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ABSTRACT 

This study investigates the influence of climate change on hydrological drought in the Volta 

River Basin. The specific objectives were to assess; the potential impacts of climate change 

on meteorological drought over the basin, the ability of the SWATplus model in simulating 

the water balance of the basin, and the impact of future climate on hydrological droughts. 

The datasets used were the observation data (GMFD and CRU) and projected climate 

dataset (CMIP6 and NEX-GDDP), a digital elevation model, land use and the FAO digital 

soil map (2003). The Standardized Precipitation-Evapotranspiration Index at 12- and 24-

month scales were used to characterise meteorological drought and the Standardized 

Streamflow Index (SSFI) for hydrological drought at a 12-month scale. The principal 

component analysis (PCA) and the wavelet analysis were utilised to assess the 

spatiotemporal patterns of drought using SPEI computed from GMFD. PCA was also 

performed on the SPEI of the CMIP6 and NEX-GDDP to determine the spatiotemporal 

patterns of droughts. The SWATplus was calibrated and evaluated using streamflow 

records at some selected stations. The calibrated model was employed to assess the future 

climate change impacts using the ACCESS-CM2 output. The SSFI were then computed 

using the simulated streamflow output as input data. Results showed that NEX-GDDP 

model captured the climate of VRB accurately as compared to CMIP6. GMFD and CRU 

perform reasonably well in the stations evaluated. Four drought modes (DM1 – north, DM2 

– south, DM3 – east, and DM4 – west) obtained from 12- and 24-month SPEI explained 85 

% and 87 % of variance in the VRB. The wavelet analysis reveals cycles with periodicities 

ranging from 1–16 years in all DMs which corresponded to periods of drought and wetness. 

Most CMIP6 and NEX-GDDP models were able to capture the spatial patterns of DM1 and 
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DM2. The comparison of the CMIP6 and NEX-GDDP model's ability suggests that bias 

correction can either improve or reduce the models’ performance in reproducing the 

drought modes. Some NEX-GDDP models performed better than the CMIP6 counterpart. 

Climate change assessment in the VRB suggests an increment in temperature (1–4 °C) and 

a decrease of 0–2.5 mm/year2 in precipitation. Most models projected wetter conditions 

under SSP5-8.5 in the Near term (2021–2050) and Far term (2081–2100) while more 

precipitation is expected under SSP2-4.5 in the MF (2051–2080). The calibration of the 

SWATplus model revealed- good performance in Nawuni, Sabari and Saboba with NSE 

scores of 0.7, 0.68 and 0.81, R2 of 0.72, 0.69 and 0.91, and Pbias (PBIAS) of -9.1, -1.9 and 

-18 respectively. Bamboi had a poor NSE (0.101) but good PBIAS (22.7) and R2 (0.52). 

The validation statistics were satisfactory for all stations. Projected streamflow show 

significant increase in the future in line with projected precipitation. Projections indicate 

reduced drought events and intensities under certain scenarios. Consequently, the VRB is 

expected to face increased flood risks due to projected increasing streamflow, posing 

significant threats to agriculture, infrastructure, and human well-being. More efforts should 

prioritize flood risk management in the VRB to address these challenges.  
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background 

Drought plays a crucial role in the hydrodynamic processes in any basin because it is 

directly related to precipitation which is one of the key factors that control river flow. 

Drought is a phenomenon whose signals can be identified as a deficiency in the average 

and frequency of precipitation usually for a longer period. It is projected that West Africa 

may experience a significant reduction in the length of the rainy season, longer dry spells 

and more intense extreme precipitations (Sylla et al., 2016). These changes in precipitation 

might lead to possible severe water shortages or flooding events in West African river 

basins (Sylla et al., 2018). The longer duration of dry spells may transition into droughts 

