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ABSTRACT 

 

This study aims at investigating climate change scenarios over West Africa with the associated 

uncertainties to improve the value of climate information to end-users for informed decision 

making. For the present day (1982-2005), the mean climatology, intermodel variability and 

spatio-temporal patterns of temperature and precipitation over West Africa from CMIP5, 

CMIP5_SUBSET (ensemble of GCMs driving CORDEX) and CORDEX multimodel ensembles 

(MMEs) were first evaluated and intercompared for the monsoon season (June-September). 

While CORDEX failed to outperform the simulated mean climatology of temperature by the 

CMIP5 ensembles, it substantially improved precipitation and provided more realistic fine-scale 

features tied to local topography and landuse. This improved performance over the region  

depend more on the internal models physics than the driving boundary conditions and results 

from a more consistent and realistic simulation of monsoon precipitation across the various 

Regional Climate Models (RCMs). Rotated Empirical Orthogonal Function (REOF) analysis 

indicated that the CORDEX ensemble captures better the spatio-temporal variability of both 

temperature and precipitation (first REOF mode), in particular depicting the warming and Sahel 

precipitation recovery in recent decades over West Africa. On the other hand, the spatial patterns 

and associated time series of the last two REOF modes in CORDEX mostly follow the 

CMIP5_SUBSET pointing towards a strong role of the boundary forcing in the RCM simulation 

of precipitation variability. For the future climate 2070-2099  relative to 1976-2005, a Bayesian 

model was applied  to the three sets of models (CMIP5, CMIP5_Subset and CORDEX) and  

PDFs of Temperature and precipitation change for two sub region (Sahel and Guinea Coast) 

were derived.  For temperature  change over the Guinean Coast,  CMIP5_S models under 

RCP8.5 has a lot of uncertainties showing more bias and less agreement among models but the 
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CORDEX  seems to  reduce  those uncertainties.  Over the Sahel, only CORDEX under RCP4.5 

scenario shows more agreement and less bias. CMIP5 and CMIP_S show multi modal PDF 

pointing out some uncertainties and less agreement among models. For precipitation change over 

the Guinean Coast under RCP8.5 and RCP4.5 uncertainties still remain in CORDEX model with 

an increasing precipitation trend for the late century. There is no significant difference on 

precipitation change between RCP4.5 and RCP8.5. CORDEX has a wide PDF curve under 

RCP4.5 and RCP8.5 scenario showing the persistence of uncertainties. Two sources of 

uncertainty in climate projection from CMIP5, CMIP5_Subset and CORDEX were also 

examined for temperature and precipitation. An ordinary least square was used to fit each 

decadal anomalies prediction of CMIP5, CMIP5_Subset and CORDEX with a fourth-order 

polynomial over the years of 2006-2099 for the two scenarios RCP45 and RCP85. The 

anomalies were computed with the reference period of 1976-2005. The new generation of 

models had an added value compare to the driving GCMs (CMIP_S) and CMIP5 MMEs by 

reducing the Internal and Inter Model Variability over the West African region. Inter Model 

Variability was the dominant source of uncertainties and is explaining up to 90 % of total 

uncertainty. The study conclude that for temperature under the two scenarios, the change is 

robust (Signal to Noise ratio greater than one) over most of West African countries with more 

spatial details and improved signal to noise ratio with CORDEX MMEs compare to CMIP5 and 

CMIP5_S MMEs. Over West Africa, CORDEX under RCP4.5 has a signal to noise ratio greater 

than one   with an increasing trend of precipitation while the noise dominates the signal under 

RCP8.5, in CMIP5, CMIP5_S and CORDEX. An assessment of climate change information over 

West African region needs to rely on the careful evaluation and compounded information 

deriving from multiple sources. 
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                    CHAPTER ONE 

Chapter 1 1. INTRODUCTION 

1.0 Research background  

 

Coupled Global Climate Models (or simply GCMs) forced by greenhouse gas (GHG), aerosols 

and/or land use change are the primary tools to derive future climate change scenarios (Hulme et 

al., 2001; Jenkins et al., 2002; Kamga and Buscarlet, 2006). In this regards, many phases of the 

Coupled Model Intercomparison Project (e.g. CMIP2; CMIP3; Meehl et al., 2000; 2007) have 

been carried out during the last few decades by the World Climate Research Programme 

(WCRP). The implementation of these different stages of CMIP has led to substantial progress in 

climate modeling. For example, the latest phase (i.e. CMIP5 ; Taylor et al., 2012) includes the 

development of Earth System Models (ESMs) which better describe the interactions of 

atmosphere, ocean, land, ice, and biosphere but also incorporate biogeochemical processes and 

their feedbacks (Taylor et al., 2012). 

Despite this significant progress, there are still substantial shortcomings preventing the GCMs 

from accurately estimating the state of West African regional climate under a range of 

conditions. Among these limitations are the presence of persistent biases across different 

versions of the GCMs (Li et al., 2013; Roehrig et al., 2013; Bellenger et al., 2014) and the 

existence of large uncertainties in the projections in many parts of West Africa (Biasutti, 2013; 

James et al., 2014; Rodriguez-Fonseca et al., 2015). In addition, the horizontal grid spacing of 

the GCMs is still coarse making them unable to capture the local forcing such as complex 

topography and land surface heterogeneity (Giorgi et al., 2009; Sylla et al., 2012). 
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Regional Climate Models (RCMs) are now extensively used to dynamically downscale GCMs in 

order to produce fine-scale and improved regional climate information (Giorgi and Means, 

1999). In this regards, various regional climate change studies have been carried out over West 

Africa using RCMs (Paeth et al., 2005; Sylla et al., 2010a; Mariotti et al., 2011; Diallo et al., 

2012 ; Abiodun et al., 2013; Sylla et al., 2015).However uncertainties associated with those 

projection have not been quantified. In order to adequately design long-term adaptation policies 

and decision making that are climate-proof, it is important that decision makers are informed 

about the reliability of future climate projections. This will support planners in making informed 

decisions on future investments aimed at optimizing the use of scarce resources available and 

promote climate-resilient development.  

There are three main sources of uncertainty: the first is the internal variability of the climate 

system, which describe the natural fluctuation arising in the absence of any radiative forcing. The 

second is the model uncertainty which explain how climate models produce different responses 

to the same Green House Gases (GHG) forcing due to varying dynamics and physics 

parameterizations. The third is scenario uncertainty results from unknown future greenhouse 

gases emissions (Hawkins and Sutton, (2009)).  

 

1.1 Motivation for the study 

 

Climate change is undeniably occurring and poses significant risks to a wide range of societies 

and natural systems (IPCC, 2007). The latest report by the Intergovernmental Panel on Climate 

Change (IPCC,2014) states that global average surface air and ocean temperatures are increasing 

at rates unequivocal to any other period on record, including paleo records. 
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In the last few decades, droughts have become more common, especially in the tropics and 

subtropics and increases have occurred in the number of heavy precipitation events.  These 

extreme conditions, expected to be exacerbated in the future, have already caused substantial 

flooding and food shortage, and constitute significant threats to water resource and public health 

management (Parry et al., 2007).  For Africa, based on climate model results’, warming is very 

likely (90 to 99% probability) to be larger than the globally average in all seasons by the end of 

the 21st century, particularly in drier subtropical regions.  Africa is thus one of the most 

vulnerable continents to such changes, a situation aggravated by different interactions between 

population and ecosystems and low adaptive capacity.  

This is particularly true for West Africa where agriculture is the prominent instrument for 

spurring growth, enhancing food security and overcoming poverty (Boko, 2007). Due to the 

predominance of rain-fed agriculture, the dependence of local population to natural resources 

and increasing drought episodes and flooding events, it therefore becomes critical to provide 

reliable climate change scenarios for the end-users community of West Africa. Such scenarios 

require quantification of uncertainties and thus the use of multiple regional climate models.  

1.2 Statement of research problem 

 

Reliable climate change scenario with associated uncertainties over West Africa is still lacking. 

To overcome this gap and provide climate change scenarios useful for impact studies and for the 

development of adaptation and mitigation strategies, we highlight a number of scientific 

questions to be answered: 

- Do   dynamical downscaling of RCMs always performs better than GCMs? 

- What is the state-of-the-science regional climate change projection in term of mean 

change over West Africa? 
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- What is the associated uncertainty range and how can it be quantified? 

 

The answers to such questions will help to deliver climate change information at the 

local/regional useful for end-users, quantify and minimise the range of uncertainty and provide 

relevant information for future modelling work. 

1.3 Aim and objectives 

1.3.1 Aim 

 

This research aims at investigating climate change scenarios over West Africa with the 

associated uncertainties to improve the value of climate information to end-users for informed 

decision making. 

1.3.2 Specific objectives   

 

The specific objectives of this study are to:  

i. determine the ability of RCMs and GCMs to simulate the present day climate in terms of  

capturing spatial patterns and inter annual variability  

ii. identify  methods to extract reliable climate change scenarios for West Africa from the 

Multi Models Ensemble 

iii. determine the range of uncertainty in global and regional climate change projections for 

precipitation and temperature over West Africa for the late  21
st
 century(2070-2099) 

under RCP45 and RCP85 scenario 

iv. identify the signal to noise ratio patterns over West African region for precipitation and 

temperature  under RCP45 and RCP85 scenario. 
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               CHAPTER TWO 

Chapter 2 2. LITERATURE REVIEW 

2.1 Introduction  

 

Translating climate projections into credible climate information services for decision-makers is 

complicated by uncertainty and lack of understanding of the physical processes responsible for 

the changes. In the absence of understanding of the nature of climate projections, policy-makers 

may expect high resolution impacts-centred projections, yet uncertainty about the detail of future 

climate change impacts remains high. It is therefore fundamental to characterize and quantify 

uncertainty in climate change projection over West Africa as a contribution to resolve a critical 

knowledge gaps in the understanding of the regional climate for strategic approaches to 

adaptation and mitigation. Giorgi et al. (2009) highlight the vulnerability of Africa to the impacts 

of climate change due to relatively low adaptive capacity of its economy. Temperature and 

precipitation patterns may change significantly and interact with other environmental stressor 

such as land use change, desertification and aerosols emissions. Future climate change has three 

main sources of uncertainties (Hawkins and Sutton, (2009) and Tebaldi and Knutti, (2007)):   (i) 

the internal variability which is the natural variability of the climate system without an external 

forcing, (ii) the model uncertainty which characterized different model response to the same 

external forcing and (iii) forcing uncertainty because of the incomplete knowledge of the 

external factors such as GHGs, land use change among others. According to Kang et al. (2013) 

internal variability is the most challenging source of uncertainty since it will persist even if the 

models become more accurate with known forcing.  
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2.2 Climate downscaling over West Africa 

  

In order to address the sources of uncertainties and understand the dynamics behind the West 

African climate, a lot of studies using RCMs have been carried out.  Gallee et al. (2004)  used a 

high resolution model (Model Atmospherique Regional (MAR)) of 40 km resolution over West 

Africa to simulate the intra seasonal variations of rainfall. The model captured the spatial 

variability of monthly mean rainfall with some overestimation over some area from the 

beginning of August. European Center for Medium range Weather Forecasting (ECMWF) 

reanalysis were used   to compare with temperature and wind and cold bias were identified where 

the simulated hydrological cycle was strong. The regional climate model  REMO  at 0.5
o
 

resolution from  Max Planck Institute for Meteorology  (Paeth et al., 2005) was  used to  

investigate the cause of West African rainfall inter annual variability  during the period of 1979-

2003. Atlantic Sea Surface Temperature (SST) and some external atmospheric forcing were 

playing a key role in inter annual variability. A warm tropical Atlantic is accompanied by a 

surface wind convergence near the Guinean coast and a change in  the strength of the TEJ.  

 Jenkins et al. (2005) used  RegCM3 with NCEP (National Center for Environmental Prediction) 

reanalysis as boundary condition for the period of 1960–2002 to also investigate inter annual 

variability of precipitation and found that the model  was able to reproduce the wetter conditions 

in the 1960s to the very dry conditions in the 1980s.  Dry conditions were linked to a weaker TEJ 

related to a warmer Indian Ocean temperature during past decade.  Afiesimmama  et al. (2006) 

investigated  the West African monsoon inter annual variability with REGM 3 and  NCPEP  as 

boundary condition during the period 1979 to 1990 and found that there is an  overestimation of 

rainfall amounts along the Guinean coast (complex topography area) and  underestimation over 

the Soudano- Sahel. The increased rainfalls along the coast were explained by an enhanced low-
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level convergence of the moist southwesterly winds along the coast leading to a reduction of the 

moisture content in the atmosphere. The decrease over the Soudano- Sahel could be associated 

with the weakening of the land– sea temperature gradient and hence the decrease in the low level 

southerly flows.  

