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ABSTRACT

This study aims at investigating climate change scenarios over West Africa with the associated
uncertainties to improve the value of climate information to end-users for informed decision
making. For the present day (1982-2005), the mean climatology, intermodel variability and
spatio-temporal patterns of temperature and precipitation over West Africa from CMIP5,
CMIP5_SUBSET (ensemble of GCMs driving CORDEX) and CORDEX multimodel ensembles
(MMEs) were first evaluated and intercompared for the monsoon season (June-September).
While CORDEX failed to outperform the simulated mean climatology of temperature by the
CMIP5 ensembles, it substantially improved precipitation and provided more realistic fine-scale
features tied to local topography and landuse. This improved performance over the region
depend more on the internal models physics than the driving boundary conditions and results
from a more consistent and realistic simulation of monsoon precipitation across the various
Regional Climate Models (RCMs). Rotated Empirical Orthogonal Function (REOF) analysis
indicated that the CORDEX ensemble captures better the spatio-temporal variability of both
temperature and precipitation (first REOF mode), in particular depicting the warming and Sahel
precipitation recovery in recent decades over West Africa. On the other hand, the spatial patterns
and associated time series of the last two REOF modes in CORDEX mostly follow the
CMIP5_SUBSET pointing towards a strong role of the boundary forcing in the RCM simulation
of precipitation variability. For the future climate 2070-2099 relative to 1976-2005, a Bayesian
model was applied to the three sets of models (CMIP5, CMIP5_Subset and CORDEX) and
PDFs of Temperature and precipitation change for two sub region (Sahel and Guinea Coast)
were derived. For temperature change over the Guinean Coast, CMIP5_S models under

RCP8.5 has a lot of uncertainties showing more bias and less agreement among models but the



CORDEX seems to reduce those uncertainties. Over the Sahel, only CORDEX under RCP4.5
scenario shows more agreement and less bias. CMIP5 and CMIP_S show multi modal PDF
pointing out some uncertainties and less agreement among models. For precipitation change over
the Guinean Coast under RCP8.5 and RCP4.5 uncertainties still remain in CORDEX model with
an increasing precipitation trend for the late century. There is no significant difference on
precipitation change between RCP4.5 and RCP8.5. CORDEX has a wide PDF curve under
RCP4.5 and RCP8.5 scenario showing the persistence of uncertainties. Two sources of
uncertainty in climate projection from CMIP5, CMIP5_Subset and CORDEX were also
examined for temperature and precipitation. An ordinary least square was used to fit each
decadal anomalies prediction of CMIP5, CMIP5_Subset and CORDEX with a fourth-order
polynomial over the years of 2006-2099 for the two scenarios RCP45 and RCP85. The
anomalies were computed with the reference period of 1976-2005. The new generation of
models had an added value compare to the driving GCMs (CMIP_S) and CMIP5 MMEs by
reducing the Internal and Inter Model Variability over the West African region. Inter Model
Variability was the dominant source of uncertainties and is explaining up to 90 % of total
uncertainty. The study conclude that for temperature under the two scenarios, the change is
robust (Signal to Noise ratio greater than one) over most of West African countries with more
spatial details and improved signal to noise ratio with CORDEX MMEs compare to CMIP5 and
CMIP5_S MMEs. Over West Africa, CORDEX under RCP4.5 has a signal to noise ratio greater
than one with an increasing trend of precipitation while the noise dominates the signal under
RCP8.5, in CMIP5, CMIP5_S and CORDEX. An assessment of climate change information over
West African region needs to rely on the careful evaluation and compounded information

deriving from multiple sources.
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CHAPTER ONE

INTRODUCTION

1.0 Research background

Coupled Global Climate Models (or simply GCMs) forced by greenhouse gas (GHG), aerosols
and/or land use change are the primary tools to derive future climate change scenarios (Hulme et
al., 2001; Jenkins et al., 2002; Kamga and Buscarlet, 2006). In this regards, many phases of the
Coupled Model Intercomparison Project (e.g. CMIP2; CMIP3; Meehl et al., 2000; 2007) have
been carried out during the last few decades by the World Climate Research Programme
(WCRP). The implementation of these different stages of CMIP has led to substantial progress in
climate modeling. For example, the latest phase (i.e. CMIP5 ; Taylor et al., 2012) includes the
development of Earth System Models (ESMs) which better describe the interactions of
atmosphere, ocean, land, ice, and biosphere but also incorporate biogeochemical processes and

their feedbacks (Taylor et al., 2012).

Despite this significant progress, there are still substantial shortcomings preventing the GCMs
from accurately estimating the state of West African regional climate under a range of
conditions. Among these limitations are the presence of persistent biases across different
versions of the GCMs (Li et al., 2013; Roehrig et al., 2013; Bellenger et al., 2014) and the
existence of large uncertainties in the projections in many parts of West Africa (Biasutti, 2013;
James et al., 2014; Rodriguez-Fonseca et al., 2015). In addition, the horizontal grid spacing of
the GCMs is still coarse making them unable to capture the local forcing such as complex

topography and land surface heterogeneity (Giorgi et al., 2009; Sylla et al., 2012).



Regional Climate Models (RCMs) are now extensively used to dynamically downscale GCMs in
order to produce fine-scale and improved regional climate information (Giorgi and Means,
1999). In this regards, various regional climate change studies have been carried out over West
Africa using RCMs (Paeth et al., 2005; Sylla et al., 2010a; Mariotti et al., 2011; Diallo et al.,
2012 ; Abiodun et al., 2013; Sylla et al., 2015).However uncertainties associated with those
projection have not been quantified. In order to adequately design long-term adaptation policies
and decision making that are climate-proof, it is important that decision makers are informed
about the reliability of future climate projections. This will support planners in making informed
decisions on future investments aimed at optimizing the use of scarce resources available and
promote climate-resilient development.

There are three main sources of uncertainty: the first is the internal variability of the climate
system, which describe the natural fluctuation arising in the absence of any radiative forcing. The
second is the model uncertainty which explain how climate models produce different responses
to the same Green House Gases (GHG) forcing due to varying dynamics and physics
parameterizations. The third is scenario uncertainty results from unknown future greenhouse

gases emissions (Hawkins and Sutton, (2009)).

1.1 Motivation for the study

Climate change is undeniably occurring and poses significant risks to a wide range of societies
and natural systems (IPCC, 2007). The latest report by the Intergovernmental Panel on Climate
Change (IPCC,2014) states that global average surface air and ocean temperatures are increasing

at rates unequivocal to any other period on record, including paleo records.



In the last few decades, droughts have become more common, especially in the tropics and
subtropics and increases have occurred in the number of heavy precipitation events. These
extreme conditions, expected to be exacerbated in the future, have already caused substantial
flooding and food shortage, and constitute significant threats to water resource and public health
management (Parry et al., 2007). For Africa, based on climate model results’, warming is very
likely (90 to 99% probability) to be larger than the globally average in all seasons by the end of
the 21st century, particularly in drier subtropical regions. Africa is thus one of the most
vulnerable continents to such changes, a situation aggravated by different interactions between
population and ecosystems and low adaptive capacity.

This is particularly true for West Africa where agriculture is the prominent instrument for
spurring growth, enhancing food security and overcoming poverty (Boko, 2007). Due to the
predominance of rain-fed agriculture, the dependence of local population to natural resources
and increasing drought episodes and flooding events, it therefore becomes critical to provide
reliable climate change scenarios for the end-users community of West Africa. Such scenarios

require quantification of uncertainties and thus the use of multiple regional climate models.

1.2 Statement of research problem

Reliable climate change scenario with associated uncertainties over West Africa is still lacking.
To overcome this gap and provide climate change scenarios useful for impact studies and for the
development of adaptation and mitigation strategies, we highlight a number of scientific
questions to be answered:

- Do dynamical downscaling of RCMs always performs better than GCMs?

- What is the state-of-the-science regional climate change projection in term of mean

change over West Africa?



- What is the associated uncertainty range and how can it be quantified?

The answers to such questions will help to deliver climate change information at the
local/regional useful for end-users, quantify and minimise the range of uncertainty and provide

relevant information for future modelling work.

1.3 Aim and objectives

1.3.1 Aim

This research aims at investigating climate change scenarios over West Africa with the
associated uncertainties to improve the value of climate information to end-users for informed

decision making.

1.3.2 Specific objectives

The specific objectives of this study are to:
I.  determine the ability of RCMs and GCMs to simulate the present day climate in terms of
capturing spatial patterns and inter annual variability
ii.  identify methods to extract reliable climate change scenarios for West Africa from the
Multi Models Ensemble
iii.  determine the range of uncertainty in global and regional climate change projections for
precipitation and temperature over West Africa for the late 21% century(2070-2099)
under RCP45 and RCP85 scenario
iv. identify the signal to noise ratio patterns over West African region for precipitation and

temperature under RCP45 and RCP85 scenario.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Translating climate projections into credible climate information services for decision-makers is
complicated by uncertainty and lack of understanding of the physical processes responsible for
the changes. In the absence of understanding of the nature of climate projections, policy-makers
may expect high resolution impacts-centred projections, yet uncertainty about the detail of future
climate change impacts remains high. It is therefore fundamental to characterize and quantify
uncertainty in climate change projection over West Africa as a contribution to resolve a critical
knowledge gaps in the understanding of the regional climate for strategic approaches to
adaptation and mitigation. Giorgi et al. (2009) highlight the vulnerability of Africa to the impacts
of climate change due to relatively low adaptive capacity of its economy. Temperature and
precipitation patterns may change significantly and interact with other environmental stressor
such as land use change, desertification and aerosols emissions. Future climate change has three
main sources of uncertainties (Hawkins and Sutton, (2009) and Tebaldi and Knutti, (2007)): (i)
the internal variability which is the natural variability of the climate system without an external
forcing, (ii) the model uncertainty which characterized different model response to the same
external forcing and (iii) forcing uncertainty because of the incomplete knowledge of the
external factors such as GHGs, land use change among others. According to Kang et al. (2013)
internal variability is the most challenging source of uncertainty since it will persist even if the

models become more accurate with known forcing.



2.2 Climate downscaling over West Africa

In order to address the sources of uncertainties and understand the dynamics behind the West
African climate, a lot of studies using RCMs have been carried out. Gallee et al. (2004) used a
high resolution model (Model Atmospherique Regional (MAR)) of 40 km resolution over West
Africa to simulate the intra seasonal variations of rainfall. The model captured the spatial
variability of monthly mean rainfall with some overestimation over some area from the
beginning of August. European Center for Medium range Weather Forecasting (ECMWF)
reanalysis were used to compare with temperature and wind and cold bias were identified where
the simulated hydrological cycle was strong. The regional climate model REMO at 0.5°
resolution from Max Planck Institute for Meteorology (Paeth et al., 2005) was used to
investigate the cause of West African rainfall inter annual variability during the period of 1979-
2003. Atlantic Sea Surface Temperature (SST) and some external atmospheric forcing were
playing a key role in inter annual variability. A warm tropical Atlantic is accompanied by a

surface wind convergence near the Guinean coast and a change in the strength of the TEJ.

Jenkins et al. (2005) used RegCM3 with NCEP (National Center for Environmental Prediction)
reanalysis as boundary condition for the period of 1960-2002 to also investigate inter annual
variability of precipitation and found that the model was able to reproduce the wetter conditions
in the 1960s to the very dry conditions in the 1980s. Dry conditions were linked to a weaker TEJ
related to a warmer Indian Ocean temperature during past decade. Afiesimmama et al. (2006)
investigated the West African monsoon inter annual variability with REGM 3 and NCPEP as
boundary condition during the period 1979 to 1990 and found that there is an overestimation of
rainfall amounts along the Guinean coast (complex topography area) and underestimation over

the Soudano- Sahel. The increased rainfalls along the coast were explained by an enhanced low-
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level convergence of the moist southwesterly winds along the coast leading to a reduction of the
moisture content in the atmosphere. The decrease over the Soudano- Sahel could be associated
with the weakening of the land— sea temperature gradient and hence the decrease in the low level

southerly flows.

