horizontal moisture flux through the available abundant water 

vapor. These conditions with the inherent conditional instability generate deep 

convection, which constitutes the major rain-producing systems in that region 

(Omotosho, 1985). 

The West African Monsoon (WAM) circulation provides West African countries with 

more than 75% of their annual rainfall (Omotosho, 1985); it is the primary rainfall-

producing systems during summer months (Abiodun et al., 2008a). However, other 
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rainfall-producing systems known in West Africa include the African Easterly Jet 

(AEJ), Tropical Easterly Jet (TEJ) (Cook, 1999; Grist et al., 2001; Nicholson and Grist, 

2001), and the African Easterly Waves (AEWs) (Diedhiou et al., 2001; Druyan and 

Fulakeza, 2000; Thorncroft and Hodges, 2000). Several types of precipitation systems 

cause rainfall over West Africa. Mainly those systems are: mesoscale convective 

systems (MCSs), monsoon rains. The MCSs comprise squall line systems (SLs; e.g., 

Aspliden et al., 1976; Chong and Hauser, 1988; Eldridge, 1957; Fink and Reiner, 2003 

and Roux, 1987), organized convective systems (OCSs; Mathon et al., 2002), and 

mesoscale convective complexes (MCCs; Laing et al., 2008). Such convection systems 

are frequently initiated by AEWs, south of the AEJ. Reed et al., (1988) have estimated 

that about 50% of the June-September rainfall in West Africa occurs under the influence 

of AEWs. Two other low-level westerly jets are involved in the processes, the African 

Westerly Jet (AWJ) over the continent and the West African Westerly Jet (WAWJ) over 

the Atlantic (Grodsky et al., 2003; Nicholson, 2013 and Pu and Cook, 2010).  

The annual rainfall over different zones is relatively constant but decreases from south 

to north away from the equator (Eltahir and Gong, 1995). Figure 2.1 shows that West 

Africa can be classified into four major climatic zones: 

- Guinean zone: the annual average rainfall varies between 900-1500 mm, and could 

be more in some places, 

- Sudanese zone: with annual average rainfall between 400-900 mm, 

- Sahelian zone: average annual rainfall in the range of 150-400 mm,  

- Saharan zone: mostly less than 150 mm of rainfall per year. 
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 Flood and drought events  

Floods and droughts are extreme hydroclimatic events (Shelton, 2009). They are 

recurrent events in the world with characteristics of frequency, magnitude, duration and 

timing. However, there are no universal definitions of these characteristics to allow 

objective identification of a flood or drought event (Mishra and Singh, 2010). 

Hydrological extremes are caused by meteorological anomalies (i.e. severe deviations 

from climatic or average weather conditions; Tallaksen and Stahl, 2014), the effects of 

which are moderated by river basin properties. Commonly, flood and drought events are 

defined as the highest or lowest flow in a given year; and an extreme event is typically 

defined as a value occurring above or below a threshold value near the upper or lower 

ends of the range of observed values (Seneviratne et al., 2012). Flood events usually 

follow high-intensity precipitation events, series of precipitation events; but contrary to 

flood, drought events are associated with a prolonged period of low or no precipitation 

(meteorological drought) and/or an air temperature anomaly (Loon et al., 2012; Loon 

and Lanen, 2012; Teuling et al., 2013).  But the characteristics of meteorological 

anomalies leading to flood and drought vary spatiotemporally. 

2.2.1 Characterization of drought and flood events using climate indices 

Climate indices among many others that are frequently used for forecasting, monitoring 

and planning drought and flood events are Palmer Drought Severity Index (PDSI), 

Standardized Precipitation Index (SPI), and The Standardized Potential 

Evapotranspiration Index (SPEI). 
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2.2.1.1 The Palmer Drought Severity Index (PDSI)  

The PDSI, based on a soil water balance equation represents one of the first climate 

indices used in literature to demonstrate success at quantifying the severity of droughts 

across different climates (Palmer, 1965). It is also the most prominent index of 

meteorological drought indices used in the world (Mishra and Singh, 2010). Figure 2.2 

shows the monitoring of the drought events in California based on the computation of 

PDSI. But Burke et al. (2006) showed that it does not perform well everywhere; for 

instance, in regions where there are extremes in the variability of rainfall or run-off, 

such as in Australia and South Africa. To avoid this randomly analysis, the Self-

calibrating PDSI (SC-PDSI) is developed. The SC-PDSI automatically calibrates the 

behavior of the index at any location by replacing empirical constants in the index 

computation with dynamically calculated values. This SC-PDSI were tested and 

validated by Burke et al. (2006) over 761 sites within the U.S. states of Nebraska, 

Kansas, Colorado, Wyoming, Montana, North Dakota, and South Dakota, and showed 

spatially a comparable result to PDSI. Some other studies (Gobena and Gan, 2013; 

Schrier et al., 2006; Sousa et al., 2011) also demonstrated that the SC-PDSI can improve 

upon the PDSI significantly and is more appropriate for comparing the drought severity 

of diverse climates. 
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Figure 2.2: Monitoring of the timing of the extreme and exceptional drought events in 

California (USA). Source: United States Department of Agriculture -United States 

(USDA-US), 2014 
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2.2.1.2 Standardized Precipitation Index (SPI)  

In order to improve information gotten from PDSI which provides only a spatial 

overview of drought, the SPI  based on a precipitation probabilistic using Gamma 

distribution approach was proposed by McKee et al. (2012) to investigate on particular 

drought and anomalously wet periods. They also classified the weather events in 

types since particular systems and regions can respond to drought conditions at very 

different time scales.  This index has been increasingly used during the two last decades 

because of its solid theoretical development, robustness, and versatility in drought 

analyses (Redmond, 2002). In term of hydrological evaluation, the advantages of the 

SPI have been showed with various studies (Fiori et al. 2014; Lorenzo-lacruz et al., 

2010; Vicente-Serrano and López-Moreno, 2005; Vicente-Serrano et al., 2012). In 

addition, Vicente-Serrano et al., (2005) have also illustrated variation in the response of 

agricultural, and ecological variables (Ji and Peters, 2003; Pasho et al., 2011; Vicente-

serrano, 2007) to different time scales of the SPI. 

The computation of SPI requires long term data on precipitation to determine the 

probability distribution function which is then transformed to a normal distribution with 

mean zero and standard deviation of one (Kumar et al., 2009). The major assumption in 

the SPI computation is that the precipitation and other meteorological factors are taking 

as stationary with no temporal trends (Vicente-Serrano et al., 2010). However, the 

variable temperature plays an important role in the moisture availability and various 

empirical studies have shown that an increase in temperature affects the severity and 

duration of droughts (Rebeteza et al., 2006). Thus, the computed values of the index 

indicated in standard deviations, when the value is positive means the index is greater 

than median precipitation and negative values expressing less than median precipitation 

(Edwards and McKee, 1997). McKee et al. (1993) proposed ranges for the SPI 
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corresponding to different severity levels of drought (Table 2.1). SPI has been 

recommended by the World Meteorological Organization (WMO) for drought 

monitoring (Wilhite, 2012). Szinell et al. (1998) used the SPI to analysis drought event 

in Hungary, they found that the SPI with time scale 2-3 is more relevant for agricultural 

drought (when the soil moisture is insufficient and results in the lack of crop growth and 

production) whilst 5-24 months relates to hydrological drought (refers to shortages of 

water resources, when for example; groundwater, reservoir, or stream levels are 

significantly reduced). 
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Table 2.1: Classification of SPI and SPEI values. Source: McKee et al. (2012) 

 

 

 

 

 

 

 

 

 

 

  

SPI value Moisture level 

+2.0 and greater Extremely wet 

+1.5 to 1.99 Very wet  

+1 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1.49 to -1.0 Moderately dry  

-1.99 to -1.5 Severely dry 

Less to -2.0  Extremely dry 
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2.2.1.3 The Standardized Potential Evapotranspiration Index (SPEI) 

Some region are primarily dry and moisture deficient, i.e. the difference between annual 

precipitation and potential evapotranspiration (PET) is less than zero (Hogg and Hurdle, 

1995). SPI does not consider other variables that can influence droughts, such as 

temperature, evapotranspiration, wind speed and soil water holding capacity. In a 

context of global warming where temperature is expected to increase (Dai, 2011) raised 

the concern that the contribution of temperature to evapotranspiration might play an 

important role in drought impacts on ecology and mortality (Allen et al., 2011; Barber 

et al., 2000) and water resources. Therefore, using a drought index based on 

precipitation data alone may not be sufficient to monitor spatiotemporally the droughts. 

To address this, Vicente-Serrano et al. (2010) developed the Standardized Precipitation 

Evapotranspiration Index (SPEI) which is similar to SPI, because based on the same 

calculation procedure with difference that it is incorporating estimates of moisture losses 

to the atmosphere due to evapotranspiration. The SPEI combines the sensitivity of PDSI 

to changes in evaporation demand with the simplicity of calculation and the multi-

temporal nature of the SPI (Čadro et al. 2017). It is computed at various temporal scales 

based on the non-exceedance probability of precipitation and potential 

evapotranspiration (PRE-PET) differences Vicente-Serrano et al. (2010) and is capable 

of depicting the multi-temporal nature of drought. When take account the climate water 

balance (CWB) defined as the difference between precipitation and potential 

evapotranspiration (PRE-PET), the index has ability to capture the effects of global 

warming on drought occurrence. There is a slight differences when compare the 

performance of the SPI and the SPEI indices, but the SPEI was the drought index that 

best captured the responses of the assessed variables to drought in summer, the season 

in which more drought-related impacts are recorded and in which drought monitoring is 
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critical (Vicente-Serrano et al. 2012). Oguntunde et al. (2017) used this index over West 

Africa, and shown that the historical (1970-2013) pattern of drought is consistent with 

previous studies over the Volta River Basin, while Diasso and Abiodun, (2015) 

grouped about 60 % of spatial-temporal variability of SPEI over West Africa in four 

groups : east Sahel, west Sahel, Guinea coast and Savanna. 

2.2.2 Characterization of drought and flood using climate simulation 

Several regions in the world are impacted by hydrological extremes, i.e. drought and 

flood events, with important consequences for countries’ economy. There is serious 

preoccupation about future hydrological extremes due to climate change or climate 

variability. In the aim to address this issue, some authors proposed to capture 

realistically the location of the extremes and how and why the change is or will be 

observed on a specific period, also propose appropriate policies to reduce the negative 

impacts of hydrological extremes. It is obvious that when the hydrological drought 

occurs water abstraction and irrigation are significantly impacted (Kumar et al., 2016); 

whilst during flood events, protection measures such as levees, alter the frequency, 

magnitude and spatial distribution of the events (Baldassarre et al., 2009; Blöschl et al., 

2013; Heine and Pinter, 2011). To earlier warning about these weather extremes (Di 

Baldassarre et al., 2013; Sivapalan et al., 2011) developed adaptation measures which 

underpinning integrated water resources management (IWRM). Precipitation playing an 

important role in the characterization of hydrological extremes. García-Valdecasas et 

al. (2017) used the Weather Research and Forecasting (WRF) model to dynamically 

downscaling high-resolution precipitations in aim to evaluate the dry and wet area in 

Spain. They compared the spatiotemporal variabilities of agricultural and hydrological 

droughts using SPI and SPEI methods with the high estimated variables from WRF 

outputs, on the one hand with the observational (monthly precipitation and temperature 
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databases of Spain, MOPREDAS and MOTEDAS) and on the other hand with the 

European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-

Interim) data sets. Chawla et al. (2018), Maussion et al. (2011) and Ngailo et al. (2018), 

provided rainfall estimates with WRF at fine grid spacing to monitor flood events. WRF 

model was also used by Flesch and Reuter, (2012) to investigate two flooding events in 

Alberta, Canada. They found that there was little sensitivity to topography in the 

precipitation outside the mountain areas. Yukiko et al. (2010) simulated daily discharge 

from a high-resolution general circulation model (GCM) to investigate on future 

projections of extremes, and found an increase of frequency of floods and droughts in 

some specific areas. They concluded that changes in flood and drought are not explained 

simply by changes in annual precipitation, heavy precipitation, or differences between 

precipitation and evapotranspiration. Milly et al. (2002) investigated changes in flood 

extremes using monthly river discharge data for both gauge observations and GCM 

simulations, and noticed increasing of the risk of great floods.  

 Effects of El Niño and La Nina on African rainfall 

The El Niño-Southern Oscillation (ENSO) cycle is a scientific term that describes the 

fluctuations in temperature between the ocean and atmosphere in the east-central 

Equatorial Pacific (approximately between the International Date Line and 120 degrees 

West). El Niño and La Niña are opposite phases of what is known as the ENSO cycle. 

La Niña is sometimes referred to as the cold phase of ENSO and El Niño as the warm 

phase of ENSO (Figure 2.3).  
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It has long been recognized that the Pacific El Niño has a close association with rainfall 

variability in many parts of Africa. Geographically specific studies indicated a tendency 

for droughts in southern Africa during El Niño events (Heerden et al., 1988; Lindesay, 

1988) and above-normal rainfall in much of equatorial eastern Africa (e.g. Beaufort et 

al., 1997). As El Niño, La Niña is a general association between wet conditions 

continentally and cold temperatures in the Atlantic and Indian Oceans, and dry 

conditions in association with warm sea-surface temperatures (SSTs) in these oceans. 

La Niña appears to have the greatest influence on rainfall in southern Africa and wet 

episodes tend to occur throughout the subcontinent during the first few months of the 

post-La Niña year (Nicholson and Selato, 2000). Klutse et al. (2015) using GCMs 

(CAM3 and HadAM3) found that the both models give reasonable simulations of 

significant relationship between the regional rainfall and SST over the Nino 3.4 region 

and show that ENSO strongly drives the climate of Southern Africa. 

Over West Africa, El Niño events tend to result in enhanced north-easterlies/reduced 

monsoon flow, coupled to weakened upper easterlies, and hence dry conditions over 

West Africa close to the surface position of the ITCZ in July–September, as well as 

January–March. The combination of ENSO and Atlantic SST anomalies are found to 

give rise to complex wind flow changes in the near-equatorial Atlantic. In addition to 

large-scale SST-forced atmospheric dynamics, a few regional atmospheric signals are 

found to explain residual parts of rainfall variance. For instance, a strengthening of the 

African Easterly Jet (AEJ), or northerly wind anomalies across the Sahara, are shown to 

be related to drought conditions in the Sahel (July–September) and the Gulf of Guinea 

area (January–March), once the remote effect of SST anomalies is removed (Camberlin 

et al., 2001). 
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 Representative Concentration Pathways (RCPs) 

In the aim to investigate and understand future climates, scientists refer to climate 

scenarios to provide a plausible explanation of how the future may evolve with respect 

to a number of variables including socioeconomic change, technological change, energy 

and land-use, and emissions of greenhouse gasses and air pollutants (Van Vuuren et al., 

2011). For this issue, there are many factors that researchers have to take account when 

predicting how future global warming will contribute to climate change. Among the 

factors, future greenhouse gas emissions is a key variable. So for research of various 

groups be comparable or/and complementary, a standard set of scenarios should be 

retained to ensure that starting conditions, historical data, and projections are employed 

consistently across the various branches of climate science. So, for the 

Intergovernmental Panel on Climate Change (IPCC) meeting in 2007, four (04) RCP 

radiative forcing levels were retained (Moss et al., 2008). The four RCPs, namely 

RCP2.6, RCP4.5, RCP6, and RCP8.5, are labeled after a possible range of radiative 

forcing values till the year 2100 (2.6, 4.5, 6.0, and 8.5 W/m2, respectively). But for the 

preparation of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on 

Climate Change (IPCC) meeting in 2014, researchers thought about the development of 

a new approach the create a standard and usable climate change scenarios for research. 

Table 2.2, has been proposed for projections of global warming for the Mid- and late-

21st century (2046–2065 and 2081–2100, respectively). For these projections, they 

suggested that temperature projections can be compared to a reference period of 1850–

1900 or 1980–99 by adding 0.61 or 0.11 °C, respectively. Across all RCPs, global mean 

temperature is projected to rise by 0.3 to 4.8 °C by the late-21st century, whilst the 

global mean sea level rises by 0.26 to 0.82 m.  
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Table 2.2: Global warming (°C) and sea level (m) increase projections according to 

AR5 (Source: https://en.wikipedia.org/wiki/Representative_Concentration_Pathway). 

 Description Global warming (°C) 

increase 

Global sea level (m) 

increase  

 Rising radiative 

forcing pathway 

2046-2065 2081-2100 2046-2065 2081-2100 

Scenario  Mean and 

likely 

range  

Mean and 

likely range  

Mean and 

likely range  

Mean and 

likely range  

RCP2.6 (~490 ppm CO2 

eq) by 2100 

0.4 to 1.6 0.3 to 1.7 0.17 to 0.32  0.26 to 0.55 

RCP4.5  (~650 ppm CO2 

eq) by 2100 

0.9 to 2.0 1.1 to 2.6 0.19 to 0.33 0.32 to 0.63 

RCP6 (~850 ppm CO2 

eq) by 2100 

0.8 to 1.8 1.4 to 3.1 0.18 to 0.32 0.33 to 0.63 

RCP8.5 (~1370 ppm CO2 

eq) by 2100 

1.4 to 2.6 2.6 to 4.8 0.22 to 0.38 0.45 to 0.82 
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Stemming from the Paris Agreement in 2015 at COP21 (Rogelj et al., 2016) inviting for 

keeping global temperature increase below 2ºC, and even possible engaged this 

temperature increase to 1.5ºC. Recently, Déqué et al. (2017) suggested a classification 

of the global warming for all the RCPs and for Global warming levels (GWLs) form 

1.5ºC to 4ºC. Based on Déqué et al. (2017) suggestion, several studies (Abiodun, 2018; 

Klutse et al., 2018; Kumi and Abiodun, 2018; Maúre et al., 2018; Nikulin et al., 2018) 

were done to assess the impact of each GWL on various fields. Figure 2.4 is showing 

the emission of atmospheric concentration of carbon dioxide CO2 (parts per million) 

under the four scenarios, while Figure 2.5 is referred to the Projected global surface 

temperature change under different emissions scenarios. This Figure 2.5 is a chart 

showing forecast temperature change under the best (RCP2.6) and worst (RCP8.5) 

scenarios. 