Sylla et al. (2009) used RegCM3 with different lateral boundary condition   to downscale 

AOGCM and reanalysis data as a first step in future climate change scenario during 1981-2000 

period. Output of precipitation and temperature from both simulations were   compared and 

Climate Research Unit observations data were used as reference data.  Beyond the fact that  

RCMs  perform better than   the driving field , evaluation of seasonal   precipitation biases were 

made,  which shows  that RCM dry biases are highest on June–August around  and  cold biases 

in  temperature  are connected to wet biases in precipitation outside orographic zones. Biases 

brought by the driving GCM were negligible. 

Hernández-Díaz et al. (2012) followed the CORDEX protocol with a new fifth-generation 

Regional Climate Model (CRCM5) driven by ERA-interim  reanalysis for the period 1984–2008 

over the African continent to investigate African climate. The model succeeded in reproducing 

the main features of African climate and the West African monsoon.  Biases in surface 

temperature and precipitation were linked to some circulation defects noted in the simulation. 

For the Sahel region, CRCM5 captures the timing of the monsoon onset.  In boreal summer the 

CRCM5 simulation exhibits a weak cold bias over the Sahara and the maximum temperature is 

located too far south, resulting in a southward bias in the position of the Saharan Heat Low. 

Panitz et al. (2013) applied COSMO-CLM Regional Climate Model (CCLM) over the 

CORDEX-Africa domain and performed two simulations at different resolution one of 0.44 and 

another one of 0.22. The model was driven by the ERA-Interim reanalysis (1989–2008).  CCLM 
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is able to reproduce the features of the African climate with some weakness like the presence of 

an excessive pressure gradient between the Gulf of Guinea and the Sahara. The excessive 

pressure gradient related to a bias distribution marked with a warm bias over the Sahara and a 

cold bias over southern Sahel. The model had dry bias explained by the misplacement of the 

monsoon center (link to the northern shift of the Heat low) and weakening of the monsoon 

intensity (link with the surface energy budget). The study also show also that the higher 

resolution (0.22) didn’t performed better than the coarse one (0.44)   at the monthly means time 

scale. Hadley Centre Global Environmental Model version 3 regional climate model 

(HadGEM3-RA) was used (Diallo et al., 2014) to investigate the onset of  West African 

monsoon  and rainfalls totals over the June-July-August (JJA) season and the underlying 

dynamical processes. CORDEX experimental protocol was followed and the model was driven 

by ERA-Interim reanalysis. A realistic monsoon onset timing was found with an error on the 

mean date of two pentads.  Dry bias (15-20%) was found over the Sahel. The dry bias was 

explained by the model error in simulating the position of the Saharan heat low (too far south), 

lower position of the ITCZ and weaker moisture convergence of the Sahel.  HadGEM3-RA’s 

representation of the general rainfall distribution during the WAM appears superior to that of 

ERA-Interim when using Global Precipitation Climatology (GPCP) Project or Tropical Rain 

Measurement Mission data as reference (TRMM).  Akinsanola et al. (2015) used Three Regional 

Climate Models over CORDEX Africa in Simulating West African Summer Monsoon 

Precipitation  (RCMs)  to  investigate  the characteristics of rainfall pattern during the West 

Africa Summer Monsoon from 1998 to  2008. The validation was made using precipitation data 

from eighty-one (81) ground observation stations and TRMM satellite data. Beyond assessing 

the ability of RCMs to capture the seasonal climatology, annual rainfall cycles, and wind fields 
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of the RCMs over three homogenous sub regions, low frequencies variability (El Nino and La 

Nina) were also assessed. Two models were able to capture the main features and the monsoon 

dynamics over the region   and can therefore be used for the assessment of West African 

Summer Monsoon and future climate projections. Druyan et al. (2010) use five   (RCMs) from  

(WAMME) during May-October (2000-2005) with National Center for Environmental 

Prediction reanalysis II  (NCEP) data  as boundary conditions. Four of the five models generate 

positive precipitation biases and all simulate cold biases from surface air temperature. Over the 

Sahel RCMs spatial patterns of June–September mean precipitation with observational analyses 

is   about 0.90 while the correlation over West Africa of surface air temperature and observation 

is 0.88. Over West Africa   RCMs is capturing the seasonal zonal wind and meridional moisture 

advection and two overestimate moisture convergence. Diallo et al.  (2012) shows the 

importance of local processes and the use of different driving GCMs to construct a MME since 

there is systematic errors compensation from both the nested and the driving GCMs and it give 

more robustness to climate change projection. The western Sahel will go under substantial drying 

in future climate projections (early 21st century A1B 2031-2050  with 1981-2000 as reference 

period) due to a decrease in peak monsoon. Four regional climate models (RCMs) were driven 

by two global climate models (GCMs)  for the  present and future climate over West Africa. 

Models  precipitation  is compared to the observational datasets: GPCP (Global Precipitation 

Climatology Project; 2.5 ×2.5 resolution,  CRU (Climate Research Unit, land only, 0.5× 0.5  

resolution, CMAP (Climate Prediction Center Merged Analysis of Precipitation, 2.5×2.5 and 

GPCC (Global Precipitation Climatology Centre, 1×1 resolution]). The GISS  (NASA/Goddard 

Institute for Space Studies (GISS)) RM3 regional climate model  (Druyan et al., 2015) was used 

to investigate  the added value of downscaling atmosphere–ocean global climate  model 
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(NASA/Goddard Institute for Space  Studies (GISS) coupled ModelE) simulations over Africa   

and adjacent oceans  during June– September 1998–2002 period.The coarse  ModelE resolution 

is  2° latitude by 2.5° longitude and the RM3 grid spacing is 0.44°.  Results show an important 

added value in onset simulation produced by downscaling with RM3.  It eliminated the ModelE  

double ITCZ over the Atlantic with a  more realistic orographic precipitation maxima. 

Downscaling improvements of the meridional movement of the rain band over West Africa and 

the configuration of orographic precipitation maxima were realized irrespective of the SST 

biases noted in ModelIE (Coarse resolution). 

 Paxian et al. (2016) found that the ability of RCMs and improved boundary conditions to reduce 

rainfall biases for climate impact research depends on the considered West African region.  

Hypothesis that global prediction biases can be reduced by dynamical downscaling with an 

MME ensemble of three regional climate models were made. Previous Global predictions reveal 

typical positive and negative biases over the Guinea Coast and the Sahel were respectively 

related to a southward shifted Intertropical Convergence Zone (ITCZ) and a positive tropical 

Atlantic SST bias. By using RCMs,   rainfall biases were reduced by some regional predictions 

in the Sahel but aggravated by all RCMs over the Guinea Coast, resulting from the inherited SST 

bias from GMCs thus increased westerlies and evaporation over the tropical Atlantic and shifted 

African easterly waves. The coupled regional predictions simulate high-resolution atmosphere-

ocean interactions strongly improving the SST bias, the ITCZ shift and the Guinea Coast and 

Central Sahel precipitation biases.  Kim et al. (2013) investigate in the 10 CORDEX regional 

hindcast experiment the skill in simulating the monthly-mean precipitation, minimum and 

maximum surface air temperature and cloudiness. The period 1990-2007 was used as a baseline 

of the evaluation with CRU as observation. All RCMs capture the basic climatological features 
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with some systematic biases across models. A better skill in simulating precipitation and 

temperature over West Africa and lower skill in simulating cloudiness were shown.  MME 

outperforms individual models for all variables.  Cretat et al. (2013) investigate extreme (daily 

intense rainfall) with two RCMs simulations at two different resolution (90 and 30 km) by 

downscaling four GCMs from CMIP5 during the 1998-2008 period. A daily intense rainfall 

event with the 95
th

 percentile threshold at each grid point during a rainy day was defined. Both 

RCMs capture the spatial and temporal features but underestimate their intensity. The added 

value of downscaling to investigate the physics behind the intense event and their change under 

global warming is highlighted. Gbobaniyi et al.(2014) also examine the seasonal climatology and 

inter annual variability with an ensemble of 10 Regional Climate Models (RCMs), driven by 

ERA-Interim reanalysis during the period of 1990-2008. RCMs show acceptable performance in 

simulating the spatial distribution of the main precipitation and temperature features with some 

biases across model. However the interannual variability of seasonal anomalies is well captured 

in temperature compared to the one of precipitation. The ensemble means considerably 

outperform individual RCMs. This highlights the importance of performing multi-model 

assessment. 

 Dosio et al. (2015) use the same models to investigate whether RCMs are effectively able to add 

value and outperform GCMs at regional scale for the present day. According to their study,  the 

boundary condition is affecting the spatial distribution of surface temperature and seasonal 

precipitation, and seasonal statistics are not always improved by the downscaling. Klutse et al. 

(2015)  analyze and intercompare the performance of a set of ten regional climate models 

(RCMs) from  CORDEX outputs along with the ensemble mean of their statistics in simulating 

daily precipitation characteristics during the West African monsoon (WAM) period (June–July–
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August–September). The ensemble mean of the indices substantially improves the RCMs’ 

simulated frequency and intensity of precipitation events, moderately outperforms that of the 

95th percentile, and provides mixed benefits for the dry and wet spells. Paeth et al. (2007) 

investigate the future African climate north of 15
o
S  under greenhouse warming  and land use 

changes (land degradation) with a  Regional model. At the near future (2025) the model shows a 

considerable drying over the Sahel  (20–40% of the annual sum) during the boreal summer. A 

warming up to 7
o
C due to the change in the surface energy fluxes is found. This has implication 

(temperature gradient modified) on the circulation of   the West African monsoon with a drying 

tendency over the region. Abiodum et al. (2008)  used RegCM3 to  investigate the feedback 

mechanisms between land cover and the monsoon in West African using  reanalysis as  boundary 

conditions under three idealized vegetation states (potential, desertified and deforested). The 

study shows that both desertification and deforestation tend to increase the monsoon flow over 

the Guinean region, although the mechanisms for change are different in each case. 

Desertification increases the flow mainly by increasing the meridional temperature gradient. 

While this reduces rainfall over the desertification region, it increases rainfall to the south. On 

the other hand, deforestation increases the monsoon flow mainly due to the reduced surface 

friction experienced by the flow over the Guinean region. This reduces rainfall over the entire 

West African region. Overall, this study suggests that the state of the biosphere in West Africa 

may play an important role in determining the characteristics of the monsoon and rainfall pattern. 

Sylla et al. (2010b) used RegCM3 to investigate the relationship between rainfall changes and 

the monsoon dynamics under increased greenhouse gas forcing with ECHAM5 as a driving 

GCM. They found a drying condition over Sahel and wetter conditions over orographic area. The 

drying condition is associated with a weaker monsoon flow, a strengthening of the AEJ, a 
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weaker TEJ and wave activity is reduced.  Mariotti et al. (2011) used the same model RegCM3 

to simulate over a large African domain a transient climate change for the 21st century (1980–

2100) with ECHAM5 as a driving GCM. For present climate, the two models have different 

spatial patterns for temperature and precipitation with similar biases in terms of magnitude .For 

the future climate, a significant difference between the coarse and fine resolution precipitation 

change pattern where noticed while  the temperature changes patterns depend on the driven 

GCM over the West Africa and Sahel regions. The two model have different response in 

simulating the forcing of  El Niño – Southern Oscillation and of local soil moisture/precipitation 

feedbacks.The Met Office Hadley Centre’s PRECIS regional climate modelling system 

(Buetenmpo et al., 2014)  has been used to generate a five member ensemble of climate 

projections for Africa over the 50 km resolution for 1949-2100 period  (CORDEX-Africa 

domain). From  Hadley  Centre’s perturbed physics global climate model (GCM) ensemble,  a 

subset has been created by discarding ensemble members which are not able to reproduce some 

basics features of African climate. The RCM ensemble substantially improve the patterns and 

magnitude of precipitation compared to their driving GCM which is particularly noticeable in the 

Sahel for both the magnitude and timing of the wet season. Present-day simulations indicate that 

the climatology is influenced significantly by the RCM internal physics and less by their driving 

GCMs. Giorgi  et  al . (2014), used three CMIP5  GCMs to drive  ICTP regional model RegCM4 

new version over five CORDEX domains (Africa, Central America, South America, South Asia, 

Mediterranean) under RCP8.5. Four extreme indices (HeatWave Day Index (HWD), Maximum 

Consecutive Dry Day index (CDD), fraction of precipitation above the 95th intensity percentile 

(R95) and Hydroclimatic Intensity index (HYINT)) were analyzed. Coarse (GPCP) and high 

(TRMM) resolution daily precipitation data for the present day conditions shows that the  
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precipitation intensity distributions from the  GCMs are close to the GPCP data, while the 

RegCM4 ones are closer to TRMM, which show the added value of the increased resolution of 

the regional model. All global and regional model simulations project a regime shift towards 

more intense, less frequent rain events and increasing risk of heat wave, drought and flood with 

global warming. RegCM4 was used to dynamically downscale at 25 km (Sylla et al., 2015 )  

horizontal grid spacing three CMIP5 ESMs: MPI-ESM-MR (Max-Planck Institute Earth System 