Sylla et al. (2009) used RegCM3 with different lateral boundary condition to downscale
AOGCM and reanalysis data as a first step in future climate change scenario during 1981-2000
period. Output of precipitation and temperature from both simulations were compared and
Climate Research Unit observations data were used as reference data. Beyond the fact that
RCMs perform better than the driving field , evaluation of seasonal precipitation biases were
made, which shows that RCM dry biases are highest on June—August around and cold biases
in temperature are connected to wet biases in precipitation outside orographic zones. Biases

brought by the driving GCM were negligible.

Hernandez-Diaz et al. (2012) followed the CORDEX protocol with a new fifth-generation
Regional Climate Model (CRCMS5) driven by ERA-interim reanalysis for the period 1984-2008
over the African continent to investigate African climate. The model succeeded in reproducing
the main features of African climate and the West African monsoon. Biases in surface
temperature and precipitation were linked to some circulation defects noted in the simulation.
For the Sahel region, CRCMD5 captures the timing of the monsoon onset. In boreal summer the
CRCMS5 simulation exhibits a weak cold bias over the Sahara and the maximum temperature is
located too far south, resulting in a southward bias in the position of the Saharan Heat Low.
Panitz et al. (2013) applied COSMO-CLM Regional Climate Model (CCLM) over the
CORDEX-Africa domain and performed two simulations at different resolution one of 0.44 and

another one of 0.22. The model was driven by the ERA-Interim reanalysis (1989-2008). CCLM
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is able to reproduce the features of the African climate with some weakness like the presence of
an excessive pressure gradient between the Gulf of Guinea and the Sahara. The excessive
pressure gradient related to a bias distribution marked with a warm bias over the Sahara and a
cold bias over southern Sahel. The model had dry bias explained by the misplacement of the
monsoon center (link to the northern shift of the Heat low) and weakening of the monsoon
intensity (link with the surface energy budget). The study also show also that the higher
resolution (0.22) didn’t performed better than the coarse one (0.44) at the monthly means time
scale. Hadley Centre Global Environmental Model version 3 regional climate model
(HadGEM3-RA) was used (Diallo et al., 2014) to investigate the onset of West African
monsoon and rainfalls totals over the June-July-August (JJA) season and the underlying
dynamical processes. CORDEX experimental protocol was followed and the model was driven
by ERA-Interim reanalysis. A realistic monsoon onset timing was found with an error on the
mean date of two pentads. Dry bias (15-20%) was found over the Sahel. The dry bias was
explained by the model error in simulating the position of the Saharan heat low (too far south),
lower position of the ITCZ and weaker moisture convergence of the Sahel. HadGEM3-RA’s
representation of the general rainfall distribution during the WAM appears superior to that of
ERA-Interim when using Global Precipitation Climatology (GPCP) Project or Tropical Rain
Measurement Mission data as reference (TRMM). Akinsanola et al. (2015) used Three Regional
Climate Models over CORDEX Africa in Simulating West African Summer Monsoon
Precipitation (RCMs) to investigate the characteristics of rainfall pattern during the West
Africa Summer Monsoon from 1998 to 2008. The validation was made using precipitation data
from eighty-one (81) ground observation stations and TRMM satellite data. Beyond assessing

the ability of RCMs to capture the seasonal climatology, annual rainfall cycles, and wind fields



of the RCMs over three homogenous sub regions, low frequencies variability (EI Nino and La
Nina) were also assessed. Two models were able to capture the main features and the monsoon
dynamics over the region and can therefore be used for the assessment of West African
Summer Monsoon and future climate projections. Druyan et al. (2010) use five (RCMs) from
(WAMME) during May-October (2000-2005) with National Center for Environmental
Prediction reanalysis 1l (NCEP) data as boundary conditions. Four of the five models generate
positive precipitation biases and all simulate cold biases from surface air temperature. Over the
Sahel RCMs spatial patterns of June—September mean precipitation with observational analyses
is about 0.90 while the correlation over West Africa of surface air temperature and observation
is 0.88. Over West Africa RCMs is capturing the seasonal zonal wind and meridional moisture
advection and two overestimate moisture convergence. Diallo et al. (2012) shows the
importance of local processes and the use of different driving GCMs to construct a MME since
there is systematic errors compensation from both the nested and the driving GCMs and it give
more robustness to climate change projection. The western Sahel will go under substantial drying
in future climate projections (early 21st century A1B 2031-2050 with 1981-2000 as reference
period) due to a decrease in peak monsoon. Four regional climate models (RCMs) were driven
by two global climate models (GCMs) for the present and future climate over West Africa.
Models precipitation is compared to the observational datasets: GPCP (Global Precipitation
Climatology Project; 2.5 x2.5 resolution, CRU (Climate Research Unit, land only, 0.5x 0.5
resolution, CMAP (Climate Prediction Center Merged Analysis of Precipitation, 2.5%2.5 and
GPCC (Global Precipitation Climatology Centre, 1x1 resolution]). The GISS (NASA/Goddard
Institute for Space Studies (GISS)) RM3 regional climate model (Druyan et al., 2015) was used

to investigate the added value of downscaling atmosphere—ocean global climate model



(NASA/Goddard Institute for Space Studies (GISS) coupled ModelE) simulations over Africa
and adjacent oceans during June— September 1998-2002 period.The coarse ModelE resolution
is 2° latitude by 2.5° longitude and the RM3 grid spacing is 0.44°. Results show an important
added value in onset simulation produced by downscaling with RM3. It eliminated the ModelE
double ITCZ over the Atlantic with a more realistic orographic precipitation maxima.
Downscaling improvements of the meridional movement of the rain band over West Africa and
the configuration of orographic precipitation maxima were realized irrespective of the SST

biases noted in ModellE (Coarse resolution).

Paxian et al. (2016) found that the ability of RCMs and improved boundary conditions to reduce
rainfall biases for climate impact research depends on the considered West African region.
Hypothesis that global prediction biases can be reduced by dynamical downscaling with an
MME ensemble of three regional climate models were made. Previous Global predictions reveal
typical positive and negative biases over the Guinea Coast and the Sahel were respectively
related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical
Atlantic SST bias. By using RCMs, rainfall biases were reduced by some regional predictions
in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST
bias from GMCs thus increased westerlies and evaporation over the tropical Atlantic and shifted
African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-
ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and
Central Sahel precipitation biases. Kim et al. (2013) investigate in the 10 CORDEX regional
hindcast experiment the skill in simulating the monthly-mean precipitation, minimum and
maximum surface air temperature and cloudiness. The period 1990-2007 was used as a baseline

of the evaluation with CRU as observation. All RCMs capture the basic climatological features
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with some systematic biases across models. A better skill in simulating precipitation and
temperature over West Africa and lower skill in simulating cloudiness were shown. MME
outperforms individual models for all variables. Cretat et al. (2013) investigate extreme (daily
intense rainfall) with two RCMs simulations at two different resolution (90 and 30 km) by
downscaling four GCMs from CMIP5 during the 1998-2008 period. A daily intense rainfall
event with the 95™ percentile threshold at each grid point during a rainy day was defined. Both
RCMs capture the spatial and temporal features but underestimate their intensity. The added
value of downscaling to investigate the physics behind the intense event and their change under
global warming is highlighted. Gbobaniyi et al.(2014) also examine the seasonal climatology and
inter annual variability with an ensemble of 10 Regional Climate Models (RCMs), driven by
ERA-Interim reanalysis during the period of 1990-2008. RCMs show acceptable performance in
simulating the spatial distribution of the main precipitation and temperature features with some
biases across model. However the interannual variability of seasonal anomalies is well captured
in temperature compared to the one of precipitation. The ensemble means considerably
outperform individual RCMs. This highlights the importance of performing multi-model

assessment.

Dosio et al. (2015) use the same models to investigate whether RCMs are effectively able to add
value and outperform GCMs at regional scale for the present day. According to their study, the
boundary condition is affecting the spatial distribution of surface temperature and seasonal
precipitation, and seasonal statistics are not always improved by the downscaling. Klutse et al.
(2015) analyze and intercompare the performance of a set of ten regional climate models
(RCMs) from CORDEX outputs along with the ensemble mean of their statistics in simulating

daily precipitation characteristics during the West African monsoon (WAM) period (June—July—
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August-September). The ensemble mean of the indices substantially improves the RCMs’
simulated frequency and intensity of precipitation events, moderately outperforms that of the
95th percentile, and provides mixed benefits for the dry and wet spells. Paeth et al. (2007)
investigate the future African climate north of 15°S under greenhouse warming and land use
changes (land degradation) with a Regional model. At the near future (2025) the model shows a
considerable drying over the Sahel (20-40% of the annual sum) during the boreal summer. A
warming up to 7°C due to the change in the surface energy fluxes is found. This has implication
(temperature gradient modified) on the circulation of the West African monsoon with a drying
tendency over the region. Abiodum et al. (2008) used RegCM3 to investigate the feedback
mechanisms between land cover and the monsoon in West African using reanalysis as boundary
conditions under three idealized vegetation states (potential, desertified and deforested). The
study shows that both desertification and deforestation tend to increase the monsoon flow over
the Guinean region, although the mechanisms for change are different in each case.
Desertification increases the flow mainly by increasing the meridional temperature gradient.
While this reduces rainfall over the desertification region, it increases rainfall to the south. On
the other hand, deforestation increases the monsoon flow mainly due to the reduced surface
friction experienced by the flow over the Guinean region. This reduces rainfall over the entire
West African region. Overall, this study suggests that the state of the biosphere in West Africa
may play an important role in determining the characteristics of the monsoon and rainfall pattern.
Sylla et al. (2010b) used RegCM3 to investigate the relationship between rainfall changes and
the monsoon dynamics under increased greenhouse gas forcing with ECHAMDS as a driving
GCM. They found a drying condition over Sahel and wetter conditions over orographic area. The

drying condition is associated with a weaker monsoon flow, a strengthening of the AEJ, a

12



weaker TEJ and wave activity is reduced. Mariotti et al. (2011) used the same model RegCM3
to simulate over a large African domain a transient climate change for the 21st century (1980-
2100) with ECHAMS as a driving GCM. For present climate, the two models have different
spatial patterns for temperature and precipitation with similar biases in terms of magnitude .For
the future climate, a significant difference between the coarse and fine resolution precipitation
change pattern where noticed while the temperature changes patterns depend on the driven
GCM over the West Africa and Sahel regions. The two model have different response in
simulating the forcing of EI Nifio — Southern Oscillation and of local soil moisture/precipitation
feedbacks.The Met Office Hadley Centre’s PRECIS regional climate modelling system
(Buetenmpo et al., 2014) has been used to generate a five member ensemble of climate
projections for Africa over the 50 km resolution for 1949-2100 period (CORDEX-Africa
domain). From Hadley Centre’s perturbed physics global climate model (GCM) ensemble, a
subset has been created by discarding ensemble members which are not able to reproduce some
basics features of African climate. The RCM ensemble substantially improve the patterns and
magnitude of precipitation compared to their driving GCM which is particularly noticeable in the
Sahel for both the magnitude and timing of the wet season. Present-day simulations indicate that
the climatology is influenced significantly by the RCM internal physics and less by their driving
GCMs. Giorgi et al . (2014), used three CMIP5 GCMs to drive ICTP regional model RegCM4
new version over five CORDEX domains (Africa, Central America, South America, South Asia,
Mediterranean) under RCP8.5. Four extreme indices (HeatWave Day Index (HWD), Maximum
Consecutive Dry Day index (CDD), fraction of precipitation above the 95th intensity percentile
(R95) and Hydroclimatic Intensity index (HYINT)) were analyzed. Coarse (GPCP) and high