(Zhang et al., 2015a). This situation will likely adversely affect socio-economic activities 

such as rainfed agriculture in West Africa. According to Adefisan et al. (2007) and Leroux 

et al. (2016), agriculture in West African countries continues to be dominated by rainfall 

which is the only factor whose onset determines the planting season. The variability in 

rainfall and increase in mean temperature over West Africa increases the exposure of 

farmers to the risk of crop failure and loss of capital (Sultan and Gaetani, 2016). According 

to Nicholson (1979), drought has been a recurring phenomenon since the year 1960 in West 

Africa. The occurrence of drought generally compromises food security through the 

destruction of crops, reduces yield and increases in mortality rate of animals; eventually 

culminating in famine. For instance, droughts occurrence in 1981 to 1983 resulted in poor 

crop yield as a result of reduced rainfall leading to food insecurity in Ghana (Ofori-Sarpong, 
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1986). Reduction in groundwater level, surface water shortage, water supply problems, 

reduction in water quality and saline water intrusion are some known impacts of drought 

(European Environment Agency, 2015). Causes of meteorological and hydrological 

drought globally have been linked to global warming, atmospheric circulations such as El-

Nino Southern Oscillation (ENSO) (La Nina anomalies), tropical sea surface temperature 

(SST) triggering La Nina-like conditions over the Tropical Pacific Ocean, SST warming 

variations on the tropical Atlantic Ocean, Indian Ocean, Land cover changes and local 

feedbacks (Dai, 2011). Reduction in vegetation cover (such as forest and grassland) plays 

a significant role during droughts as it affects evaporation and relative humidity and may 

enhance and prolong droughts activated by tropical SSTs and atmospheric circulations (Dai, 

2011). 

Forest is generally known to have a direct interaction with rainfall (Sheil and Murdiyarso, 

2009). Evapotranspiration produced by forests increases the moisture in the atmosphere. 

Forest significantly modulates rainfall patterns and atmospheric moisture over land (Ellison 

et al., 2017). Findings by Meher-Homji (1988) suggest that forest cover changes can affect 

the intensity and number of dry spells of tropical storms. Also, Ellison et al. (2017) suggest 

that deforestation can influence temperature at the local scale leading to changes in rainfall 

and availability of water as well as the release of carbon into the atmosphere. Afforestation 

has been suggested to possess the potential to increase precipitation and reduce drought 

events in the Savanna part of West Africa (Diasso and Abiodun, 2018). Despite the 

important roles of forests, deforestation continues to be one of the major challenges in West 

Africa (Cotillon and Tappan, 2016; Kossi et al., 2019). Deforestation may contribute to a 

reduction in rainfall amount and an increase in its variability as well as the consequent 

impacts on micro-scale hydrology and soil conservation (Meher-Homji, 1991). 
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Global warming refers to the gradual continuous rise in temperature of the earth system. 

Global warming is evidence of climate change which is caused by increasing concentration 

of greenhouse gases in the earth’s atmosphere. According to the recent Intergovernmental 

Panel on Climate Change (IPCC) report, global warming plays a crucial role in shifting 

climatic zones over many areas globally, leading to the expansion of arid climate zones and 

the contraction of polar zones (Arneth et al., 2019). Thus, global warming may likely cause 

an increase in the frequency and severity of drought mainly as a consequence of decreased 

precipitation and increasing evaporation driven by increasing global temperatures 

(Sheffield and Wood, 2008; Dai, 2011). 

The Volta River Basin is an important transnational watershed in West Africa. It is relied 

upon majorly for agricultural activities, hydropower generation, domestic water supply 

(Barry et al., 2005) and a rich source of biodiversity (flora and fauna). There are five 

hydroelectric dams located in the Volta River Basin, namely: Akosombo Dam, which has 

the largest man-made lake in Africa; Kpong Dam; Bui Hydroelectric Power at Bui Gorge 

in Ghana; Bagre Dam; and Kompienga in Burkina Faso. The basin provides hydrological 

and ecosystem services to more than 30 million inhabitants (Liersch et al., 2023). In light 

of the importance of the basin, global warming poses a serious threat to the occurrence of 

drought and other extreme events in the future.  