Model – Medium Resolution), HADGEM2-ES (Hadley Centre Global Environment Model 

version 2 – Earth System configuration) and GFDL-ESM-2M (Geophysical Fluid Dynamics 

Laboratory Earth System Model version 2M). These ESMs were selected because they provide a 

relatively good representation of the monsoon climate of West Africa. The response of the 

annual cycle of high-intensity daily precipitation events over West Africa to anthropogenic 

greenhouse gas for the late twenty-first century was investigated using the ensemble of high-

resolution regional climate model experiments. For the present day, the RCM ensemble 

improved the simulation of the annual cycle compared to the driving Earth system models. For 

the late-twenty-first-century projected changes in mean precipitation, a delay of the monsoon 

season, a prevailing decrease in frequency but increase in intensity of very wet events were 

found. Sylla et al. (2016a) found that the projected climate change indicates continuous and 

stronger warming (1.5–6.5 °C) and a wider range of precipitation uncertainty (roughly between 

−30 and 30 %) larger in the Sahel and increasing in the farther future. However, the spatial 

distribution unveils significant precipitation decrease confined to the westernmost Sahel and 

becoming greater and more extensive in the high level GHG forcing scenario by the end of the 

21st century. This coexists with a substantial increase in both dry spell length and extreme 

precipitation intensity. West Sahel is thus the most sensitive region to anthropogenic climate 
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change. The rest of West Africa also experiences more intense extremes in future climate but to a 

lesser extent. It is also reported from other previous studies that the projected rainy season and 

the growing season will become shorter while the torrid, arid and semi-arid climate conditions 

will substantially extend. It is thus evident that in a “business as usual” World, most countries in 

West Africa will have to cope with shorter rainy seasons, generalized torrid, arid and semi-arid 

conditions, longer dry spells and more intense extreme precipitations. Dosio et al. (2016) created 

an ensemble of climate change projection for Africa from the downscaling of four Global 

Climate model (MPI-ESM-LR, HadGEM2-ES, CNRM-CM5, and EC-Earth) in the framework 

of CORDEX with CCLM (COSMO RCM), the projected increase of seasonal temperature is 

relatively similar between GCMs and RCM with some local differences. Larger uncertainties in 

the future precipitation changes due to  inter-model (GCMs) variability over some areas 

(e.g.Sahel) were found. 

These studies above mainly found that RCMs were  able to capture the general feature of West 

African climate although some differences and biases still persist in some regions and seasons. 

2.3 Multi Model Ensemble techniques  

 

Based on the availability of GCMs and RCMs simulation data through CMIP5 and CORDEX 

program, Multi Model Ensemble have been used to investigate the future climate over the region. 

These data have been used for seasonal prediction ( Palmer et al, 2004, Stephenson et al., 2005).  

Annan et al. (2011) found that Multi Model Mean tends to have a lower Root Mean Square Error 

compared to most individual models. Paeth et al. (2011) shows that MME have clearly an added 

value in WAM rainfall with respect to the European Reanalysis-Interim driving field. While 

Diallo et al. (2012) suggested that for improved performance, the multi-model RCM ensembles 
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should be based on different driving GCMs. Multi Model Ensemble were used in their simplest 

form. There are  more complex methods combining the models.  

 

Giorgi and Mearns (2002) proposed Reliability Ensemble Averaging method based on a 

weighted mean of the different GCM/RCM that account for reliability of each model that 

produces a weighted average of an ensemble of climate change results, taking into account the 

ability of a particular model to simulate the observed climate, and its degree of convergence in 

the predicted climate change with respect to the other models. The method was applied to 

calculate average, uncertainty range, and a measure of reliability of simulated climate changes 

(mean seasonal temperature and precipitation changes for the late decades of the twenty-first 

century) over 22 land regions of the world from nine Atmospheric Ocean GCM (AOGCM) 

experiments for two anthropogenic emission scenarios (the A2 and B2 scenarios of the 

Intergovernmental Panel for Climate Change). Some of the findings indicate that in the 

simulations for the A2 scenario the REA average regional temperature changes varied between 

about 2 and 7 
o
C  across regions and they were all outside the estimated natural variability. The 

uncertainty range around the REA average changes varied between 1 and 4 
o
C across regions. A 

noticeable exception was found in the Sahel region in June-July-August season, where a large 

difference is found between the ensemble average and the REA average. The main reason was 

that most of the model simulations exhibit a large precipitation bias over this region, in excess of 

200% with the exception of 3 simulations that have a bias of less than 100% (only 1 model has a 

bias lower than 10%). As a result, since the REA average is dominated by three simulations only, 

it can be substantially different from the ensemble average. 
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Furthermore, the method also allows the derivation of PDFs for climate variables under climate 

change conditions (Giorgi and Mearns, 2003). Compared to simpler approaches, the REA 

method allows a reduction of the uncertainty range in the simulated changes by minimizing the 

influence of outlier or poorly performing models. The method also produces a quantitative 

measure of reliability that shows that both criteria need to be met by the simulations in order to 

increase the overall reliability of the simulated changes.  

Xu et al. (2010) upgrades the REA method mainly for the calculations of model weight. In the 

original REA method the model weight is given by the multiplication of two reliability factors 

which are measures of the model performance and convergence criteria. In the upgrade one,  the 

use of the convergence criterion by eliminating the convergence-based reliability factor from the 

definition of the overall weight was abandoned. Then multiple variables (temperature, 

precipitation, pressure) and multiple statistics (mean, interannual variability) were added  in the 

definition of the reliability weight. The augmented REA was first applied for illustrative purpose 

to calculate temperature and precipitation changes based on ensembles of global model 

simulations for the East Asia region. The dataset employed is the ensemble of coupled 

Atmosphere-Ocean General Circulation Model (AOGCM) simulations conducted in the Phase 3 

of the Coupled Model Inter-comparison Project (CMIP3) in support of the fourth assessment 

report of the Intergovernmental Panel on Climate Change (IPCC AR4). Cumulative Density 

Functions (CDFs) of changes in temperature and precipitation for 2081-2100 with respect to 

1961-1980 over 6 Chinese sub-regions as well as the entire China territory were calculated. This 

exercise was repeated for the eight European regions used in the PRUDENCE project 

(Christensen and Christensen, (2007)). 
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REA approach from multi-model ensemble was extended by Tebaldi et al. (2004, 2005) with a 

formal statistical framework using Bayesian methods. Their Bayesian inference treats the 

unknown quantities as random variables (present and future climate signal) with reference prior 

distributions. The likelihood function is determined through the assumption made from 

observation and model output. Bayes theorem is then used to derive the posterior distribution 

through Markov Chain Monte Carlo simulations. Applying the model to precipitation from 

AOGCMs (CCC, CCSR, CSIRO, GFDL, MPI, MRI, NCAR, NCARDOE and UKMO) over 22 

land regions for A2 and B2 scenarios. They found a high degree of uncertainty for precipitation 

projection change (in percentage) over the Sahel region (SAH) with a wide PDFs explained by 

large model bias (up to 600% for June July August (JJA) season.  The future period was 2070-

2099 relative to the present day period 1961-1990. 

2.4 Separating sources of uncertainties 

 

Hawkins and Sutton (2009) separate and quantify the sources of uncertainties in decadal global 

mean air temperature change projection using CMIP3 archive for 21
st
 Century.  The residual 

from a 4
th

 order polynomial fit to the global mean time series for each model is defined as the 

internal variability. The contribution of each source of uncertainty to the total uncertainty was 

estimated. Internal variability and model uncertainty is found to be dominant for few decades 

ahead. The scenario uncertainty is dominant at the end of the 21
st
 century. Another important 

finding is the fact that, for temperature, the signal to noise ratio is greater than one for all the 

regions highlighting certainty of global warming. With The progress of climate science, model 

uncertainty and internal variability can be potentially reduced.  A follow-up study by Hawkins 

and Sutton (2011) was applied using precipitation projection in global and regional scale.  Their 

main findings are that internal variability is the most important uncertainty for precipitation for 
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all the regions up to mid-21
st
 century. Over the Sahel region scenario uncertainty for 

precipitation during the JJA season is negligible.  The signal to noise ratio over the tropics for 

precipitation is lower (close to zero) than for the temperature meaning that precipitation 

projection over West Africa is still uncertain.  Time of emergence defined by Giorgi and Bi 

(2009) as the time of  21
st
  century when the magnitude of the ensemble mean precipitation 

change signal becomes greater than the total uncertainties identified early decade of 21
st
 

century(northern high latitude, Mediterranean and East Africa), the mid decades (East and South 

Asia, Caribbean) and late decades (South Africa, western United States, Amazone Basin, 

Southern Australia and Central America).  Knutti et al. (2013) investigate the robustness and 

uncertainties in CMIP5 climate model projections. Despite model development (new generation 

of more complex model) and increase in computational capacity, representation of more process 

in details and internal variability remain a challenge. In fact, projected global temperature change 

is still similar to those from IPCC AR4 under the same scenarios, with little change in the model 

spread.  
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                CHAPTER THREE 

Chapter 3 3. DATA AND METHODOLOGY 

 

3.1 Presentation of the study area 

 

The study area of this research is West Africa located between the latitudes 0 N and 20N and the 

longitudes 20E and 20W (Fig3.1). Sixteen counties constitutes the WA region: Benin, Burkina 

Faso, Cape Verde, Gambia, Ghana, Guinea, Guinea Bissau, Cote d’Ivoire, Liberia, Mali, 

Mauritania, Niger, Nigeria, Senegal, Sierra Leonne and Togo. West Africa has several climatic 

zones from humid (southern coast) to arid (toward the North).  The major water resources are the 

Niger river, lake Chad, the Senegal river, the Gambia river and the Volta basin covering Burkina 

Faso and Ghana.  

Following  Sylla et al. (2012) from April to September the region is driven by the West African 

Monsoon (WAM) system which is a large scale circulation characterise at the low level of the 

atmosphere by the wind direction reversal transporting moisture to land from the Atlantic Ocean 

and triggering the monsoonal rainfall up to the Sahelian belt. During the boreal summer(July-

August-September) the WAM monsoon is fully develop  with South-westerlies moisture flux 

converging onto the Sahel and retreat in early autumn  (Gaetani et al.,2013). The monsoon sub-

seasonal, seasonal  and inter annual variability are  controlled  by various factors such as Sea 

Surface Temperature (SST), the continental-land surface condition and the atmospheric 

circulation (configuration of  Tropical Easterly Jet (TEJ), African Easterly Jet (AEJ) 
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,Intertropical Convergence Zone (ITCZ) and  African Easterly waves(AEW) (Sylla et al., 2012 ; 

Nicholson, 2009). 

 

 

Figure 3.1: CORDEX experiment domain and topography including 3 three key sub regions of 

interest (i.e. rectangle) Gulf of Guinea, Sahel and West Africa used for the descriptive statistics 
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3.2 Data 

Ensembles of 29 CMIP5 GCMs (CMIP5) and 16 CORDEX RCMs (CORDEX) experiments 

(Table 3.1) for the historical (1982-2000) and future period (2070-2099) under the two scenarios 

RCP45 and RCP85 are analyzed and inter-compared over West Africa. To identify the origin of 

the bias in the downscaling experiments, the ensemble of the eight CMIP5 GCMs that forced the 

CORDEX experiments (CMIP5_SUBSET) is also considered. While the CMIP5 GCMs cover 

the whole globe at 100-200 km resolution, CORDEX RCMs are integrated over the Africa 

CORDEX domain with a grid interval of ~50 km. However our domain of interest (Figure 1) is 

limited to West Africa, along with two small subregions (Sahel and Gulf of Guinea) in which the 

statistics are calculated. More detailed information on the CMIP5 and CORDEX experimental 

set-ups can be found in Taylor et al. (2012) and Jones et al. (2011), respectively. 

Observations used to evaluate the different ensembles for the historical conditions are the Global 

Precipitation Climatology Project (GPCP 1DD 1
O 

x 1
O 

resolution; Huffman et al., 2001), the 

Climatic Research Unit of the University of East Anglia (CRU 0.5
O
 x 0.5

O
 resolution; Harris et 

al., 2014) and the University of Delaware (UDEL 0.5
O
 x 0.5

O
 resolution; Legates and Willmott 

(1990)). Although the various precipitation and temperature products available for Africa are 

characterized by substantial differences, the use of these multiple observed data sources can help 

to account for observational uncertainties (Nikulin et al., 2012; Sylla et al., 2013). All the 

datasets are re-gridded onto a common 50 km resolution grid. 
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Table 3.1: CMIP5 ESMs and CORDEX RCMs with downscaled GCMs (blue colors) 

 

 

 

Model  RCA4 CCLM4 HIRHAM5 RACMOT2

2T 

CanRCM4 RegCM4 

BCC-CSM1.1       

BCC-CSM1.1(m)       

CanESM2 α 

 

   α 

 

 

 

CNRM-CM5 α 

 

α 

 

    

ACCESS1.0       

CSIRO-Mk3-6-0       

EC-EARTH α 

 

α 

 

α 

 

α 

 

  

FIO-ESM        

INM-CM4       

BNU-ESM       

IPSL-CM5A-MR       

IPSL-CM5A-LR       

IPSL-CM5B-LR 

 

      

MIROC-5 α 

 

     

MIROC-ESM        

HADGEM2-CC       

HADGEM2-ES α 

 

α 

 

 

 

  α 

 
MPI-ESM-LR α 

 

     

MPI-ESM-MR      α 

 
MRI-CGCM3        

GISS-E2-R       

CCSM4       

NORESM1-M α 

 

     

NORESM1-ME       

HADGEM2-AO       

GFDL-ESM2G       

GFDL-ESM2M α 

 

     

CESM1-BGC       

CESM1-CAM5       
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3.3 Methodology  

3.3.1. Validation of CMIP5 and CORDEX data for the present day using simple MME  

The MME approach is applied to the CMIP5 and CORDEX ensembles. Precipitation and 

temperature mean climatology from the different MMEs as well as their spatio-temporal 

variability are considered only for the summer monsoon season (June-September, or JJAS). 