From Figure 2.5, if we assumed that by 2020 that the emission reached its peak and then 

reduced to zero this century (i.e. the assumption of RCP2.6), the global temperature 

could be stabilized at around 1°C above levels in the late 1900s. The IPCC says it is 

unlikely (<33% probability) that the rise will exceed 2°C. On the other hand, if we carry 

on as if there is no problem without even a slowdown in emissions growth until late in 

the 21st century (i.e. RPC8.5), the forecast outcome is not pretty. Temperatures are 

forecast to continue increasing and by 2100 and reach around 4°C higher than late 20th 

century levels. 
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Figure 2.5 : Projection of global surface tem
perature change under different em

issions scenarios. 
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 Global and Regional Climate Models 

Prediction means obtaining projected data of an area over a period of time. There are 

two main ways in prediction: (i) statistical method where historical data is set to detect 

significant past variability, to provide a basis for predicting future changes; and (ii) 

physically-based model approach to simulate past climate processes and predict the 

future climate. According to Garner et al. (2015), the second approach requires an in-

depth understanding of the physical processes driving the climate and changes within 

an area. For that, it is important to study the dynamics of the future climate using climate 

models. There are two types of climate models: Global Climate Models (GCMs) and 

Regional Climate Models (RCMs).  

GCMs have coarse resolutions; and are designed to simulate earth’s climate over the 

entire planet, but are limited when they come to describing local details due to heavy 

computational demands. For that challenge, GCM’s output may be downscaled using 

RCMs or empirical-statistical downscaling (ESD) methods. For instance, there is a 

broad agreement in the literature that the atmosphere will warm, and accordingly its 

water-holding capacity will increase; in turn, this will drive a change in the type and 

frequency of precipitation extremes and increase evaporation (Stocker et al., 2013); 

investigation of this example could be done for the whole earth planet using GCM and 

locally details (with a much finer grid) should be driven by the RCM or ESD from 

GCM’s results. RCMs can add details such as the influence of lakes, sea breeze, 

mountain ranges, and sharper weather fronts. Diallo et al. (2012), Giorgi (2014) and 

Laprise et al. (2013) have demonstrated that downscaling GCM output with RCM could 

potentially improve spatial and temporal information, especially for detailed impact 

assessments at the regional level. The Coordinated Regional Downscaling Experiment 

(CORDEX) downscaled multiple GCMs over fourteen domains such as Europe, Asia 
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(East, Central, South), South-East Asia, Africa, Middle East North Africa, America 

(North, Central, South), Australasia, Antarctica, Arctic, and Mediterranean. Many 

works used this CORDEX dataset to investigate on drought events (Diasso and 

Abiodun, 2015; Maúre et al., 2018; Meque and Abiodun, 2015, Oguntunde et al., 2017), 

on the characteristics of West African precipitation (Klutse et al., 2015; Nikulin et al., 

2012), on the impacts of different levels of global warming in some specific domains 

(Abiodun et al., 2018; Déqué et al., 2017; Klutse et al., 2018; Kumi and Abiodun, 2018; 

Mba et al., 2018; Nikulin et al., 2018). 

The scale at which GCMs and downscaled RCMs simulate the global water cycle 

processes is too coarse for catchment-scale modeling (Maraun et al., 2010). Therefore, 

GCMs or RCMs outputs are often used to drive offline hydrological models, and thus 

simulate catchment moisture stores and runoff at smaller spatial scales (Duan and Mei, 

2014). However, not all of the hydrological models are equally suitable to represent 

floods or droughts (Tallaksen and Stahl, 2014, and Van Loon et al., 2012). Therefore, 

Wilby and Dessai (2010) suggests that climate model outputs should be evaluated for a 

specific hydrological application, while Huijgevoort et al. (2014) advise an a priori 

selection of GCM–hydrological model combinations. 
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 Coupled atmospheric models and hydrological models  

2.6.1 Weather Research and Forecasting (WRF) Model parametrization 

The WRF model is a non-hydrostatic, mesoscale numerical weather prediction, and 

atmospheric simulation system, and is suitable to simulate a wide range of scales (i.e. 

from thousands of kilometers to a few meters). It gives several physics options for the 

parametrization of the subgrid-scale physical processes, for instance, convection, 

microphysics, radiation, or the planetary boundary layer (Wagner et al., 2016), and 

makes it appropriate for a broad range of applications such as forecasting research, Real-

time Numerical Weather Prediction (NWP), Regional climate research, Couple model 

applications, etc. Besides, it disposes options of land surface models (LSMs) which 

compute heat and moisture fluxes over the surface and is used as a lower boundary for 

atmospheric models. The behaviors of the WRF model depend directly to how well it 

represents atmospheric processes, which is related to the choice of suitable 

parametrization schemes with respect to the research question of the study. The 

performance of any physics scheme depends largely on the main feature of atmospheric 

processes in the domain of interest, the model resolution and the appropriate choice of 

parameterization for the particular problem (Klein et al., 2015). The choice of 

parameterization schemes influences strongly the outcome of the model simulations. 

These schemes are summarized into the categories of the land surface, atmosphere 

interaction, water-atmosphere interaction, planetary boundary layer and turbulence, 

convection, microphysics and radiation (Stensrud et al., 2009). Details of these 

parameterizations are available e.g., in Skamarock et al. (2007). 
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2.6.2 WRF-Hydro modeling system 

In this study, the WRF hydrological modeling extension package (WRF-Hydro V.3.0; 

(Gochis et al., 2015) is explored. WRF-Hydro has been established to facilitate 

improved representation of terrestrial hydrologic processes related to the spatial 

redistribution of surface, subsurface and channel waters across the land surface and to 

facilitate coupling of hydrologic models with atmospheric models (Gochis et al., 2015). 

The underlying land surface model upon which the hydrological model is built is made 

up of a fully distributed, 3-dimensional, variably-saturated surface and sub-surface flow 

model previously referred to as ‘Noah-distributed’. The conceptual architecture for 

WRF-Hydro is shown in Figure 2.7 where WRF-Hydro exists as a coupling architecture 

(blue box: to an atmospheric model) or “middleware” layer between weather and climate 

models and terrestrial hydrologic models and land data assimilation systems. WRF-

Hydro can also operate in a standalone mode (“uncoupled” or “offline”) like a traditional 

land surface hydrologic modeling system (Gochis et al., 2015). The principle model 

physics options in WRF-Hydro include:  

• 1-dimensional (vertical) land surface parameterization 

• surface overland flow  

• saturated subsurface flow 

• channel routing 

• reservoir routing 

• conceptual/empirical baseflow 
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Figure 2.7 : Conceptual Schematic WRF-Hydro architecture showing, various 

categories of model components (Source: Gochis et al., 2015) 
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The details of the routing processes are available in Gochis et al. (2015). A brief 

statement of some processes are provided below. 

First the 1-dimensional (1D) column land surface model calculates the vertical fluxes of 

energy (sensible and latent heat, net radiation) and moisture (canopy interception, 

infiltration, infiltration-excess, deep percolation) and soil thermal and moisture states. 

Infiltration excess, ponded water depth and soil moisture are subsequently disaggregated 

from the 1D LSM grid, typically of 1–4 km spatial resolution, to a high-resolution, 

typically 30–100 m, routing grid using a time-step weighted method (Gochis and Chen, 

2003) and are passed to the subsurface and overland flow terrain-routing modules. Other 

land cover and soil type classification datasets can be used with WRF-Hydro but users 

are responsible for mapping those categories back to the same categories as used in the 

USGS or MODIS land cover and STATSGO soil type datasets. The WRF model pre-

processing system (WPS) also provides a fairly comprehensive database of land surface 

data that can be used to set up the Noah and Noah-MP land surface models. It is possible 

to use other land cover and soils datasets.  

The subsurface lateral flow in WRF-Hydro is calculated prior to the routing of overland 

flow to allow exfiltration from fully saturated grid cells to be added to the infiltration 

excess calculated from the LSM. The current existing method used to calculate the 

lateral flow of saturated soil moisture is that of Wigmosta and Lettenmaier (1999) and 

Wigmosta et al. (1994) implemented in the Distributed Hydrology Soil Vegetation 

Model (DHSVM). It calculated a quasi-3D flow, which includes the effects of 

topography, saturated soil depth, and depth-varying saturated hydraulic conductivity 

values. Hydraulic gradients are approximated as the slope of the water table between 

adjacent grid cells in either the steepest descent or in both x- and y-directions. The flux 

of water from one cell to its down-gradient neighbor on each time-step is approximated 
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as a steady-state solution. WRF-Hydro specifies the water table depth according the 

depth of the top of the saturated soil layer that is nearest to the surface. By default in the 

model, a minimum of four soil layers are used in a 2-meter soil column. The depth of 

each column can be adapted according to each field. 

Overland flow is represented using a fully-unsteady, explicit, finite-difference, diffusive 

wave formulation with either a two dimensional or a steepest descent approach. The 

continuity equation for an overland flood wave is combined with the diffusive wave 

formulation (the diffusive wave formulation accounts for backwater effects hence 

allowing flow on adverse slopes) of the momentum equation (Kerandi, 2017). 

Channel routing along the river network defined by grid cells is being simulated by 

application of St. Venant’s equation, which provides solution to conservation of mass 

and momentum equations, to single direction shallow water wave flows. If there is a 

reservoir along river, model also applies reservoir routing.  

WRF-Hydro uses precipitation, temperature, wind (u and v), humidity and incoming 

short, long wave radiation as forcing dataset. In addition to these data, hydrologic base 

layers like high resolution topography, flow direction, stream network, stream order, 

basin boundaries are needed to use in land and channel routing modules (Önen, 2013). 

The high-resolution domain is generated by processing topographic data in Geographic 

Information System (GIS) environment (ArcGIS in particular). Within the model 

algorithm, excess precipitation calculated by water and energy balance, soil moisture 

and hydraulic conductivity are downscaled from the low scale of the LSM to the high-

resolution by grid disaggregation technique (Gochis et al., 2015) and are used in routing 

modules to perform surface, sub-surface and channel routing processes.  
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2.6.3 Coupling models atmospheric-hydrologic model WRF/WRF-Hydro 

The accuracy of flood forecasts depends strongly on the skill of quantitative 

precipitation forecasts and their spatial distribution (Cloke and Pappenberger, 2009; 

Shih et al., 2014; Younis et al., 2008). Most modern hydrological models can use 

precipitation input from various sources: rain gauges, radar, remote sensing or simulated 

precipitation from numerical weather models. Operational global weather forecast 

centers routinely provide over the Eastern Mediterranean region relatively coarse 

precipitation forecasts with resolutions of 16–27 km (Givati et al., 2016). These 

forecasts cannot typically resolve the necessary details of complex, intense precipitation 

structures that are forced by mesoscale orography, land-surface heterogeneities, and 

land-water contrasts (Fiori et al., 2014). To overcome this, Givati et al. (2012) used the 

Weather Research and Forecast (WRF) model to provide high-resolution precipitation 

forecasts of 1.3 - 4 km horizontal resolution; and found that WRF model was able to 

provide precipitation forecast both in terms of quantity and in spatial distribution. Givati 

et al. (2012) used the output from the WRF model to run Hydrological Model for Karst 

Environment (HYMKE) for the upper Jordan River basin; for over Ayalon basin case 

Givati and Sapir (2014) preferred HEC-HMS hydrological model. 

Similar experiments were set in different areas and the authors found that rainfall 

estimates from the WRF model underestimated the magnitude of the heavy precipitation 

events in comparison with rain gauges, and so the surface runoff hydrograph determined 

from WRF-derived precipitation was also underestimated (Ratnayake et al., 2010; 

Yucel and Keskin, 2011).  

Several studies (Bouilloud et al., 2010; Chen and Dudhia, 2001; Jasper et al., 2002; 

Marty et al., 2013; Moreno et al., 2013; Seuffert et al., 2002; Wang et al., 2012; and  
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Zabel and Mauser, 2013) have shown the advantages of using coupled atmospheric-land 

surface models for temperature and precipitation in different areas and for different 

seasons. Wagner et al. (2016) studied simulations with a fully coupled atmospheric-

hydrological model (WRF-HMS) and uncoupled model for several meteorological 

variables and found a better performance for the fully coupled model. Senatore et al. 

(2015) compared a one-way forced implementation of the WRF-Hydro system to a fully 

2-way coupled instance of WRF/WRF-Hydro in order to evaluate the impact of 2-way 

coupling on simulated precipitation and stream flow. They found that the two setups 

performed well for the precipitation but the correlation from the two-way coupled 

WRF/WRF-Hydro simulation was higher than the one-way WRF model both compared 

with the observed data and statistical criteria. Based on the finding of Senatore et al. 

(2015), Givati et al., (2016) tried to assess the accuracy of operational hydrologic 

forecasts when using different sources (rain gauge data, offline simulated precipitation 

from the WRF model (WRF one way) and online simulated precipitation from the fully-

coupled atmosphere-land-hydrology WRF/WRF-hydro model (WRF two way)) of 

precipitation data as input including one-way versus two-way coupled modeling 

systems. To assess the advantages and limitations of one-way versus two-way coupled 

modeling systems for flood prediction over Ayalon basin (Israel), Givati et al. (2016) 

used both hydrological model Hydrological Engineering Center-Hydrological Modeling 

System (HEC-HMS) and the Weather Research and Forecasting Hydro modeling 

system (WRF-Hydro). The models were forced by observed, interpolated precipitation 

from rain-gauges within Ayalon basin, and with modeled precipitation from the WRF 

atmospheric model. They used the two-way coupled WRF/WRF-Hydro modeling 

system to improve both the precipitation and hydrological simulations as compared to 

the one-way WRF simulations. They found that, the use of two-way atmospheric- 

hydrological coupling has the potential to improve precipitation and, therefore, 



 
 

41 

hydrological forecasts for early flood warning applications. Kerandi et al. (2018) 

applied the fully coupled WRF/WRF-Hydro to improve understanding of the 

hydrometeorological conditions of the Tana River basin of Kenya by investigating on 

the joint atmospheric-terrestrial water balances of the coupled model. They concluded 

that the coupled WRF/WRF-Hydro slightly reduces precipitation, evapotranspiration, 

and the soil water storage but increases runoff over Tana River basin. Arnault et al. 

(2016) applied for the first time the model WRF-Hydro over a basin in West-Africa. 

They assessed the influence of the runoff–infiltration partitioning and resolved overland 

flow on land–atmosphere feedbacks, and shown that resolved overland flow increases 

infiltration and evapotranspiration at the beginning of the wet season when soils are still 

dry whilst precipitation is relatively sensitive to runoff–infiltration partitioning. They 

also illustrated that WRF-Hydro was able to reproduce daily streamflow in the Sissili 

river’s with a reasonable performance. Naabil et al. (2017) in a work about water 

resource management in Ghana, explored the potentiality of WRF-Hydro in a fully 

coupled mode with WRF to assess water resources, in  Tono basin. Another work led 

by Arnault et al. (2018) in central Europe, used WRF-Hydro to investigate on the 

sensitivity of precipitation to the uncertainty in the representation of terrestrial water 

flow. Their work demonstrated that the uncertainty of terrestrial water flow increases 

the normalized ensemble spread of daily precipitation where topography is moderate, 

surface flux spatial variability is high, and the weather regime is dominated by local 

processes. 
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CHAPTER THREE  

MATERIALS AND METHODS 

3.1 Study domain 

The study area lies in West Africa, which is located between latitudes 0°N and 20°N 

and longitudes 20°W and 20°E (Figure 3.1). This region is bordered in the South by the 

Gulf of Guinea, in the north by Mauritania, Mali, and Niger; the Cameroon highlands 

form the eastern boundary, while the Atlantic Ocean forms the western limit. The annual 

mean temperature is about 18℃, but in the Sahel, maximum temperatures can reach 

above 40°C. Rainfall patterns over this region are mostly affected by ocean currents and 

local features, such as topography. In terms of climatic zones, West Africa can be 

divided into three different regions. The first region covers the Sahel and is characterized 

as a semi-arid zone ranging from western Senegal to eastern Sudan, between 12°N and 

20°N. The second region is the Sudano-Sahelian zone, while the last and the third 

comprises the Gulf of Guinea, which is characterized by a bimodal mode driven by the 

Intertropical discontinuity (ITD). At the Gulf of Guinea, precipitation is abundant year-

round without a clear marked dry season (in August). At higher latitudes, precipitation 

decreases and is limited to a wet season of decreasing duration. Therefore, along the 

south-north gradient of decreasing rainfall, countries around latitude 5ºN record a mean 

annual rainfall of 1,600 mm; those around 12ºN 700 mm within a 5-month rainy season; 

and 18ºN and up less than165 mm annually in a short 2.5-month rainy season (Figure 

3.2). 
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Figure 3.1: Study domain showing the West African topography and the area of focus, 

which comprises the Gulf of Guinea (Guinea), the Savanna, and the Sahel zones. Source: 

Diasso and Abiodun, 2015. 
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Figure 3.2: M
ean annual rainfall 1981–2014, w

ith num
ber of m
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m

 or m
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Source : https://eros.usgs.gov/w
estafrica/node/157 
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To experimentally evaluate the ability of the atmosphere-hydrology modeling system in 

West-Africa, the study domain is narrowed to Figure 3.3 which represent the simulated 

domain located between latitudes 0°N and 18°N and longitude 7°W and 12°E. Within 

this domain, the study focused on Ouémé-river located in the Benin Republic. 

Benin is located in the inter-tropical zone (between 06°10ʹN and 12°25ʹN), that has a 

wet and dry tropical climate (Hounkpè et al., 2015) contains the interested rivers (Savè 

and Bétérou) on which the study is focused on. The Ouémé catchment at Savè (resp. 

Bétérou: inner-catchment to Savè) outlet covers an area of 24.800 km2 (resp. 10.475 

km2). It is located between 7º58-10º12N and 1º35-3º05E, and represent 47.2% of the 

whole Ouémé-river (Le Barbé et al., 1993).  

The seasons of Benin correspond to the periods of dominance of the wet tropical 

continental air masses. The seasonal distribution of rainfall follows the direction of the 

ITD and varies almost proportionally with distance from the coast. Therefore, Bétérou 

has a unimodal precipitation diet (May to October), whilst the southern part of Savè 

catchment has a transitional diet (April and October, with a short dryness in August). 

The averages of annual rainfall between 1960 – 2007 are 1205 mm at the Bétérou 

rainfall station and 1098 mm at Savè. The dynamics of the river is characterized by a 

high discharge during the rainy season. The average of the maximum flow between May 

and September over the period 1960-2007 is in order of 470 m3/s at Bétérou and 880 

m3/s at Savè outlet. From November to May almost all the rivers dry up and the averages 

of low flows are about 5m3/s at Savè, and 2m3/s at Bétérou. The annual mean 

temperature range is between 24ºC and 33ºC.  
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3.2 Study datasets 

For the present study, rainfall and potential evapotranspiration data from Coordinated 

Regional Climate Downscaling Experiment (CORDEX) are used to identify the present 

and potential future drought and flooding areas in West Africa. This CORDEX 

evaluation is compared to the satellite data CRU used as observed data. The 

observational dataset is used in the present study to evaluate the capability of WRF in 

simulating climate variables. 