(TRMM) resolution daily precipitation data for the present day conditions shows that the
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precipitation intensity distributions from the GCMs are close to the GPCP data, while the
RegCM4 ones are closer to TRMM, which show the added value of the increased resolution of
the regional model. All global and regional model simulations project a regime shift towards
more intense, less frequent rain events and increasing risk of heat wave, drought and flood with
global warming. RegCM4 was used to dynamically downscale at 25 km (Sylla et al., 2015 )
horizontal grid spacing three CMIP5 ESMs: MPI-ESM-MR (Max-Planck Institute Earth System
Model — Medium Resolution), HADGEM2-ES (Hadley Centre Global Environment Model
version 2 — Earth System configuration) and GFDL-ESM-2M (Geophysical Fluid Dynamics
Laboratory Earth System Model version 2M). These ESMs were selected because they provide a
relatively good representation of the monsoon climate of West Africa. The response of the
annual cycle of high-intensity daily precipitation events over West Africa to anthropogenic
greenhouse gas for the late twenty-first century was investigated using the ensemble of high-
resolution regional climate model experiments. For the present day, the RCM ensemble
improved the simulation of the annual cycle compared to the driving Earth system models. For
the late-twenty-first-century projected changes in mean precipitation, a delay of the monsoon
season, a prevailing decrease in frequency but increase in intensity of very wet events were
found. Sylla et al. (2016a) found that the projected climate change indicates continuous and
stronger warming (1.5-6.5 °C) and a wider range of precipitation uncertainty (roughly between
—30 and 30 %) larger in the Sahel and increasing in the farther future. However, the spatial
distribution unveils significant precipitation decrease confined to the westernmost Sahel and
becoming greater and more extensive in the high level GHG forcing scenario by the end of the
21st century. This coexists with a substantial increase in both dry spell length and extreme

precipitation intensity. West Sahel is thus the most sensitive region to anthropogenic climate
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change. The rest of West Africa also experiences more intense extremes in future climate but to a
lesser extent. It is also reported from other previous studies that the projected rainy season and
the growing season will become shorter while the torrid, arid and semi-arid climate conditions
will substantially extend. It is thus evident that in a “business as usual” World, most countries in
West Africa will have to cope with shorter rainy seasons, generalized torrid, arid and semi-arid
conditions, longer dry spells and more intense extreme precipitations. Dosio et al. (2016) created
an ensemble of climate change projection for Africa from the downscaling of four Global
Climate model (MPI-ESM-LR, HadGEM2-ES, CNRM-CM5, and EC-Earth) in the framework
of CORDEX with CCLM (COSMO RCM), the projected increase of seasonal temperature is
relatively similar between GCMs and RCM with some local differences. Larger uncertainties in
the future precipitation changes due to inter-model (GCMs) variability over some areas

(e.g.Sahel) were found.

These studies above mainly found that RCMs were able to capture the general feature of West

African climate although some differences and biases still persist in some regions and seasons.

2.3 Multi Model Ensemble techniques

Based on the availability of GCMs and RCMs simulation data through CMIP5 and CORDEX
program, Multi Model Ensemble have been used to investigate the future climate over the region.
These data have been used for seasonal prediction ( Palmer et al, 2004, Stephenson et al., 2005).
Annan et al. (2011) found that Multi Model Mean tends to have a lower Root Mean Square Error
compared to most individual models. Paeth et al. (2011) shows that MME have clearly an added
value in WAM rainfall with respect to the European Reanalysis-Interim driving field. While

Diallo et al. (2012) suggested that for improved performance, the multi-model RCM ensembles
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should be based on different driving GCMs. Multi Model Ensemble were used in their simplest

form. There are more complex methods combining the models.

Giorgi and Mearns (2002) proposed Reliability Ensemble Averaging method based on a
weighted mean of the different GCM/RCM that account for reliability of each model that
produces a weighted average of an ensemble of climate change results, taking into account the
ability of a particular model to simulate the observed climate, and its degree of convergence in
the predicted climate change with respect to the other models. The method was applied to
calculate average, uncertainty range, and a measure of reliability of simulated climate changes
(mean seasonal temperature and precipitation changes for the late decades of the twenty-first
century) over 22 land regions of the world from nine Atmospheric Ocean GCM (AOGCM)
experiments for two anthropogenic emission scenarios (the A2 and B2 scenarios of the
Intergovernmental Panel for Climate Change). Some of the findings indicate that in the
simulations for the A2 scenario the REA average regional temperature changes varied between
about 2 and 7 °C across regions and they were all outside the estimated natural variability. The
uncertainty range around the REA average changes varied between 1 and 4 °C across regions. A
noticeable exception was found in the Sahel region in June-July-August season, where a large
difference is found between the ensemble average and the REA average. The main reason was
that most of the model simulations exhibit a large precipitation bias over this region, in excess of
200% with the exception of 3 simulations that have a bias of less than 100% (only 1 model has a
bias lower than 10%). As a result, since the REA average is dominated by three simulations only,

it can be substantially different from the ensemble average.
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Furthermore, the method also allows the derivation of PDFs for climate variables under climate
change conditions (Giorgi and Mearns, 2003). Compared to simpler approaches, the REA
method allows a reduction of the uncertainty range in the simulated changes by minimizing the
influence of outlier or poorly performing models. The method also produces a quantitative
measure of reliability that shows that both criteria need to be met by the simulations in order to
increase the overall reliability of the simulated changes.

Xu et al. (2010) upgrades the REA method mainly for the calculations of model weight. In the
original REA method the model weight is given by the multiplication of two reliability factors
which are measures of the model performance and convergence criteria. In the upgrade one, the
use of the convergence criterion by eliminating the convergence-based reliability factor from the
definition of the overall weight was abandoned. Then multiple variables (temperature,
precipitation, pressure) and multiple statistics (mean, interannual variability) were added in the
definition of the reliability weight. The augmented REA was first applied for illustrative purpose
to calculate temperature and precipitation changes based on ensembles of global model
simulations for the East Asia region. The dataset employed is the ensemble of coupled
Atmosphere-Ocean General Circulation Model (AOGCM) simulations conducted in the Phase 3
of the Coupled Model Inter-comparison Project (CMIP3) in support of the fourth assessment
report of the Intergovernmental Panel on Climate Change (IPCC AR4). Cumulative Density
Functions (CDFs) of changes in temperature and precipitation for 2081-2100 with respect to
1961-1980 over 6 Chinese sub-regions as well as the entire China territory were calculated. This
exercise was repeated for the eight European regions used in the PRUDENCE project

(Christensen and Christensen, (2007)).
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REA approach from multi-model ensemble was extended by Tebaldi et al. (2004, 2005) with a
formal statistical framework using Bayesian methods. Their Bayesian inference treats the
unknown quantities as random variables (present and future climate signal) with reference prior
distributions. The likelihood function is determined through the assumption made from
observation and model output. Bayes theorem is then used to derive the posterior distribution
through Markov Chain Monte Carlo simulations. Applying the model to precipitation from
AOGCMs (CCC, CCSR, CSIRO, GFDL, MPI, MRI, NCAR, NCARDOE and UKMO) over 22
land regions for A2 and B2 scenarios. They found a high degree of uncertainty for precipitation
projection change (in percentage) over the Sahel region (SAH) with a wide PDFs explained by
large model bias (up to 600% for June July August (JJA) season. The future period was 2070-

2099 relative to the present day period 1961-1990.

2.4 Separating sources of uncertainties

Hawkins and Sutton (2009) separate and quantify the sources of uncertainties in decadal global
mean air temperature change projection using CMIP3 archive for 21* Century. The residual
from a 4™ order polynomial fit to the global mean time series for each model is defined as the
internal variability. The contribution of each source of uncertainty to the total uncertainty was
estimated. Internal variability and model uncertainty is found to be dominant for few decades
ahead. The scenario uncertainty is dominant at the end of the 21* century. Another important
finding is the fact that, for temperature, the signal to noise ratio is greater than one for all the
regions highlighting certainty of global warming. With The progress of climate science, model
uncertainty and internal variability can be potentially reduced. A follow-up study by Hawkins
and Sutton (2011) was applied using precipitation projection in global and regional scale. Their

main findings are that internal variability is the most important uncertainty for precipitation for
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all the regions up to mid-21" century. Over the Sahel region scenario uncertainty for
precipitation during the JJA season is negligible. The signal to noise ratio over the tropics for
precipitation is lower (close to zero) than for the temperature meaning that precipitation
projection over West Africa is still uncertain. Time of emergence defined by Giorgi and Bi
(2009) as the time of 21% century when the magnitude of the ensemble mean precipitation
change signal becomes greater than the total uncertainties identified early decade of 21°
century(northern high latitude, Mediterranean and East Africa), the mid decades (East and South
Asia, Caribbean) and late decades (South Africa, western United States, Amazone Basin,
Southern Australia and Central America). Knutti et al. (2013) investigate the robustness and
uncertainties in CMIP5 climate model projections. Despite model development (new generation
of more complex model) and increase in computational capacity, representation of more process
in details and internal variability remain a challenge. In fact, projected global temperature change
is still similar to those from IPCC AR4 under the same scenarios, with little change in the model

spread.
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CHAPTER THREE

DATA AND METHODOLOGY

3.1 Presentation of the study area

The study area of this research is West Africa located between the latitudes O N and 20N and the
longitudes 20E and 20W (Fig3.1). Sixteen counties constitutes the WA region: Benin, Burkina
Faso, Cape Verde, Gambia, Ghana, Guinea, Guinea Bissau, Cote d’lvoire, Liberia, Mali,
Mauritania, Niger, Nigeria, Senegal, Sierra Leonne and Togo. West Africa has several climatic
zones from humid (southern coast) to arid (toward the North). The major water resources are the
Niger river, lake Chad, the Senegal river, the Gambia river and the Volta basin covering Burkina
Faso and Ghana.

Following Sylla et al. (2012) from April to September the region is driven by the West African
Monsoon (WAM) system which is a large scale circulation characterise at the low level of the
atmosphere by the wind direction reversal transporting moisture to land from the Atlantic Ocean
and triggering the monsoonal rainfall up to the Sahelian belt. During the boreal summer(July-
August-September) the WAM monsoon is fully develop with South-westerlies moisture flux
converging onto the Sahel and retreat in early autumn (Gaetani et al.,2013). The monsoon sub-
seasonal, seasonal and inter annual variability are controlled by various factors such as Sea
Surface Temperature (SST), the continental-land surface condition and the atmospheric

circulation (configuration of  Tropical Easterly Jet (TEJ), African Easterly Jet (AEJ)
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,Intertropical Convergence Zone (ITCZ) and African Easterly waves(AEW) (Sylla et al., 2012 ;

Nicholson, 2009).
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50 150 250 35 1000 1500

Figure 3.1: CORDEX experiment domain and topography including 3 three key sub regions of
interest (i.e. rectangle) Gulf of Guinea, Sahel and West Africa used for the descriptive statistics
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3.2 Data
Ensembles of 29 CMIP5 GCMs (CMIP5) and 16 CORDEX RCMs (CORDEX) experiments

(Table 3.1) for the historical (1982-2000) and future period (2070-2099) under the two scenarios
RCP45 and RCP85 are analyzed and inter-compared over West Africa. To identify the origin of
the bias in the downscaling experiments, the ensemble of the eight CMIP5 GCMs that forced the
CORDEX experiments (CMIP5_SUBSET) is also considered. While the CMIP5 GCMs cover
the whole globe at 100-200 km resolution, CORDEX RCMs are integrated over the Africa
CORDEX domain with a grid interval of ~50 km. However our domain of interest (Figure 1) is
limited to West Africa, along with two small subregions (Sahel and Gulf of Guinea) in which the
statistics are calculated. More detailed information on the CMIP5 and CORDEX experimental

set-ups can be found in Taylor et al. (2012) and Jones et al. (2011), respectively.

Observations used to evaluate the different ensembles for the historical conditions are the Global
Precipitation Climatology Project (GPCP 1DD 1° x 1° resolution; Huffman et al., 2001), the
Climatic Research Unit of the University of East Anglia (CRU 0.5° x 0.5° resolution; Harris et
al., 2014) and the University of Delaware (UDEL 0.5° x 0.5° resolution; Legates and Willmott
(1990)). Although the various precipitation and temperature products available for Africa are
characterized by substantial differences, the use of these multiple observed data sources can help
to account for observational uncertainties (Nikulin et al., 2012; Sylla et al., 2013). All the

datasets are re-gridded onto a common 50 km resolution grid.
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Table 3.1: CMIP5 ESMs and CORDEX RCMs with downscaled GCMs (blue colors)

Model

RCA4

CCLM4

HIRHAMS

RACMOT2

CanRCM4

RegCM4

BCC-CSM1.1

BCC-CSM1.1(m)

CanESM?2

CNRM-CMS5

ACCESSI1.0

CSIRO-Mk3-6-0

EC-EARTH

FIO-ESM

INM-CM4

BNU-ESM

[PSL-CM5A-MR

IPSL-CMS5A-LR

IPSL-CM5B-LR

MIROC-5

MIROC-ESM

HADGEM2-CC

HADGEM2-ES

MPI-ESM-LR

MPI-ESM-MR

MRI-CGCM3

GISS-E2-R

CCSM4

NORESM1-M

NORESM1-ME

HADGEM2-A0

GFDL-ESM2G

GFDL-ESM2M

CESM1-BGC

CESM1-CAMS
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3.3 Methodology

3.3.1. Validation of CMIP5 and CORDEX data for the present day using simple MME
The MME approach is applied to the CMIP5 and CORDEX ensembles. Precipitation and

temperature mean climatology from the different MMEs as well as their spatio-temporal

variability are considered only for the summer monsoon season (June-September, or JJAS).