We first compare the simulations with the multiple observation products mentioned above 

through a simple bias operation (simulation minus observation) for the whole West Africa 

analysis domain. The ability of the RCM MME to improve upon the forcing GCM MME is 

quantified using an Added Value (AV) metric defined by Di Luca et al. (2012) with the 

normalization introduced by Dosio et al. (2015). The AV is given by the formula:  

𝐴𝑉 =
((𝑋𝐶𝑀𝐼𝑃5−𝑋𝑂𝐵𝑆)

2−(𝑋𝐶𝑂𝑅𝐷𝐸𝑋−𝑋𝑂𝐵𝑆)
2)

𝑀𝑎𝑥((𝑋𝐶𝑀𝐼𝑃5−𝑋𝑂𝐵𝑆)2,(𝑋𝐶𝑂𝑅𝐷𝐸𝑋−𝑋𝑂𝐵𝑆)2)
                                                        

where XOBS, XCMIP5 and XCORDEX  are the mean values for observations (i.e. UDEL), CMIP5 (or 

CMIP5_SUBSET) and CORDEX. This formula is applied at each grid point. A positive AV 

means that the CORDEX mean square error is smaller than the CMIP5 one and therefore 

indicates the existence of added value. This is depicted by an open circle or a sign + in Figures 

4.1 and 4.2. In addition, to characterize the intermodel spread we use box plots including the 

ensemble median, upper (25%) and lower (75%) quartiles as well as the maximum and minimum 

of the different data sources. These are computed for the Gulf of Guinea, the Sahel and the West 

Africa domain shown in Figure 3.1. 

Finally for the spatio-temporal variability, a Rotated Empirical Orthogonal Function (REOF) 

analysis is applied to the time series of the seasonal (JJAS) temperature and precipitation derived 

from UDEL observations and each MME at each grid point and for the whole period of interest 

(3.1 ) 
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(1982-2005). The EOF analysis is often used to study spatial modes (i.e. patterns) of variability 

and how they change with time (Lorenz, 1956). In this study, REOF is chosen instead of the 

simple EOF analysis because the latter has a tendency to produce unphysical modes (Hannachi, 

2007). Such shortcoming is partly alleviated by the REOF analysis, thus facilitating the 

interpretation of the results (Lian and Chen (2012)). As a measure of model performance in 

capturing this spatio-temporal variability, we use the Pattern Correlation Coefficients (P) and 

Pearson Correlation Coefficients (R) with respect to observations. P measures similarities 

between two spatial patterns (here observed and simulated REOFs) while R measures the 

strength of the linear relationship between two variables as they vary in time (here observed and 

simulated PCs). We emphasize, however, that since the models do not include any assimilation 

of observed data, significant temporal correlations can be expected only in so far as they are 

attributable to the greenhouse gas and aerosol forcing and not to natural climate variability. 

3.3.2 Validation of CMIP5 and CORDEX data for the present day using bayesian inference  

3.3.2.1 Definition of Bayesian inference  

 

The process of fitting a set of data with probability model which summarize the results in the 

form of probability distribution on the parameter of the model is defined as Bayesian inference.  

Via Bayes rule, it provides a rational method to update our beliefs in the light of new 

information. The method has an advantage of providing a computational framework for model 

selection, validation and uncertainty quantification and reduction. Parameters are random 

variable with distribution attached to them. Due to some lack of knowledge on some processes in 

the atmosphere and imperfect parameterization in climate modeling, uncertainty remain in our 

GCMs/RCMs present and future climate projection and need to be quantified. Bayesian 

inference is one option to address above issues.  The method has three components: the prior, the 
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likelihood and the posterior distribution. The prior is representing the current state of knowledge 

prior to the data being observed. The likelihood function is constructed once the data has been 

observed. Assuming that the data values  1,..., ny y y  are obtained independently and the vector 

of the unknown parameter is , the likelihood function is given by  

1

1

( | ) ( ,..., | ) ( | )
n

n i

i

L y p y y p y  


 
                                              

 

To obtain the posterior distribution ( | )p y , the probability distribution of the parameter , once 

the data have been observed, Bayes theorem is applied  

                             
( ) ( | )

( | ) ( ) ( | )
( )

p L y
p y p L y

p y

 
     

Markov Chain Monte Carlo (MCMC) algorithm is then used after an initial burn-in period 

(which is discarded) to simulate an equilibrium distribution of sample in parameter space such 

that the density of sample is proportional to the joint posterior Probability Density Function 

(PDF). The Bayesian inference has been applied on present climate for validation purpose and on 

future climate projection. 

3.3.2.2 Bayesian inference on CMIP5 and CORDEX present day climate simulation 

 

A Bayesian model adapted from Mesquita et al. (2012) is applied on precipitation data over 

Guinea coast and Sahel region.  The joint prior distribution  
2( , )p    where    is mean 

precipitation and  ( 2 )  the variance, the posterior inference will use Bayes’ rule,  

(3.2 ) 

(3.3 ) 
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where 1,..., ny y  represent the data. Since the joint distribution for the two quantities can be 

expressed as the product of a conditional probability and a marginal probability, the posterior 

distribution can be decomposed  

2 2 2

1 1 1( , | ,..., ) ( | , ,..., ) ( | ,..., )n n np y y p y y p y y    
            

 

Where the first part of the equation is the conditional probability of    on the variance and the 

the second part is the marginal distribution of  2  . The conditional probability part was assumed 

to have  a normal distribution:
2 2

1{ | ,..., , } ( , / )n n ny y normal k            

 where 0nk k n    representing  the degrees of freedom (df) as the sum of the prior df ( 0k ) and 

that from the data (n).  n  is given by  
2 2

0 0 0 0

2 2

0

( / ) ( / ) ( )

/ /
n

n

k n y k ny

k n k

   


 

 
 


     

where y  represent  the sample mean taken from the model simulation  and  0  is the  prior mean  

from UDEL observation over the considered region (Guinean Coast or the Sahel). The second 

part of the equation 2, the marginal distribution of 2  has a gamma distribution     

2 2

1{1/ | ,..., } ( / 2, / 2)n n n ny y gamma        

with  0n n     sum of the degree of freedom of the prior ( 0 ) and the data ( n ). 

2 2 2 20
0 0 0

1
[ ( 1) ( ) ]n

n n

k n
n s y

k
   


        

(3.4)  

(3.5 ) 

(3.7 ) 

(3.6 ) 

(3.8 ) 
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 where  y   is the sample mean and 2s  is the sample variance taken from the model simulations. 

2

0  is the prior variance. Posterior mean and variance is derived through an averaging of 

MCMC large sample size (10000) and   95% central posterior interval probability limit is drawn.  

3.3.3 Bayesian inference on CMIP5 and CORDEX future climate projection 

 

Bayesian approach is applied to CMIP5 GCMS and CORDEX RCMS data in order to quantify 

the probability associate with precipitation and temperature change over Guinean Coast and 

Sahel region.  This statistical framework had been proposed by Tebaldi et al. (2005) to find out 

how projections from different models contribute to a final PDF (Probability Distribution 

Function) of climate change. The method is summarized as follows. For each region,
iX  and 

iY  

denoted respectively the present (1976-2005) and future (2070-2099) simulated temperature by 

the thi  model, for JJAS season and averaged over the region of interest. For each region    and  

  represent respectively the true present and future temperature average over 30 years. They 

made an assumption that 
iX  and 

iY   have normal distribution  
iX

1( , )iN  
    

iY

1( , ( ) )iN   
 where the parameter i   is called   the precision of the model i  and for 

iY   the 

precision of the model i   is i .   is a multiplication factor for the model precisions in future 

climate simulations.  It constitutes the likelihoods function. The observation likelihood   is 

0( , )oX N   . 
0  is a function of the natural variability derived from the observation and  is 

specific to a region. T      is the expected temperature change. A gamma prior densities 

were chosen for   the parameters , 1,...,i i n   and . Bayes’ Theorem was applied to the 

likelihood and priors specified above to derive the joint posterior density for the parameters  , 
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, ,
1......... n    through  Markov Chain Monte Carlo (MCMC) simulation (details about the 

methods, the MCMC and Gibbs sampler can be found in Tebaldi et al. (2005). 

Inference cannot be drawn from this equation since its distribution is not a member of any known 

parametric family. Therefore Markov Chain Monte Carlo simulation was used to generate a large 

number of sample values through the implementation of   a Gibbs sampler.  The details about the 

methods, the MCMC and Gibbs sampler can be found in Tebaldi et al. (2005). 

The posterior distribution of    is Gaussian with mean 
0 0

( ) / ( )
n n

i i i

i i

X  
 

        

 which is a weight average of observation and model present day output with weights 

0 1, ......... n    and   the posterior distribution of   is Gaussian with mean  

  
0 0

( ) / ( )
n n

i i i

i ii

Y  
 

      

 a weight average of the n  model forcing response with weight 1......... n  . The mean of the 

posterior distribution of the i ’s, for i=1,….,n, is   
2 2

1

| | | |
i

i iX Y


  


  
   

The equation shows that if both | |iX   and | |iY   are small the weight i  is large. These two 

quantities correspond to the bias and convergence criteria respectively in Giorgi and Mearns 

(2002). | |iY   measures the distance of the  thi  model future response from the overall average 

response while  | |iX   measure the distance of the  thi  model to the present.  

 

(3.9)  

(3.10)  

(3.11) 
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3.3.4 Partitioning and quantifying uncertainties in climate projection over West Africa   

 

The method used to separate the different component of uncertainties was based on Hawkins and 

Sutton (2009) methods.  An ordinary least square was used to fit each decadal anomalies 

prediction of CMIP5, CMIP5_Subset and CORDEX with a fourth-order polynomial over the 

years of 2006-2099 for the two scenarios RCP45 and RCP85. The anomalies were computed 

with the reference period of 1976-2005.  The raw predictions ( X ) for each model ( m ) and 

period (t) are written as, ( , ) ( , ) ( ) ( , )refX m t z m t m m t       

where  ( )ref m  is the reference temperature for each model,  ( , )z m t  is the polynomial fit of the 

projected change of the parameter and the regression error is ( , )m t .  

The internal variability is defined as the multi-model mean of the variance of the regression error  

( , )m t  

2

1 1

1
( ( , ))

mN T

HS

m tm

V m t
N T


 

      

The internal variability is assumed to have a constant variance in time.   

The model uncertainty is the mean of inter-model variance of ( , )z m t . 

2

1

1
( ) [ ( , ) (., )]

mN

HS

mm

M t z m t z t
N 

     

The total uncertainty ( ( )HST t ) is defined to be the sum of  HSV  and  ( )HSM t  

( ) ( )HS HS HST t V M t     

(3.12 ) 

(3.13 ) 

(3.14 ) 

(3.15 ) 
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The signal to noise ratio (S/R) at the period (t) (based on Cox and Stephenson, (2007)) is defined 

as  
(., )

/
1.65 ( )HS

Z t
S N

T t
   

The fraction of variance of internal variability and model uncertainty are defined respectively by 

/ ( )HS HSV T t  and ( ) / ( )HS HSM t T t . 

 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

(3.16 ) 
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                  CHAPTER FOUR 

Chapter 4 4. RESULTS AND DISCUSSION 

 

4.1 Multimodel CMIP5 and CORDEX simulations of historical summer temperature and 

precipitation variabilities over West Africa  

 

4.1.1 Multimodel ensemble mean climatology 

 

Before evaluating the simulated spatio-temporal variability of temperature and precipitation 

during the boreal summer season (July-September) for the different MMEs, in this section we 

first analyze the spatial patterns of their mean climatology.  

The temperature distribution from observations (UDEL and CRU) and the MMEs of CMIP5, 

CMIP5_SUBSET and CORDEX as well as their respective bias distributions are presented in 

Figure 4.1. Observations indicate that in general the Sahara desert experiences the highest 

temperatures (more than 36
o
C) and the Gulf of Guinea the lowest ones (between 24

o
C and 26

o
C). 