3.2.1 Regional climate model dataset 

To investigate how the rising global temperature will affect the spatial pattern of rainfall 

in West Africa, and also its impact on the extreme climate events, the study used the 

precipitation and potential evapotranspiration (PET) variables from ten Global Climate 

Models (GCMs) under the RCP8.5 scenario were driven by the Rossby Centre regional 

atmospheric model (RCA4) from CORDEX and analysed at some specific global 

warming levels (GWLs) above the pre-industrial level. Data from CORDEX are driven 

by RCA4 at daily and monthly timesteps. The simulated dataset used was collected from 

the coordinated regional climate downscaling experiment (CORDEX) (Nikulin et al., 

2012), and has a horizontal resolution of 0.44°×0.44°. The period of 1971-2000 was 

extracted from the simulated dataset as the historical period, while the period of 2006-

2100 was used for projections. This study focuses specifically on the GWLs of 1.5℃, 

2.0℃, 2.5℃, and 3.0℃ above the pre-industrial levels and under the RCP8.5 scenario. 

The 30-year projection according to each GWL can be found in Table 3.1. 
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Table 3.1: Recapitulative of the selected years for the ten GCMs drove by RCA4 model 

according to each global warming level (Nikulin et al., 2018) 

 RCP85 

RCM GCM 1.5ºC 2.0ºC 2.5ºC 3.0ºC 

 

 

 

RCA4 

CanESM2 1999-2028 2012-2041 2024-2053 2034-2063 

CNRM-CM5 2015-2044 2029-2058 2041-2070 2052-2081 

CSIRO-Mk3 2018-2047 2030-2059 2040-2069 2050-2079 

EC-EARTH 2005-2034 2021-2050 2034-2063 2047-2076 

GFDL-ESM2M 2020-2049 2037-2066 2052-2081 2066-2095 

HadGEM2-ES 2010-2039 2023-2052 2033-2062 2042-2071 

IPSL-CM5A-

MR 

2002-2031 2016-2045 2027-2056 2036-2065 

MIROC5 2019-2048 2034-2063 2047-2076 2058-2087 

MPI-ESM-LR 2004-2033 2021-2050 2034-2063 2059-2088 

NorESM1-M 2019-2048 2034-2063 2047-2076 2059-2088 
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3.2.2 Observational datasets 

This section presents the various datasets that are used to assess the climate data trend, 

and also those used for calibration, evaluation, and validation of the simulation results 

used in the study. The rainfall, discharge, and temperature data were obtained from the 

national agency of meteorology of Benin. Precipitation, temperature and soil moisture 

were also obtained from satellite or gridded datasets. 

3.2.2.1 Observed station data   

The rainfall station data is collected over 34 stations over the whole Ouémé-basin, the 

temperature is from 4 synoptical stations (Cotonou, Bohicon, Savè, and Parakou), and 

the discharge data from the outlets (Bonou, Bétérou, Ahlan, Atchérigbé, Savè) of the 

basin. The dataset are collected from Benin’s National Agency of Meteorology 

(NAMet) and the General Directorate of Water (GD-Water) on the period 2000-2015. 

A particular focus is on the year 2010, known as the year when Ouémé-river experienced 

a devastating flooding. Hounkpè et al., (2015) showed that the maximum values of 

discharge  recorded during period 1989-2009 is less than 1400 m3/s at Savè, and 650 

m3/s at Bétérou; and Avahounlin et al., (2013) who showed that the peaks of discharge 

at Savè (resp. Bétérou) are 914.31 (resp. 472.89), 1066.75 (resp. 561.8), and 1196.93 

(resp. 640.35) m3/s respectively for 5-, 10-, and 20-year return period. 

3.2.2.2 Gridded observed dataset 

The evaluation of the model WRF-Hydro namely is performed with two dataset, the 

satellite estimates of Tropical Rainfall Measuring Mission (TRMM, 3B42 v7 derived 

daily at 0.25° horizontal resolution, 1998-2015; Huffman et al., 2007), and the Climate 

Hazards Group Infrared Precipitation with Stations (CHIRPS; chirps- v2.0 at 0.05° 
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horizontal resolution; 1981-near present; Funk et al., 2015). The TRMM (prepared and 

distributed by the NASA GES DISC) is used to evaluate both temporally and spatially 

the model over the WRF-Hydro domain. This 3-hourly (beginning at 00Z and ending 

21Z; unit: mm) dataset which spatially covered the latitude 50°S-50°N and all longitude, 

is interpolated to hourly data over the selected WRF-Hydro domain. The CHIRPS, one 

of the recent global dataset, also spatially cover the latitude 50°S-50°N and longitude 

180ºE-180ºW. It is also a satellite product based on in-situ station data with three 

timesteps (daily, pentad and monthly), the daily is the one used by this study. It is 

designed as a suitable alternative for data sparse regions that depend on convective 

rainfall Kerandi, (2017). The gridded climate research unit (CRU v3.23, monthly at 0.5° 

horizontal resolution, 1901-2014; Harris et al., 2014) provided by the University of East 

Anglia and prepared based on the archive of monthly mean precipitation and 

temperature provided by more than 4000 weather stations distributed all over the world. 

3.2.2.3 Gridded soil moisture data 

Soil moisture content dataset from the Climate Change Initiative of the European Space 

Agency (ESA-CCI-SM; available at https://www.esa-soilmoisture-cci.org/) has become 

a well-established dataset within the scientific climate community, with a long temporal 

coverage (1978-2016). It merges the soil moisture data from multiple active and passive 

microwave sensors are used for the surface soil water content validation. It has a 0.25° 

spatial resolution and a daily temporal resolution. The long temporal coverage is an 

essential prerequisite for robust trend assessments and the investigation of soil moisture 

drivers of hydrological process. 
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3.3 Methods 

Prior climate indices are applied to identify some particular areas impacted by climate 

change and variability. The second aspect of the work is to investigate based on 

experimental work with an atmosphere-hydrology modelling system over specific 

basins. 

3.3.1 Climate indices  

This section presents some climate index methods used in the present work such as : the 

Standardized precipitation evapotranspiration index (SPEI), the precipitation 

concentration index (PCI); the precipitation concentration degree (PCD), precipitation 

concentration period (PCP), the consecutive dry day (CDD), the consecutive wet day 

(CWD), and frequency of intense rainfall events. 

3.3.1.1 Standardized precipitation evapotranspiration index (SPEI) 

SPEI is an index computed based on the non-exceedance probability of the climate water 

balance which is the differences between precipitation (PRE) and potential 

evapotranspiration (PET) described by the Equation (3.1), adjusted using a three-

parameter log-logistic distribution which accounts for common negative values 

(Vicente-Serrano et al., 2010). The SPEI uses a three-parameter distribution to capture 

the deficit values since it is most likely that in arid and semi-arid areas the moisture 

deficit can be negative. For two-parameter distributions as used in case of Standardized 

precipitation index (SPI), the variable x has a lower boundary of zero (0 > x < ∞) 

meaning that x can only take positive values while for the three-parameter distributions 

used in SPEI, x can take values in the range (γ > x< ∞) implying that x can also take 

negative values; γ is the parameter of origin of the distribution (Vicente-Serrano et al., 
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2010). The SPEI is obtained by normalizing the water balance into the Log-logistic 

probability distribution. The difference (Di) between PRE and PET for the month (i). 

D$ = PRE$ − PET$	                   (3.1) 

The calculated D values are aggregated at different time scales as follows: 

D,- = ∑ PRE,/0 − PET,/0-/0
$12                  (3.2) 

With k the timescale (months) of the aggregation and n is the particular month for which 

the climate water balance is computed. 

The probability density function of a Log-logistic distribution is given as: 

f(x) = 9
:
;</=
:
>
9/0

?1 + ;</=
:
>
9
B
/C

                  (3.3) 

Where α, β and γ are respectively scale, shape and origin parameters for γ > D < ∞. 

The probability distribution function for the D series is then given as: 

f(x) = K1 + ;:
<
− γ>

9
L
/0

                  (3.4) 

With f(x) the SPEI can be obtained as the standardized values of F(x) according to the 

method of Abramowitz and Stegun, (1965): 

Where SPEI = W− PQRPSTRPUTU

0RVSTRVUTURVWTW                 (3.5) 

and W = X−2ln	(P) for P ≤ 0.5                 (3.6) 

P is the probability of exceeding a determined D$ value and is given as  P = 1 − f(x) 

whilst the constants are:  
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C2 = 2.515517, C0 = 0.802853, CC = 0.010328, d0 = 1.432788, dC = 0.189269,  

dg = 0.001308  

The computation of the SPEI is done over each grid point for each dataset. The SPEIs 

have been spelt for 1-month, 3-month, 6-month and 12-month. 

3.3.1.2 Empirical Orthogonal Function  (EOF) 

EOF technique aims at finding a new set of variables that captures most of the observed 

variance from data through a linear combination of the original variables. This method 

splits the temporal variance of data into orthogonal patterns called empirical 

eigenvectors. This approach has been widely used to identify the patterns of drought at 

global (Dai, 2011) or European scales (Brázdil et al., 2009; Ionita et al., 2012). The 

EOFs were calculated on standardized anomalies of seasonal SPEI series. 

3.3.1.3 Calculation of precipitation concentration index (PCI) 

The PCI, which was developed by Oliver (1980), modified by De Luis et al. (2011) and 

also used by Shi et al. (2015), was used as an indicator of rainfall concentration for 

annual and seasonal scales (wet and dry seasons). In this study, the PCI was tested to 

identify future trends in respect of the spatial distribution of rainfall. According to Oliver 

(1980), PCI values of less than 10 represent a uniform precipitation distribution (i.e., a 

low precipitation concentration), values between 11 and 15 denote a moderate 

precipitation concentration, values from 16 to 20 denote an irregular distribution, and 

values above 20 represent a strong irregularity of precipitation distribution (i.e., a high 

precipitation concentration). The following equations were used on each grid point to 

calculate the PCIs: 
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PCIh,,ihj =
∑ kl
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lmS
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lmS

U × 100  (3.7) 

PCIopq =
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lmS
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lmS

U ×
022∗,o
0C

  (3.8) 

PCIVuv =
∑ kl

Urw
lmS

(∑ kl)rw
lmS

U ×
022∗,V
0C

  (3.9) 

Equation (3.7) was used for annual PCI, while Equations (3.8) and (3.9) were utilised 

for seasonal scales (respectively rainy and dry seasons); nw and nd represent, 

respectively, the number of rainy and dry season months, and P = precipitation of the 

iqz month. In order to investigate changes in the PCI, a 30-year period was considered 

both for historical and future periods. Table 3.1 shows the projection periods used for 

each GWL; the historical 30-year period is 1971-2000. 

3.3.1.4 Computation of precipitation concentration degree (PCD) and 

precipitation concentration period (PCP) 

The PCD and PCP were proposed by Zhang and Qian (2003) to measure the distribution 

of rainfall and the peak of its concentration date. The basic principle is based on the 

vector of daily or monthly total precipitation. The assumption can be made that at a time 

scale (daily, 5-day, weekly, decade or monthly) total precipitation is a vector quantity 

with both magnitude and direction and can be illustrated as a circle (360°). According 

to Li et al. (2011) and Zhang and Qian (2003), the indices were calculated as follows:  

θ| = ;360∘ ∗ |
,
> (3.10) 

R$ = ∑r$|  

R<$ = ∑ r$| ∗ sin θ|�
|10  (3.11) 

Rv$ = ∑ r$| ∗ cos θ|�
|10  (3.12) 
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PCD$ =
���lUR	��lU

�l
 (3.13) 

Where i is the year (e.g., for the historical period i = 1971, 1972, …, 2000), j represents 

the time scale (daily, 5-day, weekly, decade or monthly) of that year, R$ is the amount 

of rainfall of a year, r$| is the precipitation of the jqztime scale in the iqz year, n is the 

number of time scales per year (e.g., daily: for a non-leap year, n = 365, while in a leap 

year, n = 366 ) 

		α$ = tan/0( ��l
	��l
) (3.14) 

D$ = �
α$																						(Rv$ > 0, R<$ ≥ 0)
α$ 	+ 360º						(Rv$ > 0, R<$ < 0)
α$ 	+ 180º								(R<$ < 0)																

 (3.15) 

PCP$ = D$ ∗ ;
,

g�2∘
>                  

(3.16) 

3.3.2 Experimental assessment with the coupled model WRF/WRF-Hydro 

3.3.2.1 Model configurations and parametrization 

The configuration of a model depends on the geographical location and the purpose of 

the study. This involves to design the correct model domains at the WRF preprocessing 

stage (e.g., identifying the resolution both horizontal and vertical, the parameterizations, 

etc.) Kerandi (2017). The model domain details for the WRF over West Africa, which 

are also common in the case of the fully coupled WRF/WRF-Hydro are explained. The 

specific details of the calibration of the WRF-Hydro in offline mode is also discussed. 
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3.3.2.1.1 Weather Research and Forecasting (WRF) and WRF/WRF-Hydro 

model setups over West-Africa 

The Weather Research and Forecasting (WRF) version 3.7.1 (Arnault et al., 2016) is 

utilized both for WRF-only and fully-coupled WRF/WRF-Hydro modeling over the 

research area. In the following, the fully coupled WRF/WRF-Hydro is referred as WRF-

H. It is a non-hydrostatic, mesoscale Numerical Weather Prediction (NWP) and 

atmospheric simulation system. Table 3.2 shows the different physics schemes and 

experimental details. The setup uses one domain at 5-km spatial resolution covering the 

area 7ºW-12ºE, 0º-18ºN and 400x400 grid points, with 30s as numerical simulation time 

step. The vertical structure of the domain consists of 50 levels, from the surface up to a 

10 hPa pressure top. The option of land use categories “Moderate Resolution Imaging 

Spectroradiometer (MODIS, 20 classes; Friedl et al., 2002)” is selected. The Noah LSM 

model (Chen and Dudhia, 2001) is used as the column land surface physics model. 

For purposes of hydrometeorological simulations with WRF-H, the WRF domain is 

additionally coupled with routing processes at 500 m resolution with 4000 × 4000 grid 

points in east-west and north-south directions. The fully coupled mode simulations are 

performed for 3 years, from January 2008 to December 2010, with January-February 

2008 as spin-up period. The driving data is the operational analysis dataset from 

European Centre for Medium-Range Weather Forecasts (ECMWF) which provides the 

initial and lateral boundary conditions. Both WRF-H and WRF-only components of the 

coupled modeling system share the same physics parameterizations (Table 3.2). 
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Table 3.2: Experimental details of the atmosphere model, WRF-only and WRF-H 

Subject  Option  Reference  

Driving data Operational analysis ECMWF 

Horizontal resolution  5 km  

Horizontal grid 400×400  

Integration time step 30 s  

Projection resolution  Mercator  

Vertical discretization 50 layers  

Output interval 24h for WRF, 30 days for 

WRF/WRF-Hydro 

 

Simulation period 1st January 2008 – 31st December 

2010 

 

Pression top 10 hPa  

Microphysics scheme Single Moment 5, WSM5 Dudhia, and Chen, 2004 

Longwave radiation Rapid Radiative Transfer Model 

(RRTM) 

Mlawer et al., 1997 

Shortwave radiation Dudhia Dudhia, 1989 

Planetary boundary 

lager 

Asymmetric Convection Model 

(ACM2) 

Pleim, 2007 

Land use MODIS Friedl et al., 2002 

Land surface scheme Noah LSM Chen and Dudhia, 2001 
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3.3.2.1.2 Calibration of Weather Research and Forecasting-Hydro in offline 

mode 

The calibration constitutes in hydrology, one of the first stage through a model should 

be evaluated over the specific region of study before be applied for any validation or to 

be used for hydrological investigations. Thus, this section focuses on the forcing data, 

the procedure of the optimization of the selected parameters in uncoupled (offline mode) 

WRF-Hydro. 

Specification of meteorological forcing data 

Modern land surface hydrology models (e.g: WRF-Hydro), require meteorological 

forcing data to simulate land-atmosphere exchanges and terrestrial hydrologic processes 

when uncoupled to atmospheric modeling systems (Gochis et al., 2018). The available 

optional forcing data are : High- Resolution Land Data Assimilation System (HRLDAS) 

hourly, hourly with specified precipitation and minute format input files, WRF model 

output and WRF model output with specified precipitation, the idealized and idealized 

with specified precipitation (Gochis et al., 2018 for more details).  

Since the investigation is on the potential of WRF-Hydro (model coupled with WRF) 

for flood forecasting, the available WRF precipitation at the highest spatio-temporal 

resolution is used to force the uncoupled WRF-Hydro model. Therefore, the hourly 

output of WRF at 5-km spatial resolution are used as meteorological forcing data which 

contain necessary variables such as incoming shortwave radiation (W/m2 ), incoming 

longwave radiation (W/m2 ) Specific humidity (kg/kg), air temperature (K), surface 

pressure (Pa), u and v components of near surface wind (m/s), and liquid water 

precipitation rate (mm/s). The meteorological forcing data needed by the Noah LSM 

(land surface hydrological modeling system) are prepared as hourly gridded data. The 
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Noah LSM static data (topography, land cover, soil type) are too coarse for a WRF-

Hydro application. Additional datasets from the Shuttle Elevation Derivatives at 

Multiple Scales (HydroSHEDS) data base (Lehner et al., 2008 , e.g. high-resolution 

topography and channel network) are considered to accurately route water across the 

landscape through overland, subsurface or channel flow.  

Parameters selected for the calibration 

The uncoupled WRF-Hydro model consists of a variety of parameters (e.g. Kerandi et 

al.,  2018), which usually require calibration. Since the aim of the research is to evaluate 

the performance of WRF-Hydro to simulate discharge, and therefore analyze its 

predicting skills about floods, the calibration is performed based on discharge at the 

Savè catchment outlet. The WRF model is run over the domain displayed in Figure 3.2.a 

in order to generate atmospheric input data for the uncoupled WRF-Hydro calibration. 

To reduce the computation cost for the calibration in offline mode, the simulation 

domain (Figure 3.2.a) is reduced to the subdomain shown in Figure 3.2.b. This inner-

domain (0.5ºW - 4.5ºE, and 0º-13ºN, 100x150 grid points) contains the research area 

(Ouémé-river basin), where floods are frequently recorded.  

For calibrating the model WRF-Hydro 3.0, we focus on selected sensitive parameters 

highlighted in previous works (Kerandi et al., 2017; I. Yucel et al., 2015), such as 

REFKDT, SLOPE, RETDEPRTFAC, OVROUGHRTFAC, and MannN. Applying a 

stepwise approach, following previous WRF-Hydro studies (Arnault et al., 2016; Givati 

et al., 2016; Senatore et al., 2015; Yucel et al., 2015), we first focus on the parameters 

controlling the total water volume, namely infiltration factor (REFKDT) and surface 

retention depth (RETDEPRT). It is noted that REFKDT is a tunable parameter that 

significantly impacts surface infiltration and hence the partitioning of total runoff into 
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surface and subsurface runoff; increasing REFKDT decreases surface runoff. Since 

there is not a historical range to estimate these parameters over the interested domain, 

the study tasks to calculate them from 0.1 to 10 with 0.1 increments. The second step of 

the calibration is to evaluate the coefficient governing deep drainage (SLOPE); the same 

method used in case of REFKDT and RETDEPRTFAC for selecting the optimum value 

is applied, by testing values from 0.1 to 1.0 with 0.1 as increment. The adjustment of 

the roughness parameter, which controls the overland flow is performed from the default 

value to the optimum one.  