We first compare the simulations with the multiple observation products mentioned above
through a simple bias operation (simulation minus observation) for the whole West Africa
analysis domain. The ability of the RCM MME to improve upon the forcing GCM MME is
quantified using an Added Value (AV) metric defined by Di Luca et al. (2012) with the

normalization introduced by Dosio et al. (2015). The AV is given by the formula:

AV = (Xcmips—XoBs)?—(XcorDEx—X0BS)?) (3.1)
Max((Xcmips—XoBs)?(XcorpEx—X0Bs)?)

where Xogs, Xcmips and Xcorpex are the mean values for observations (i.e. UDEL), CMIP5 (or
CMIP5_SUBSET) and CORDEX. This formula is applied at each grid point. A positive AV
means that the CORDEX mean square error is smaller than the CMIP5 one and therefore
indicates the existence of added value. This is depicted by an open circle or a sign + in Figures
4.1 and 4.2. In addition, to characterize the intermodel spread we use box plots including the
ensemble median, upper (25%) and lower (75%) quartiles as well as the maximum and minimum
of the different data sources. These are computed for the Gulf of Guinea, the Sahel and the West

Africa domain shown in Figure 3.1.

Finally for the spatio-temporal variability, a Rotated Empirical Orthogonal Function (REOF)
analysis is applied to the time series of the seasonal (JJAS) temperature and precipitation derived

from UDEL observations and each MME at each grid point and for the whole period of interest
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(1982-2005). The EOF analysis is often used to study spatial modes (i.e. patterns) of variability
and how they change with time (Lorenz, 1956). In this study, REOF is chosen instead of the
simple EOF analysis because the latter has a tendency to produce unphysical modes (Hannachi,
2007). Such shortcoming is partly alleviated by the REOF analysis, thus facilitating the
interpretation of the results (Lian and Chen (2012)). As a measure of model performance in
capturing this spatio-temporal variability, we use the Pattern Correlation Coefficients (P) and
Pearson Correlation Coefficients (R) with respect to observations. P measures similarities
between two spatial patterns (here observed and simulated REOFs) while R measures the
strength of the linear relationship between two variables as they vary in time (here observed and
simulated PCs). We emphasize, however, that since the models do not include any assimilation
of observed data, significant temporal correlations can be expected only in so far as they are

attributable to the greenhouse gas and aerosol forcing and not to natural climate variability.

3.3.2 Validation of CMIP5 and CORDEX data for the present day using bayesian inference

3.3.2.1 Definition of Bayesian inference

The process of fitting a set of data with probability model which summarize the results in the
form of probability distribution on the parameter of the model is defined as Bayesian inference.
Via Bayes rule, it provides a rational method to update our beliefs in the light of new
information. The method has an advantage of providing a computational framework for model
selection, validation and uncertainty quantification and reduction. Parameters are random
variable with distribution attached to them. Due to some lack of knowledge on some processes in
the atmosphere and imperfect parameterization in climate modeling, uncertainty remain in our
GCMs/RCMs present and future climate projection and need to be quantified. Bayesian
inference is one option to address above issues. The method has three components: the prior, the
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likelihood and the posterior distribution. The prior is representing the current state of knowledge

prior to the data being observed. The likelihood function is constructed once the data has been

observed. Assuming that the data values y=y,,...,y, are obtained independently and the vector

of the unknown parameter is @, the likelihood function is given by
LO1Y) = P(Yy- Yo [O) =] [ PY; | 6) (3.2)
i=1

To obtain the posterior distribution p(@]y), the probability distribution of the parameter &, once
the data have been observed, Bayes theorem is applied

POL@]Y)

gly) =
p(@]y) o()

oc p()L(EO]Y) (3.3)

Markov Chain Monte Carlo (MCMC) algorithm is then used after an initial burn-in period
(which is discarded) to simulate an equilibrium distribution of sample in parameter space such
that the density of sample is proportional to the joint posterior Probability Density Function
(PDF). The Bayesian inference has been applied on present climate for validation purpose and on

future climate projection.

3.3.2.2 Bayesian inference on CMIP5 and CORDEX present day climate simulation

A Bayesian model adapted from Mesquita et al. (2012) is applied on precipitation data over
Guinea coast and Sahel region. The joint prior distribution p(@,6°) where 6 is mean

recipitation and (o?) the variance, the posterior inference will use Bayes’ rule,
precip p y
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where y,,..., Yy, represent the data. Since the joint distribution for the two quantities can be

expressed as the product of a conditional probability and a marginal probability, the posterior

distribution can be decomposed

P6,6° | Y11 ¥a) = PO G2, Yy Yo ) PO | Yo Vi) (3.4)

Where the first part of the equation is the conditional probability of & on the variance and the
the second part is the marginal distribution of &> . The conditional probability part was assumed

to have a normal distribution: {81y, , ..., y,,o°} ~ normal(x,,o° /K) (3.5)

where K, =k, +n representing the degrees of freedom (df) as the sum of the prior df (k,) and

_ (ko / 0*)14g +(n/0'2)9 _ (koo +n9) (36)
k,/ o +nlc? k

that from the data (n). 4, isgivenby

n

where § represent the sample mean taken from the model simulation and g, is the prior mean
from UDEL observation over the considered region (Guinean Coast or the Sahel). The second
part of the equation 2, the marginal distribution of o> has a gamma distribution

{/c? 1y, Y.}~ gamma(v, /2,v.c,%12) (3.7)

with v, =v,+n sum of the degree of freedom of the prior (v,) and the data (n).

1 k,n —
o= V—[VOJO2 +(n-1s’ +kL(y—,Uo)2] (38)

n n
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where y is the sample mean and s* is the sample variance taken from the model simulations.

o,’ is the prior variance. Posterior mean and variance is derived through an averaging of

MCMC large sample size (10000) and 95% central posterior interval probability limit is drawn.

3.3.3 Bayesian inference on CMIP5 and CORDEX future climate projection

Bayesian approach is applied to CMIP5 GCMS and CORDEX RCMS data in order to quantify
the probability associate with precipitation and temperature change over Guinean Coast and
Sahel region. This statistical framework had been proposed by Tebaldi et al. (2005) to find out
how projections from different models contribute to a final PDF (Probability Distribution
Function) of climate change. The method is summarized as follows. For each region, X, and Y,
denoted respectively the present (1976-2005) and future (2070-2099) simulated temperature by
the i"™ model, for JJAS season and averaged over the region of interest. For each region x and

v represent respectively the true present and future temperature average over 30 years. They

made an assumption that X, and Y, have normal distribution X, ~ N(z, A7) Y; ~

N(v, 04" where the parameter 4, is called the precision of the modeli and for Y, the

precision of the model i is @4 . 6 is a multiplication factor for the model precisions in future

climate simulations. It constitutes the likelihoods function. The observation likelihood is

X, ~N(u,4,). 4, is a function of the natural variability derived from the observation and is
specific to a region. AT = u—v is the expected temperature change. A gamma prior densities
were chosen for  the parameters A,i=1..,n andé@. Bayes’ Theorem was applied to the

likelihood and priors specified above to derive the joint posterior density for the parameters u, v
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O, A A, through Markov Chain Monte Carlo (MCMC) simulation (details about the

methods, the MCMC and Gibbs sampler can be found in Tebaldi et al. (2005).

Inference cannot be drawn from this equation since its distribution is not a member of any known
parametric family. Therefore Markov Chain Monte Carlo simulation was used to generate a large
number of sample values through the implementation of a Gibbs sampler. The details about the
methods, the MCMC and Gibbs sampler can be found in Tebaldi et al. (2005).

The posterior distribution of 4 is Gaussian with mean u ~ (Z/l,, Xi)/(Zﬁ,,) (3.9)

i=0 i=0

which is a weight average of observation and model present day output with weights

Agr Apereinnns A, and the posterior distribution of v is Gaussian with mean

V=AY ) A) (3.10)

a weight average of the n model forcing response with weight 4,......... A,. The mean of the

1
I P +O1Y, v P

posterior distribution of the 4, ’s, for i=1,....,n,is A4 (3.11)

The equation shows that if both | X, — x| and |Y, —v | are small the weight 4; is large. These two
quantities correspond to the bias and convergence criteria respectively in Giorgi and Mearns

(2002). |Y, —v | measures the distance of the i" model future response from the overall average

response while | X, — x| measure the distance of the i" model to the present.
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3.3.4 Partitioning and quantifying uncertainties in climate projection over West Africa

The method used to separate the different component of uncertainties was based on Hawkins and
Sutton (2009) methods. An ordinary least square was used to fit each decadal anomalies
prediction of CMIP5, CMIP5_Subset and CORDEX with a fourth-order polynomial over the
years of 2006-2099 for the two scenarios RCP45 and RCP85. The anomalies were computed
with the reference period of 1976-2005. The raw predictions ( X ) for each model (m) and

period (t) are written as, X(m,t) =z(m,t)+ 2, (M) +&(m,t) (3.12)

where .. (m) is the reference temperature for each model, z(m,t) is the polynomial fit of the

projected change of the parameter and the regression error is £(m,t).

The internal variability is defined as the multi-model mean of the variance of the regression error

g(m,t)

=z

m

1

Vi = NT D (e(m,1) (3.13)

t=1

3
N

The internal variability is assumed to have a constant variance in time.

The model uncertainty is the mean of inter-model variance of z(m,t) .

M, (t) = Z[Z(m t)-z(.,t)J (3.14)

m m=1

The total uncertainty (T, (t)) is defined to be the sum of Vs and M, (t)

Tis (1) =Vis + M5 (1) (3.15)
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The signal to noise ratio (S/R) at the period (t) (based on Cox and Stephenson, (2007)) is defined

Z(.,1)

as S/IN=——"F"F""»—
1.65/Tys (1)

(3.16)

The fraction of variance of internal variability and model uncertainty are defined respectively by

Vi [T (1) and Mg (8) / T (1)
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CHAPTER FOUR

. RESULTS AND DISCUSSION

4.1 Multimodel CMIP5 and CORDEX simulations of historical summer temperature and

precipitation variabilities over West Africa

4.1.1 Multimodel ensemble mean climatology

Before evaluating the simulated spatio-temporal variability of temperature and precipitation
during the boreal summer season (July-September) for the different MMEs, in this section we

first analyze the spatial patterns of their mean climatology.

The temperature distribution from observations (UDEL and CRU) and the MMEs of CMIP5,
CMIP5_SUBSET and CORDEX as well as their respective bias distributions are presented in
Figure 4.1. Observations indicate that in general the Sahara desert experiences the highest
temperatures (more than 36°C) and the Gulf of Guinea the lowest ones (between 24°C and 26°C).
The Sahel, which is the transition zone between the two regions, exhibits intermediate values
ranging from 26°C to 32°C. The temperature maxima and minima are found in the area of the
Saharan Heat Low (SHL) and at the peak of orographic zones (Guinea Highlands, Cameroon

Mountains and Jos Plateau), respectively.