General Circulation Models (GCMs) are useful tools which have been applied to study 

climate systems, weather forecasting and understanding climate change effect on the 

atmospheric composition in the climate systems (Ford et al., 2010; Zhou et al. 2013; 

Mechoso and Arakawa, 2015; Miao et al., 2016). GCMs application has improved our 

understanding of the global climate system and influences of atmospheric phenomena such 

as Southern Oscillation and storm formation (Ghosh and Misra, 2010; Cotton et al., 2011). 
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GCMs have been a constant feature in the IPCC reports which analyse the impact of climate 

change on a multisector scale across the globe (Knutti and Sedláček, 2013). Despite these 

advantages of GCMs, their inability to accurately account for subgrid processes such as the 

influences of topographic features and small-scale processes (land surface processes, cloud 

formation and hurricanes) due to the spatial resolution of their grid system introduces 

uncertainties and biases in their output (Salvi et al., 2011; Flato et al., 2014; Fang et al., 

2015). Most of these subgrid processes are parameterised which also introduces some 

uncertainties in their outputs. Statistical and dynamic downscaling in association with bias 

correlation approaches have been proposed by several studies to reduce the systematic 

biases and uncertainties in the GCM outputs (Li et al., 2010; Li et al., 2014; Miao et al., 

2016; Navarro-Racines et al., 2020) These downscaling techniques improved the spatial 

resolution of GCM outputs from their coarser resolution (Brands et al., 2011; Gutiérrez et 

al., 2013). For instance, Li et al. (2014) applied a joint bias correction technique on 

precipitation and temperature outputs of the CMIP5 model ensemble and found that the bias 

correction method was able to improve the distribution of the variables individually, their 

variances, mean and the correlation between them. In addition, Miao et al. (2016) employed 

bias correlation methods on CMIP5 outputs. Their findings revealed that the modified 

nonstationary bias correction method substantially reduces the biases in CMIP5 model 

outputs and corrects the distribution of air temperature and precipitation throughout the 

validation period thereby reducing the uncertainties in the GCM projections. Also, Navarro-

Racines et al. (2020) demonstrated that the delta bias correction technique was able to 

reduce 50 to 70 % of the systematic biases present in the CMIP5 model projections of 

maximum and minimum temperature and precipitation. The focus of this study is not to 

evaluate the merits of statistical downscaling over dynamical downscaling methods but to 
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explore CMIP6 outputs and statistically downscaled CMIP6 datasets to understand drought 

patterns in the Volta River Basin. 

Many studies have highlighted the impact of drought in this basin. Studies such as Bekoe 

and Logah, (2013) and Oguntunde et al. (2017), Oguntunde et al. (2020) have investigated 

the drought characteristics in the Volta River Basin. Nevertheless, it is essential to 

understand the basin’s drought patterns and analyse the ability of GCM models to mimic 

these patterns. This study aims to spatiotemporal characteristics of historical drought in the 

Volta River Basin. The study also evaluates how well CMIP6 models and bias-corrected 

CMIP6 can reproduce the identified drought patterns in the Volta River Basin. 

Several studies such as Bekoe and Logah (2013), Ndehedehe et al., (2016), Oguntunde et 

al. (2017), Oguntunde et al. (2020) and Gebrechorkos et al. (2021) have projected that there 

is a high likelihood of drought occurring in the future in the Volta River Basin. There has 

not been a lot of studies conducted to improve the knowledge of hydrological drought in 

the basin. Ndehedehe et al., (2016), Oguntunde et al. (2017) and Gebrechorkos et al. (2021) 

have sought to provide answers to the influence of climate change on the occurrence of 

hydrological drought using both GCMs and Regional Climate Models (RCMs). This study 

seeks to enrich the existing knowledge on the impact of anthropogenic warming on the 