Sensitivity tests are additionally done on the surface and channel roughness parameter 

(MannN), which controls the shape of the hydrograph. The three efficiency 

criteria Nash-Sutcliffe Efficiency (NSE), Kling–Gupta efficiency (KGE), and 

Correlation coefficient (Corr) are used to evaluate the model performance within the 

calibration process. 

𝐶𝑜𝑟𝑟 = 	 �(∑��)/(∑�)(∑�)
X[�∑�U/(∑�)U][� ∑�U/(∑�)U]

                         (3.17) 

Where 𝑥 is the observations and the 𝑦 the simulations. 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determine the relative 

magnitude of the residual variance (called “noise”) compared to the measured data 

variance (observed) (Nash and Sutcliffe, 1970). The NSE indicates how well the plot of 

observed versus simulated data fits the line y=x. The computation formula for NSE is 

showed by the equation (3.18): 

𝑁𝑆𝐸 = 1 − � ∑ ����� /�� �¡¢
U£

�mS

∑ ����� /��¡¤¥£¢
U£

�mS
¦                (3.18) 
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Where 𝑌©ª«  is the ith observation for the constituent being evaluated, 𝑌 «¨¬  is the ith 

simulated value for the constituent being evaluated, 𝑌¬­®� is the mean of observed data 

for the constituent being evaluated, and 𝑛 is the total number of observations (Moriasi 

et al., 2007). Values between 0.0 and 1.0 are generally viewed as acceptable levels of 

performance. The NSE = 1 indicates perfect correspondence between simulations and 

observations; NSE = 0 indicates that the model simulations have the same explanatory 

power as the mean of the observations, whereas values ≤ 0.0 indicate that the mean of 

observed time series is a better predictor that the simulated time series and this is an 

unacceptable performance. 

The Kling-Gupta Efficiency (KGE) addresses several shortcomings in NSE and is 

increasingly used for model calibration and evaluation. Its computation formula is 

shown by the equation (3.19): 

𝐾𝐺𝐸 = 1 −�(𝑟 − 1)C + ;² �¡
²�� 

− 1>
C
+ ;³ �¡

³�� 
− 1>

C
            (3.19) 

Where 𝑟 is the linear correlation between observations and simulations, 𝜎©ª« is the 

standard deviation in observations, σ¶$· the standard deviation in simulations, µ¶$· the 

simulation mean, and µ¹º¶the observation mean. Like NSE, KGE = 1 indicates perfect 

agreement between simulations and observations. 

In order to harmonize the uncoupled and coupled setups, the uncoupled simulations use 

the same time step as the WRF-only and WRF-H simulations (30s). The calibration of 

the model is performed using hourly dataset input, and the focus is on the performance 

skill in reproducing daily discharge in the sub-catchments. One year calibration is 

considered as sufficient to evaluate the basic parameter sensitivities (e.g. Senatore et al., 

2015). WRF-Hydro  is therefore calibrated on P1 (2008) and validated  on P2 (2009-
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2010), where P1 and P2 are the shared periods containing into the whole study period 

named P (2008-2010).  

3.3.3 Evaluation of model uncertainty with the stochastic kinetic energy 

backscatter scheme 

The Stochastic Kinetic Energy Backscatter scheme (SKEBS; Berner et al., 2015; Berner 

et al., 2009; Shutts, 2005), which primarily acts on the dynamical tendencies at the 

lateral boundaries, is activated into WRF-H for the fully-coupled simulation (WRF-H-

SKEBS). The SKEBS technique provides several advantages over perturbation 

techniques that only perturb the initial state. The method aims to represent model 

uncertainties associated with scale interactions that take place in the real atmosphere but 

are absent in a truncated numerical model  (Leutbecher et al., 2017). SKEBS perturbs 

the model fields by adding random, amplitude perturbations (noise) to the horizontal 

wind and potential temperature tendency equations at the lateral boundaries for each 

time step (Judt and Chen, 2016). An ensemble of 10 members using the WRF-H-SKEBS 

model is generated for each rain season of the period P (2008-2010). 
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CHAPTER 4  

RESULTS AND DISCUSSION 

In this chapter, the research findings relative to the exposure of West Africa to the 

extreme climate events are presented. In the first part, some potential drought and 

flooding areas in West Africa for the present day and future projection are identified, 

and the second part evaluates the skill of the regional climate model WRF-Hydro to be 

used as a flood forecasting model. 

4.1 Projection of Dry and wet areas in West Africa under global warming 

4.1.1 Selection of simulation models 

Figures 4.1 and 4.2 show the ability of RCA4’s models to reproduce the historical 

precipitation and Potential-Evapotranspiration (PET) in respect to the observed CRU. 

The efficient criterium on which the examination is based is the Kling-Gupta efficiency 

(KGE), this KGE value reached up to 0.85 for precipitation (PRE), and 0.9 for the 

potential evapotranspiration (PET). Figure 4.1 illustrates that the precipitation variable 

of the ten GCMs driven by RCA4 misjudged the Southern and Northern parts of Africa 

compared to CRU, but they all agree at a good correlation between latitude 20ºS and 

20ºN. In contrary as observed in Figure 4.1, Figure 4.2 shows that the models 

reproduced well the PET of CRU dataset in the Southern and Northern part of Africa. 

According to the potential GWLs classification computed by Déqué et al., (2017), all 

the ten selected models have not shown the GWLs 2.0℃, 2.5℃, and 3.0℃ in scenario 

RCP 4.5's case, but did it for scenario RCP 8.5. Therefore, for consistency and plausible 

analysis, the scenario RCP8.5 is retained for this part of the study. Thus, Table 4.1 which 

represents the classification of the projection periods of global warming levels in respect 
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to the pre-industrial period, and results from Figures 4.1 and 4.2 led to select all the ten 

GCMs driven by RCA4 for the scenario RCP8.5. Additionally, it is noticed that the 

models reproduced well both precipitation and potential evapotranspiration (PET) over 

the study area (0-20ºN and 20ºE-20ºW). Precipitation and PET variables are then used 

to perform the assessment of historical and projected dry and wet areas thru SPEI. 
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Table 4.1: Recapitulative of the selected years of RCA4 models from CORDEX 

according to the Global warming levels 

 RCP8.5 

RCM GCM 1.5℃ 2.0℃ 2.5℃ 3.0℃ 

 

 

 

RCA4 

CanESM2 1999-2028 2012-2041 2024-2053 2034-2063 

CNRM-CM5 2015-2044 2029-2058 2041-2070 2052-2081 

CSIRO-Mk3 2018-2047 2030-2059 2040-2069 2050-2079 

EC-EARTH-r12 2005-2034 2021-2050 2034-2063 2047-2076 

GFDL-ESM2M 2020-2049 2037-2066 2052-2081 2066-2095 

HadGEM2-ES 2010-2039 2023-2052 2033-2062 2042-2071 

IPSL-CM5A-

MR 

2002-2031 2016-2045 2027-2056 2036-2065 

MIROC5 2019-2048 2034-2063 2047-2076 2058-2087 

MPI-ESM-LR 2004-2033 2021-2050 2034-2063 2059-2088 

NorESM1-M 2019-2048 2034-2063 2047-2076 2059-2088 
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4.1.2 Climate models evaluation under historical period 

4.1.2.1 Evaluation of the climate variables 

The ensemble-mean of models (RCMEAN) simulate suitably over the West Africa, the 

moisture variables such as precipitation (PRE), the potential evapotranspiration (PET), 

and the climate water balance (CWB = PRE-PET) with a very good and significant (99% 

of confidence level) correlation (r ≥ 0.88) in respect to the observed  CRU. The 

precipitation is well reproduced in regard to the observed CRU. It was able to capture 

the spatial gradient of precipitation over the study area, with maxima well located 

(maximum around the Gulf of Guinea and minimum in the Sahel) with some scattering 

location of the maximum of rainfall in southern of Nigeria, Guinea-Conakry and 

Liberia; and the South-western part of Cameroon. In terms of amount, the ensemble 

globally fairly overestimate the precipitation except the South-eastern part of the study 

domain. This evaluation of the ensemble-mean confirm the results from Figure 4.1 

where the East part of the coordinate 0-20ºN and 20ºE-20ºW is fairly reproduced. The 

PET is also well captured with low bias range between ±50 mm month-1, it also 

highlights the results of Figure 4.2 in regard to the performance of the KGE which 

evaluated the reproductivity skill of each model of the ensemble RCMEAN. The 

ensemble here is significantly correlated (r = 0.95). The Gulf of Guinea and Savanna 

are the ones well reproduced when over the Sahel the RCMEAN underestimate the 

observed. From the assessment of the climate water balance (CWB) (Figure 4.3 g-i), it 

can be seen a very important water deficit (negative bias) in the Savanna and Sahel, 

which is due to the underestimation of precipitation, whilst in the Gulf of Guinea, there 

is a surplus of water with particularly highest values recorded around countries as 

Liberia, Sierra-Leone, and southern Nigeria, when both the observed and the RCMEAN 

are considered. The deficit presented by CRU is the highest in the Sahel, bringing out a 
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drier condition over this area. The bias of the CWB presents globally the Gulf of Guinea 

and the Savanna as the deficit water areas except for Liberia, Sierra-Leone, and Togo, 

and Sahel/Sahara as surplus water area. 

The inconsistency of the climate water balance assessment between the simulated 

models and observed can be assigned to various factors. For instance, the wet (positive 

values) bias over Western part of the study area indicate that the convective 

parameterization schemes at 0.44º horizontal resolution in RCA4 model may be too 

active in producing precipitation over this area (Abiodun et al., 2018) , while the dry 

(negative values) bias over the Eastern part of the study area suggest that the convective 

parameterization schemes are not fully resolved over the Eastern area, producing less 

moisture available for inland rainfall. It can also be due to the density of the weather 

stations available over the area (both Eastern and Western) for the observed data 

estimation. The method of the calculation of PET also may be a factor. Abiodun et al. 

(2018) evaluated the uncertainty of PET estimation with Hargreaves method and 

Penman method and found that its uncertainty contributes also to the discrepancy of the 

climate water balance. 
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An investigation on the dynamic of rainfall (gradient form Gulf-of-Guinea to the Sahel) 

is provided with the Figure 4.4. It shows that the RCMEAN have a good agreement to 

simulate the annual cycle of each sub-zone (the Gulf of Guinea, Savanna, and the Sahel) 

with respect to the observed CRU. The annual cycle of precipitation lies within the 

model ensemble spread in all the sub-zones, and the average of the ensemble closely 

follows the observed curve. At the Gulf of Guinea, both RCMEAN (model ensemble 

mean) and observed show the bimodal rainy seasons, whilst the Savanna and the Sahel 

have illustrated a monomodal regime with a dry season (winter dry) and a single rainy 

season (summer wet). These observations reflect the seasonal fluctuations (oscillation) 

of the Inter Tropical Discontinuity (ITD) over West Africa. The average of the 

precipitation value over the Gulf of Guinea and Savanna is increasing from the second 

part of May to up to a peak (180 mm month-1 for the Gulf of Guinea and 230 mm month-

1 for the Savanna) in August when the ITCZ reached its northernmost position (second 

quasi-stable position) about 10ºN. The average value of precipitation in the Sahel 

recorded also its peak in August and increasing later in July than the other areas. The 

driest period is about October to March at the Gulf of Guinea, and October to May for 

the Savanna, where during those periods the PET increase and reach its maximum value. 

It can also be noticed that during the rainy season the  PET value dropped to its minimum 

value. The observed does not lie within the model but follows the model’s curve and 

underestimate the simulations over the Gulf of Guinea and Savanna. The Sahel is dry 

for the whole year because of negative value CWB for the period studied. The PET 

value falls within the models and follows the curve of simulations. 
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Figure 4.4: The annual cycle of the climate variables (precipitation (PRE : mm month-

1), potential evapotranspiration (PET : mm month-1), and the climate water balance 

(CWB = PRE-PET, mm month-1)) over the three main zones of the study area (Gulf-of-

Guinea, Savanna and Sahel). RCMEAN represents the ensemble mean (solid line) of 

simulated model, ENS.SPRD is the spread of CORDEX-RCA4 simulations. The dashed 

line presents the CRU variable. 
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4.1.2.2 Spatial variability of the Standardized Precipitation Evapotranspiration 

Index (SPEI) 

According to the positive correlation of the models in respect to observed (Figure 4.3 

and Figure 4.4), the evaluation of the spatial pattern to detect potential drought and 

flooding areas is performed using the SPEI for various scales in aim to focus on different 

types of drought. The SPEI1 is used to characterize the meteorological drought, whilst 

the couple (SPEI3, SPEI6) and (SPEI9, SPEI12) are used to assess agricultural and 

hydrological droughts respectively. Figure 4.5 shows that the models' ensemble-mean 

reproduce oppositely (with significant negative correlation) fairly well the patterns. This 

opposite performance may be due to various factors. It can be derived from the temporal 

gridded average for each model, and the ensemble mean. However, it has to be kept in 

mind that on a grid, the SPEI has either negative or positive values and its averaging 

could be responsible to the misjudgment for both model ensemble-mean and observed 

mean. It can also be mentioned based on Figure 4.5 that more the SPEI scale increase, 

the more the model improve its reproducibility with the observed pattern. It can also be 

due to a potential large discrepancy among the simulated patterns. 
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Figure 4.5: Standardized Precipitation Evapotranspiration Index (SPEI) over West 

Africa for historical period for various drought types (SPEI1: meteorological drought, 

SPEI3 and SPEI6 : agricultural drought, SPEI9 and SPEI12: hydrological drought). 

RCMEAN is the ensemble-mean of CORDEX-RCA4 models, CRU is the observed 

dataset, and BIAS = RCMEAN-CRU is the difference between the model ensemble 

mean and the observed 

  



 
 

75 

4.1.2.3 Assessment of the extreme dry events 

To figure out this misrepresentation, the computation of the magnitude of drought 

frequency is undertaken. Figure 4.6 shows the frequency of extreme drought (SPEI < -

2) in West Africa for the historical period both for the observed (CRU) and the model 

ensemble-mean (RCMEAN). The performance of the model in simulating drought 

intensity and frequency over the study area depends on the scale of which the SPEI is 

computed. The model significantly reproduces well the extreme drought for each type 

of drought with positive correlation. The agreement of the model decrease when the 

scale of the SPEI increase, which means that the RCMEAN captures well the 

meteorological and agricultural extreme droughts than the hydrological extreme 

drought. However, the ensemble-mean at the scale of meteorological and agricultural 

droughts overestimate the frequency of extreme drought events up to 2 events per 

decade at the north-western part and the Gulf of Guinea. The model illustrates that 

countries such as Senegal and Chad underestimate the meteorological extreme drought 

up to 2 events per decade with respect to the observed. The underestimation of the 

frequency of extreme drought lies to the Gulf of Guinea both for agricultural and 

hydrological drought events. Nevertheless, the models do capture well the magnitude of 

hydrological extreme drought over Nigeria, Benin, South of Ghana, Northern part of 

Niger. According to the model, the increasing of the frequency in extreme drought affect 

agriculture over the Gulf of Guinea, the Sahel and the Eastern part of the study area 

including Chad and the north of Nigeria. Conversely, the model shows decreasing 

frequency of agricultural extreme drought in Niger, Ghana, Cote d’Ivoire Guinea, and 

Cameroon. 
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Figure 4.6: The frequency of the extreme dry over West Africa for various drought 

types (SPEI1: meteorological drought, SPEI3 and SPEI6 : agricultural drought, SPEI9 

and SPEI12: hydrological drought). RCMEAN is the ensemble-mean of CORDEX-

RCA4 models, CRU is the observed dataset, and BIAS = RCMEAN-CRU is the 

difference between the model ensemble mean and the observed. 
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4.1.2.4 Assessment of the severe dry events 

Figure 4.7 illustrates the variability of severe drought (-2 < SPEI < -1.5) in West Africa 

both for the simulations and the observed CRU. The model shows that the frequency of 

severe drought is from 4 to 8 events per decade, while the observed frequency is between 

2 to 12 events per decade. Globally at the scale of meteorological drought, there is an 

overestimation of the frequency of severe drought except for countries as Mauritania, 

Mali, and Cameroon which present an underestimation about 2 events per decade in 

response to the CRU frequency. The correlation is significantly important (r = 0.82). 

The correlation decrease with the increasing of the scale of the SPEI. However, they are 

all significantly correlated in the reproduction of the spatial pattern. The model at 

agricultural scale underestimates the severe drought over Chad, northern Nigeria, 

southern of Benin, Niger, and Mauritania up to 4 events per decade. But there is a 

particularity in the estimation of the severe drought with a 3-month lag; globally the 

model is close to the observed with a slight overestimation up to 2 events per decade. 

The model fails to reproduce the hydrological severe drought well. Despite having a 

good sign, the model widely underestimates the frequency of severe drought in Niger, 

Mali, Mauritania Nigeria, Chad, Benin, south of Ghana and Cote d’Ivoire. The highest 

value for this underestimation is over north-eastern part of Nigeria (a part of Lake Chad) 

and Mauritania, and northern of Chad where the model evaluates the magnitude of the 

hydrological severe drought about 7 events per decade against 12 events per decade for 

the observed. The model for all types of severe drought, overestimates the magnitude 

over Senegal, Mauritania, eastern of Mali, and the northern part of Niger, Cote d’Ivoire, 

and Ghana up to 4 events per decade. 
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Figure 4.7: The frequency of the severe dry over West Africa for various drought types 

(SPEI1: meteorological drought, SPEI3 and SPEI6 : agricultural drought, SPEI9 and 

SPEI12: hydrological drought). RCMEAN is the ensemble-mean of CORDEX-RCA4 

models, CRU is the observed dataset, and BIAS = RCMEAN-CRU is the difference 

between the model ensemble mean and the observed. 
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4.1.2.5 Assessment of the extreme wet events 

The assessment of the model in inspecting the extreme and severe wet conditions 

respectively on Figure 4.8 and Figure 4.9 shows a significant negative correlation with 

respect to the observed CRU. This negative correlation is related globally to an opposite 

finding of the events by the model and the observed. When the model is showing a high 

value of the frequency of the event, the observed illustrates a low value for the same 

event, vice-versa (for instance when the model is showing a very high frequency of the 

extreme wet condition over the Sahel, the observed is giving for the same area low value 

in the case of hydrological drought index). By comparison of Figures 4.6 and 4.8 which 

are evaluating the extremely dry and wet areas respectively, the observed explains at the 

same grid two different information. It is showing in the Sahel that there is extremely 

dry when in the same Sahel there is also extremely wet, the same analysis is valid for 

the case of severe dry or wet areas investigation. Many factors could explain this fact. 