The MMEs reproduce the general observed pattern of summer temperature, however with
notable discrepancies among them. The spatial distribution is smoothed in the CMIP5 and
CMIP5_SUBSET compared to the observations, while CORDEX shows more spatial details and

lower temperature values around orographic zones as a result of its higher resolution. As a
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consequence, a negative bias of about 2°C more extended in CORDEX compared to CMIP5 and

CMIP5_SUBSET prevails over the Gulf of Guinea.
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Figure 4.1: 1982-2005 JJIAS mean temperature (°C) for a) CRU observation, b) UDEL
observation, ¢) CMIP5, d) CMIP5_SUBSET, e¢) CORDEX and respectively their corresponding
bias with respect to UDEL in f), g), h). For CORDEX i.e. in €), the open circles mean
improvement compare to CMIP5_SUBSET while the sign plus is for improvement compared to
CMIP5
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In addition, a cold bias of more than 3°C widely spread over the Sahara desert develops in all
MMEs. Finally, over the Sahel band, a predominant warm bias is simulated by CMIP5 and to
lesser extent by CMIP5_SUBSET. Therefore, in general CORDEX fails to  outperform the
simulated mean temperature by CMIP5 and CMIP5_SUBSET over the Gulf of Guinea, over the
Sahel and over the southern Sahara desert. However, we note some improvements with respect to

both CMIP5 MMEs over the area of the SHL, western Sahara and Central Africa.

Considering the corresponding spatial patterns of precipitation shown in Figure 4.2, the
Intertropical Convergence Zone (ITCZ) is observed in a zonal and tilted band between 8N and
12N in GPCP, CRU and UDEL with a sharp decreasing precipitation gradient south and north of
this band. The minima are located north of 18N while maxima are found in topographically
complex terrains of the Guinea highlands, Jos plateau and Cameroon mountains. As noted by
Nikulin et al. (2012) and Sylla et al. (2013Db), there are discrepancies among the various observed

precipitation products over West Africa.
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Figure 4.2: 1982-2005 JJAS mean precipitation (mm/day) for a) CRU observation, b)

UDEL observation, ¢) CMIP5, d) CMIP5_SUBSET, e) CORDEX and respectively their
corresponding bias with respect to UDEL in f), g), h). For CORDEX i.e. in e), the open
circles mean improvements compared to CMIP5_SUBSET while the sign plus is for

improvement compared to CMIP5
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In this case, these differences include a missing maximum in CRU over the Jos Plateau and a
much better defined ITCZ in GPCP (e.g. GPCP does not show any break in the ITCZ). Note that
the observational uncertainty is relatively low for the JJAS climatology in temperature and

rainfall compared to higher uncertainties at finer temporal scales (i.e. Cretat et al., 2014).

The MMEs show close agreement with observations in simulating the spatial patterns of the
summer monsoon precipitation features, including the ITCZ position, the northward and
southward decreasing gradients and the large precipitation amount around orographic zones.
However, a notable wet bias (40% to 80%) along the Gulf of Guinea and dry bias (mostly 10%
to 20%, but up to 60%) over the Sahel are dominant in CMIP5. In CMIP5_SUBSET the wet bias
is more extended to cover almost the whole West Africa, with overestimations of 10% to 80%.
This originates from a broader representation of the ITCZ in the CMIP5 ensembles, especially in
the CMIP5_SUBSET used for driving the RCM simulations. Conversely, in CORDEX both the
wet and dry biases are reduced, resulting in a substantial improvement compared to both CMIP5
ensembles, and an added value in many areas of the Gulf of Guinea, the Sahel and most of West
Africa. In addition to these significant improvements, it can be noted that the spatial pattern of
rainfall biases simulated by the RCM MME resembles that of the CMIP5_SUBSET MME. This
suggests a stronger control by the driving GCMs on the spatial distribution of precipitation than
on the intensity of RCM-simulated rainfall. It should be emphasized that around peaks of
mountainous areas, CORDEX does not show any added value because of more fine-scale details

simulated in the presence of complex topography than found in the observations.

Overall the MMEs exhibit different levels of performance in their simulations of temperature and
precipitation compared to observations, with CMIP5 and CMIP5_SUBSET showing a smoothed

spatial pattern and CORDEX providing more fine-scale features tied to local complex
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topography and coastlines. In addition, although CORDEX underestimates temperature with a
greater cold bias compared to the CMIPS ensembles, it substantially improves both the
magnitude and spatial extent of simulated summer monsoon precipitation. To examine whether
this results from a more consistent simulation of the West African summer monsoon
precipitation among RCMs or from cancellation of errors of opposite signs, we assess in the next

section the ensemble spread.
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4.1.2 Multimodel Ensemble Spread

The spatial patterns of the inter-model standard deviation (i.e. Figure 4.3a,b,c) highlights a good
consistency among the models of the same ensemble in their simulation of the temperature field

over the Gulf of Guinea (standard deviation less than 1°C).
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Figure 4.3: 1982-2005 JJAS mean temperature (a, c, e, g, i) and precipitation (b, d, f, h, j)
ensemble standard deviation for respectively CMIP5, CMIP5 SUBSET, CORDEX, CORDEX

RCA4 and CORDEX ICHEC-EC-EARTH. Units are degrees C for temperature and mm/day for

precipitation
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However, substantial differences are present over the Sahel and the Sahara desert across the
various ensembles. For instance, CMIP5 exhibits a standard deviation of more than 2°C in the
area of the SHL, part of northeastern Sahel and in some regions of the western Sahara desert.
Conversely, CMIP5_SUBSET simulates a wide zonal band of more than 2°C standard deviations
stretching from the west to the east and extended from 12N to 23N. For CORDEX, such a
standard deviation occurs only over a small portion of the northeastern Sahel, indicating that the

CORDEX RCMs provide a greater inter-model agreement in simulating surface air temperature.

To address the spread induced by the use of different lateral boundary forcings and the one due
to the use of different RCMs for the same boundary forcing, two CORDEX subsets are
introduced: the MME derived from the eight (8) RCA4 experiments driven by different GCMs
(i.e. Figure 4.3d) and the MME of the four (4) CORDEX RCMs driven by the EC-EARTH GCM
(i.e. Figure 4.3e). The RCA4 ensemble exhibits a standard deviation smaller than 1°C throughout
the region, suggesting that the boundary forcing does not have a strong impact on the
temperature simulation by a single model compared to its internal physics. This evidently also
contributes to reducing the inter-model spread for the full CORDEX ensemble (Figure 4.3g).
Conversely, the ensemble of RCMs driven by EC-EARTH shows greater standard deviations (up
to more than 3°C) compared to all MMEs, especially over the Sahel, confirming that the internal
model physics of the four RCMs produce substantially different simulations of temperature even

with the use of the same boundary forcing.

For precipitation (i.e. Figure 4.3f,g,h), both CMIP5 and CMIP5_SUBSET show larger standard
deviations (between 2 and 3 mm/day) along the ITCZ, relatively smaller one (between 1 and 2
mm/day) north and south of it and a good consistency among models above 20N. CORDEX

generally produces lower standard deviations (less than 2 mm/day) over the whole West Africa
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except over orographic zones. The separation of the CORDEX standard deviation into the
contribution from different boundary conditions (Figure 4.3h) and that from different RCM
physics (Figure 4.3)) indicates that, similar to what was found for temperature, the latter
dominates, and in fact that different boundary forcing only provides a minor contribution to the
RCM ensemble spread. Overall, Figure 4.3 clearly points to the prominent role of model physics
in determining the intermodel spread in surface climate simulation, both for the GCM and the

RCM ensembles.

To further assess and compare the performances of the MMEs, better highlight their ensemble
spread and quantify the added value at the regional scale, we analyze in Figure 4.4 the box-plots
for temperature and precipitation from the various ensembles over the different subregions of
West Africa defined in Figure 3.1. Comparing the areal average of CRU, UDEL and the GCMs
and RCMs experiments presented in Figure 5a, the results first confirm the cold bias simulated
by the MMEs over West Africa in general and the relatively warm bias along the Sahel band in
CMIP5. The cold bias is also seen in the RCA4 ensemble and the ensemble of the 4 RCMs
driven by EC-EARTH. CORDEX produces the largest bias (also seen in the median) as a result
of lower temperature values simulated by the RCMs in the presence of more realistic complex
topography compared to CMIP5 GCMs. In addition, the interquartile range (IQR) is similar for
all MMEs (except for the ensemble of RCA4, in which it is smaller) over the Sahel and West
Africa but greater in CORDEX over the Gulf of Guinea, indicating a larger dispersion among
most of the RCMs in their responses to the topographical forcing in this region. Furthermore, we
note that for all subregions and all MMEs the bottom whisker, i.e. the colder model, is more
extended than the top one, corresponding to the warmest model (except for the ensemble of

RCA4 and the one built from the RCMs driven by EC-EARTH). Finally, CORDEX appears to
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be negatively skewed compared to CMIP5 and CMIP5_SUBSET. As a consequence, a shift of
the median occurs towards the upper quartile of the box with a broader range of simulated
temperature values in the lower quartile. Consistent with Figure 4.3, this confirms the largest
cold bias present in CORDEX but also the more consistent simulations of temperature values
among the RCMs. As already mentioned, this is due to the large number of RCA4 simulations in

the CORDEX ensemble, which are characterized by a small spread.

For precipitation, Figure 4.3b confirms the improved performance of CORDEX over CMIP5 and
CMIP5_SUBSET in the Gulf of Guinea and the Sahel as discussed in Figure 4.3a. Over the
whole West Africa, such an improvement is only achieved with respect to the CMIP5_SUBSET
driving models. In fact, while the observations lie outside the IQR in the CMIP5_SUBSET, they
are within the IQR in the CORDEX MMEs, except for the RCA4 ensemble in the Guinea Coast
region. An interesting feature in Figure 4.4b is the presence of more extended upper whiskers
and symmetrical boxes in all MMEs and subregions, except for RCA4 ensemble in the Sahel.
This highlights a similar dispersion of models about their respective ensemble median and the
existence in each MME of outliers that are substantially different than the rest of the ensemble. It
should be emphasized that, consistently with Figure 4.3a, the CORDEX IQR is similar to that of
CMIP5 and CMIP5_SUBSET in the Gulf of Guinea, but smaller in the Sahel. We finally note
that the CORDEX subsets show results in line with the temperature box plots (i.e. Figure 4.4a)

with regards to the spread induced by the use of different boundary conditions and RCMs.

Therefore, although the ensemble mean rainfall bias and the ensemble standard deviation are
systematically lower in the CORDEX than the CMIP5 ensemble, the IQR is not necessarily
smaller in CORDEX, suggesting that the spread induced by the model physics is greater in the

RCMs than the GCMs. Overall, it is evident that the improved performance of CORDEX is more
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likely a consequence of a better and more consistent simulation of monsoon precipitation than
greater error cancellations, and depends more on the internal model physics than the driving

boundary conditions.
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4.1.3 Spatio-Temporal Variability

The first three principal component loading patterns along with their time series generated from
the REOF analysis applied to the temperature (Figures 4.5 and 4.6 respectively) and precipitation
(Figures 4.7 and 4.8 respectively) fields are intercompared here for UDEL observations and the
CMIP5, CMIP5_SUBSET and CORDEX MMEs. Hereafter, the loading patterns are referred to

as REOFs and the time series as Principal Components (PCs).
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The first three observed REOFs explain more than 70% of the total variance, i.e. most of the
spatio-temporal variability in summer surface temperature can be synthesized in three main
modes of variability. The first mode accounts for 35% of the total variance and corresponds to a
widespread surface warming (cooling) locked over West Africa during its positive (negative)
phase, while surface temperature anomalies remain systematically weak in the northern Sahara.
The second and third modes represent 27% and 9% of the total variance, respectively. They
describe a tripole in surface temperature variability with anomalies that are positive along the
coast of the Gulf of Guinea and parts of Sahara, and negative or weakly positive in the Sahel
during their positive phase. This is reversed during their negative phase. The main spatial
differences between these two modes are found north of ~10°N. During their positive phase,
warm anomalies spread over the central and eastern Sahara for REOF2, while they are confined
in the north-western regions for REOF3. Similarly, negative to weak positive anomalies are
embedded in a northwest-southeast band for REOF2, and in a southwest-northeast band for
REOF3. For simplicity, these three observed modes are referred as the West African mode
(REOF1), the Central-Eastern Saharan mode (REOF2), and the Western Saharan mode

(REOF3), respectively.