The Sahel, which is the transition zone between the two regions, exhibits intermediate values 

ranging from 26
o
C to 32

o
C. The temperature maxima and minima are found in the area of the 

Saharan Heat Low (SHL) and at the peak of orographic zones (Guinea Highlands, Cameroon 

Mountains and Jos Plateau), respectively.  

The MMEs reproduce the general observed pattern of summer temperature, however with 

notable discrepancies among them. The spatial distribution is smoothed in the CMIP5 and 

CMIP5_SUBSET compared to the observations, while CORDEX shows more spatial details and 

lower temperature values around orographic zones as a result of its higher resolution. As a 
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consequence, a negative bias of about 2
o
C more extended in CORDEX compared to CMIP5 and 

CMIP5_SUBSET prevails over the Gulf of Guinea.  
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Figure 4.1: 1982-2005 JJAS mean temperature (
o
C) for a) CRU observation, b) UDEL 

observation, c) CMIP5, d) CMIP5_SUBSET, e) CORDEX and respectively their corresponding  

bias with respect to UDEL  in f), g), h). For CORDEX i.e. in e), the open circles mean 

improvement compare to CMIP5_SUBSET while the sign plus is for improvement compared to 

CMIP5 

 

 

 

 

 

 

 

 



 

35 
 

In addition, a cold bias of more than 3
o
C widely spread over the Sahara desert develops in all 

MMEs. Finally, over the Sahel band, a predominant warm bias is simulated by CMIP5 and to 

lesser extent by CMIP5_SUBSET. Therefore, in general CORDEX fails to   outperform the 

simulated mean temperature by CMIP5 and CMIP5_SUBSET over the Gulf of Guinea, over the 

Sahel and over the southern Sahara desert. However, we note some improvements with respect to 

both CMIP5 MMEs over the area of the SHL, western Sahara and Central Africa.   

Considering the corresponding spatial patterns of precipitation shown in Figure 4.2, the 

Intertropical Convergence Zone (ITCZ) is observed in a zonal and tilted band between 8N and 

12N in GPCP, CRU and UDEL with a sharp decreasing precipitation gradient south and north of 

this band. The minima are located north of 18N while maxima are found in topographically 

complex terrains of the Guinea highlands, Jos plateau and Cameroon mountains. As noted by 

Nikulin et al. (2012) and Sylla et al. (2013b), there are discrepancies among the various observed 

precipitation products over West Africa. 
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Figure 4.2:  1982-2005 JJAS mean precipitation (mm/day) for a) CRU observation, b) 

UDEL observation, c) CMIP5, d) CMIP5_SUBSET, e) CORDEX and respectively their 

corresponding  bias with respect to UDEL  in f), g), h). For CORDEX i.e. in e), the open 

circles mean improvements compared to CMIP5_SUBSET while the sign plus is for 

improvement compared to CMIP5 
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In this case, these differences include a missing maximum in CRU over the Jos Plateau and a 

much better defined ITCZ in GPCP (e.g. GPCP does not show any break in the ITCZ). Note that 

the observational uncertainty is relatively low for the JJAS climatology in temperature and 

rainfall compared to higher uncertainties at finer temporal scales (i.e. Cretat et al., 2014). 

The MMEs show close agreement with observations in simulating the spatial patterns of the 

summer monsoon precipitation features, including the ITCZ position, the northward and 

southward decreasing gradients and the large precipitation amount around orographic zones. 

However, a notable wet bias (40% to 80%) along the Gulf of Guinea and dry bias (mostly 10% 

to 20%, but up to 60%) over the Sahel are dominant in CMIP5. In CMIP5_SUBSET the wet bias 

is more extended to cover almost the whole West Africa, with overestimations of 10% to 80%. 

This originates from a broader representation of the ITCZ in the CMIP5 ensembles, especially in 

the CMIP5_SUBSET used for driving the RCM simulations. Conversely, in CORDEX both the 

wet and dry biases are reduced, resulting in a substantial improvement compared to both CMIP5 

ensembles, and an added value in many areas of the Gulf of Guinea, the Sahel and most of West 

Africa. In addition to these significant improvements, it can be noted that the spatial pattern of 

rainfall biases simulated by the RCM MME resembles that of the CMIP5_SUBSET MME. This 

suggests a stronger control by the driving GCMs on the spatial distribution of precipitation than 

on the intensity of RCM-simulated rainfall. It should be emphasized that around peaks of 

mountainous areas, CORDEX does not show any added value because of more fine-scale details 

simulated in the presence of complex topography than found in the observations.  

Overall the MMEs exhibit different levels of performance in their simulations of temperature and 

precipitation compared to observations, with CMIP5 and CMIP5_SUBSET showing a smoothed 

spatial pattern and CORDEX providing more fine-scale features tied to local complex 
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topography and coastlines. In addition, although CORDEX underestimates temperature with a 

greater cold bias compared to the CMIP5 ensembles, it substantially improves both the 

magnitude and spatial extent of simulated summer monsoon precipitation. To examine whether 

this results from a more consistent simulation of the West African summer monsoon 

precipitation among RCMs or from cancellation of errors of opposite signs, we assess in the next 

section the ensemble spread.  
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4.1.2 Multimodel Ensemble Spread 

 

The spatial patterns of the inter-model standard deviation (i.e. Figure 4.3a,b,c) highlights a good 

consistency among the models of the same ensemble in their simulation of the temperature field 

over the Gulf of Guinea (standard deviation less than 1°C). 
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Figure 4.3: 1982-2005 JJAS mean temperature (a, c, e, g, i) and precipitation (b, d, f, h, j)  

ensemble standard deviation for  respectively CMIP5, CMIP5_SUBSET, CORDEX,  CORDEX 

RCA4 and CORDEX ICHEC-EC-EARTH. Units are degrees C for temperature and mm/day for 

precipitation 
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However, substantial differences are present over the Sahel and the Sahara desert across the 

various ensembles. For instance, CMIP5 exhibits a standard deviation of more than 2°C in the 

area of the SHL, part of northeastern Sahel and in some regions of the western Sahara desert. 

Conversely, CMIP5_SUBSET simulates a wide zonal band of more than 2°C standard deviations 

stretching from the west to the east and extended from 12N to 23N. For CORDEX, such a 

standard deviation occurs only over a small portion of the northeastern Sahel, indicating that the 

CORDEX RCMs provide a greater inter-model agreement in simulating surface air temperature.  

To address the spread induced by the use of different lateral boundary forcings and the one due 

to the use of different RCMs for the same boundary forcing, two CORDEX subsets are 

introduced: the MME derived from the eight (8) RCA4 experiments driven by different GCMs 

(i.e. Figure 4.3d) and the MME of the four (4) CORDEX RCMs driven by the EC-EARTH GCM 

(i.e. Figure 4.3e). The RCA4 ensemble exhibits a standard deviation smaller than 1°C throughout 

the region, suggesting that the boundary forcing does not have a strong impact on the 

temperature simulation by a single model compared to its internal physics. This evidently also 

contributes to reducing the inter-model spread for the full CORDEX ensemble (Figure 4.3g). 

Conversely, the ensemble of RCMs driven by EC-EARTH shows greater standard deviations (up 

to more than 3°C) compared to all MMEs, especially over the Sahel, confirming that the internal 

model physics of the four RCMs produce substantially different simulations of temperature even 

with the use of the same boundary forcing. 

For precipitation (i.e. Figure 4.3f,g,h), both CMIP5 and CMIP5_SUBSET show larger standard 

deviations (between 2 and 3 mm/day) along the ITCZ, relatively smaller one (between 1 and 2 

mm/day) north and south of it and a good consistency among models above 20N. CORDEX 

generally produces lower standard deviations (less than 2 mm/day) over  the whole West Africa 
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except over orographic zones. The separation of the CORDEX standard deviation into the 

contribution from different boundary conditions (Figure 4.3h) and that from different RCM 

physics (Figure 4.3j) indicates that, similar to what was  found for temperature, the latter 

dominates, and in fact that different boundary forcing only provides a minor contribution to the 

RCM ensemble spread. Overall, Figure 4.3 clearly points to the prominent role of model physics 

in determining the intermodel spread in surface climate simulation, both for the GCM and the 

RCM ensembles. 

To further assess and compare the performances of the MMEs, better highlight their ensemble 

spread and quantify the added value at the regional scale, we analyze in Figure 4.4 the box-plots 

for temperature and precipitation from the various ensembles over the different subregions of 

West Africa defined in Figure 3.1. Comparing the areal average of CRU, UDEL and the GCMs 

and RCMs experiments presented in Figure 5a, the results first confirm the cold bias simulated 

by the MMEs over West Africa in general and the relatively warm bias along the Sahel band in 

CMIP5. The cold bias is also seen in the RCA4 ensemble and the ensemble of the 4 RCMs 

driven by EC-EARTH. CORDEX produces the largest bias (also seen in the median) as a result 

of lower temperature values simulated by the RCMs in the presence of more realistic complex 

topography compared to CMIP5 GCMs. In addition, the interquartile range (IQR) is similar for 

all MMEs (except for the ensemble of RCA4, in which it is smaller) over the Sahel and West 

Africa but greater in CORDEX over the Gulf of Guinea, indicating a larger dispersion among 

most of the RCMs in their responses to the topographical forcing in this region. Furthermore, we 

note that for all subregions and all MMEs the bottom whisker, i.e. the colder model, is more 

extended than the top one, corresponding to the warmest model (except for the ensemble of 

RCA4 and the one built from the RCMs driven by EC-EARTH). Finally, CORDEX appears to 
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be negatively skewed compared to CMIP5 and CMIP5_SUBSET. As a consequence, a shift of 

the median occurs towards the upper quartile of the box with a broader range of simulated 

temperature values in the lower quartile. Consistent with Figure 4.3, this confirms the largest 

cold bias present in CORDEX but also the more consistent simulations of temperature values 

among the RCMs. As already mentioned, this is due to the large number of RCA4 simulations in 

the CORDEX ensemble, which are characterized by a small spread. 

For precipitation, Figure 4.3b confirms the improved performance of CORDEX over CMIP5 and 

CMIP5_SUBSET in the Gulf of Guinea and the Sahel as discussed in Figure 4.3a. Over the 

whole West Africa, such an improvement is only achieved with respect to the CMIP5_SUBSET 

driving models. In fact, while the observations lie outside the IQR in the CMIP5_SUBSET, they 

are within the IQR in the CORDEX MMEs, except for the RCA4 ensemble in the Guinea Coast 

region. An interesting feature in Figure 4.4b is the presence of more extended upper whiskers 

and symmetrical boxes in all MMEs and subregions, except for RCA4 ensemble in the Sahel. 

This highlights a similar dispersion of models about their respective ensemble median and the 

existence in each MME of outliers that are substantially different than the rest of the ensemble. It 

should be emphasized that, consistently with Figure 4.3a, the CORDEX IQR is similar to that of 

CMIP5 and CMIP5_SUBSET in the Gulf of Guinea, but smaller in the Sahel. We finally note 

that the CORDEX subsets show results in line with the temperature box plots (i.e. Figure 4.4a) 

with regards to the spread induced by the use of different boundary conditions and RCMs. 

Therefore, although the ensemble mean rainfall bias and the ensemble standard deviation are 

systematically lower in the CORDEX than the CMIP5 ensemble, the IQR is not necessarily 

smaller in CORDEX, suggesting that the spread induced by the model physics is greater in the 

RCMs than the GCMs. Overall, it is evident that the improved performance of CORDEX is more 
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likely a consequence of a better and more consistent simulation of monsoon precipitation than 

greater error cancellations, and  depends more on the internal model physics than the driving 

boundary conditions. 
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Figure 4.4 : Box plots for JJAS mean a) temperature and b) precipitation for CMIP5, CMIP5_SUBSET, 

CORDEX, CORDEX RCA4 and CORDEX ICHEC-EC-EARTH over the 3 key subregions of Gulf of 

Guinea, Sahel and West Africa. Units are degrees C for temperature and mm/day for precipitation 
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4.1.3 Spatio-Temporal Variability 

The first three principal component loading patterns along with their time series generated from 

the REOF analysis applied to the temperature (Figures 4.5 and 4.6 respectively) and precipitation 

(Figures 4.7 and 4.8 respectively) fields are intercompared here for UDEL observations and the 

CMIP5, CMIP5_SUBSET and CORDEX MMEs. Hereafter, the loading patterns are referred to 

as REOFs and the time series as Principal Components (PCs). 
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Figure 4.5: REOFs of the first three modes for JJAS mean temperature from UDEL (a, b, 

c), CMIP5 (d, e, f), CMIP5_SUBSET(g, h, i) and CORDEX (j, k, l). The percentage of 

variance explained by each mode is labeled 
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The first three observed REOFs explain more than 70% of the total variance, i.e. most of the 

spatio-temporal variability in summer surface temperature can be synthesized in three main 

modes of variability. The first mode accounts for 35% of the total variance and corresponds to a 

widespread surface warming (cooling) locked over West Africa during its positive (negative) 

phase, while surface temperature anomalies remain systematically weak in the northern Sahara. 