But one of them could be that the model explains the events on the same area for a 

different period, and because of the spatial average on time, the spatial pattern is 

carrying out different results for the same area. To find out the causes of this fact, further 

investigations are needed. 
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Figure 4.8 : The frequency of extreme wet over West Africa for various drought types 

(SPEI1: meteorological drought, SPEI3 and SPEI6 : agricultural drought, SPEI9 and 

SPEI12: hydrological drought). RCMEAN is the ensemble-mean of CORDEX-RCA4 

models, CRU is the observed dataset, and BIAS = RCMEAN-CRU is the difference 

between the model ensemble mean and the observed. 
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Nevertheless, the analysis of the ensemble-mean of the model can be done. Here, at 

meteorological scale, the model finds about 2 events per decade over Mauritania, 

Guinea, Sierra-Leone, southern of Nigeria, Benin and Ghana. At agricultural and 

hydrological scales, the Sahel has the highest frequency of extreme wet event values 

with some peaks over Mali, northern of Niger, eastern of Chad about 2.5 events per 

decade and 3 events per decade for agricultural and hydrological scales respectively, 

while the Savanna and the Gulf of Guinea recorded fewer events. The RCMEAN at 

meteorological scale evaluates the frequency of severe wet events between 6 and 8 

events per decade and seems to have a fair agreement with the observed except some 

particular points. Over the south of Niger, the agricultural severe wet events will 

increase compared to the meteorological scale. This increasing of the severe wet events 

is important under the hydrological scale, where countries as Niger, Burkina-Faso, 

northern of Benin, Togo and Ghana have up to 9 events per decade, the north of Mali, 

eastern of Niger, and Chad have less severe wet events at this stage. The extreme wet 

events assessment, farther investigations in the periods on which each event are recorded 

will lead to a better understanding of the negative correlation between the model and 

the observed dataset. 

4.1.2.6 Assessment of the severe wet events 

Globally, West Africa is characterized during 1971-2000 by various drought episodes, 

which have been revealed with the SPEI at different scales. The model shows that for 

all characterization of drought types, there are more extreme drought events in the Sahel 

than the Savanna and Gulf of Guinea, whilst the severe drought frequency is higher in 

the Gulf of Guinea than Savanna and Sahel, particularly for agricultural and 

hydrological drought events. The observed also follows globally the same analysis in 

terms of the trend but explain conversely in terms of magnitude. The extreme and severe 
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droughts are covering about 3% and 8% per decade of the study area respectively, and 

have been shown by both the model and the observed. The spatial pattern evaluation 

could hide the temporal estimation of these events. Therefore, an assessment with the 

empirical orthogonal function (EOF) and principal component (PC) analysis is driven 

with the aim to investigate both temporal variability and potential frequency on which 

the event replicates itself in the historical period. 
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Figure 4.9: The frequency of severe wet over West Africa for various drought types 

(SPEI1: meteorological drought, SPEI3 and SPEI6 : agricultural drought, SPEI9 and 

SPEI12: hydrological drought). RCMEAN is the ensemble-mean of CORDEX-RCA4 

models, CRU is the observed dataset, and BIAS = RCMEAN-CRU is the difference 

between the model ensemble mean and the observed. 
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4.1.3 Assessment of the spatial-temporal variability of the dry index with the 

Empirical Orthogonal Function (EOF) 

The spatial patterns of the three leading EOFs do not differ essentially too much from 

one season to another. Therefore, we decided only to exemplify in Figure 4.10 the 

loading patterns of the first three leading EOFs of SPEI6 during the historical period 

considered to evaluate the extreme and severe dry/wet conditions. 

The spatial correlation coefficients of EOF1 accounts for 32% of the variance in Figure 

4.10 ( panel a: extreme dry), have positive loadings with the highest values recorded 

around Savanna and Sahel areas, close to countries or part of countries like Northern of 

Benin-Togo-Ghana-Ivory-Coast, Burkina-Faso, also a part of Niger-Nigeria-Mali-

Chad. This fact points out the high variabilities of the extreme and severity dry in West-

Africa. The distribution of the spatial coefficients of EOF2 with a negative correlation 

at the center-western and south-coastal is trying to explore details at this area of the 

domain; the positive value obtained at the north-eastern is in the direction to reinforcing 

the analysis in EOF1. The spatial coefficients observed at EOF3 focus on the western 

part in case of severity-dry, and eastern part for the extreme-dry. Figure 4.10c and Figure 

4.10d which represent the analysis of the wet condition based on the SPEI values follow 

the same interpretation like in the case of Figure 4.10a and Figure 4.10b. The wettest 

areas were located at the eastern of the study area and into the Sahel. We need to mention 

that the judgment of wet or dry is based on SPEI computation and classification, which 

is also in function of the climate water balance CWB = PRE-PET (where PRE: 

precipitation and PET: Potential evapotranspiration). When we have a supplement, 

potential flash-flood could be recorded; not necessary but it could happen. The analysis 

of EOF1 in case of wet condition showed that the Sahel and the eastern part of the Gulf-

Guinea could be the most impacted by the wet condition. The EOF2 and EOF3 enhance 
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the analyses of the location of wet areas; they explained the existence of a gradient Gulf-

of-Guinea-Savanna-Sahel, and also another gradient South-Western -North-Eastern 

(Figure 4.10d). The frequency and identification of roughly right dates of when all these 

climate extremes happened could be useful for better understanding of dry and wet 

phenomena. This is done through the interpretation of the principal component (PC). 

The analysis of the three first PCs showed that Northern of Benin-Togo-Ghana-Ivory-

Coast, Burkina-Faso, part of Niger-Nigeria-Mali-Chad and all the northern boundary of 

the study area experienced extreme-dry from 1971-1974; in additional from 1987-1989, 

a part of Mali-Burkina-Faso-Ghana-Ivory-Coast recorded extreme-dry. The severe-dry 

was registered in general from 1977-1980, 1989,1994 and 1995 roughly over West-

Africa but some specific part illustrated themselves by some pick; like Nigeria in 1972 

and 1973, also the whole Gulf of Guinea and the west-northern (Mauritania and Senegal) 

in 1998-2000. In the other side (Figure 4.10c and Figure 4.10d) 1978, 1979, 1987, 1988, 

1994, 1995 recorded relatively an extreme-wet state; the Sahel was wetter in 1987 and 

1988 as well as Liberia and Sierra-Leone. The Western part of West-Africa recorded 

severity-wet during the period 1981-1985; whilst in Savanna, it was in 1995, and 1996. 
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𝒶: 𝐸𝑥𝑡𝑟𝑒𝑚𝑒	𝑑𝑟𝑦

 

𝑐: 𝐸𝑥𝑡𝑟𝑒𝑚𝑒	𝑤𝑒𝑡

 

𝑏: 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑑𝑟𝑦

 

𝑑: 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦	𝑤𝑒𝑡

 

Figure 4.10 : Spatial-temporal distribution of dry and wet areas  in West-Africa into 

period 1971-2000 : evaluation of extreme and severity dry (a, b) and  extreme and 

severity wet (c, d) 
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4.1.4 Climate models evaluation under the projection periods using the SPEI 

variability 

In this section, the horizontal stripe (-) on figures 4.11 to 4.15  indicates that at least 

80% of the RCA4 models show a decreasing trend, while the cross (+) indicates that 

more than 80% of the models express an increasing trend of the event studied. 

4.1.4.1 Assessment of SPEI projection 

The analysis of the Figure 4.11 shows that globally at all warming levels, at least 80% 

of the RCA4 models project a decrease of the drought index trend. However, with the 

drought intensity, the magnitude of the decrease varies according to the region and 

drought types studied and also grows with the increasing of the GWLs. For instance, 

with the GWL1.5, at all drought types, the SPEI values decrease gradually northwardly. 

The Gulf of Guinea is projected to be wetter (with the highest drought index), the 

Savanna moderately dry, and the Sahel is projected to be the driest zone(with the lowest 

decrease of the drought index when it compares to the historical period). Interested in 

the other GWLs (where the global warming level is 2.0℃, 2.5℃, and 3.0℃) the SPEI's 

distribution varies slightly with the increasing of SPEI scale (drought types). At the 

meteorological drought scale, the SPEI variability is uniformly distributed with SPEI 

closed to zero (SPEI ≈0). At agricultural scale, the drought intensity decrease with the 

GWLs, the Gulf of Guinea is wet for the GWLs 2.0℃ and 2.5℃, whilst with GWL 3.0℃ 

there is decreasing of the drought index. For the hydrological drought scale case's, the 

same global analysis with the one from the agricultural scale is valid with an 

intensification of its magnitude, but in this study, a slight increase trend of the SPEI is 

noticed around the south of Chad and eastern part of Nigeria. A clear investigation of 

the characterization of the projected drought events in the study area is shown below. 
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Figure 4.11: Standardized Precipitation Evapotranspiration Index (SPEI) over West 

Africa for projection periods for various drought types (SPEI1: meteorological drought, 

SPEI3 and SPEI6: agricultural drought, SPEI9 and SPEI12: hydrological drought). 

RCMEAN is the ensemble-mean of CORDEX-RCA4 models, CRU is the observed 

dataset, and BIAS = RCMEAN-CRU is the difference between the model ensemble 

mean and the observed 
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4.1.4.2 Assessment of the extreme dry events 

The Figure 4.12 presents the variability of extreme dry events under different GWLs 

and various drought types. Based on the evaluation criteria, more than 80% of RCA4 

models shows that the whole West Africa under the GWL1.5℃ experienced an 

increasing trend of extreme dry events (i.e., there is an increase of the frequency of 

extreme drought events compared to the historical period) which is materialized with 

the cross. The decreasing of the extreme dry events is southward from the 

meteorological drought to hydrological drought (i.e., the extreme dry events is gradually 

less important from the Sahel to the Gulf of guinea when the assessment is based from 

the meteorological drought to the hydrological drought). In term of the extreme dry 

frequency, it may be noticed the existence of a northward gradient. In the Sahel, the 

magnitude of the frequency of the extreme dry is above of 4 events per decade and about 

3 events per decade in the Savanna, while in the Gulf of Guinea this frequency is about 

2 events per decade. The impact of the increasing of the temperature from 1.5℃ to above 

(2.0℃, 2.5℃, and 3.0℃) on the extreme dry events, is well noticed. At meteorological 

drought level, the Gulf of Guinea and Savanna experienced an increase of the trend of 

the extreme drought with frequency about 1 event per decade, whilst in the Sahel, more 

than 80% of the models proven a decreasing trend of the extreme dry event. The 

decrease of the extreme dry event is important in the Sahel and Savanna for the 

agricultural and hydrological drought events study. This decrease extends also to the 

Gulf of Guinea for the SPEI9 under GWL2.5. Only some coastal countries such as 

Ghana, Cote d’Ivoire, and Cameroon experienced an increase in the extreme dry events 

during the projected periods. Globally, the frequency of the extreme drought is between 

1 to 1.5 events per decade for the GWLs 2.0℃, 2.5℃, and 3.0℃.   
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Figure  4.12: The frequency of the extreme dry over West Africa for various drought 

types (SPEI1: meteorological drought, SPEI3 and SPEI6: agricultural drought, SPEI9 

and SPEI12: hydrological drought) at different GWLs during the projection periods. 

The horizontal stripe (-) indicates that more than 80% of the models agree with a 

decreasing  trend of extreme dry events, whilst the cross(+) shows that at least 80% of 

the models agree with an increasing trend of extreme dry events.  
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4.1.4.3 Assessment of the severe dry events 

Conversely, to the case of the analysis of the spatial distribution of the extreme drought 

events, under the GWL1.5, West Africa experiences a uniform decrease of severe 

drought events (Figure 4.13, proved with the horizontal stripe). A southward frequency 

of the severe drought events is shown. The lower frequencies are recorded in the Sahel 

(the lowest in Niger and Chad about 3 events per decade) and the highest (about 8 events 

per decade) in the Gulf of Guinea at all drought types. At GWLs 2.0℃, 2.5℃ and 3.0℃, 

the trend is variable. For instance, at the meteorological drought scale under GWL2.0 

globally, the Gulf of Guinea and Sahel experienced an increasing trend of severe 

drought, whilst at Savanna, it observed a decreasing trend of the severe drought events. 

Under GWLs 2.5 and 3.0 the severe drought increase in the Gulf of Guinea and Savanna 

and some part in the Sahel. Some particular countries as Niger, Burkina-Faso, and 

Mauritania have a decreasing trend. Although West Africa records various decreasing 

or increasing trend of the severe drought, the magnitude of the frequency seems stable 

over the whole study domain and varies about 7 events per decade. The analysis at the 

agricultural GWLs 2.0, 2.5 and 3.0 reveals that countries like Cameroon, Ghana, 

Burkina-Faso and the Central African Republic has a decreasing trend, whilst for the 

GWLs 2.0 and 3.0, Mauritania, Chad and northern Mali experienced increase trend. The 

frequency of the severe drought events for the hydrological scale globally, is about 7 

events per decade, except in Nigeria and Ghana where it is about 4 events per decade 

for GWL2.0; in northern Niger and Chad, it is about 4 events per decade for GWL2.5. 

This difference in value is due to the decreasing trend of droughts over those areas. 
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Figure 4.13: The frequency of the severe dry over West Africa for various drought types 

(SPEI1: meteorological drought, SPEI3 and SPEI6: agricultural drought, SPEI9 and 

SPEI12: hydrological drought) at different GWLs during the projection periods. The 

horizontal stripe (-) indicates that more than 80% of the models agree with a decreasing  

trend of extreme dry events, whilst the cross(+) shows that at least 80% of the models 

agree with an increasing trend of extreme dry events. 
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4.1.4.4 Assessment of the extreme wet events 

At the meteorological scale, the central area of the study domain showed in general 

much decreasing trend of extreme wet events. At meteorological and agricultural scales, 

the western and eastern part of West Africa experienced an increasing trend which is 

linked to the GWLs (i.e., increase with the GWLs). At all drought types during the 

GWL1.5, the Gulf of Guinea and the Savanna register an increasing trend, whilst the 

Sahel has a decreasing trend. More the scale of the drought index (drought type) increase 

more the frequency of the extreme wet events decrease. For each GWL and drought 

type, the projected highest value is obtained over the coastal countries. More the drought 

type increase more the decreasing trend is northward. At GWL 2.0, 2.5 and 3.0 the 

agricultural and hydrological drought events decrease in the Sahel and Savanna 

particularly over countries like Niger, Burkina-Faso, Mali, and Benin, with a spatial 

average frequency of the extreme wet events about 2 events per decade, whilst in the 

Gulf of Guinea it is noticed an increase of the extreme wet events. For the agricultural 

and hydrological scales, the eastern part of the study area acquaints an increasing trend. 

In summary, the model projects more decrease of extreme wet events in West-Africa, 

particularly in the Sahel and Savanna. 
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Figure 4.14: The frequency of the extreme wet over West Africa for various drought 

types (SPEI1: meteorological drought, SPEI3 and SPEI6: agricultural drought, SPEI9 

and SPEI12: hydrological drought) at different GWLs during the projection periods. 

The horizontal stripe (-) indicates that more than 80% of the models agree with a 

decreasing  trend of extreme dry events, whilst the cross(+) shows that at least 80% of 

the models agree with an increasing trend of extreme dry events. 
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4.1.4.5 Assessment of the severe wet events 

Compare to historical, Figure 4.15 shows that at least 80% of the models reveal a 

decreasing of the severe wet events over the whole study domain under the GWL1.5. It 

can also be noticed a northward decrease in the frequency. The highest frequency at 

GWL1.5 is recorded over the Gulf of Guinea and is about 6 events per decade, whilst 

the lower values (about 4 events per decade) are located in the Sahel leading to a 

southward gradient. The area around the boundary of Niger, Burkina-Faso experienced 

the lowest (about 3 events per decade) for the hydrological drought index during the 

GWL1.5, while at GWLs 2.5, and 3.0 they acquainted higher frequencies (about 8 events 

per decade). At GWLs 2.0, 2.5, and 3.0 the variability is not uniform, but there is overall 

more decrease severe wet events. At the meteorological drought scale, the lower 

frequencies are located in the Sahel and the higher scattered located in diverse regions. 

At the agricultural drought scale, northern of Mali, Niger, Burkina-Faso, Ghana, and 

Benin experienced an increase of severe wet events, whilst the north-eastern of the study 

domain involvement in a decreasing trend. For the hydrological drought scale, a strong 

decrease of the severe wet event is noticed at the circled area in Figure 4.15. 
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Figure 4.15 : The frequency of the severe wet over West Africa for various drought 

types (SPEI1: meteorological drought, SPEI3 and SPEI6: agricultural drought, SPEI9 

and SPEI12: hydrological drought) at different GWLs during the projection periods. 

The horizontal stripe (-) indicates that more than 80% of the models agree with a 

decreasing  trend of extreme dry events, whilst the cross(+) shows that at least 80% of 

the models agree with an increasing trend of extreme dry events. 
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In summary, under the interested GWLs used in the study, many variabilities have been 

noticed with the reference period. The ensemble-mean of models shows either important 

extreme and severe dry events, or a consistence extreme and severe wet events. 

Globally, under the GWL1.5 for all drought types studied, a recurrent increase of 

extreme events (dry and wet) was noticed, particularly the Gulf of Guinea and Savanna 

for both events experienced an increasing trend, whilst the Sahel illustrated an increase 

of the extreme dry events and a decrease of the extreme wet events. At least 80% of the 

RCA4 models considered in this study show a decrease of severe (both for dry and wet) 

events. The lower frequency is located in the Sahel and the higher around the coastal 

countries. Here, the frequency of the extreme dry events is high and up to 4 events per 

decade in the Sahel. For the GWL2.0, 2.5 and 3.0, at agricultural and hydrological 

drought scales, a high important decrease of the extremely dry and extreme wet events 

are perceived over the Savanna and the Sahel particularly around countries as Niger, 

Mali, Burkina-Faso, Benin, and Nigeria. The coastal countries detected an increase in 

extremely dry and wet events, whilst the south-eastern area noted an increase of both 

the extremely dry and wet events. Important variabilities also are observed for the severe 

wet and dry events over the study area. For the hydrological drought scale, there is a 

decrease of severe wet events in the boxed area, which groups countries like Nigeria, 

Niger, Burkina-Faso, Benin, Ghana, and Togo under the GWL 2.0, 2.5, and 3.0. 

Conversely, at least 80% of the models show that this area experienced an increase about 

1.5 events per decade of the severe dry events, except a country like Benin which shows 

a decreasing trend. 
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4.1.5 Precipitation concentration distribution in West Africa 

This section presents the results obtained from the study. Based on the variability 

between the historical and the various GWLs periods. The section 4.1.5.1 shows the 

annual and seasonal precipitation concentration patterns, whilst the section 4.1.5.2 

focuses on the variability of precipitation concentration degree and period. The section 

4.1.5.3 evaluates the daily precipitaton variability. 