The MMEs (Figure 4.5d-1) roughly capture the spatial patterns of these modes of variability but
with different variance and occurrences of the modes, and different magnitudes and signs of the
anomalies. In fact, the spatial patterns explain nearly or more than 90% of the total variance, thus
overestimating the corresponding observed values. This demonstrates that the CMIP5 GCMs

struggle in simulating fine-scale patterns of surface temperature variability and that the
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CORDEX RCMs do not substantially correct this bias. In addition, all the MMEs exhibit
persistent warm biases throughout the domain and fail to reproduce the observed negative
anomalies located over the western (REOF1 and REOF2) and eastern Sahara (REOF2) and the
northern Sahel (REOF3). Furthermore, REOF2 and REOF3 are shifted in the CORDEX patterns
compared to observations, suggesting that the CORDEX MME simulates the main modes of
variability but fails to capture their frequency of occurrence. The Pattern Correlation Coefficient
(P, i.e. Table 4.1) between the MMEs and UDEL modes is higher in CORDEX (P=0.86)
compared to CMIP5 (P=0.73) and CMIP5_SUBSET (P=0.77) for REOF1 while for REOF2 and

REOFS3, they are close to each other.
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Table 4.1: Temperature Rotated EOFs

pattern correlation coefficients between UDEL and

CMIP5, CMIP5_SUBSET and CORDEX. Bold values show the modelled REOFs to compare
with each observed REOF, and the red color shows the MME that performs best. Note that to
enable direct comparison, CORDEX REOF2 and REOF3 have been switched.

‘UDEL CMIP5/CMIP5_SUBSET CORDEX

‘ REOF1 REOF2 REOF3 REOF1 REOF2 REOF3
‘REOFl 0.73/0.77 -0.52/-0.41 |-0.37/-0.41 |0.85 -0.27 -0.42
‘REOFZ -0.31/-0.48 0.73/0.63 -0.29/0.11 -0.41 0.67 0.11
‘REOF3 -0.00/-0.03 |-0.02/0.26  |0.13/0.13 -0.16 0.03 0.09
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For the corresponding PC1 (i.e. Figure 4.6a), the observations show a strong temporal variability
and there is no evidence that the observed West African mode exhibits a positive trend.
However, the Central-Eastern (PC2; i.e. Figure 4.6b) and Western Saharan (PC3; i.e. Figure
4.6¢c) modes exhibit a slow positive trend prior to 1990, an abrupt rupture in the early 1990s
followed by a rapid recovery and a strong positive trend persisting afterward. This is likely an
indication towards an amplification of desert surface warming as discussed by Cook and Vizy
(2016). The MMEs simulate lower variability than observed but also show an abrupt shift and
rapid recovery, along with an emergent positive trend, highlighting the greenhouse gas forcing
on the recent increase of temperature over West Africa. Finally, all the three MMEs generate
comparable Pearson Correlation Coefficients (R; i.e. Table 4.2) which are higher in PC2 (more

than 0.6) and PC3 (more than 0.7) compared to PC1 (around 0.2).
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Table 4.2: Temperature Principal Component Pearson correlation coefficients between UDEL
and CMIP5, CMIP5 SUBSET and CORDEX. Bold values show the modelled REOFs to
compare with each observed REOF, and the red color shows the MME that performs best. Note
that to enable direct comparison, CORDEX PC2 and PC3 have been switched

‘UDEL CMIP5/CMIP5_SUBSET CORDEX

‘ PC1 PC2 PC3 PC1 PC2 PC3
‘PCl 0.28/0.23 0.26/0.24 0.27/0.21 0.24 0.24 0.22
‘PCZ 0.68/0.62 0.68/0.64 0.69/0.64 0.58 0.60 0.60
‘PC3 0.74/0.74 0.75/0.77 0.75/0.76 0.79 0.78 0.79
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Similar to the temperature REOF spatial patterns, the observed precipitation variability is
characterized by the West African mode (i.e. REOFL; Figure 4.7a), the Central-Eastern Saharan
mode (i.e. REOF2, Figure 4.7b), and the Western Saharan mode (i.e. REOF3, Figure 4.7c). The
West African mode is mainly associated with widespread increase (decrease) of precipitation
over West Africa during its positive (negative) phase with a weak decrease (increase) along the
Gulf of Guinea. In addition, the Central-Eastern Sahara mode is characterized during its positive
(negative) phase by dry (wet) anomalies along the Gulf of Guinea and wet (dry) anomalies over

the Eastern Sahara..
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Finally, the Western Sahara mode describes a tripole in rainfall variability with strong negative
(positive) anomalies along the Gulf of Guinea and western Sahara and weak positive (negative)
anomalies in few areas of the Sahel during its positive phase. Altogether, these explain only

47 5% of the total variance.

Both the CMIP5_SUBSET and CORDEX MMEs roughly reproduce the different modes of
precipitation variability over the region. However, CMIP5 misses the signal over the Gulf of
Guinea for the West African mode, switches the Central-Eastern and the Sahara modes and
reverses their signs. This suggests that CORDEX captures better the occurrence of the different
modes of variability. To enable a direct comparison, the CMIP5 last two modes are switched and
their signs reversed. In this case, both the CMIP5 and CMIP5_SUBSET simulate larger positive
anomalies in each mode compared to the observations during their positive phase, thus exhibiting
a substantial wet bias. CORDEX shows magnitudes and spatial distributions more in line with
observations. The explained variance by CMIP5 is around 63% of the total variance, that of
CMIP5_SUBSET 54% while for CORDEX it does not exceed 38%. This indicates that
CORDEX simulates more precipitation fine-scale patterns compared to both CMIP5 and
CMIP5_SUBSET. Spatial correlation coefficients between the observed and simulated West
African mode are 0.36 for CMIP5, 0.31 for CMIP5 SUBSET and 0.41 for CORDEX,
highlighting the improvement achieved with the higher resolution RCM MME. However, for the
Central-Eastern and Western Sahara modes, CORDEX mostly follows CMIP5_SUBSET with

lower correlation coefficients (Table 4.3).
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Table 4.3: Precipitation Rotated EOFs pattern correlation coefficients between UDEL and
CMIP5, CMIP5_SUBSET and CORDEX. Bold values show the modelled REOFs to compare
with each observed REOF, and the red color show the MME that performs best. Note that to
enable direct comparison, CMIP5 REOF2 and REOF3 have been switched and multiplied by (-1)

‘UDEL CMIP5/CMIP5_SUBSET CORDEX

| REOF1 REOF2 REOF3 REOF1 REOF2 REOF3
REOF1 0.36/0.31  0.54/057  |-0.08/-0.34 |0.41 0.35 0.20
REOF2 -0.32/-0.05 0.62/0.59  |-0.12/-0.01 [0.29 0.50 0.36
REOF3 0.36/028 0.32/033 |0.43/031 |-0.16 0.25 0.12
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Analysis of the observed PCs (i.e. Figure 4.8) reveals strong temporal variability in all modes
with an evident and slow increasing trend in West African mode. This latter illustrates the
precipitation recovery that occurred in recent decades over West Africa (Mohino et al,. 2011;
Ibrahim et al., 2014; Sylla et al., 2016a). The MMEs simulate similar variability than observed
for all modes but with significantly low correlation coefficient (Table 4.4). This can be expected
in view of the fact that, as mentioned, the models do not use any assimilation of observed data
for the simulated period. However, they produce a slow positive trend in the West African mode,
perhaps suggesting that anthropogenic aerosols and greenhouse gases might have played a
significant role in the precipitation recovery over West Africa (Ackerley et al., 2011; Dong et al.,

2014)
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Table 4.4: Precipitation Principal Component correlation coefficients between UDEL and
CMIP5, CMIP5_SUBSET and CORDEX. Bold values show the modelled REOFs to compare
with each observed REOF, and the red colour show the MME that performs best. Note that to
enable direct comparison, CMIP5 PC2 and PC3 have been switched and multiplied by (-1)

‘UDEL CMIP5/CMIP5_SUBSET CORDEX

| PC1 PC2 PC3 PC1 PC2 PC3
PC1 0.21/-0.04 |0.46/0.14  |0.06/-0.33 |-0.15 0.05 -0.21
PC2 0.30/0.38  0.31/0.30  |-0.04/-0.21 |0.32 0.30 -0.39
PC3 -0.19/-0.33 0.13/-0.11 |0.12/0.08  |-0.26 -0.20 0.25
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4.2 Bayesian assessment of CMIP5 and CORDEX simulations of historical summer

precipitation variabilities over Sahel and Guinean Coast

4.2.1 Bayesian assessment of CMIP5 and CORDEX simulations of historical summer

precipitation variabilities over Sahel

The joint distribution of the population mean and variance derived from Monte Carlo Sample
over the Sahel region for precipitation are shown in Figure 4.9. The UDEL distribution, on top
left is taken as reference with a mean of 5.80 mm/day and variance of 0.81.CMIP5 distribution
top right is off compared to UDEL in terms of simulating the mean value. The CORDEX shows
good approximation to the mean of UDEL whereas CMIP5_subset and CMIP5 approximate

more closely the variance.
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Figure 4.9: Monte Carlo sampling from the joint distribution of the population mean (8 )

and the variance (o?) over the Sahel domain for UDEL a) and for CMIP5 b),
CMIP5_SUBSET c) and CORDEX c) . The values in black show the mean value of the

population mean (left side) and the population variance (left side). The mean value of &

and o* for UDEL and are indicated in red. Precipitation given in mm/day.
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Figure 4.10 shows the marginal distribution of mean from Monte Carlo sampling. The red line
shows the mean value of the marginal distribution for UDEL and the blue line indicate a 95%
quantile-based posterior bound. The posterior bounds of CMIP5 and CMIP5 Subset do not
contain the mean value of UDEL. CORDEX shows a closer overlap with UDEL data meaning

that CORDEX is approximating the mean more realistically over the Sahel .
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Figure 4.10: Monte Carlo samples from the marginal distribution of & for UDEL a),
CMIP5 b), CMIP5_S c) and CORDEX d) over the Sahel region. The blue vertical line
give a 95% quantile-based posterior bound. In red, the mean value of UDEL posterior

marginal distribution precipitation in mm/day.
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The marginal distribution of UDEL variance is approximate more closely by CMIP5_subset as

shown in Figure 4.11. However CMIP5 and CORDEX posterior bounds do not contain the

mean value of UDEL variance.
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Figure 4.11: The same figure as Figure 4.10, but for the precision
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4.2.2 Bayesian assessment of CMIP5 and CORDEX simulations of historical summer

precipitation variabilities over Guinean Coast

Over Guinean Coast Figure 4.12 is showing Monte Carlo samples from the joint distribution of
the population mean and variance from UDEL, CMIP5, CMIP5 _Subset and CORDEX
precipitation. CORDEX seems to approximate more realistically the mean and the variance

closer to the UDEL ones.
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Figure 4.12 : Monte Carlo sampling from the joint distribution of the population mean (9)

and the variance (02) over the Guinean Coast for UDEL a) and for CMIP5 b),
CMIP5_SUBSET c) and CORDEX c). The values in black show the mean value of the

population mean (left side) and the population variance (left side). The mean value of 0

and o for UDEL and are indicated in red. Precipitation given in mm/day.
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Figure 4.13 still illustrate that over the Guinean Coast with UDEL as a reference there is a
considerable bias reduction with CORDEX simulation of precipitation compare to
CMIP5_subset and CMIP5 even though CORDEX 95% quantile-based posterior bound fails

to overlap with UDEL mean.
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The marginal distribution of UDEL precipitation variance (Figure 4.14) is approximated more
closely by CORDEX and CMIP5_subset. The added value from downscaling precipitation was

not that much over Guinean coast in terms of variance.
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Figure 4.14 : The same figure as Figure 4.13, but for the precision
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4.3 Temperature and precipitation change over West Africa: spatial and Bayesian analysis

of CMIP5 and CORDEX MMEs simulation

4.3.1 Temperature and precipitation change over West Africa: spatial analysis of CMIP5

and CORDEX MMEs simulation

Temperature projection over West Africa for the late 21% century (2070-2099) from CMIP5 and
CORDEX under RCP45 and RCP85 scenarios (Figure 4.15) range between 2°C and 6°C above
the 1976-2005 baseline. For both scenarios the seasonal (JJAS) multi model mean temperature
change follows a pattern of larger change in magnitude in northern part and mainly over land.
Over the whole West African domain at least 80% of the models contributing to the different
multi model ensemble (CMIP5, CMIP5_Subset and CORDEX) agreed on sign change. The
warmest part is located over the Sahara (above 16° latitude) under the RCP85 scenario(Figure