Volta River Basin using the latest CMIP6 models coupled with a hydrological model that 

has proven very useful in understanding future drought frequency by applying drought 

indices (Kang & Sridhar, 2017). Knowledge from this study will be useful to the river basin 

managers and decision-makers to understand drought modes and plan accordingly to adapt 

to this extreme event in future 
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1.2 Statement of the Problem and Justification 

Water supports all life processes of plants, animals and humans. As population growth 

increases worldwide, the demand for water resources and ecosystem services for domestic 

and industrial usage also increases. In West Africa, the population is estimated to grow from 

132.2 million in the year 1980 (Fuwape and Onyekwelu, 2011) to 430 million in 2022 

(United Nations, Department of Economic and Social Affairs, Population Division, 2022). 

These population growths will drive demand for more food and water which may directly 

lead to intensification and expansion of agriculture. In the quest to increase agriculture 

production, the forest and natural vegetation are cleared to make way for agriculture 

expansion in the Sahel, Savannah and Guinea Coast climate zones of West Africa. This 

phenomenon was observed by Ouedraogo et al. (2010) who showed that forest land cover 

is usually converted to agriculture to increase food production. As forest cover reduces, it 

may not only impact precipitation characteristics of the area but also the hydrodynamics of 

the catchment which may likely lead to drought as the microclimatic effect of the trees is 

gradually lost and might have a feedback effect on agriculture production. Also, this 

condition can be exacerbated by climate change as anthropogenic-induced CO2 

concentrations can change the fluxes of latent and sensible heat, and evapotranspiration 

processes which can alter the climate (Oguntunde, 2004).  

Climate change poses a major existential threat to hydrological resources which may lead 

to climate extremes such as floods and droughts. According to Rummukainen (2012), 

anthropogenic increases in CO2 will affect the intensity and frequency of extreme weather 

events such as floods, storms and droughts. This implies that climate change directly or 

indirectly affects the characteristics of meteorological and hydrological drought in West 

Africa. West Africa has been projected to be one of the most vulnerable areas on the globe 
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to the impact of climate change as several economic activities are still reliant on climatic 

conditions (IPCC, 2007). Climate change is identified as a major cause of precipitation 

change in West Africa which may likely lead to extreme events such as droughts or floods. 

Increasing changes in the characteristics of drought could have dire consequences on the 

availability of food and impact the health and living conditions of human beings, making it 

imperative to conduct further research to better understand how natural systems and 

processes are affected by climate change in the future. Apart from agriculture, extreme 

precipitation events may adversely impact the population (Peirce et al., 2022) in the VRB. 

Therefore, this study seeks to understand the influence of climate change on drought 

(meteorological and hydrological) duration, severity and intensity over the Volta River 

basin in West Africa.  

Oguntunde et al. (2020) studied meteorological drought in the VRB and suggested the 

application of hydrological models such as SWAT will enhance understanding of 

hydrological resources and the response to climate change in the basin. This study will 

employ the use of the hydrological model and CMIP6 outputs to assess these changes. The 

outcome of this study will be useful to the basin managers to understand how climate 

change will affect the hydrodynamics of the basin. This will also provide valuable 

information to basin managers on how anthropogenic warming may affect the 

characteristics of droughts in the basin. 

1.3 Aim of the Study 

The aim of this study was to investigate the influence of climate change on hydrological 

drought in the Volta River basin. 

The specific objectives of this study are to: 
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i. assess the potential impacts of climate change on meteorological drought over the 

basin; 

ii. examine the performance of the SWATplus Model in simulating the hydrological 

variables and water balance of the basin; and 

iii. assess the impact of future climate on hydrological droughts. 

1.4 Research Questions 

The study investigates climate change's impact on the characteristics of drought in the Volta 

River Basin. To achieve the objectives of this study, the following research questions are 

addressed: 

i. What are the spatiotemporal characteristics of meteorological drought in the past 

and their relationship with climate change in the future?  

ii. Can the SWATplus model adequately simulate the hydrology of the Volta River 

Basin? 

iii. How does climate change affect hydrological drought characteristics in the Volta 

River Basin? 