4.1.5.1 Variability of the Precipitation Concentration Index 

4.1.5.1.1 Annual variability of the precipitation concentration index 

The annual scale of the PCI calculated in this study varies generally across the study 

area from values greater or equal to 12, to higher than 20; according to Oliver's (1980) 

classification, this denotes a seasonal rainfall regime. From Figure 4.16 (a)-(e), the lower 

values recorded during the historical period (here called the control period or CTL) is 

between 12 and 13 on the Gulf of Guinea, thus illustrating a moderate precipitation 

concentration over this area. The seasonality is more pronounced in the transition area 

(the Savanna) with a PCI between 17 and 18, which shows how the precipitation 

concentration is irregularly distributed; lastly, the Sahel area has a high precipitation 

concentration (PCI>20), which means that the precipitation is strongly irregularly 

distributed. 

For the different GWLs studied, it is observed that, for the Gulf of Guinea and the 

Savanna, an irregular precipitation concentration exists, except for some countries 

(Liberia and Côte d’Ivoire), which have a low precipitation concentration, while a strong 

irregular precipitation distribution is observed in the Sahel.  
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Figure 4. 16: V
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4.1.5.1.2 Seasonal variability of the precipitation concentration index 

There are two major seasons over the study area. For the purposes of this analysis, the 

rainy season is assumed to last from early May to the end of September (MJJAS). The 

PCI calculated for the seasonal scale shows complex spatial patterns of precipitation 

distribution in the area of study. Thus, Figure 4.16 f-j illustrate the uniform precipitation 

concentration (i.e., almost the same amount of precipitation occurs in each month) over 

the Gulf of Guinea and the Savanna. For the specified GWLs, the average of the uniform 

precipitation distribution extends toward the Sahel. The northern part of the study area 

records an irregular precipitation concentration during the wet season. 

Figure 4.16 k-o show that, during this period of the year selected, an irregular 

precipitation concentration is only observed over the Gulf of Guinea. All the other areas, 

such as the Savanna and the Sahel, have a strong irregular precipitation concentration, 

which means that the total precipitation occurs within a single month. 

The results from Figure 4.16 (with regard to annual and seasonal evaluation) confirm 

that the precipitation in West Africa is uniformly distributed during MJJAS in the Gulf 

of Guinea and the Savanna. Despite the global warming effect for all levels, this 

precipitation concentration does not change; on the contrary, it extends towards the 

Sahel. In general, the highest values of PCI are recorded over the Sahel, whereas the 

lowest occur over the Gulf of Guinea.  
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4.1.5.1.3 Evaluation of the models’ robustness 

Figure 4.17, which presents the differences between the projected PCI in respect of the 

historical period, shows that the level of variability is similar from one GWL to another. 

The annual and seasonal concentrations reduce gradually from the Sahel to the Gulf of 

Guinea, and confirm the variability illustrated by Figure 4.16, which shows the 

regression of irregular and strong irregular precipitation concentrations. Figure 4.17 also 

illustrates the robustness of the simulations. At least 80% of models (indicated here with 

vertical green stripes) demonstrate that the precipitation concentration over the eastern 

part of the study area has changed. This change, which increases according to the GWLs, 

is also shown over several countries, such as Niger during the rainy season. At least 80% 

of the models demonstrated that the change is significant (as indicated by the horizontal 

blue stripes), with a confidence level of 95%. Here too, Niger and Nigeria are projected 

to experience significant changes, which will increase with the GWLs. The red cross (+) 

is observed in the area where at least 80% of the simulations agree with regard to the 

change, and where these changes have a 95% confidence level. Therefore, during the 

rainy season and under GWL3.0, countries such as Ghana, Togo, and Burkina Faso 

present a more uniform precipitation distribution, in contrast to variabilities for the 

historical period and the projections (Figure 4.16). 
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4.1.5.2 Variability of the Precipitation Concentration Degree and the 

Precipitation Concentration Period 

Figure 4.18 shows the PCP and PCD. Figure 4.18 a-e illustrates that the range of PCPs 

over the whole West African region for present or future periods of study is between 

7±2. This means that the yearly mean PCP over West Africa occurs from June to 

September, which confirms current knowledge about the period of the precipitation 

producing system in West Africa, viz., that it is governed by the West African Monsoon 

(WAM). The highest value for the historical time (1971-2000, also referred to as the 

control period) is recorded over the north-western part of the study domain, whilst for 

the projections, this value is located over the Sahel. This result confirms that the rainy 

season arrives earlier in the southern areas, followed by the transition area (the 

Savanna), before reaching the Sahel. The mean yearly PCDs (Figure 4.18 f-j) vary from 

0.17 to 0.90, denoting the high variability of the precipitation concentration over West 

Africa. During the present period (Figure 4.18.f), the PCD values increase, suggesting 

the existence of a gradient across the Gulf of Guinea and over the Sahel. The lower 

values (0.17-0.60) are recorded over the Gulf of Guinea and the highest (>0.80) in the 

Sahel. This gradient explains that precipitation is more concentrated in a few months 

over the Sahel than over the coastal areas. The same dynamics in respect of the gradient 

are observed in the case of future projections, although the PCD values are reduced, 

compared to the historical period. The lower values here lie between 0.17 and 0.50, and 

the higher values are between 0.5 and 0.6. During the future period, the precipitation 

concentration will decrease, and the Savanna and Sahel will have the same precipitation 

distribution. But in terms of the period, all the GWLs show that the rainy season will 

state earlier than in the present (historical period). The highest concentration period for 
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the Gulf of Guinea and the Savanna will be from May to July, while the concentration 

over the Sahel will be highest in August. 

4.1.5.3 Daily variability of precipitation 

The consecutive wet days (CWD) and consecutive dry days (CDD) were calculated over 

the study domain to evaluate the daily variability of the precipitation distribution. CWD 

and CDD also indicate extremes in rainfall. CDD is furthermore a useful indicator for 

studying short-term droughts (Frich et al., 2002) and drought tendencies (Orlowsky and 

Seneviratne, 2012), as it could indicate enhanced dryness and high risk for seasonal 

droughts (Klutse et al., 2018). Changes in CDD and CWD can lead to uneven temporal 

distributions of rainfall, which could have a significant consequence for agricultural 

practices (Barron et al., 2003; FAO et al., 2015; Wiebe et al., 2017). The CDD was 

calculated both at annual (cdd) and seasonal scales (in this study, May-September: 

MScdd), in order to evaluate both dry and wet spells within the rainfall season; knowing 

this is very important for agricultural practices in the region (Klutse et al., 2018). Figure 

4.19 presents the variations between the projection of each GWL and the present period. 

Higher values of CDD are observed in the northern part of the study area, while higher 

CWD values occur in the coastal areas. When we compare the patterns of Figure 4.19 a-

d and Figure 4.19 (i)-(l), it can be seen that the CDD decreases about 10±5 days over 

the north-eastern part of the study domain, both annually and during the rainy season. 

In the northern part, a significant variability of dry days occur within the rainy season 

(for instance, a reduction over the north-eastern area and an increase over the north-

western area), which means that the north-eastern of the study domain is wetter under 

GWLs and 
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the north-western area is drier. The Gulf of Guinea has a very slight variability in respect 

of CDD for all GWLs studied, at both annual and rainy season scales. The projections 

of the GWLs 1.5℃, 2.0℃, 2.5℃ show essentially the same variability in the annual 

CDD, whilst the GWL 3.0℃ (Figure 4.19i) shows a significant increase in the annual 

CDD. The CDD are projected to increase for 4-5 days over the Gulf of Guinea; in 

Mauritania and Senegal, the increase is projected to be 10±2 days. Niger and Chad 

(which are characterized by a dry north-easterly flow crossing the Sahara desert) are 

projected to record a reduction of CDD with a range of 12±2 days. This agrees with the 

results of Klutse et al. (2018), who illustrated a decrease for GWLs 1.5℃ and 2.0℃, in 

terms of the number of CDD in West Africa during the rainy season, and the results of 

Sultan and Gaetani (2016), who reported a reduction in the number of dry days over 

central Africa. 

In general, the CWD did not appear to record as many variations as was the case with 

the CDD. It varied slightly with 0±3 days. Nonetheless, high and important variations 

could be noticed at several specific points. Figure 4.19 e-h show CWD is projected to 

decrease by 10±2 over the southern parts of Benin and Nigeria. A small increase in 

CWD of up to two days is also likely to be recorded over the Sahel. 
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Figure 4.19  : Spatial distribution of the change in CD
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In order to investigate the spatial variability of extreme rainfall events, which play such 

an important role in the availability of water resources and agriculture, etc. the frequency 

of intense rainfall events (RxD10mm: 𝑅 ≥ 10 mm/day), very intense rainfall events 

(RxD20mm: 𝑅 ≥ 20 mm/day) and heavy rainfall events (RxD25mm: 𝑅 ≥ 25 mm/day) 

were calculated; they are displayed in Figure 4.20. These variables indicate whether 

there were changes in the amount of precipitation received over consecutive 5 days with 

the highest precipitation. Figure 4.20 a-d illustrate that, compared to the control period, 

each GWL detects an increasing RxD10mm over the orographic regions and the ocean 

boundary (Gulf of Guinea). There is a very slight increase in the number of RxD10mm 

over the Savanna and Sahel zones. In general, the results clearly show that, as the GWL 

increases, the more the projected RxD10mm increases too (e.g., for GWL 1.5℃, the 

increase is about 7±2 over the Gulf of Guinea and 1±1 for the Savanna and Sahel, whilst 

for GWL 3.0℃, the increase is about 9±2 over the Gulf of Guinea and 3±1 for the 

Savanna and Sahel). In the case of RxD20mm and RxD25mm, the general increase in 

response to increasing GWLs is noticed too. Only the coastal countries record 

significant increases in RxD20mm and RxD25mm, which could be due to the south-

westerly moist flow from the Gulf of Guinea inland.  

 

 

 

 

 



 
 

109 
 

Figur e 4 .20: Spatial distribution of the change in frequency of intense rainfall events (R
xD

10m
m

), very intense rainfall events 

(R
xD

20m
m

), and heavy rainfall events (R
xD

25m
m

).  
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4.1.6 Adaptation strategies to mitigate the impact of the high variability of the 

precipitation 

Since the spectacular drought events of the 1970s, it has become clear that the high 

variability in precipitation constitutes one of the major challenges faced by the West 

African region. Agriculture is one of the major economic activities of West Africa, and 

thus significant changes in rainfall due to climate change will negatively affect the entire 

region. These concerns have generated ongoing scientific, social and political debate. 

Moreover, some parts of West Africa (mostly along the Guinean Coast) have recorded 

recurrent flood events since 2000. Thus, both climate variability and increasing trends 

in droughts and floods and other severe weather events pose a challenge for the primarily 

rain-fed agriculture systems in West Africa (Sultan and Gaetani, 2016). Therefore, any 

adaptations must enable inhabitants to cope successfully with short-term climate 

variability as well as to reduce the long-term negative impacts of climate change (Lobell, 

2014; Saba et al., 2013). Households and communities must become accustomed to and 

able to respond creatively and effectively to disruptions of their livelihoods. Indeed, in 

order to be successful, adaptations must be anchored in all processes affecting life. Some 

of the possible adaptation strategies, especially relating to floods, droughts and food 

crops, are illustrated in this study.  

According to the results above, at increasing GWLs, precipitation over the Gulf of 

Guinea and the Savanna will shift and start earlier (in May) and that the highest 

precipitation concentration will occur in May-June over that area. In addition, intense 

rainfall events and consecutive wet days will increase in frequency, which can expose 

the Gulf of Guinea and Savanna to flood events from June onwards. This confirms the 

results from Donat et al. (2016), which showed that the intensification of the 

hydrological cycle both in recent decades and in future projections, will lead to an 
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increased risk of flooding in dry regions as the climate warms. Groundnut, cassava, and 

maize are important crops for the Gulf of Guinea, especially for Nigeria, southern Mali, 

Benin, Ivory Coast, Burkina Faso, Ghana, and Senegal, while over the Savanna, the 

main crops are yam, millet, and sorghum. Therefore, to inform farmers about short-term 

coping and adaptation practices, scientists are encouraged to simulate crop models, and 

to assess their uncertainties according to the shift in the times of the projected 

precipitation distribution and the increase in the soil temperature. Alternative strategies, 

such as constructing infrastructure or irrigation systems could also be used to mitigate 

the impact of exposure. 

Regional provisions and strategies that include all West African countries should be 

developed to meet the challenge of combating GHG production. The framework 

agreements must link and bind countries to ensure strict compliance with community-

based adaptation measures. At the local level, moreover, each country will have to 

develop precautionary flood and drought warning systems to limit the loss of human 

life. Scientific community frameworks need to be developed at the local level to improve 

the seasonal prediction of rainfall models that must be updated frequently in order to 

generate reliable information. Better research findings are needed to increase knowledge 

of how information structures could be framed and used to reduce the power of parochial 

conflicting benefits and overcome inertia, apathy, and lack of political drive. Finally, 

communication systems geared towards achieving specific targets (e.g., to assist 

farmers) will have to be developed. Informing media platforms about climate sciences 

and adaptation strategy policies and discussions, for instance, would educate the public 

about the impacts of global warming, the importance of reducing GHG emissions, and 

the need for developing and implementing mitigation and adaptation strategies.  
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In summary, this part of the present research work led to understanding the spatial 

variability of rainfall in West Africa. This variability correlates with the spatial 

concentration of the rainfall and creates a convergence of drought and flooding areas in 

West Africa. The study expects to record in short time a very important amount of 

rainfall particularly over coastal countries of Gulf of Guinea and also plans some 

potential flood episodes years in the future according to the analysis on the projections 

of global warming levels 1.5ºC, 2.0ºC, 2.0ºC and 3.0ºC under RCP8.5. Savanna’s 

changes should not be much significant, because the CWD and CDD did not change 

enough and the distribution of the PCI showed a uniform distribution of precipitation 

during the rainy season and moderate distribution over the year. Under GWL 

perspectives, this research identified an earlier onset of rainfall and a considerable 

increase of both the variability of CDDs and CWDs and the intensity of rainfall 

especially over the Gulf of Guinea. Such significant information is useful for farmers 

and decision-makers to ensure the survival and prosperity of the population. Therefore, 

the study has extended its interest by addressing some adaptation strategies. 

For a practical experiment, the study suggests using a regional climate model investigate 

on the prediction of a hydrological climate event, especially the flooding events in West 

Africa. For this purpose, the atmosphere-hydrology coupled model WRF-Hydro has 

been selected as a good candidate. 
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4.2 Present-day Climate Assessment with WRF-only and WRF/WRF-Hydro 

4.2.1 WRF-Hydro calibration in offline mode 

This section aims at implementing a seasonal flood forecasting with WRF-Hydro model. 

The study focuses on the evaluation of the precipitation and streamflow of the sub-

basins. Therefore, the hourly simulations of WRF-Hydro streamflow are averaged to 

daily in order to match the timescale of the available observations. The WRF-Hydro is 

forced by WRF simulations (referred to as WRF-only) both on uncoupled and fully 

coupled modules. 

4.2.1.1 WRF-only simulation 

Figure 4.21 shows the comparison between the simulated WRF-only and observed 

datasets. The weekly WRF precipitation for the Savè catchment is relatively close to 

value derived from CHIRPS (Figure 4.21a) and TRMM (Figure 4.21b), with a mean 

coefficient of determination (R2) equal to 0.64, and 0.59 respectively. The agreement 

between the two observed datasets (CHIRPS and TRMM) is about 0.87 for R2 (Figure 

4.21c), showing that the observed precipitation datasets are close with little uncertainty.  

Figure 4.21d shows the annual cycle of the daily rate of precipitation at Savè for the 

WRF simulation, and observed datasets (CHIRPS and TRMM). WRF-only simulates 

well the observed precipitation CHIRPS dataset is closed to WRF-only as showed both 

the Figure 4.21b and Figure 4.21d, this is consequently due to the high resolution of the 

two datasets (WRF-only and CHIRPS), recall that the spatial resolution of WRF-only is 

5-km and the one for CHIRPS is 0.05º. 
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Figure 4.21: Scatter plots of simulated WRF-only vs. observed ( a- CHIRPS , and b- 

TRMM) weekly cumulative precipitation for period the 2008-2010, c) comparison 

between observed, and d) analysis of 7-day filtered daily precipitation for  WRF-only, 

CHIRPS , and TRMM. 
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4.2.1.2 Calibration and evaluation of WRF-Hydro 

There are a number of parameters in the Noah LSM which are associated with large 

uncertainties that impact hydrological model outputs. In view of this, model calibration 

is necessary before its application (Gochis et al., 2015). Prior to use the model WRF-

Hydro for flood forecasting, the study purposes to simulate at offline module the model 

with the default parameters over the Ouémé-river at Save outlet (referred to as Savè) 

using the forcing from WRF and WRF-modified (the precipitation in WRF output is 

replaced by TRMM after its interpolation from 3-hourly to hourly). Figure 4.22 presents 

the results of this offline assessment of the model WRF-Hydro with WRF output as 

forcing. It is noticed that the model capture fairly the temporal variation of the observed, 

but misrepresents the magnitude and reproduce somehow the peaks. The correlation 

coefficient (Corr) is high because this efficiency coefficient focuses on the similitude 

trend of the shape of the model and the observed. The NSE and the KGE coefficient 

respectively 0.20 and 0.09, inform on the misjudgment of the model in respect to the 

observed, it underestimates the high flow and overestimates the low streamflow. Even 

these values of NSE and KGE obtain for the simulation are influenced by the low 

discharge during the dry season at Savè (January-June). To achieve the goal of the study, 

we task to calibrate the model over Savè by selecting the optimized parameters in offline 

simulations. The calibration method adopted is inspired from Yucel et al. (2015), which 

is otherwise referred to as “stepwise approach”. This kind of method is based on manual 

calibration approach because the automatic calibration methods require a high number 

of model runs with excessive computational time; an option which is not possible in the 

current study (Yucel et al., 2015). The calibration period considered here is the whole 

year 2008, as mentioned by Senatore et al. (2015) one-year calibration is considered 

long enough to evaluate the basic parameter sensitivities. As used in the case of the  
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Figure 4.22: Simulation of the uncoupled WRF-Hydro model with the default 

parameters for the period 01 January 2008 to 01 January 2009 at Savè catchment. 
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evaluation of the model with default parameters, the optimized parameters are selected 

based on those statistics, namely the correlation (Corr), the Nash-Sutcliffe efficiency 

(NSE) and the KGE used as efficiency criteria. The NSE checks the correspondence 

between modeled and observed discharge. It can be used to indicate how well the plot 

of observed versus the modeled discharge fits the line y = x (Moriasi et al., 2007). The 

NSE is ranged from -∞ to 1 with values between 0 and 1 that indicate acceptable 

performance, while values ≤ 0 shows that the mean of observed data is a better predictor 

than the modeled thus the results are considered unacceptable (Moriasi et al., 2007). 