The second and third modes represent 27% and 9% of the total variance, respectively. They 

describe a tripole in surface temperature variability with anomalies that are positive along the 

coast of the Gulf of Guinea and parts of Sahara, and negative or weakly positive in the Sahel 

during their positive phase. This is reversed during their negative phase. The main spatial 

differences between these two modes are found north of ~10°N. During their positive phase, 

warm anomalies spread over the central and eastern Sahara for REOF2, while they are confined 

in the north-western regions for REOF3. Similarly, negative to weak positive anomalies are 

embedded in a northwest-southeast band for REOF2, and in a southwest-northeast band for 

REOF3. For simplicity, these three observed modes are referred as the West African mode 

(REOF1), the Central-Eastern Saharan mode (REOF2), and the Western Saharan mode 

(REOF3), respectively. 

The MMEs (Figure 4.5d-l) roughly capture the spatial patterns of these modes of variability but 

with different variance and occurrences of the modes, and different magnitudes and signs of the 

anomalies. In fact, the spatial patterns explain nearly or more than 90% of the total variance, thus 

overestimating the corresponding observed values. This demonstrates that the CMIP5 GCMs 

struggle in simulating fine-scale patterns of surface temperature variability and that the 
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CORDEX RCMs do not substantially correct this bias. In addition, all the MMEs exhibit 

persistent warm biases throughout the domain and fail to reproduce the observed negative 

anomalies located over the western (REOF1 and REOF2) and eastern Sahara (REOF2) and the 

northern Sahel (REOF3). Furthermore, REOF2 and REOF3 are shifted in the CORDEX patterns 

compared to observations, suggesting that the CORDEX MME simulates the main modes of 

variability but fails to capture their frequency of occurrence. The Pattern Correlation Coefficient 

(P, i.e. Table 4.1) between the MMEs and UDEL modes is higher in CORDEX (P=0.86) 

compared to CMIP5 (P=0.73) and CMIP5_SUBSET  (P=0.77) for REOF1 while for REOF2 and 

REOF3, they are close to each other.  
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Table 4.1: Temperature Rotated EOFs  pattern correlation coefficients between UDEL and 

CMIP5, CMIP5_SUBSET and CORDEX. Bold values show the modelled REOFs to compare 

with each observed REOF, and the red color shows the MME that performs best. Note that to 

enable direct comparison, CORDEX REOF2 and REOF3 have been switched. 

UDEL CMIP5/CMIP5_SUBSET  CORDEX 

 REOF1 REOF2 REOF3 REOF1 REOF2 REOF3 

REOF1 0.73/0.77 -0.52/-0.41 -0.37/-0.41 0.85 -0.27 -0.42 

REOF2 -0.31/-0.48 0.73/0.63 -0.29/0.11 -0.41 0.67 0.11 

REOF3 -0.00/-0.03 -0.02/0.26 0.13/0.13 -0.16 0.03 0.09 
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For the corresponding PC1 (i.e. Figure 4.6a), the observations show a strong temporal variability 

and there is no evidence that the observed West African mode exhibits a positive trend. 

However, the Central-Eastern (PC2; i.e. Figure 4.6b) and Western Saharan (PC3; i.e. Figure 

4.6c) modes exhibit a slow positive trend prior to 1990, an abrupt rupture in the early 1990s 

followed by a rapid recovery and a strong positive trend persisting afterward. This is likely an 

indication towards an amplification of desert surface warming as discussed by Cook and Vizy 

(2016). The MMEs simulate lower variability than observed but also show an abrupt shift and 

rapid recovery, along with an emergent positive trend, highlighting the greenhouse gas forcing 

on the recent increase of temperature over West Africa. Finally, all the three MMEs generate 

comparable Pearson Correlation Coefficients (R; i.e. Table 4.2) which are higher in PC2 (more 

than 0.6) and PC3 (more than 0.7) compared to PC1 (around 0.2). 
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Table 4.2: Temperature Principal Component Pearson correlation coefficients between UDEL 

and CMIP5, CMIP5_SUBSET and CORDEX. Bold values show the modelled REOFs to 

compare with each observed REOF, and the red color shows the MME that performs best. Note 

that to enable direct comparison, CORDEX PC2 and PC3 have been switched  

UDEL CMIP5/CMIP5_SUBSET  CORDEX 

 PC1 PC2 PC3 PC1 PC2 PC3 

PC1 0.28/0.23 0.26/0.24 0.27/0.21 0.24 0.24 0.22 

PC2 0.68/0.62 0.68/0.64 0.69/0.64 0.58 0.60 0.60 

PC3 0.74/0.74 0.75/0.77 0.75/0.76 0.79 0.78 0.79 
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Figure 4.6 : The corresponding PCs of the first three modes of temperature REOFs for  UDEL, 

CMIP5, CMIP5_SUBSET and CORDEX 
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Similar to the temperature REOF spatial patterns, the observed precipitation variability is 

characterized by the West African mode (i.e. REOF1; Figure 4.7a), the Central-Eastern Saharan 

mode (i.e. REOF2, Figure 4.7b), and the Western Saharan mode (i.e. REOF3, Figure 4.7c). The 

West African mode is mainly associated with widespread increase (decrease) of precipitation 

over West Africa during its positive (negative) phase with a weak decrease (increase) along the 

Gulf of Guinea. In addition, the Central-Eastern Sahara mode is characterized during its positive 

(negative) phase by dry (wet) anomalies along the Gulf of Guinea and wet (dry) anomalies over 

the Eastern Sahara.. 
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Figure 4.7  : REOFs of the first three modes for JJAS mean precipitation from UDEL (a, b, c), 

CMIP5 (d, e, f), CMIP5_SUBSET(g, h, i) and CORDEX (j, k, l). The percentage of variance 

explained by each mode is labeled 
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Finally, the Western Sahara mode describes a tripole in rainfall variability with strong negative 

(positive) anomalies along the Gulf of Guinea and western Sahara and weak positive (negative) 

anomalies in few areas of the Sahel during its positive phase. Altogether, these explain only 

47.5% of the total variance. 

Both the CMIP5_SUBSET  and CORDEX MMEs roughly reproduce the different modes of 

precipitation variability over the region. However, CMIP5 misses the signal over the Gulf of 

Guinea for the West African mode, switches the Central-Eastern and the Sahara modes and 

reverses their signs. This suggests that CORDEX captures better the occurrence of the different 

modes of variability. To enable a direct comparison, the CMIP5 last two modes are switched and  

their signs reversed. In this case, both the CMIP5 and CMIP5_SUBSET  simulate larger positive 

anomalies in each mode compared to the observations during their positive phase, thus exhibiting 

a substantial wet bias. CORDEX shows magnitudes and spatial distributions more in line with 

observations. The explained variance by CMIP5 is around 63% of the total variance, that of  

CMIP5_SUBSET 54% while for CORDEX it does not exceed 38%. This indicates that 

CORDEX simulates more precipitation fine-scale patterns compared to both CMIP5 and 

CMIP5_SUBSET. Spatial correlation coefficients between the observed and simulated West 

African mode are 0.36 for CMIP5, 0.31 for CMIP5_SUBSET and 0.41 for CORDEX, 

highlighting the improvement achieved with the higher resolution RCM MME. However, for the 

Central-Eastern and Western Sahara modes, CORDEX mostly follows CMIP5_SUBSET with 

lower correlation coefficients (Table 4.3).  
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Table 4.3: Precipitation Rotated EOFs pattern correlation coefficients between UDEL and 

CMIP5, CMIP5_SUBSET and CORDEX. Bold values show the modelled REOFs to compare 

with each observed REOF, and the red color show the MME that performs best. Note that to 

enable direct comparison, CMIP5 REOF2 and REOF3 have been switched and multiplied by (-1) 

UDEL CMIP5/CMIP5_SUBSET  CORDEX 

 REOF1 REOF2 REOF3 REOF1 REOF2 REOF3 

REOF1 0.36/0.31 0.54/0.57 -0.08/-0.34 0.41 0.35 0.20 

REOF2 -0.32/-0.05 0.62/0.59 -0.12/-0.01 0.29 0.50 0.36 

REOF3 0.36/0.28 0.32/0.33 0.43/0.31 -0.16 0.25 0.12 
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Analysis of the observed PCs (i.e. Figure 4.8) reveals strong temporal variability in all modes 

with an evident and slow increasing trend in West African mode. This latter illustrates the 

precipitation recovery that occurred in recent decades over West Africa (Mohino et al,. 2011; 

Ibrahim et al., 2014; Sylla et al., 2016a). The MMEs simulate similar variability than observed 

for all modes but with significantly low correlation coefficient (Table 4.4). This can be expected 

in view of the fact that, as mentioned, the models do not use any assimilation of observed data 

for the simulated period. However, they produce a slow positive trend in the West African mode, 

perhaps suggesting that anthropogenic aerosols and greenhouse gases might have played a 

significant role in the precipitation recovery over West Africa (Ackerley et al., 2011; Dong et al., 

2014) 
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Table 4.4: Precipitation Principal Component correlation coefficients between UDEL and 

CMIP5, CMIP5_SUBSET and CORDEX. Bold values show the modelled REOFs to compare 

with each observed REOF, and the red colour show the MME that performs best. Note that to 

enable direct comparison, CMIP5 PC2 and PC3 have been switched and multiplied by (-1) 

UDEL CMIP5/CMIP5_SUBSET  CORDEX 

 PC1 PC2 PC3 PC1 PC2 PC3 

PC1 0.21/-0.04 0.46/0.14 0.06/-0.33 -0.15 0.05 -0.21 

PC2 0.30/0.38 0.31/0.30 -0.04/-0.21 0.32 0.30 -0.39 

PC3 -0.19/-0.33 0.13/-0.11 0.12/0.08 -0.26 -0.20 0.25 
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Figure 4.8 : The corresponding PCs of the first three modes of precipitation REOFs for  UDEL, 

CMIP5, CMIP5_SUBSET and CORDEX 
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4.2 Bayesian assessment of CMIP5 and CORDEX simulations of historical summer 

precipitation variabilities over Sahel and Guinean Coast  

4.2.1  Bayesian assessment of CMIP5 and CORDEX simulations of historical summer 

precipitation variabilities over Sahel  

 

The joint distribution of the population mean and variance derived from Monte Carlo Sample 

over the Sahel region for precipitation are shown in Figure 4.9. The UDEL distribution, on top 

left is taken as reference with a mean of 5.80 mm/day and variance of 0.81.CMIP5 distribution 

top right is off compared to UDEL in terms of simulating the mean value. The CORDEX shows 

good approximation to the mean of UDEL whereas CMIP5_subset and CMIP5 approximate 

more closely the variance. 
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Figure 4.9: Monte Carlo sampling from the joint distribution of the population mean (  ) 

and the variance ( 2 ) over the Sahel domain for UDEL a) and for CMIP5 b), 

CMIP5_SUBSET c) and CORDEX c) . The values in black show the mean value of the 

population mean (left side) and the population variance (left side).  The mean value of    

and 2  for UDEL and are indicated in red. Precipitation given  in mm/day. 
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Figure 4.10 shows the marginal distribution of mean from Monte Carlo sampling.  The red line 

shows the mean value of the marginal distribution for UDEL and the blue line indicate a 95% 

quantile-based posterior bound. The posterior bounds of CMIP5 and CMIP5 Subset do not 

contain the mean value of UDEL. CORDEX shows a closer overlap with UDEL data meaning 

that CORDEX is approximating the mean more realistically over the Sahel .  
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Figure 4.10: Monte Carlo samples from the marginal distribution of    for  UDEL a), 

CMIP5 b), CMIP5_S c) and CORDEX d) over the Sahel region. The blue vertical line 

give a 95% quantile-based posterior bound. In red, the mean value of  UDEL  posterior 

marginal distribution precipitation in mm/day. 
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The marginal distribution of UDEL variance is approximate more closely by CMIP5_subset as 

shown in Figure 4.11. However  CMIP5 and CORDEX  posterior bounds do not contain the 

mean value of UDEL variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11:  The same figure as Figure 4.10, but for the precision   
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4.2.2 Bayesian assessment of CMIP5 and CORDEX simulations of historical summer 

precipitation variabilities over  Guinean Coast  

 

Over Guinean Coast Figure 4.12 is showing Monte Carlo samples from the joint distribution of 

the population mean and variance from UDEL, CMIP5, CMIP5_Subset and CORDEX 

precipitation. CORDEX seems to approximate more realistically   the mean and the variance 

closer to the UDEL ones.  
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Figure 4.12 : Monte Carlo sampling from the joint distribution of the population mean ( ) 

and the variance (
2 ) over the Guinean Coast for UDEL a) and for CMIP5 b), 

CMIP5_SUBSET c) and CORDEX c). The values in black show the mean value of the 

population mean (left side) and the population variance (left side).  The mean value of    

and 
2  for UDEL and are indicated in red. Precipitation given in mm/day. 