1.5 Innovation 

Few studies have applied the new SWATplus model to investigate the hydrological regime 

of the Volta River Basin as well as study the impact of climate change on streamflow and 

hydrological drought in the Volta River Basin. In addition, this study provides insight into 

the projections of meteorological and hydrological drought by the CMIP6 datasets over the 

Volta River basin. Also, this research investigated the added value of bias correction 

statistical downscaling of the CMIP6 datasets in understanding the past spatiotemporal 

characteristics of drought in the VRB.   
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CHAPTER TWO 

2.0    LITERATURE REVIEW 

2.1 Definition of Drought 

Many authors have tried to define drought. For example, Wilhite and Pulwarty (2017) 

define drought as an insidious natural hazard that occurs as a result of precipitation 

deficiency from average or normal amounts that, when extended over a season or longer 

results in water supplies that are insufficient to meet the demands of human activities and 

the environment. Droughts are not only dependent on precipitation alone but affected by 

other climatic factors such as temperature, wind and low humidity which might equally 

have the same influence or have even more importance than rainfall in some regions (Dai, 

2011). Therefore, Sivakumar et al. (2011) integrate these factors in defining drought as a 

normal and natural recurrent climatic feature which results from natural deficiency in 

precipitation amount over a longer period usually a season or more in length and is also 

influenced by climatic factors such as high temperature, high winds and low relative 

humidity which can significantly aggravate drought severity in many regions of the world. 

Consequently, drought leads to water shortages for human activities and the environment, 

and further impacts the economic sectors. Drought is also associated timing of the principal 

season of occurrence, delays in the onset of the rainy season, onset of rains in principal 

growing crop growth stages and number of rainfall events and its intensity (Sivakumar et 

al., 2011).  Generally, four types of droughts have been identified which are agricultural, 

meteorological, hydrological and socioeconomic droughts (Mishra and Singh 2010). The 

American Meteorological Society defines the four types of drought: 
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Meteorological Droughts are defined in terms of the deficiency of precipitation and the 

duration of this shortfall in precipitation persists. 

Agricultural or Soil Moisture Droughts: Agricultural drought occurs as a result of soil 

moisture deficit and is most commonly applied to non-irrigated agricultural regions. The 

water demands of plants depend on the weather conditions, the plant type and the growth 

stage of the plant as well as the soil’s physical and biological features.  

Hydrological Droughts: Hydrological drought is a broad term which refers to the 

consistent below-normal levels of water found in lakes, declining wetland areas and 

decreased river discharge (van Loon, 2015). It takes a longer time for Precipitation deficits 

to be felt in the hydrological system. As a result, the effects are not concurrent with those 

in other economic sectors. Where irrigation is required for agriculture, hydrological drought 

is used to determine agricultural drought. Hydrological drought lags both agricultural and 

soil moisture drought. The reasons attributed to the occurrence of hydrological droughts are 

complex since they are not only atmospherically dependent but also involve hydrological 

processes that feed moisture to the atmosphere and cause storage of water and runoff to 

streams (Mishra and Singh, 2011). 

Socio-economic Droughts: Socio-economic drought is associated with the supply and 

demand of some economic goods, which are influenced by the elements of the other types 

of drought. 

2.2 Impact of Historical Drought 

Over the past few decades, the Earth's climate has become more unbalanced due to the 

escalation of atmospheric greenhouse gases (Shahbazi, 2015), which continues to manifest 

itself in the form of extreme events such as drought, floods, heatwaves, aberrant rainfall 
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regimes, fires and other catastrophic occurrences worldwide (Arora, 2019). Among 

weather-related disasters, drought is known for its comparatively gradual onset and 

consequential time-intensive manifestation of damaging effects (Davarpanah et al., 2021). 