4.15,b),d),f)). This warning trend is consistent with the last IPCC report (IPCC,2014).
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Figure 4.15: Multi-model mean of 2070-2099 seasonal average (JJAS) temperature change

relative to the period of 1976-2005 for RCP45 (left panel) and RCP85 (right panel) for CMIP5 ,

CMIP5 subset and CORDEX. Stippling denote regions where 80 % percent of the model agree

on change sign.
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For precipitation, The last IPCC report highlight the inability of CMIP3 and CMIP5 to resolve
the convective rainfall over West Africa (Roehrig et al., 2013) and therefore the precipitation
projection over West Africa had a low medium confidence (IPCC,2014). Through the CORDEX
program (Giorgi et al., 2009, Jones et al., 2011) a relatively large number of Regional Climate
Model simulation were made available over West Africa and it will give more robustness of the
precipitation projection change over the region (IPCC,2014). Precipitation projection for the
period 2071-2099 relative to 1976-2005 under the two scenarios for CMIP5, CMIP5_Subset and
CORDEX multi model ensemble are shown in Figure 4.16(a)-(f). Figure 4.16 (e)-(f) shows an
increasing trend of the rainfall up to 60 % over the Gulf of Guinea and eastern Sahel. There is a
decreasing trend up to 40 % over Western Sahel (Senegal and Mauritania). And mainly over
those regions at least 80 % of models contributing to the ensemble mean agreed on sign change.
For the two scenarios downscaling was able to reverse the sign of change over the southern part
of the Atlantic Ocean. Some part of Burkina Faso, Nigeria and Mali remains uncertain in terms

of precipitation change and the downscaling didn’t improved much this configuration.
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Figure 4.16: Multi-model mean of 2070-2099 seasonal average (JJAS) precipitation change

relative to the period of 1976-2005 for RCP45 (left panel) and RCP85 (right panel) for CMIP5 ,

CMIP5 subset and CORDEX. Stippling denote regions where 80 % percent of the model agree

on change sign
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Figure 4.17 (a)-(f) adopted from Sylla et al. (2015), shows multi-model ensemble from CMIP5,
CMIP5_subset and CORDEX long-term time series of seasonal (June-September) mean
temperature anomalies with the range of possible values over the Sahel and the Gulf of Guinea
during the historical (1976-2005) and the future (2006-2100) periods and for both RCP8.5 and
RCP4.5 (Moss et al., 2010). The reference period used to calculate seasonal mean anomalies was
1976-2005. Over the Sahel and the Gulf of Guinea, The three CMIP5, CMIP5 subset and
CORDEX time series show a significant warming since 1996 and this warming will be
amplified in future climate (2006-2100) under the high level Green House Gases (GHG) forcing
scenario (RCP8.5) and a mid-level one (RCP4.5). The mid-level GHG forcing scenario produces
lesser warming (less than 2°C over the Sahel and Gulf of Guinea regions and for the three multi
model ensemble) while the high level forcing leads to a greater warming (4°C over the Guinean
Coast and 5°C over the Sahel). Therefore, temperature increases over the region with the new set
of data made available from CORDEX program will range by the end of 21% Century from 1.5

°C t0 5.0 °C, with the Sahel experiencing more warming.
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Figure 4.17: Long-term time series (1976-2099) of mean temperature (left panels) anomalies for
the Guinean Coast (left panels) and the Sahel (right panels) and for both RCP4.5 and RCP8.5
based on multimodel of CMIP5 ; CMIP5 Subset and CORDEX simulations. The anomalies are
calculated with respect to the seasonal mean of the period 1976-2005. The shaded areas denote

ensemble maxima and minima. Adopted from Sylla et al. (2015)
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For the mean precipitation in Figl9 (a)-(f), the anomalies from the CMIP5 and CMIP5_subset
multi model time series show a lesser evident trend but increased variability with larger
amplitudes oscillating between -10% and 10% while the CORDEX multi model time series show
a clear increasing trend up to 10 % for the two scenarios over the Sahel and the Gulf of Guinea.
But the precipitation changes still spans both negative and positive values (between -40% to
80%). This means that uncertainties still remain in regional precipitation climate change
projections consistent with IPCC (2014). As the scenario forcing increases (i.e. as the time frame
increase), the range of uncertainty gradually increases and the Sahel shows the largest range.
This suggests that the various RCMs produce substantial different responses to a same forcing
and probably because of the models differences in the way they simulate the interactions of deep

convection with the West African Monsoon features (Roehrig et al., 2013; Sylla et al., 2013a).

78



CMIPS Guinea Precipilasion Changs CMIPS Sshel Precipitation Changs

w— histo b — NS0

- -
o —— ACPB.5 %0 — RCPBS
— RCP4.5 w— RCPAS
40 40
g 0 > PSSP P P P g 0 ‘W"‘M
40 - 40
B0 B0
] 1 L ] L 1 ] L L] L 1 L
1876 1998 2016 2036 2056 2076 2096 1978 1996 2018 2036 2056 2076 2096
CMIP5_S Guinea Precpitation Change CMIP5_S Sahel Preapitalion Change
80 49 = histo 80 49 ——
— ACFES 7 —— ACPES
— RCP4.5 — RCPA S
40 40
Z 0 Jrepead £ o4
-40 40 =
80 + 80 o
T X C 1 K3 Bl L] T \ X3 T T L] Al T
1976 1966 2016 2036 2056 2076 2056 1976 19656 2016 2036 2056 2076 2096
CORDEX Guinaa Precpiation Change CORDEX Sahol Precipéation Change
w49 —— histo 804" — res0
— RCPH 5 — ROPS S
—— ACPe5 — ACP4 4
40 40
Z 0 N— R N e = = o N
-40 -40
80 -80
L] Al ) ] L] Al Ll L] ] L] 1 L]
1976 1986 2016 2036 2056 2076 2006 1976 1996 2016 2036 2056 2076 2096

Figure 4.18 : Long-term time series (1976-2099) of mean precipitation (left panels) anomalies for
the Guinean Coast (left panels) and the Sahel (right panels) and for both RCP4.5 and RCP8.5
based on multimodel of CMIP5 , CMIP5 Subset and CORDEX simulations. The anomalies are
calculated with respect to the seasonal mean of the period 1976-2005. The shaded areas denote

ensemble maxima and minima. Adopted from Sylla et al. (2015)
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4.3.2 Temperature and precipitation change over West Africa: Bayesian analysis of

CMIP5 and CORDEX MMEs simulation

AT=v—L over the

Figure 4.19 shows the posterior distribution of temperature change
Guinean Coast under RCP45 and RCP85 for JJAS season. Individual model response is plotted
along the x axis to assess the measure of convergence for each model and find out those
behaving like outliers and those reinforcing each other by projecting the same temperature
change. Models having small bias receive large weight and the PDF is drawn where the model
perform well with the two criteria (bias and convergence). The shape of the PDF may be
unimodal (where models agree and outliers are down weighted due to large bias) or multimodal
(where models disagree and cannot be discounted based on theirs bias). CMIP5_S models under

RCP85 has a lot of uncertainties showing more bias and less agreement among models but the

CORDEX seems to dramatically reduced those uncertainties.
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a) CMIP5 Guinean Coast temperature change RCP45 b) CMIPS Guinean Coast temperature change RCP85
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Figure 4.19: Posterior distribution of over the Guinean coast for CMIP5, CMIP5_subset and
CORDEX under the RCP45 (a,c,e) and RCP85(b,d,f) scenario for JJAS season. The points

along the base of the densities mark the model (GCM/RCM) temperature change predictions
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Over the Sahel (Figure 4.20), only CORDEX under RCP45 scenario shows more agreement and
less bias. CMIP5 and CMIP_S shows multi modal PDF pointing out some uncertainties and less
agreement among models over the Sahel region. Under RCP85 CMIP5, CMIP5_S and CORDEX

have unimodal PDF depicting less uncertainties with CMIP5 showing more outliers.
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a) CMIPS Sahel temperature change RCP45
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b) CMIPS Sahel temperature change RCP85
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Figure 4.20: Posterior distribution of over the Sahel for CMIP5, CMIP5_subset and CORDEX

under the RCP45 (a,c,e) and RCP85(b,d,f) scenario for JJAS season. The points along the base

of the densities mark the model (GCM/RCM) temperature change predictions
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For precipitation change over the Guinean Coast under RCP85 and RCP45 (Figure 4.21)
uncertainties still remain in CORDEX model (following the CMIP5_S) with an increasing
precipitation trend for the late century. The different scenarios seem to not have much impact on
precipitation. There is no significant difference on precipitation change between RCP45 and

RCP85.

84



a) CMIPS Guinean Coast precipitation change RCP45 b) CMIP5 Guinean Coast precipitation change RCP85
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Figure 4.21: Posterior distribution of  over the Guinean coast for CMIP5, CMIP5_subset and
CORDEX under the RCP45 (a,c,e) and RCP85(b,d,f) scenario for JJAS season. The points

along the base of the densities mark the model (GCM/RCM) temperature change predictions
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Over the Sahel CMIP5 (Figure 4.22) models show more agreement on sign change (close to
zero) compare to CMIP_S and CORDEX which show a change between 0 to 1 mm/day under
the two scenarios with some outliers due to bias in present climate simulation and divergence
from the future climate mean . CORDEX has a wide PDF curve under RCP45 and RCP85

scenario showing the persistence of uncertainties.
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a) CMIPS Sahel precipitation change RCP45 b) CMIPS Sahel precipitation change RCP85
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Figure 4.22: Posterior distribution of  over the Sahel for CMIP5, CMIP5_subset and CORDEX
under the RCP45 (a,c,e) and RCP85(b,d,f) scenario for JJAS season. The points along the base

of the densities mark the model (GCM/RCM) temperature change predictions
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Figure 4.23 shows boxplots of the posterior PDFs of temperature change under RCP45 and
RCP85 scenario for CMIP5, CMIP5_Subset and CORDEX over Sahel and Guinean Coast for
JJAS season. A pair of boxplots is shown for each region, the left represent the RCP45 and the
right the RCP85.While CMIP5 is showing less variability (IQR) across the two regions,
CMIP5_Subset and CORDEX show a significant shift in the PDFs range highlighting presence
of biases in the present climate simulation and some degree of uncertainties in the future
climate . However from CMIP5 Subset to CORDEX there is a significant reduction of
uncertainty and more agreement among the models over the Guinea Coast for the RCP85
scenario and over the Sahel for RCP45. The IQR varies between 1°C to 3 °C for the three models
over the two regions under RCP45 and 2°C to 5°C under RCP85. The warming trend is certain

over the two regions with different magnitudes.
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Figure 4.23: Posterior distribution of delta T in form of boxplot over Guinean Coast and the
Sahel for CMIP5 (a), CMIP5_subset (b) and CORDEX(c) under the RCP45 and RCP85

scenario for JJAS season.

89



For precipitation boxplot of posterior PDFs of change under RCP45 and RCP85 scenario in
Figure 4.24, CMIP5 is showing positive and negative change around the zero line over the two
regions with less spread, meaning that, from CMIP5 GCMs a clear picture of precipitation
change in terms of sign cannot be drawn. In CMIP5_S and CORDEX positive change are more
prevalent than the negative one for the two scenarios (RCP45 and RCP85) over the two regions.
However CORDEX is showing more spread under RCP85 scenario over the Sahel, still

indicating some degree of uncertainty.
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Figure 4.24: Posterior distribution of delta P in form of boxplot over Guinean Coast and the

Sahel for CMIP5 (a), CMIP5 subset (b) and CORDEX(c) under the RCP45
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4.4 Partitioning uncertainty in temperature and precipitation projections

Previous section shows that uncertainties still remain in climate projection over West Africa and
there is need to separate and quantify those sources of uncertainties in order to get a reliable
future climate projection for appropriate adaptation and mitigation strategies. We choose to
analyze the last three decade of the 21* century (2070-2099) relative to the present day period
(1976-2005) where the signal of change is expected to be stronger both for temperature and
precipitation. Internal variability and inter-model variability will be investigated to constitute the
total uncertainty since the scenario uncertainty cannot be covered due to the lack of data for the
other two scenarios RCP2.6 and RCP6.0. In the following section, we will focused on
temperature and precipitation internal and inter model variability patterns over West Africa ,
give light on how the new generation of model has improved the climate projection information
over the region and derive the signal to noise ratio to appreciate the robustness of the climate

change information.