 

 



 

68 
 

Figure 4.13 still illustrate that over the Guinean Coast with UDEL as a reference there is a 

considerable bias reduction with CORDEX simulation of precipitation compare to 

CMIP5_subset and CMIP5 even though CORDEX   95%  quantile-based posterior bound  fails 

to overlap with UDEL mean.  
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Figure 4.13: CMIP5 b), CMIP5_S c) and CORDEX d) over the Guinean Coast region. The 

blue vertical line give a 95% quantile-based posterior bound. In red, the mean value of  UDEL  

posterior marginal distribution precipitation in mm/day 
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The marginal distribution of UDEL precipitation variance (Figure 4.14) is approximated more 

closely by CORDEX and CMIP5_subset.  The added value from downscaling precipitation was 

not that much over Guinean coast in terms of variance.  
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Figure 4.14 : The same figure as Figure 4.13, but for the precision  
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4.3 Temperature and precipitation change over West Africa: spatial and Bayesian analysis 

of CMIP5 and CORDEX MMEs  simulation  

 

4.3.1 Temperature and precipitation change over West Africa: spatial analysis of CMIP5 

and CORDEX MMEs  simulation  

 

Temperature projection over West Africa for the late 21
st
 century (2070-2099) from CMIP5 and 

CORDEX under RCP45 and RCP85 scenarios (Figure 4.15) range between 2
o
C and 6

o
C above 

the 1976-2005 baseline.  For both scenarios the seasonal (JJAS) multi model mean temperature 

change follows a pattern of larger change in magnitude in northern part and mainly over land.  

Over the whole West African domain at least 80% of the models contributing to the different 

multi model ensemble (CMIP5, CMIP5_Subset and CORDEX) agreed on sign change. The 

warmest part is located over the Sahara (above 16
o
 latitude) under the RCP85 scenario(Figure 

4.15,b),d),f)). This warning trend is consistent with the last IPCC  report (IPCC,2014). 
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Figure 4.15: Multi-model mean of 2070-2099 seasonal average (JJAS) temperature change 

relative to the period of 1976-2005 for RCP45 (left panel) and RCP85 (right panel)  for CMIP5 , 

CMIP5 subset and CORDEX. Stippling denote regions where 80 % percent of the model agree 

on change sign. 
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For precipitation, The last IPCC report highlight the inability of CMIP3 and CMIP5 to resolve 

the convective rainfall over West Africa (Roehrig et al., 2013) and therefore the precipitation 

projection over West Africa had a low medium confidence (IPCC,2014).  Through the CORDEX 

program (Giorgi et al., 2009, Jones et al., 2011) a relatively large number  of Regional Climate 

Model simulation were made available over West Africa and it will give more robustness of the 

precipitation projection change over the region (IPCC,2014). Precipitation projection for the 

period 2071-2099 relative to 1976-2005 under the two scenarios for CMIP5, CMIP5_Subset and 

CORDEX multi model ensemble are shown in Figure 4.16(a)-(f). Figure 4.16 (e)-(f) shows an 

increasing trend of the rainfall up to 60 % over the Gulf of Guinea and eastern Sahel. There is a 

decreasing trend up to 40 % over Western Sahel (Senegal and Mauritania). And mainly over 

those regions at least 80 % of models contributing to the ensemble mean agreed on sign change.  

For the two scenarios downscaling was able to reverse the sign of change over the southern part 

of the Atlantic Ocean. Some part of Burkina Faso, Nigeria and Mali remains uncertain in terms 

of precipitation change and the downscaling didn’t improved much this configuration. 
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Figure 4.16: Multi-model mean of 2070-2099 seasonal average (JJAS) precipitation change 

relative to the period of 1976-2005 for RCP45 (left panel) and RCP85 (right panel)  for CMIP5 , 

CMIP5 subset and CORDEX. Stippling denote regions where 80 % percent of the model agree 

on change sign 
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Figure 4.17 (a)-(f)  adopted from Sylla et al. (2015), shows  multi-model ensemble from CMIP5, 

CMIP5_subset and CORDEX long-term time series of seasonal (June-September) mean 

temperature  anomalies  with the range of possible values over  the Sahel and  the Gulf of Guinea  

during the historical (1976-2005) and the future (2006-2100) periods and for both RCP8.5 and 

RCP4.5 (Moss et al., 2010). The reference period used to calculate seasonal mean anomalies was 

1976-2005. Over the Sahel and the Gulf of Guinea, The three CMIP5, CMIP5_subset and 

CORDEX  time series show a  significant warming since 1996  and this warming will be  

amplified in future climate (2006-2100) under the high level Green House Gases (GHG) forcing 

scenario (RCP8.5) and a mid-level one (RCP4.5). The mid-level GHG forcing scenario produces 

lesser warming (less than 2
o
C over the Sahel and Gulf of Guinea regions and for the three multi 

model ensemble) while the high level forcing leads to a greater warming (4
o
C over the Guinean 

Coast and 5
o
C over the Sahel). Therefore, temperature increases over the region with the new set 

of data made available from CORDEX program will range by the end of 21
st
 Century from 1.5

 

o
C to 5.0

 o
C, with the Sahel experiencing more warming.  
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Figure 4.17: Long-term time series (1976-2099) of mean temperature (left panels)  anomalies for 

the Guinean Coast (left panels) and the   Sahel (right panels)   and for both RCP4.5 and RCP8.5 

based on multimodel of CMIP5 , CMIP5 Subset and CORDEX simulations. The anomalies are 

calculated with respect to the seasonal mean of the period 1976-2005. The shaded areas denote 

ensemble maxima and minima. Adopted from Sylla et al. (2015) 
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For the mean precipitation in Fig19 (a)-(f), the anomalies from the CMIP5 and CMIP5_subset 

multi model time series show a lesser evident trend but increased variability with larger 

amplitudes oscillating between -10% and 10% while the CORDEX multi model time series show 

a clear increasing trend up to 10 % for the two scenarios over the Sahel and the Gulf of Guinea. 

But the precipitation changes still spans both negative and positive values (between -40% to 

80%). This means that uncertainties still remain in regional precipitation climate change 

projections consistent with IPCC (2014). As the scenario forcing increases (i.e. as the time frame 

increase), the range of uncertainty gradually increases and the Sahel shows the largest range. 

This suggests that the various RCMs produce substantial different responses to a same forcing 

and probably because of the models differences in the way they simulate the interactions of deep 

convection with the West African Monsoon features (Roehrig et al., 2013; Sylla et al., 2013a). 
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Figure 4.18 : Long-term time series (1976-2099) of mean precipitation (left panels)  anomalies for 

the Guinean Coast (left panels) and the   Sahel (right panels)  and for both RCP4.5 and RCP8.5 

based on multimodel of CMIP5 , CMIP5 Subset and CORDEX simulations. The anomalies are 

calculated with respect to the seasonal mean of the period 1976-2005. The shaded areas denote 

ensemble maxima and minima. Adopted from Sylla et al. (2015) 
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4.3.2 Temperature and precipitation change over West Africa:  Bayesian analysis of 

CMIP5 and CORDEX MMEs  simulation  

 

Figure 4.19 shows the posterior distribution of temperature change  T       over the 

Guinean Coast under RCP45 and RCP85 for JJAS season. Individual model response is plotted 

along the x axis to assess the measure of convergence for each model and find out those 

behaving like outliers and those reinforcing each other by projecting the same temperature 

change. Models having small bias receive large weight and the PDF is drawn where the model 

perform well with the two criteria (bias and convergence). The shape of the PDF may be 

unimodal (where models agree and outliers are down weighted due to large bias) or multimodal 

(where models disagree and cannot be discounted based on theirs bias).  CMIP5_S models under 

RCP85 has a lot of uncertainties showing more bias and less agreement among models but the 

CORDEX  seems to dramatically reduced  those uncertainties.  
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Figure 4.19: Posterior distribution of   over the Guinean coast for CMIP5, CMIP5_subset and 

CORDEX under the RCP45 (a,c,e)  and RCP85(b,d,f)  scenario for JJAS season. The points 

along the base of the densities mark the model (GCM/RCM) temperature change predictions 
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Over the Sahel (Figure 4.20), only CORDEX under RCP45 scenario shows more agreement and 

less bias. CMIP5 and CMIP_S shows multi modal PDF pointing out some uncertainties and less 

agreement among models over the Sahel region. Under RCP85 CMIP5, CMIP5_S and CORDEX 

have unimodal PDF depicting less uncertainties with CMIP5 showing more outliers. 
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Figure 4.20: Posterior distribution of   over the Sahel  for CMIP5, CMIP5_subset and CORDEX 

under the RCP45 (a,c,e)  and RCP85(b,d,f)  scenario for JJAS season. The points along the base 

of the densities mark the model (GCM/RCM) temperature change predictions 
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For precipitation change over the Guinean Coast under RCP85 and RCP45 (Figure 4.21) 

uncertainties still remain in CORDEX model (following the  CMIP5_S) with an increasing 

precipitation trend for the late century. The different scenarios seem to not have much impact on 

precipitation. There is no significant difference on precipitation change between RCP45 and 

RCP85.   
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Figure 4.21: Posterior distribution of    over the Guinean coast for CMIP5, CMIP5_subset and 

CORDEX under the RCP45 (a,c,e)  and RCP85(b,d,f)  scenario for JJAS season. The points 

along the base of the densities mark the model (GCM/RCM) temperature change predictions  
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Over the Sahel CMIP5 (Figure 4.22) models show more agreement on sign change (close to 

zero) compare to CMIP_S and CORDEX  which show a change between 0 to 1 mm/day under 

the two scenarios with some outliers due to bias in present climate simulation and divergence 

from the future climate mean . CORDEX has a wide PDF curve under RCP45 and RCP85 

scenario showing the persistence of uncertainties.    
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Figure 4.22: Posterior distribution of    over the Sahel for CMIP5, CMIP5_subset and CORDEX 

under the RCP45 (a,c,e)  and RCP85(b,d,f)  scenario for JJAS season. The points along the base 

of the densities mark the model (GCM/RCM) temperature change predictions 
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Figure 4.23 shows boxplots of the posterior PDFs of temperature change under RCP45 and 

RCP85 scenario for   CMIP5, CMIP5_Subset and CORDEX over Sahel and Guinean Coast for 

JJAS season.  A pair of boxplots is shown for each region, the left represent the RCP45 and the 

right the RCP85.While CMIP5 is showing less variability (IQR) across the two regions, 

CMIP5_Subset and CORDEX   show a significant  shift in the PDFs range highlighting presence 

of biases in the present climate simulation  and  some degree of uncertainties in the future 

climate . However from CMIP5_Subset to CORDEX there is a significant reduction of 

uncertainty and more agreement among the models over the Guinea Coast for the RCP85 

scenario and over the Sahel for RCP45. The IQR varies between 1
o
C to 3

 o
C for the three models 

over the two regions under RCP45 and 2
o
C to 5

o
C under RCP85.  The warming trend is certain 

over the two regions with different magnitudes.  
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Figure 4.23: Posterior distribution of  delta T   in form of boxplot over Guinean Coast and the 

Sahel for CMIP5 (a), CMIP5_subset (b) and CORDEX(c) under the RCP45   and RCP85 

scenario for JJAS season. 
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For precipitation boxplot of posterior PDFs   of change under RCP45 and RCP85 scenario in 

Figure 4.24, CMIP5 is showing positive and negative change around the zero line over the two 

regions with less spread, meaning that, from CMIP5 GCMs a clear picture of precipitation 

change in terms of sign cannot be drawn.   In CMIP5_S and CORDEX positive change are more 

prevalent than the negative one for the two scenarios (RCP45 and RCP85) over the two regions.  

However CORDEX is showing more spread under RCP85 scenario over the Sahel, still 

indicating some degree of uncertainty.  

 

 



 

91 
 

 

 

 

Figure 4.24: Posterior distribution of   delta P  in form of boxplot over Guinean Coast and the 

Sahel for CMIP5 (a), CMIP5_subset (b) and CORDEX(c) under the RCP45   and RCP85 

scenario for JJAS season 
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4.4 Partitioning uncertainty in temperature and precipitation projections 

 

Previous section shows that uncertainties still remain in climate projection over West Africa and 

there is need to separate and quantify those sources of uncertainties in order to get a reliable 

future climate projection for appropriate adaptation and mitigation strategies.  We choose to 

analyze the last three decade of the 21
st
 century (2070-2099) relative to the present day period 

(1976-2005) where the signal of change is expected to be stronger both for temperature and 

precipitation.  Internal variability and inter-model variability will be investigated to constitute the 

total uncertainty since the scenario uncertainty cannot be covered due to  the lack of data for the 

other two scenarios RCP2.6 and RCP6.0.  In the following section, we will focused on 

temperature and precipitation  internal and inter model variability  patterns over West Africa , 

give light on how the new generation of model has improved the climate projection information 

over the region  and derive the signal to noise ratio to appreciate the robustness of the climate 

change information.   