Unfortunately, the IPCC (2014) projects climate change to modify the frequency and 

severity of droughts, causing intensified impacts in certain regions and seasons. In addition, 

studies like Im et al. (2017) and Arora (2019) have lent support to the prevailing scientific 

consensus that the earth’s ecosystems have not only been altered but are also persistently 

influenced by climate change. As a result, it is anticipated that there will be an augmentation 

in unusual weather patterns like droughts due to the relationship between water and climate 

(Leng et al., 2015). 

Globally, the number and duration of droughts have increased by 29% since the year 2000. 

Drought affected about 1.4 billion people between 1998 and 2017, resulting in $124 billion 

in economic losses (United Nations Convention to Combat Desertification, 2022; Cui et al., 

2023). For instance, the Great U.S. Drought of 2012, which coincided with a heat wave and 

cost more than $33 billion in damages, was the most severe drought to affect the country 

since the 1930s (National Oceanic and Atmospheric Administration – National Centers for 

Environmental Information (NOAA–NCEI), 2018). In addition, the related summer 

heatwave directly contributed to 123 fatalities (Masters, 2013; NOAA–NCEI, 2018). In the 

1900s, Europe experienced 45 major drought events which affected adversely affected 

millions of people and led to economic losses amounting to about $27.8 billion. In recent 

times, an annual average of 15 percent of the land area and 17 percent of the population 

within the European Union has been affected by drought (Guha-Sapir et al., 2021; European 

Environment Agency, 2017). The megadrought in Australia contributed to ‘mega-fires from 

2019 to 2020 that resulted in the most dramatic loss of habitat for threatened species in 
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postcolonial history (Wintle et al., 2020); about three billion animals were killed or 

displaced in the Australian wildfires (van Eeden et al., 2020; Haque et al., 2021; Allard et 

al., 2023). In the northern fringe of the Asian summer monsoon region (NASM) in China, 

the severe drought that occurred from 1927 to 1929 led to a drastic reduction in streamflow 

and water level in the Yellow River and Daihai Lake, respectively (Yang et al., 2014), 

which consequently resulted in drought-induced famine and diseases and led to the deaths 

of more than 4 million people in the provinces of Shanxi, Gansu, Ningxia, Qinghai, and 

Inner Mongolia (Xu et al., 1997, as cited in Yang et al., 2014). In Brazil, drought conditions 

with a 16-month duration led to the drastic reduction of the Cantareira Reservoir water level 

to about 5 % of its capacity from the years 2013/2014 to 2014/2015 (Nobre et al., 2016; 

Pattnayak et al., 2018).  

The African continent is also deemed highly susceptible to droughts owing to the great 

inconsistency in precipitation (Shiru et al., 2020). Regrettably, the majority of countries in 

the continent have limited adaptive capacity to cope with the impacts of climate change. 

Recent years have seen a large number of severe droughts, which led to devastating famines 

and the loss of countless lives in Africa (Masih et al., 2014). Historical records show that 

drought is highly prevalent in Africa experiencing about 44 % of total global drought events 

which represent more than 300 events reported within 100 years. Sub-Saharan Africa has 

recently seen the catastrophic effects of climatic disasters increasing in frequency and 

intensity (Guha-Sapir, et al., 2021). In the West African region for instance, drought events 

have caused numerous deaths and destroyed properties, hampering development and 

economic development in the region since the major economic activity in the region is 

rainfed agriculture. In Southern Africa, an escalation in the spatial extent of drought has 

been experienced since the 1970s (Rouault and Richard, 2005) and remains a risk to water 
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management and agriculture in the region (Ayugi et al., 2022). For instance, Blamey et al. 

(2018) found that more droughts occurred from the 1970s to 2017 than witnessed in the 

1950s and preceding years during the summer rainfall season in several regions in South 

Africa. Severe drought from 2015 to 2018 that occurred in the Western Cape of South 

Africa adversely impacted the population resulting in the area being classified as a disaster 

zone (Pienaar and Boonzaaier, 2018; Mahlalela et al., 2020). 