4.4.1 Partitioning uncertainty in temperature projections

Figure 4.25 shows temperature Internal Variability (I\V) for 2070-2079 JJAS season  under
RCP45 (a,c,e) and RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX MMEs. Based
on the method of Hawkins and Sutton (2009), 1V is assumed to be constant over the 21% Century.
Over West Africa IV is mainly lower than 0.5 °C under the two scenarios for CMIP5, CMIP5_S
and CORDEX. Maximum IV values are located in the highest latitudes and some part of Atlantic

Ocean.
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Figure 4.25: Internal variability of 2070-2099 JJAS mean temperature (0C) for CMIP5, CMIP5

subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario
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Figure 4.26 shows temperature Inter Model Variability (IMV) for 2070-2079 JJAS season
under RCP45 (a,c,e) and RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX MMEs.
The lowest values are located over the West African Domain and part of the Gulf of Guinea the
highest value are located in the Northern part and some part of the Atlantic Ocean . The spatial

patterns of IMV and IV are similar.
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Figure 4.26: Inter Model Variability of 2070-2099 JJAS mean temperature (oC) for CMIP5,

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario



Figures 4.27 and 4.28 are showing respectively the Ratio for internal variability (CMIP5 or
CCMIP_S) over (CORDEX) and Inter Model variability for 1970-2099 JJAS mean temperature
for RCP45 and RCP85 scenario. The regions where the new generation of model (CORDEX)
show an improvement (reduction of 1V/IMV) compare to CMIP5 and CMIP5_S are marked
with dots. We found that under the two scenarios CORDEX MMEs (the new generation of
models) have an added value compare to the driving GCMs (CMIP_S) and CMIP5 MMEs by
reducing the spread over the West African region . At the end of 21*" century, for the last three
decade (2070-2099) IMV is the dominant source of uncertainties and is explaining up to 90 %
of total uncertainty and IV explaining only 10 % . This finding is consistent with the finding of
Blaquez et al. (2013) who analyze the uncertainties in future climate over South America with

CMIP3 and CMIP5 GCMs.

Hawkins and Sutton, (2009) and Yip et al. (2011), found that after year 2050 the scenario
uncertainty dominate the total uncertainty but in our study we did not consider the scenario
uncertainty because the data we were able to get were the radiative forcing of 4.5 and 8.5. So
considering scenario uncertainty may not cover the full range of uncertainties (2.6 and 6.0

forcing).
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Figure 4.27: Ratio for internal variability (CMIP5 or CCMIP_S variability /CORDEX

variability) for 1970-2099 JJAS mean temperature for RCP45 and RCP85 scenario
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Figure 4.28: Ratio for inter model variability (CMIP5 or CCMIP_S variability /CORDEX

variability) for 1970-2099 JJAS mean temperature for RCP45 and RCP85 scenario
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Figure 4.29 shows the Signal to Noise Ratio (SNR) for the three MMEs . SNR is a measure of
the robustness of climate change information taking into account uncertainties associated (Yip et
al., 2011). Region of high uncertainties (high values of IMV and 1V) will have a low SNR.
Region where the climate change signal dominate the noise is characterized by SNR>1. For
temperature under the two scenarios, the change is robust over most of West African countries
with more spatial details and improved SNR with CORDEX MMEs compare to CMIP5 and
CMIP5_S MMEs. The warming trend over the region is consistent with the previous studies
showing that there is more confidence (more robustness) about the temperature projection
change (Tebadi et al. (2005), Hawkins and Sutton, 2009) over the region with less uncertainties

in regional and Global models compare to precipitation.
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Figure 4.29: Signal to Noise ratio for 1970-2099 JJAS mean temperature (0C) for CMIP5,

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario
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4.4.2 Partitioning uncertainty in precipitation projections

Figure 4.30 shows precipitation Internal Variability (IV) (which had been assumed to be
constant in time during the 21* century) for 2070-2079 JJAS season under RCP45 (a,c,e) and
RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX MMEs. Variability peaks in
CMIP5, CMIP5_S and CORDEX (>3mm/day) are located over the coastal area (Gulf of
Guinea) and regions of high altitudes. CORDEX is showing more spatial details due to

resolution and reduction of internal variability compare to CMIP_S.
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Figure 4.30: Internal variability of 2070-2099 JJAS mean precipitation (mm/day) for CMIP5,

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario
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Figure 4.31 shows precipitation Inter Model Variability (IMV) for 2070-2079 JJAS season
under RCP45 (a,c,e) and RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX MMEs.
The highest values are located over the coastal regions. However CORDEX is showing more

variability over the Atlantic Ocean compare to CMIP5_S under the RCP45 scenario.
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Figure 4.31: Inter model variability of 2070-2099 JJAS mean precipitation (mm/day) for CMIP5,

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario
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Figure 4.32 and 4.33 are showing respectively the Ratio for internal variability and Inter Model
variability (CMIP5 or CCMIP_S) over (CORDEX) for 1970-2099 JJAS mean precipitation for
RCP45 and RCP85 scenario. We notice that for the two scenarios the IV and IMV were reduced

over Cote d’ivoire, Ghana, Benin and Nigeria.
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Figure 4.32: Ratio for internal variability (CMIP5 or CCMIP_S variability /CORDEX

variability) for 1970-2099 JJAS mean precipitation for RCP45 and RCP85 scenario
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variability) for 1970-2099 JJAS mean precipitation for RCP45 and RCP85 scenario
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The reliability of the precipitation projection is explored in CMIP5, CMIP5_S and CORDEX
MMEs. Figure 4.34 is showing the signal to noise ratio for 1970-2099 JJAS mean precipitation
under the two scenarios RCP45 and RCP85. Only CORDEX under RCP45 has a signal to noise
ratio greater than one over West Africa (between 5° to 15° N). It is showing an increasing trend
of precipitation over the whole West African region (positive SNR). In CMIP5, CMIP5_S and

CORDEX under RCP85, the noise dominate the signal.
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Figure 4.34: Signal to Noise ratio for 1970-2099 JJAS mean precipitation (mm/day) for CMIP5,

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario
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CHAPTER 5

. CONCLUSION AND RECOMEMMENDATIONS

An assessment of multimodel ensembles constructed from the CMIP5 and CMIP5_SUBSET
GCMs, and CORDEX RCMs during the present-day (1982-2005) is first carried out for the West
African region. The focus of the analysis is on temperature and precipitation inter-model and
spatio-temporal variability. In addition, the origin of the biases in the RCM MME and the extent

to which CORDEX adds useful detail to CMIP5 is also discussed.

We find that CORDEX exhibits larger cold temperature biases compared to CMIP5 and
CMIP5_SUBSET, suggesting that these are mostly due to the RCM internal physics. Conversely,
compared to the CMIP5 GCMs, for precipitation the RCM MME simulates a better spatial
distribution, lower bias and more fine-scale details associated with the location of local complex
topography and steep landuse gradients. A separation of the CORDEX ensemble into an
ensemble inducing simulations with one RCM driven by multiple GCMs and multiple RCMs
driven by one GCM shows that the internal model physics is more important than the boundary

forcing in determining the model performance and inter-model spread.

The spatio-temporal variability is assessed with the use of Rotated Empirical Orthogonal
Function (REOF) analysis. All the MMEs capture with different magnitudes the spatial
distribution of the first mode of temperature and precipitation REOF characterizing the recent
temperature increase and precipitation recovery over West Africa, with CORDEX providing the
highest Pattern Correlation Coefficient. For the PCs of all modes CORDEX mostly follows the

CMIP5_SUBSET, with little improvement compared to CMIP5.
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Overall, it is evident that the different MMEs exhibit different level of bias and a pronounced
intermodel and inter-ensemble variability. We found that, especially for precipitation, CORDEX
is able to improve upon the performance of the CMIP5 models and the subset of driving GCMs,

although this is not the case for temperature.

We further use a Bayesian approach to show how CORDEX MMEs is improving precipitation
simulation compared to CMIP5 and CMIP5_Subset. The increased horizontal resolution is able
to approximate the mean and the variance more closely to the observation over Sahel and the

Guinean Coast.

For the future climate 2070-2099 we have applied the Bayesian model of Tebaldi et al.,2005 to
the three sets of models (CMIP5, CMIP5_ Subset and CORDEX) and derived PDFs of
temperature and precipitation change for two sub region (Sahel and Guinea Coast). Two criteria
of model evaluation were used: the Bias and Convergence. For temperature change over the
Guinean Coast, CMIP5_S models under RCP85 has a lot of uncertainties showing more bias and
less agreement among models but the CORDEX seems to dramatically reduced those
uncertainties. Over the Sahel, only CORDEX under RCP45 scenario shows more agreement and
less bias. CMIP5 and CMIP_S shows multi modal PDF pointing out some uncertainties and less
agreement among models. Under RCP85 CMIP5, CMIP5_S and CORDEX have unimodal PDF

depicting less uncertainties with CMIP5 showing more outliers.
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For precipitation change over the Guinean Coast under RCP8.5 and RCP4.5, uncertainties still
remain in CORDEX model (following the CMIP5_S) with an increasing precipitation trend for
the late century. There is no significant difference on precipitation change between RCP45 and
RCP85. Over the Sahel CMIP5 models show more agreement on sign change (close to zero)
compare to CMIP_S and CORDEX which show a change between 0 to 1 mm/day under the two
scenarios with some outliers due to bias in present climate simulation and divergence from the
future climate mean . CORDEX has a wide PDF curve under RCP45 and RCP85 scenario

showing the persistence of uncertainties.

The sources of uncertainty in climate projection from CMIP5, CMIP5_Subset and CORDEX
were also examined. The source of uncertainty due to internal and inter-model variability were

analyzed for temperature and precipitation.

For temperature over West Africa Internal Variability is mainly lower than 0.5 °C under the two
scenarios for CMIP5, CMIP5_S and CORDEX. Maximum IV values are located in the highest
latitudes (>15° N) and some part of Atlantic Ocean. . The spatial patterns of the Inter Model

Variability is similar to the Internal IV.

The ratio of (internal or inter-model) variability was used to compare CORDEX, CMIP5 and
CMIP5_Subset. Under the two scenarios (RCP45and RCP85) CORDEX MMEs (the new
generation of models) have an added value compare to the driving GCMs (CMIP_S) and CMIP5
MMEs by reducing the spread over the West African region . At the end of 21* century, for the
last three decade (2070-2099) IMV is the dominant source of uncertainties and is explaining up

to 90 % of total uncertainty and 1V explaining only 10 %.
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The Signal to Noise ratio is a measure of the robustness of climate change information taking
into account uncertainties associated. Region where the climate change signal dominate the noise
is characterized by SNR>1. For temperature under the two scenarios, the change is robust over
most of West African countries with more spatial details and improved SNR with CORDEX

MMEs compare to CMIP5 and CMIP5_S MMEs.

For precipitation, Internal Variability peaks in CMIP5, CMIP5_S and CORDEX (>3mm/day)
and Inter Model Variability are located over the coastal area (Gulf of Guinea) and regions of
high altitudes. CORDEX is showing more spatial details due to resolution and reduction of
internal variability compare to CMIP_S. Considering the Ratio for internal variability and Inter
Model variability for the two scenarios, the IV and IMV were reduced over Cote d’ivoire,
Ghana, Benin and Nigeria. Only CORDEX under RCP45 has a signal to noise ratio greater than
one over West Africa (between 5° to 15° N) with an increasing trend of precipitation over the
whole West African region (positive SNR). In CMIP5, CMIP5_S and CORDEX under RCP85,

the noise dominates the signal.

Clearly an assessment of climate change information over West African region needs to rely on
the careful evaluation and compounded information deriving from multiple sources. This
highlights the importance of large model ensembles and carefully designed MME approaches for

the provision of useful climate information in impact and adaptation studies.
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