The Table 4.2 presents some of the results of the calibration and shows that in this study, 

the calibration is performed for the Savè catchment for the sensitive parameters such as 

REFKDT, SLOPE, RETDEPRTFAC, OVROUGHRTFAC, and MannN. The REFKDT 

is ranged between 0.1 and 10 with a default value 3.0, while the RETDEPRTFAC 

settable with the same range has as default value 1.0 (Gochis et al., 2015). The SLOPE 

varied between 0.1 and 1.0 as well as the OVROUGHRTFAC. The first parameter 

evaluated is one of the parameters controlling the total water volume (REFKDT) with 

the value ranging from 0.1 to 8.0 with 0.1 increments. Since the default simulation 

(REFKDT = 3.0) show the underestimation of the observed, the REFKDT value shall 

be reduced to disable many infiltrations. As in Arnault et al. (2016) for the case of the 

Sissili in West-Africa and Kerandi et al. (2017) in Kenya, we find that the model 

discharge performance is highly sensitive to parameter REFKDT. The REFKDT = 1.5 

represents the one which perform the observed better than the default simulation with 

the statistics considered (NSE = 0.52, KGE = 0.49, and Corr = 0.58). For the evaluation 

of the RETDEPRTFAC aim to adjust the initial retention depth (which is equal to 1 mm 

in the model). Scaling factors (RETDEPRTFAC) between 0 and 10 with 1.0 increment 

show that the modeled discharge remains the same regardless of the change in  
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Table 4.2: Selected objective criteria ( correlation coefficient: Corr, Nash-Sutcliffe 

efficiency: NSE and Kling-Gupta Efficiency: KGE) between simulated WRF-Hydro 

and observed discharge at Savè based on the infiltration-runoff parameter REFKDT, 

retention factor RETDEPRTFAC, the SLOPE, the overland flow roughness scaling 

factor OVROUGHTFAC and the Manning’s roughness coefficients MannN. 

Experiments in italics bold show the selected parameters’ value and the best Corr, NSE 

and KGE after calibration. 

REFKDT 

Range 0.1 0.5 0.8 1.0 1.5 2.0 3.0 3.5 4.5 
NSE 0.29 0.33 0.38 0.46 0.52 0.34 0.20 0.17 0.11 
Corr 0.64 0.67 0.63 0.63 0.58 0.60 0.61 0.64 0.60 
KGE 0.38 0.39 0.41 0.47 0.49 0.32 0.09 0.07 0.07 

RETDEPRTFAC 

Range 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 
NSE 0.50 0.52 0.49 0.49 0.49 0.49 0.49 0.49 0.49 
Corr 0.58 0.58 0.59 0.59 0.59 0.59 0.59 0.58 0.58 
KGE 0.48 0.49 0.49 0.49 0.48 0.46 0.47 0.46 0.46 

SLOPE 

Range 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
NSE 0.52 0.61 0.60 0.50 0.37 0.20 0.12 -0.03 -0.23 
Corr 0.58 0.62 0.65 0.65 0.66 0.61 0.63 0.55 0.61 
KGE 0.49 0.56 0.52 0.39 0.33 0.24 0.19 0.11 0.04 

OVROUGHRTFAC 

Range 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
NSE 0.60 0.60 0.60 0.61 0.63 0.62 0.62 0.61 0.61 
Corr 0.67 0.65 0.61 0.60 0.66 0.66 0.64 0.64 0.62 
KGE 0.56 0.56 0.57 0.60 0.60 0.60 0.59 0.56 0.56 

MannN 

Range 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8 2.0 
NSE 0.42 0.44 0.50 0.56 0.61 0.62 0.66 0.62 0.60 
Corr 0.66 0.63 0.73 0.68 0.70 0.72 0.67 0.69 0.67 
KGE 0.36 0.37 0.41 0.48 0.50 0.57 0.63 0.60 0.61 
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RETDEPRTFAC, as the scores are very close to each other. As mention by Gochis et 

al. (2015), increases in the RETDEPRTFAC on channel pixels can encourage more local 

infiltration near the river channel leading to wetter soils. Therefore the default 

RETDEPRTFAC = 1.0 seems to provide better results and will be considered such for 

the next calibration steps. In the case of the present study, the uncoupled model WRF-

Hydro is also very sensitive to the parameter SLOPE. The optimized value of the 

parameter SLOPE is 0.2. The parameters controlling the hydrograph shape are also 

investigated. As illustrated by Yucel et al. (2015) the surface roughness 

(OVROUGHRT) plays an important role in transmitting infiltration excess water to 

channel networks and is calibrated in WRF-Hydro using a scaling factor 

(OVROUGHRTFAC) between 0.2 and 1.0 with 0.1 increments. Considering the 

correlation coefficient (Corr), the NSE and the KGE statistics and hydrograph shape 

match between simulated and observed hydrographs at Savè, the scaling factor value of 

OVROUGHRTFAC  = 0.6 is judged as the best to fit the simulated hydrograph to the 

observed hydrograph. 

After the surface runoff is transmitted to the river network, the conveyance of water 

along the channels also affects hydrograph shape Yucel et al. (2015). Channel properties 

are introduced into the model as average channel base width (Bw), initial water depth 

(HLINK), channel slope (Ch SSlp), and Manning coefficient (MannN) based on each 

stream order (St Order). The default channel parameter values are provided in Table 4.3. 

Only the channel roughness (Manning coefficient: MannN) parameter is calibrated, the 

others are maintained constant. The scaling factor (MANN) is ranging between 0.2 and 

2.0 with 0.2 increments. The calibrated value is then obtained with the scaling factor 

MANN = 1.6. 
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Table 4.3: Channel parameter values of base width (Bw), initial water depth (HLINK), 

channel slope (Ch SSlp), and Manning coefficient (MannN) based on each stream order 

(St Order) : default channel parameter values 

St order Bw HLINK Ch SSlp MannN 

1 5 0.02 1 0.65 

2 10 0.02 0.6 0.50 

3 20 0.02 0.3 0.45 

4 30 0.03 0.18 0.35 

5 40 0.03 0.05 0.20 

6 60 0.03 0.05 0.12 

7 60 0.03 0.05 0.03 

8 60 0.1 0.05 0.03 

9 60 0.3 0.05 0.03 

10 60 0.3 0.05 0.03 
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The five parameters evaluated are summarized in Table 4.2 within italics-bold the 

selected parameters’ values and the best NSE, Corr, and KGE after calibration. It can 

be seen that the observed discharge hydrograph at Savè is reasonably well reproduced 

with KGE, and Corr equal to 0.63, and 0.67 respectively, between March and December 

2008 (Figure 4.23a). In all subsequent simulations, the calibrated parameters for the 

Savè catchment are held as such. 

The calibrated model is evaluated offline for the period P2: 2009-2010 (Figure 4.23b). 

The above-mentioned efficiency criteria allow us to evaluate the performance of the 

model. It can be noticed that it fairly well simulates the trend and peaks of the observed 

discharge, even slightly better in comparison to the calibration period, with model 

efficiencies KGE of 0.86 and Corr of 0.87. This enhanced performance for the validation 

period is related to the much higher discharge peak in 2010, i.e. the flooding year, which 

is fairly well reproduced by the model. Globally, for the simulation period P (2008-

2010), WRH-Hydro in offline mode is able to simulate discharge with KGE and Corr 

equal to 0.70 and 0.74. 

The robustness of the calibrated model in the uncoupled module is also evaluated over 

the Bétérou catchment (an inner-domain to Savè basin). Figure 4.24 shows a best-fit 

performance of the model in simulating the shape of the observed hydrograph at 

Bétérou. It reproduce somehow well the peaks of discharge, the trend of the shape of 

the observed hydrograph is also well reproduced. The performances of the model are 

revealed by the statistics KGE = 0.74, Corr = 0.85 and NSE = 0.68 for the calibration 

period over Bétérou catchment for the uncoupled module simulation. 
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Figure 4.23 : O
bserved and sim

ulated (uncoupled W
R

F- H
ydro) daily hydrographs at Savè, and catchm

ent -

averaged daily precipitation derived from
 W

R
F- only: a) calibration period 2008; b) validation period 2009-2010.  
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Figure 4.24: Evaluation of the uncoupled calibrated WRF-Hydro model over Bétérou 

catchment during the calibrated year (2008) 
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The assessment of the calibrated model WRF-Hydro in the online module (fully coupled 

mode) is performed by simulating the coupled WRF-Hydro model with an update of 

optimized parameters resulting from uncoupled WRF-Hydro. This calibrated model of 

WRF-Hydro will be referred to as WRF-H. It is used to assess the performance of the 

WRF-Hydro to simulate discharge and precipitation in the research area. Figure 4.25 

presents the simulation result of WRF-H at Savè for the three years 2008-2010, whilst 

Figure 4.26 presents the simulation result at Bétérou for the same period. At Savè, the 

daily discharge is well reproduced for each simulation with only 13% bias and NSE 

about 0.64, the KGE resulting is 0.76 and the Correlation coefficient 0.84. These 

statistics demonstrate how better is the performance of WRF-H compare to the 

uncoupled simulation WRF-Hydro. The same better performance of WRF-H is noticed 

in the case of simulation at Bétérou with also a low bias comparing the simulated model 

to the observed. The Nash-Sutcliffe Efficiency (NSE = 0.46) is a bit lower than Savè, 

while the KGE and the Corr are respectively equal to 0.66 and 0.79. At Bétérou the 

model overestimates the low flow for the year 2008 and 2009, and simulate well the 

relevant peaks. 
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Figure 4.25: Fully coupled sim
ulation of W

R
F- H

ydro (W
R

F- H
) at Savè for w

hole experim
ental period. The G

auge 

represents the observed discharge at Savè outlet, and W
R

F - H
ydro is the sim

ulated discharge w
ith W

R
F-H

. 
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Figure 4. 26: Fully coupled sim
ulation of W

R
F -H

ydro (W
R

F- H
) at B

étérou for w
hole experim

ental period. The 

G
auge represents the observed discharge at B

étérou outlet, and W
R

F -H
ydro is the sim

ulated discharge w
ith W

R
F-H

.  
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4.2.2 Evaluation of WRF-H 

In this section, the assessment of the WRF-H in the research area is leading into two 

variables: the precipitation and the discharge. 

4.2.2.1 Precipitation simulations 

The simulated precipitation of the model WRF-H is assessed both temporally and 

spatially scales for the rainy season of the period 2008-2010 according to the research 

interest (flood). Figure 4.27 exposes comparison between the weekly precipitations 

from WRF-only, WRF-H, and observed datasets. The R2 in Figure 4.27.a, which 

compares WRF-H and WRF-only, is equal to 0.88. This shows clearly that WRF-only 

and WRF-H simulate differently precipitation, which was already illustrated by Givati 

et al. (2016), Naabil (2017) and Senatore et al. (2015). Figure 4.27b and 4.27c compare 

WRF-H with CHIRPS and TRMM, and it illustrates a good agreement between these 

datasets. The slightly better agreement of CHIRPS (compared to TRMM) with WRF-

only (Figure 4.21b) and WRF-H (Figure 4.27b) could be explained by the high 

resolution of both CHIRPS and WRF-H precipitation. Indeed, the comparison between 

Figures 4.21 and 4.27 illustrates that WRF-H performs slightly better than WRF-only 

in term of daily and weekly precipitation. Figure 4.27d enhances these results with Corr 

equal to 0.68 between WRF-H CHIRPS against 0.59 between WRF-H and CHIRPS.  

Klein et al. (2015) showed that the high variability of precipitation in West Africa results 

from a large uncertainty in WRF simulations. This uncertainty is investigated in details 

in section 4.3 by modifying boundary conditions with a stochastic perturbation. The 

difference between simulated precipitation and CHIRPS is analyzed in Figures 4.28 and 

4.29. Figure 4.28 presents the monthly trend of precipitation and shows that 

precipitation records during the two last months (August and September) in 2010 are 
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highest in comparison to 2008 and 2009. The simulated precipitation WRF-H follow 

well the trend of the observation CHIRPS. The Figure 4.29 presents the spatial 

distribution of precipitation in domain D2 during the rainy season period June to 

September (JJAS) in 2010 (the flooding year). The difference between the two models 

(Figure 4.28c) shows either WRF-H underestimated or overestimated simulation in 

comparison to WRF-only, depending on the location (as in Wagner et al., 2016). The 

mean precipitation in domain D2 is about 864 mm for WRF-only, and 947 mm for WRF-

H. This means that WRF-H increases the simulated precipitation from WRF-only by 

about 1%. The observed precipitation in this domain is about 817 mm i.e., less than 

simulated precipitation from both WRF-only and WRF-H. Similar results are obtained 

for the Savè catchment, with seasonal spatial-averaged precipitation of 1049 mm for 

WRF-H, 998 mm for WRF-only and 977 mm for CHIRPS.  
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Figure 4.27: Evaluation of weekly simulated precipitations with observed datasets at 

Save-catchment: a) WRF-H vs. WRF-only, b) WRF-H vs. CHIRPS, c) WRF-H vs. 

TRMM, and d) analysis of 7-day filtered daily precipitation for WRF-H, WRF-only, 

CHIRPS and TRMM. 
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Figure 4.28: Precipitations trend in June -Septem
ber (JJA

S) at Savè catchm
ent for the period 2008 -2010 

 



 
 

131 

 

Figure 4.29: JJAS precipitations for the flooding year 2010 with Savè-catchment (red 

contour), and Beterou-catchment (purple contour): a) WRF-only simulations, b) WRF-

Hydro (WRF-H) simulations, c) difference between WRF-H and WRF (WRF-H minus 

WRF), and d) CHIRPS precipitation. The colorbar of Figure 5d is used as common 

colorbar for Figure 5a, b, d. 
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Since the model performed well for both Savè and Bétérou, the following analysis 

focused on those two basins of Ouémé-river. Figure 4.30 and Figure 4.31 present 

respectively the cumulative precipitations derived from WRF-H, and the satellite 

datasets CHIRPS and TRMM at Bétérou and Savè. A perfect reproductivity of observed 

dataset by WRF-H is noticed, and also the clear rainy season period is also well captured 

by the model. The total seasonal precipitation is based on one rainy season from April 

to October over the basins. The cumulative seasonal amount is indicative of the average 

of annual precipitation for the given year for the region. According to Figures 4.30 and 

4.31 we can make the assumption that there is no or negligible rainfall recorded in the 

dry season. At Bétérou (Figure 4.30), the model fairly underestimates the cumulative 

precipitation compared to TRMM and CHIRPS, albeit it shows a good capture of 

seasonal variability over the years. The respective total amounts are WRF-H = 3921 

mm, TRMM = 4077 mm and CHIRPS = 4000 mm, which confirm consistency with 

results discussed above that the WRF-H precipitation simulations are closer to the 

observed CHIRPS than TRMM. The bias of the cumulative precipitation is between -

8.82% and 0.00% in regard to TRMM and between -8.16% and 2.13% for CHIRPS. At 

Savè (with WRF-H = 3883 mm), conversely to analysis at Bétérou the model fit well 

the total seasonal cumulative precipitation of TRMM (about 3985 mm) than CHIRPS 

(4020 mm). The error related to the evaluation of the cumulative precipitation is between 

-5.82% and 2.18% for TRMM and about -7% and 0% for CHIRPS. Figure 4.28 

illustrates that as in the case of Bétérou (Figure 4.28), despite the underestimation of the 

cumulative precipitation by the model, it captures also well the seasonal variability over 

the years. 
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Figure  4.30 : cum
ulative total precipitation derived from

 TR
M

M
, C

H
IR

PS and sim
ulated in W

R
F- H

 over 

B
étérou  during the period 2008 to 2010  
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Figure 4.31: cum
ulative total precipitation derived from

 TR
M

M
, C

H
IR

PS and sim
ulated in W

R
F-H

 over Savè 

during the period 2008 to 2010.  
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4.2.2.2 Discharge simulations 

Discharge results at Savè are displayed in Figure 4.32a (similar to Figure 4.25),  showing 

the daily time series of simulated (green) and observed (red) stream discharges and 

related WRF-H precipitation (blue) for the period 2008-2010. A good agreement can be 

seen between the observed and the simulated hydrographs, and an approximate good 

representation of the peaks of the discharge as well as hydrograph shapes, as quantified 

by the performance measures KGE and Corr (0.76 and 0.84 respectively). This 

performance, in comparison with the offline simulation, could be explained by the time 

step of the meteorological data in fully-coupled mode, which is 30s and not hourly as in 

offline mode. Since one of the objectives of the study is to evaluate the performance of 

WRF-H to simulate the discharge, and therefore to predict potential floods, the study 

focuses on the ability of the model in reproducing only the rainy seasons. For Savè’s 

case (Figure 4.32), KGE equal to 0.22, 0.64 and 0.80 are obtained for the rainy seasons 

of 2008, 2009 and 2010 respectively, which give important information about the 

model’s simulation skills. Also, it is noted that the model has a better performance in 

2010.  

The robustness of the calibrated WRF-H over Savè is evaluated in a second catchment, 

i.e. the Bétérou ( Savè’s inner-catchment), which is illustrated in Figure 4.32b. Figure 

4.32b shows that WRF-H reproduces well the discharge trend as well as the peaks so 

that WRF-H can also be used successfully for this inner-catchment. Table 4.4 illustrates 

the discharge peaks obtained for basins during the three years.  An evaluation from a 

recent work of Hounkpè et al. (2015) revealed that the averages of annual rainfall 

between 1960 - 2007 are 1205 mm at the Bétérou rainfall station and 1098 mm at Savè. 

The dynamics of the flow is characterized by a high discharge during the rainy season.  
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Figure 4.32:  Observed and simulated (fully coupled WRF-Hydro) hydrographs and 

derived precipitation from WRF-Hydro: a) full year at Savè,  b) rainy season at Savè, 

and c) at Bétérou (Savè’s inner catchment) 
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Table 4.4 : Summary of yearly highest and lowest discharge values both for simulated 

WRF_H and station dataset, following by KGE during the rainy season. 

 Catchment 
Savè Bétérou 

 

 

2008 

High value 
observed  

1250 m3/s 500 m3/s 

High value 
simulated  

1935 m3/s 1320 m3/s 

KGE 0.22 0.16 
 

 

2009 

High value 
observed  

1127 m3/s 572 m3/s 

High value 
simulated  

1453 m3/s 854 m3/s 

KGE 0.62 0.69 
 

 

2010 

High value 
observed  

2200 m3/s 930 m3/s 

High value 
simulated  

2090 m3/s 950 m3/s 

KGE 0.80 0.84 
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The maximum flow between May and September over the period 1960-2007 is in order 

of 240 to 740 m3/s at Bétérou and 1000 to 1750 m3/s at Savè outlet. From November to 

May, almost all the rivers dry up and the averages of low flows are about 5m3/s at Savè, 

and 2m3/s at Bétérou. 