Several studies investigated Sahel droughts and have however attributed the Sahel drought 

to factors such as sea surface temperatures (SSTs). For example, Hoerling et al. (2006), and 

Caminade and Terray (2010) studies attributed changes in sea surface temperature (SST) as 

the main factor affecting Sahel drought decadal-scale and interannual variations. 

Particularly, a strong relationship was observed between the tropical Pacific and Indian 

oceans SSTs and inter-hemispheric (north-south) temperature gradients in the tropical 

Atlantic (Ayugi et al., 2022). The north-south SST gradient (the south and north oceans 

warmed and cooled after 1970) relationship is the underlying factor which induced the 

Sahel drought on a decadal timeline (Ayugi et al., 2022). Bader and Latif (2011) found that 

the high Indian Ocean SST which could be a residue of the 1983 and 1983 El Nino events 

had a strong relationship to the Sahel drought of 1983. They also show that the Indian Ocean 

SST play a crucial role in the rainfall of the West Sahel by regulating the interannual 

variability of rainfall. Gore et al. (2020) examined the impact of ENSO on drought in 

Southern Africa and found that drought conditions are associated with the strength of the 

El Nino while La Nina induced wetness over the region. They also found that drought is 

driven by the weakening of the Walker circulation due to El Nino events across the region 

while the Atlantic and Indian Oceans influence the intensity and spatial patterns of drought. 

Drought trends in Northern Africa have been caused by the interaction of complex 
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processes and feedback mechanisms. Some of these processes are El Nino events, increased 

vertical thermal instability from the warming troposphere, and changes in the SST of the 

Atlantic Ocean which can induce low rainfall amounts in the summer months (Dai and 

Zhao, 2017). Other studies have suggested that Sahel droughts are also driven by the 

warming of the Atlantic Ocean as well as the Indian Ocean warming. Moulin and Chiapello 

(2004) also suggested that the impact of aerosol emissions could play a crucial role in the 

characteristics of droughts in the Sahel. 

2.3 Climate Change and Drought 

Numerous studies have investigated and affirmed the influence of climate change on 

drought frequency, duration and severity drought. Climate change possess the ability to 

alters the behaviour of climatic parameters such as precipitation, temperature and many 

more. With increasing greenhouse gases in the atmosphere leading to climate change, 

extreme events are projected to increase concurrently. Studies like Wang et al. (2011) 

investigated the soil moisture drought from 1950 – 2006 in China. Their study illustrates an 

increasing trend in drought frequency with varying degrees and duration and ascribes 

climate change as a possible phenomenon inducing that in China. Yuan et al. (2016) found 

that runoff reduced under a balanced emphasis on all energy sources (A1B) of the Special 

Report on Emissions Scenarios, leading to fewer hydrological droughts with longer 

persistence and severity, which will deteriorate the historical hydrological conditions in the 

Weihe River basin in China. Nosrati et al. (2018) studying climate change impacts on the 

minimum hydrological drought found that climate change will induce more drought events 

and increase its severity and drought-prone areas in the Atrak River basin in Iran. Zhiña et 

al. (2019) identified that there is variability in the impact of hydrological drought in the 
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near and far future under RCP 4.5 and 8.5 in the Puate River basin in Ecuador. They 

discovered that generally the frequency and duration reduce in both the near and future 

under both RCP 4.5 and 8.5 but the severity of the drought was seen to increase as compared 

to the baseline period. Some areas in their study area also had drought severity reduced 

under both scenarios. They recognise the complexity of terrain processes as a factor for the 

variation and GCM's inability to simulate convective systems as a limitation. Oguntunde et 

al. (2017) studied the characteristics of drought in the Volta River basin and found that the 

frequency of drought may magnify in the future. The study considered runoff from Regional 

Climate Models which occurs during precipitation event but does not account for the 

characteristics and complex processes which influences streamflow in the river basins as 

streamflow does not depend on precipitation events alone. 