4.4.1 Partitioning uncertainty in temperature projections 

 

Figure 4.25 shows temperature Internal Variability (IV) for 2070-2079 JJAS season   under 

RCP45 (a,c,e) and RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX  MMEs.  Based 

on the method of Hawkins and Sutton (2009), IV is assumed to be constant over the 21
st
 Century. 

Over West Africa IV is mainly lower than 0.5 
o
C under the two scenarios for CMIP5, CMIP5_S 

and CORDEX. Maximum IV values are located in the highest latitudes and some part of Atlantic 

Ocean.  
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Figure 4.25: Internal variability of 2070-2099 JJAS mean temperature (oC) for CMIP5, CMIP5 

subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario 

 



 

94 
 

Figure 4.26 shows temperature Inter Model Variability (IMV) for 2070-2079 JJAS season   

under RCP45 (a,c,e) and RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX  MMEs. 

The lowest values are located over the West African Domain and  part of the Gulf of Guinea the 

highest value are located in the Northern part and some part of the Atlantic Ocean . The spatial 

patterns of IMV and IV are similar. 
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Figure 4.26: Inter Model Variability of 2070-2099 JJAS mean temperature (oC) for CMIP5, 

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario 
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 Figures 4.27 and 4.28 are showing respectively the Ratio for internal variability (CMIP5 or 

CCMIP_S) over (CORDEX) and Inter Model variability for 1970-2099 JJAS mean temperature 

for RCP45 and RCP85 scenario. The regions where the new generation of model (CORDEX) 

show an improvement (reduction of IV/IMV) compare to CMIP5 and CMIP5_S  are marked 

with dots. We found that under the two scenarios CORDEX  MMEs (the new generation of 

models) have an added value compare to the driving GCMs (CMIP_S) and CMIP5 MMEs by 

reducing the spread   over the West African region . At the end of 21
st
  century, for the last three 

decade (2070-2099)  IMV is the dominant source of uncertainties  and is explaining up to 90 % 

of total uncertainty  and IV  explaining only 10 % . This finding is consistent with the finding of 

Blaquez et al. (2013) who analyze the uncertainties in future climate over South America with 

CMIP3 and CMIP5 GCMs. 

Hawkins and Sutton, (2009) and Yip et al. (2011), found that after year 2050 the scenario 

uncertainty dominate the total uncertainty  but in our study we did not consider the scenario 

uncertainty because the data we were able to get  were the radiative forcing of 4.5 and 8.5. So 

considering scenario uncertainty may not cover the full range of uncertainties (2.6 and 6.0 

forcing).  
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Figure 4.27: Ratio for internal variability (CMIP5 or CCMIP_S variability /CORDEX 

variability) for 1970-2099 JJAS mean temperature for RCP45 and RCP85 scenario 
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Figure 4.28: Ratio for inter model variability (CMIP5 or CCMIP_S variability /CORDEX 

variability) for 1970-2099 JJAS mean temperature for RCP45 and RCP85 scenario 
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Figure 4.29 shows the Signal to Noise Ratio (SNR) for the three MMEs . SNR is a measure of  

the robustness  of climate change information taking into account uncertainties associated (Yip et 

al., 2011). Region of high uncertainties (high values of IMV and IV) will have a low SNR.  

Region where the climate change signal dominate the noise is characterized by SNR>1. For 

temperature under the two scenarios, the change is robust over most of West African countries 

with more spatial details and improved SNR with CORDEX MMEs compare to CMIP5 and 

CMIP5_S MMEs. The warming trend over the region is consistent with the previous studies 

showing that there is more confidence (more robustness) about the temperature projection 

change (Tebadi et al. (2005),  Hawkins and Sutton, 2009) over the region with less uncertainties 

in regional and Global models   compare to precipitation. 
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Figure 4.29: Signal to Noise ratio for 1970-2099 JJAS mean temperature (oC) for CMIP5, 

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario 
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4.4.2 Partitioning uncertainty in precipitation projections 

 

Figure 4.30 shows precipitation Internal Variability (IV)  (which had been assumed to be 

constant  in time during  the 21
st
 century)  for 2070-2079 JJAS season   under RCP45 (a,c,e) and 

RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX  MMEs.  Variability peaks in 

CMIP5, CMIP5_S and CORDEX  (>3mm/day) are located over the coastal area (Gulf of 

Guinea) and regions of high altitudes. CORDEX is showing more spatial details due to 

resolution and reduction of internal variability compare to CMIP_S. 
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Figure 4.30: Internal variability of 2070-2099 JJAS mean precipitation  (mm/day) for CMIP5, 

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario 
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Figure 4.31 shows precipitation Inter Model Variability (IMV) for 2070-2079 JJAS season   

under RCP45 (a,c,e) and RCP85 (b,d,f) scenario for CMIP5, CMIP5_S and CORDEX  MMEs. 

The highest  values are located over the coastal regions. However CORDEX is showing more 

variability over the Atlantic Ocean compare to CMIP5_S under the RCP45 scenario.  
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Figure 4.31: Inter model variability of 2070-2099 JJAS mean precipitation (mm/day) for CMIP5, 

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario 
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Figure 4.32 and 4.33 are showing respectively the Ratio for internal variability and Inter Model 

variability (CMIP5 or CCMIP_S) over (CORDEX) for 1970-2099 JJAS mean precipitation for 

RCP45 and RCP85 scenario. We notice that for the two scenarios the IV and IMV were reduced 

over Cote d’ivoire, Ghana, Benin and Nigeria.  
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Figure 4.32: Ratio for internal variability (CMIP5 or CCMIP_S variability /CORDEX 

variability) for 1970-2099 JJAS mean precipitation for RCP45 and RCP85 scenario 
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Figure 4.33: Ratio for inter model variability (CMIP5 or CCMIP_S variability /CORDEX 

variability) for 1970-2099 JJAS mean precipitation for RCP45 and RCP85 scenario 
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The reliability of the precipitation projection is explored in CMIP5, CMIP5_S and CORDEX 

MMEs.  Figure 4.34 is showing the signal to noise ratio for   1970-2099 JJAS mean precipitation 

under the two scenarios RCP45 and RCP85.  Only CORDEX under RCP45 has a signal to noise 

ratio greater than one over West Africa (between 5
o
 to 15

o
 N). It is showing an increasing trend 

of precipitation over the whole West African region (positive SNR). In CMIP5, CMIP5_S and 

CORDEX under RCP85,  the noise dominate the signal.  
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Figure 4.34: Signal to Noise ratio for 1970-2099 JJAS mean precipitation (mm/day) for CMIP5, 

CMIP5 subset and CORDEX for RCP45 (a,c,e) and RCP85(b,d,f) scenario 
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         CHAPTER 5 

Chapter 5 5. CONCLUSION AND RECOMEMMENDATIONS 

 

An assessment of multimodel ensembles constructed from the CMIP5 and CMIP5_SUBSET 

GCMs, and CORDEX RCMs during the present-day (1982-2005) is first carried out for the West 

African region. The focus of the analysis is on temperature and precipitation inter-model and 

spatio-temporal variability. In addition, the origin of the biases in the RCM MME and the extent 

to which CORDEX adds useful detail to CMIP5 is also discussed. 

We find that CORDEX exhibits larger cold temperature biases compared to CMIP5 and 

CMIP5_SUBSET, suggesting that these are mostly due to the RCM internal physics. Conversely, 

compared to the CMIP5 GCMs, for precipitation the RCM MME simulates a better spatial 

distribution, lower bias and more fine-scale details associated with the location of local complex 

topography and steep landuse gradients. A separation of the CORDEX ensemble into an 

ensemble inducing simulations with one RCM driven by multiple GCMs and multiple RCMs 

driven by one GCM shows that the internal model physics is more important than the boundary 

forcing in determining the model performance and inter-model spread.  

The spatio-temporal variability is assessed with the use of Rotated Empirical Orthogonal 

Function (REOF) analysis. All the MMEs capture with different magnitudes the spatial 

distribution of the first mode of temperature and precipitation REOF characterizing the recent 

temperature increase and precipitation recovery over West Africa, with CORDEX providing the 

highest Pattern Correlation Coefficient. For the PCs of all modes CORDEX mostly follows the 

CMIP5_SUBSET, with little improvement compared to CMIP5. 
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Overall, it is evident that the different MMEs exhibit different level of bias and a pronounced 

intermodel and inter-ensemble variability. We found that, especially for precipitation, CORDEX 

is able to improve upon the performance of the CMIP5 models and the subset of driving GCMs, 

although this is not the case for temperature.  

We further use a Bayesian approach to show how CORDEX MMEs is improving precipitation 

simulation compared to CMIP5 and CMIP5_Subset. The increased horizontal resolution is able 

to approximate the mean and the variance more closely to the observation over Sahel and the 

Guinean Coast. 

For the future climate 2070-2099 we have applied the Bayesian model of Tebaldi et al.,2005 to 

the three sets of models (CMIP5, CMIP5_Subset and CORDEX) and derived PDFs of 

temperature and precipitation change for two sub region (Sahel and Guinea Coast). Two criteria 

of model evaluation were used: the Bias and Convergence.  For temperature  change over the 

Guinean Coast,  CMIP5_S models under RCP85 has a lot of uncertainties showing more bias and 

less agreement among models but the CORDEX  seems to dramatically reduced  those 

uncertainties.  Over the Sahel, only CORDEX under RCP45 scenario shows more agreement and 

less bias. CMIP5 and CMIP_S shows multi modal PDF pointing out some uncertainties and less 

agreement among models. Under RCP85 CMIP5, CMIP5_S and CORDEX have unimodal PDF 

depicting less uncertainties with CMIP5 showing more outliers. 
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For precipitation change over the Guinean Coast under RCP8.5 and RCP4.5, uncertainties still 

remain in CORDEX model (following the  CMIP5_S) with an increasing precipitation trend for 

the late century. There is no significant difference on precipitation change between RCP45 and 

RCP85. Over the Sahel CMIP5  models show more agreement on sign change (close to zero) 

compare to CMIP_S and CORDEX  which show a change between 0 to 1 mm/day under the two 

scenarios with some outliers due to bias in present climate simulation and divergence from the 

future climate mean . CORDEX has a wide PDF curve under RCP45 and RCP85 scenario 

showing the persistence of uncertainties.  

The sources of uncertainty in climate projection from CMIP5, CMIP5_Subset and CORDEX 

were also examined. The source of uncertainty due to internal and inter-model variability were 

analyzed for temperature and precipitation.  

For temperature over West Africa Internal Variability is mainly lower than 0.5 
o
C under the two 

scenarios for CMIP5, CMIP5_S and CORDEX. Maximum IV values are located in the highest 

latitudes (>15
o
 N) and some part of Atlantic Ocean. . The spatial patterns of the Inter Model 

Variability is similar to the Internal IV. 

The ratio of (internal or inter-model) variability was used to compare CORDEX, CMIP5 and 

CMIP5_Subset. Under the two scenarios (RCP45and RCP85)  CORDEX  MMEs (the new 

generation of models) have an added value compare to the driving GCMs (CMIP_S) and CMIP5 

MMEs by reducing the spread   over the West African region . At the end of 21
st
 century, for the 

last three decade (2070-2099) IMV is the dominant source of uncertainties and is explaining up 

to 90 % of total uncertainty and IV explaining only 10 %. 
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The Signal to Noise ratio is a measure of the robustness of climate change information taking 

into account uncertainties associated. Region where the climate change signal dominate the noise 

is characterized by SNR>1. For temperature under the two scenarios, the change is robust over 

most of West African countries with more spatial details and improved SNR with CORDEX 

MMEs compare to CMIP5 and CMIP5_S MMEs. 

For precipitation, Internal Variability peaks in CMIP5, CMIP5_S and CORDEX  (>3mm/day) 

and Inter Model Variability  are located over the coastal area (Gulf of Guinea) and regions of 

high altitudes. CORDEX is showing more spatial details due to resolution and reduction of 

internal variability compare to CMIP_S. Considering the Ratio for internal variability and Inter 

Model variability for the two scenarios, the IV and IMV were reduced over Cote d’ivoire, 

Ghana, Benin and Nigeria. Only CORDEX under RCP45 has a signal to noise ratio greater than 

one over West Africa (between 5
o
 to 15

o
 N) with  an increasing trend of precipitation over the 

whole West African region (positive SNR). In CMIP5, CMIP5_S and CORDEX under RCP85, 

the noise dominates the signal. 

Clearly an assessment of climate change information over West African  region needs to rely on 

the careful evaluation and compounded information deriving from multiple sources. This 

highlights the importance of large model ensembles and carefully designed MME approaches for 

the provision of useful climate information in impact and adaptation studies. 
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