WRF-H is able to capture the flood event, which occurred in September-October 2010 

over Savè as well as over Bétérou. In particular, although the predicted highest discharge 

peak occurs earlier than in the observed datasets at Savè and Bétérou. The second 

"weak" peak in 2010, which could amplify damage intensities of the flood in the study 

area, is also well reproduced.  According to results from Figure 4.32, this second “weak” 

peak should result from the highest precipitation simulated and observed in September 

2010. The first important peak at Savè in 2010 is also reflected from the highest 

simulated precipitation of August 2010. 

To consolidate the previous analysis, the Figures 4.33 and 4.34 are plotted, and 

presented respectively over Bétérou and Savè for further comparison on the one hand, 

the simulated and observed discharge at daily time step for the whole WRF-H evaluation 

period (2008-2010), and the flooding period (2010) based on linear regression with 

values of the line 1:1 and coefficient of determination (R²); and on the other hand, the 

cumulative discharge of simulated and observed datasets. Figure 4.33a indicates that at 

Bétérou the WRF-H underestimates the low flows, whilst in contrast at Savè (Figure 

4.34a), it fairly well extracts the low flow. This underestimation of the low flow at 

Bétérou and somehow at Savè is related to the fact that in early August at the beginning 

of the rainy season over the sub-basins, the model started produce streamflow (2008 and 

2009 on Figure 4.32b  and Figure 4.32c). The Figure 4.34b demonstrate that the 

underestimation of the low flow at Savè is due to the lags noticed between the simulated 

and observed “peaks”. Globally, WRF-H captures well the variability of the seasonal 
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discharge for Savè and Bétérou, but overestimate the cumulative total discharge (Figure 

4.33c and Figure 4.34c). These figures also indicate that the discharge is recorded from 

July to November with high increase in August-September. The total volume of 

discharge observed at Bétérou during the period 2008-2010 is 86,045 m3 against 

100,182 m3 for the WRF-H simulation, given rise of 16% as a difference. At Savè, the 

recorded total volume of water is about 186,475 m3, while the corresponding simulated 

discharge is approximately 220,367 m3, overestimating the observed discharge up to 

18%. 
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Figure 4.33: Scatter plot showing comparison of simulated and observed discharges (a 

- for the period 2008-2010, and b- for the flooding year 2010), and the cumulative totals 

of simulated and observed discharge at Bétérou 
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Figure 4.34: Scatter plot showing comparison of simulated and observed discharges (a- 

for the period 2008-2010, and b- for the flooding year 2010), and the cumulative totals 

of simulated and observed discharge at Savè. 
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4.2.3 Evaluation of the uncertainty of WRF-H 

In order to evaluate the forecasting uncertainties of WRF-H, we introduce a stochastic 

kinetic-energy backscatter scheme (SKEBS: Berner et al., 2015, 2009; Shutts, 2005) 

and evaluated its impact on the predictability of streamflow and the precipitation with 

WRF-H. The scheme is used and activated in WRF-Hydro; it is referred to as WRF-H-

SKEBS. The purpose here is that the SKEBS approach adds random perturbations with 

prescribed spatial and temporal decorrelations. In particular, SBEKS produces 

perturbation into the lateral boundary conditions. The amplitude of the stochastic 

perturbations is chosen as the default in WRF-H. An ensemble of 10-member is 

performed for this task. Both stochastic physics and initial condition perturbations into 

WRF-H-SKEBS result in an ensemble spread for the three rainy seasons. Figure 4.35 

shows that WRF-H-SKEBS has a relatively large impact on precipitation and discharge 

results in the study region. The ensemble also results in a large range of simulated 

discharge performance, as can be seen in Table 4.4. This result demonstrates the 

sensitivity of WRF-H to lateral boundary perturbations and confirms the uncertainty of 

the model regarding discharge and precipitation simulations, which is of uttermost 

importance for flood forecasting. 
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Figure 4.35: Ensemble (WRF-Hydro-SKEBS) of simulated hydrographs and 

precipitations at Savè and Bétérou 
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4.2.4 Evaluation of the soil water content 

Figures 4.36 and 4.38 show the daily averaged (5-day filtered) soil moisture extracted 

for soil depth between 0.5-2cm (Dorigo et al., 2014) from the Climate Change Initiative 

(CCI) of the European Space Agency (ESA : https://www.esa.int/ESA; thereafter refer 

to as 𝜃ÊÊË) respectively for Bétérou and Savè, and the corresponding volumetric soil 

water content in the first Noah soil layer between 0 and 10 cm (referred to as 𝜃0ÌÍÎ/Ï 

). The 𝜃0ÌÍÎ/Ï is relatively high at the beginning of the simulation (January 2008: about 

0.3 m3.m-3), but get a decreasing trend from the first months of the simulation and 

reached approximatively the same value in February ending with those of other years 

(Feb-2009 and Feb-2010). This suggests that there is an excess of 𝜃0ÌÍÎ/Ï both at 

Bétérou and Savè at the initial time of the simulation, and that a 2-month spin-up period 

appears to be sufficient for soil moisture in the first Noah LSM soil layer (Arnault et al., 

2016). The 𝜃ÊÊË  values are globally lower than WRF-H simulations either for Bétérou 

or Savè during the rainy season and simulate reasonably well at the onset end the end of 

the season. However, despite the important bias, WRF-H correlated well with the 

observed. Furthermore, Figures 4.37 and 4.39 present the daily soil moisture in the four 

Noah LSM soil layers of the WRF-H simulation respectively for the basins Bétérou and 

Savè. As observed for the 𝜃0ÌÍÎ/Ï (with soil layer between 0-10 cm) where only 2-

month spin-up is enough to simulate the soil moisture, the difference between the two 

years is much for the soil layer 10-200 cm. For instance, the soil moisture value for the 

second (10-40cm) and the third (40-100 cm) soil layer, the stability is reached after the 

simulation of more than one year. Therefore, for this study case, we need more time for 

spin-up (more than a year) to simulate well the soil moisture between 10-200 cm. 
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Figure 4.36: Evaluation of the soil moisture between the simulated with WRF-H of the 

first Noah LSM soil layer (from 0 to 10 cm) and the daily average (5-day filtered ) from 

CCI (from 0.5 to 2 cm) over Bétérou catchment.  
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Figure 4.37: Daily average (5-day filtered ) time series of soil water content (SWC) 

of the four Noah LSM soil layers of the WRF-H simulation at Bétérou 
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Figure 4.38: Evaluation of the soil moisture between the simulated with WRF-H of the 

first Noah LSM soil layer (from 0 to 10 cm) and the daily average (5-day filtered ) from 

CCI (from 0.5 to 2 cm) over Savè catchment. 
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Figure 4.39:  Daily average (5-day filtered ) time series of soil water content (SWC) 

of the four Noah LSM soil layers of the WRF-H simulation at Savè. 
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4.2.5 Evaluation of the water cycle 

Figures 4.40 and 4.42 showed the partitioning of the WRF-H simulated precipitations 

respectively over Bétérou and Savè during the three simulation years. With the closer 

results of the simulated precipitation with WRF-H to the observed datasets (Figure 4.30 

and Figure 4.31), the partitioning of the rainfall during the evaluation period (2008-

2010) is presented on those Figures 4.40 and 4.42. At Bétérou (Figure 4.40) the total 

rainfall simulated with WRF-H is 3921 mm, 7% of this amount contributes to the soil 

moisture (about 255 mm), and 23% seeps through the percolation to contribute 

(replenish) to the water resource available in the aquifer. About 21% of the total 

precipitation simulated at Bétérou passes through the surface runoff. Since there is no 

sublimation in the study area, the major part of the total precipitation is evaporated and 

represent 62% (i.e. 2447 mm). This part of the water (precipitation) evaporated is shared 

between the plant transpiration which is 65% of the total evaporated water. 7% of this 

evaporated water contribute to the canopy evaporation, the ponded water evaporation 

represents 1%, and the direct evaporation is about 27% of the total simulated evaporated 

water. It is noticed a similitude in the shape of the soil moisture of the first Noah LSM 

soil layer (Figure 4.36) and the direct evaporated water. They are relatively high at the 

beginning of the simulation but display a sharp decrease during the first simulated 

month. This suggests that there is an excess of soil moisture at the first soil layer in Savè 

catchment at the initial time of the simulation, which is drained out through direct 

evaporation during the first simulated month (Arnault et al., 2016). During the dry 

season, the total evaporation is almost equal to the plant transpiration. This analysis of 

precipitation partitioning and the evaporated water balance at Bétérou is identically the 

same at Savè except for the percentage of each contribution of the balance. At Savè, the 



 
 

150 

total cumulative precipitation simulated is 3883 mm, and 1% lower than the total 

precipitation simulated at Beterou. 

  



 
 

151 

 

 

 

 

Figure 4.40: WRF-H simulated precipitation partitioning over the three years 

simulation period at Bétérou. 
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Figure 4.41: WRF-H simulated total evapotranspiration components over the three 

years simulation period at Bétérou. 
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Figure 4.42: WRF-H simulated precipitation partitioning over the three years 

simulation period at Savè. 
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Figure 4.43 : WRF-H simulated total evapotranspiration components over the three 

years simulation period at Savè 
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CHAPTER 5  

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

West Africa is known to be particularly vulnerable to climate change due to high climate 

variability, high reliance on rain-fed agriculture, and limited economic and institutional 

capacity to respond to climate variability and change. In this context, better knowledge 

of how climate will change in West Africa, and how such changes will impact extreme 

climate events such as drought and flood have constituted the purposes of this study. 

First, the study used CORDEX climate simulations to analyze the situations of West 

Africa regarding to these two extremes climate events under four global warming levels 

(1.5°C, 2.0°C, 2.5°C and 3.0°C). Secondly, an experimental work to early predict one 

of these climate events (e.g. flooding) have been undertaken. 

The spatial distribution of SPEI values examined, showed that during the historical 

period the Sahel and Savanna experimented extreme and severe droughts, specifically 

during the years 1971-1974, 1977-1980, 1987-1989, 1994 and 1995, confirming Masih 

et al. (2014) results, which explained that the occurred droughts in Sahel and Savanna 

in 1972–1973, 1983–1984 and 1991– 1992 were most intense and widespread. This 

result is also in agreement with  the investigation on drought in West Africa  by Hulme 

et al. (2001), Nicholson, (2005), Van De Giesen et al. (2010), Kasei et al. (2010), 

Oguntunde et al. (2017) and Diasso and Abiodun (2015) . The Gulf of Guinea and the 

North-west of West Africa, particularly Mauritania and Senegal were not excluded in 

1998-2000 by this drought. But this observation is not static, some wet years also were 

noticed at the western part of the study domain. The results illustrated that the Savanna 
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could become relatively wet and the Eastern and North-western part of West Africa 

more extremely dry under all GWLs; whilst the Sahel will be a little bit dry, clarifying 

the existence of the gradient Gulf-of-Guinea-Savanna-Sahel where the Gulf-of-Guinea 

recorded moderate wet condition. Under RCP8.5, the Gulf-of-Guinea will be the wettest 

area, especially the coastal countries. A reduction under GWLs of the driest episodes 

could also be noticed, particularly the area covering latitude 12ºN-16ºN; whilst, the 

coastal part of Liberia and Cameroon, Mali, Burkina-Faso, Niger, Ivory-Coast, Benin, 

Nigeria, Chad will experiment extreme drought. A better understanding of the contrast 

between drought and probably flooding areas led the study to assess the PCI both on 

annual and seasonal time scales. Results of seasonal and annual computation of PCI 

informed on the changes in the spatial distribution of precipitation. 

The findings obtained in this study with regard to the PCI, illustrated that the main 

rainfall activity period over West Africa was between May and September. During the 

historical period, rainfall was uniformly well distributed over the Gulf of Guinea and 

the Savanna, whilst in the Sahel, a more moderate and irregular precipitation 

concentration was recorded. Under future scenarios, i.e., at all the GWLs of 1.5℃, 2.0℃, 

2.5℃ and 3.0℃; the moderate and irregular precipitation concentration was projected to 

reduce in favour of a more uniform distribution, except over the North-eastern areas 

(which are part of Niger and Chad), which became the least dry at all four GWLs. In 

order to obtain further detail about the period of the concentration of rainfall in West 

Africa, the PCP variable was calculated; it showed that the precipitation concentration 

increased gradually from the Gulf of Guinea to the Sahel, thus explaining the existence 

of a south-north gradient. During the historical period (1971-2000), the highest rainfall 

concentration occurred in July-August over the Gulf of Guinea and the Savanna, while 

it was highest during September over the Sahel.  
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The PCP too changed in response to increasing GWLs. The rainfall was found to be 

more concentrated in June-July over the Gulf of Guinea and the Savanna, and during 

August for the Sahel. In general, the degree of the concentration seemed to be more 

important in the Savanna-Sahel (with high values of PCD), due to the WAM system, 

which is led by the back-and-forth movement of the Inter-Tropical Discontinuity (ITD) 

between south and north. Indeed, this movement creates an increased precipitation 

concentration in the Savanna-Sahel area, which is immediately followed by the 

southward movement of the ITD. This establishes a long-time record of precipitation 

concentration, which is highlighted by the PCD values over this area. A significant 

reduction in the CDD is recorded over the north-east (i.e. Niger and Chad), and a slight 

increase in the number of CWD over the Sahel. Additionally, based on the results from 

PCI and PCP, Niger and Chad are projected to experience more wet condition under 

increasing GWLs. The 5-day cumulative rainfall variable shows that the Gulf of Guinea 

is projected to experience more intense, very intense and heavy rainfall events under 

increasing GWLs.  

All these results together show how much West Africa will be exposed to higher 

variability of climate change and also to future heavier rainfall and wet conditions. To 

cope with such changes, reduce the loss of life and better manage the impact on 

inhabitants of this region, some adaptation strategies are necessary under continual 

climate change. Two types of strategies are required: a regional framework agreement 

and local coping strategies. The regional agreement is very important because it forces 

each stakeholder (country) to respect the framework agreement; this is mostly in line 

with the mitigation of climate change at the regional scale. Local strategies are important 

in two ways: Firstly, local strategies should enable West African countries to respect the 

regional framework agreement. Secondly, they should encourage countries to look for 
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and develop adequate adaptation possibilities, by responding to the contributions of 

scientists and decision-makers, which represent an important factor in development. 

They are the ones who have to provide reliable information to the population, and 

particularly to farmers, for better management of crops in order to ensure food security. 

The experimental work of this study explores the abilities of the fully coupled WRF-

Hydro modeling system to simulate discharge and precipitation in Ouémé-river in West-

Africa, but also evaluate some other variables. The model has been calibrated in offline 

mode for one year and tested for two years using hourly outputs from WRF simulations. 

Optimized parameters from the calibration were used to perform the fully coupled WRF-

Hydro model, which was used to investigate the performance skills over Ouémé-basin.  

The evaluation of simulated precipitation, shown its good replicability skills and 

provides confirmation of the uncertainty associated with WRF-H to simulate 

precipitation (Klein et al., 2015; Miguez-Macho et al., 2007). WRF-H showed also a 

good performance to simulate discharges. Its performance evaluated with KGE equal to 

0.76 for the period 2008-2010 is relatively close to the performance of the model in 

uncoupled mode on period 2009-2010, which is equal to 0.86. The robustness of WRF-

H has been assessed at Bétérou, an inner-catchment of Ouémé-river at Savè, where it 

provided a good agreement with respect to observed discharge with KGE equal to 0.66. 

Additionally, it was able to capture the flood event that occurred in 2010 over both Savè 

and Bétérou, and even captured the peaks. This is due to the fact that in the fully-coupled 

module of WRF-hydro, the atmospheric and hydrological processes are simulated in a 

consistent way, which enhanced confidence in the results. The uncertainty of 

predictability skills of WRF-H with respect to discharge in Ouémé-river at Savè was 

treated with an ensemble of 10-member. Results showed that the large spread of WRF-
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H regarding the stochastic perturbation was introduced to the boundary conditions. The 

model shows its high sensibility to perturbations introduced into the atmosphere. 

According to the performance displayed by WRF-H to simulate accurate discharge and 

precipitation, this model is suited for discharge predictions in Ouémé-river, and should 

be a good model for flood forecasting over West-Africa, and could also be implemented 

over other basins.  

5.2 Limitation of the study 

§ In this study the performance of the CORDEX dataset driven by the RCA4 to 

simulate precipitation and evapotranspiration have been evaluated, and despite the good 

correlation of the model in respect to the observed datasets that can be deduced from the 

analysis, the models present some misjudgments of the input variables, which can affect 

the resultant indices.  

§ They have many uncertainties related to the prediction of drought and flood both for 

the historical and the future projections using climate indices, because of the fairly 

performance of the model regarding the observed dataset.  

§ Another limitation is mainly related to the potential flooding and drought projections 

using the climate indices. This is because, as in case of the historical period, the principal 

component (PC) method accompanied the EOF to explain the temporal location of the 

potential drought or flood events; the RCA4 models do not experience GWLs at the 

same period as shown in Table 4.1, which means that ensemble-mean could not be 

displayed in function of time. In that case, it is impossible to reveal when (period) in 

future the flood or drought will occur.  

§ Regarding the practical experiment using WRF-Hydro the major limitation is about 

the availability of the in-situ variables such as precipitation and streamflow gauge data. 
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For instance, in the case of the present study, the in-situ available precipitation and 

streamflow data over Ouémé catchments from 2011-2017 present either a lot of spike 

data or are not well transcripted, containing many missing values; a reason why the 

simulations of the WRF-H are limited to 2010 and not up to 2017. 

5.3 Recommendations 

The impacts of climate change and variability on the extreme climate events in West 

Africa have been successfully investigated by many studies using climate indices 

(Diasso and Abiodun, 2015; Oguntunde et al., 2017). The present work added credit to 

previous works and investigated also on the trend of the extreme events based on 

potential global warming levels documented. The study might want to clarify the 

potential future period where each event will be noticed, but this was not possible 

because of the generation of the ensemble-mean, which provided idea about the trend 

of the ensemble. Future works might focus on the way to fix this issue, I mean to explain 

the temporal trend of the ensemble-mean despite the exhibition of a particular GWL in 

different periods. 

The experimental flood forecasting work was implemented on annual and seasonal 

scales. Since the simulation of such a model is very high, computational cost and time 

consumption; future works could find the way to adapt the WRF-H for flood forecasting 

at 10-day lead using 10-day forecasting data (e.g. from ECMWF forecasting data). Also, 

this 10-day lead forecasting will be more practical in case of early warning. 
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