 

2.4 Impact of Land Use Change (Forestation or Deforestation) on Droughts  

There are two schools of thought on the interactions of forest cover and precipitation. The 

first school of thought views forest as a net producer of water and the other considers it as 

a net user of water in the hydrological cycle. The net producer (supplier) side argues that 

forest acts as a generator or recycler of water which increases and improves the overall 

water balance while the net user (demand) side school of thought argues that forest is net 

users of water which lead to loss of water in the water balance to the atmosphere and 

advocates for policies to manage and regulate forest cover to maximise streamflow in a 

region (Bennett and Barton, 2018). Studies like Ellison et al. (2017) which champion the 

net producer side explains that evapotranspiration produced by forest increases the moisture 

in the atmosphere. Forest has a significant modulating effect on rainfall patterns and 
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atmospheric moisture over land deforestation increases temperature at the local scale and 

causes changes in rainfall and water. The net user (demand) side views trees in forest cover 

as contributing to water loss in catchment through the transpiration process and forests do 

not have any endearing link to precipitation formation and the concept of relief rainfall is 

not an inducement of forest cover but rather the relief (mountain) of the land surface 

(Bennett and Barton, 2018).  

Other studies looking to verify the substance of these two claims have gone further to 

analyse forest influence on rainfall and drought using climate models or climate models 

coupled with hydrological models. Such studies are Diasso and Abiodun (2018) show that 

the influence of reforestation over the Savanna region of West Africa could affect drought 

patterns in future under the RCP 4.5 scenario. Their findings revealed that reforestation 

reduces temperature and frequency of drought by -0.1 to -0.8 °C and 1 – 2 events per decade 

respectively over the reforested region and increases rainfall by 0.8 – 1.2 mm/day. They 

also realised that reforestation also induced feedback in the Sahel by increasing drought 

frequency by 1 event per decade during the monsoon season. Abiodun et al. (2013) 

investigated the influence of afforestation on climate change and climate extreme events 

over Nigeria and discovered that afforestation induces positive feedback over afforested 

areas and coastal regions by enhancing precipitation. They observed the reverse effect over 

the north-eastern part of the country which enhanced warming and reduced precipitation. 

Also, they note that more heatwaves and drought are likely to occur in the semi-arid regions 

and these enhancements of rainfall in the other parts may lead to flooding along the coastal 

regions. Lawrence and Vandecar (2015) investigated the impact of deforestation on climate 

and agriculture in the tropics and found that there exists a threshold for deforestation beyond 

which significant changes in rainfall are observed. Their findings also showed that with 
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increasing rates of deforestation, a high incidence of heat extremes as a result of the increase 

in mean temperature and, a decline in rainfall (average and frequency) may occur which 

will subsequently affect agriculture. Naik and Abiodun (2016) discovered that warming and 

rainfall increased in the afforested area and induced cooling in different places in the 

possible future under climate change. They associated the warming to albedo characteristics 

of forest cover and the cooling to the feedback effect of localised warming induced by the 

forest cover. This situation induces wetness and dryness in different locations in their study 

area. They observed that forestation created variation in summer drought frequency 

suggesting that forestation utilisation as a climate change mitigation option can cause 

undesirable results. Lima et al., 2014 observed that deforestation increased the dry season 

length while affecting streamflow which eventually led to hydrological drought in some 

basins in the Amazon forest region in South America. Takata and Hanasaki (2020) studies 

identified that afforestation increased drought risk during the dry season as a result of the 

increment in the evaporation process in Chao Phraya. Their study also revealed that 

afforestation has a less profound impact than climate change and afforestation reduced 

streamflow during the wet season. They conclude that afforestation aids in flood risk 

reduction in the wet season. Therefore, consideration must be taken in using afforestation 

as a mitigation option. Bonnesoeur et al. (2019) review of studies relating to forestation 

impacts on hydrological services in the Andes revealed that generally numerous studies 

have highlighted that forestation reduces streamflow and water supply downstream but 

enhances hydrological regulation and reduces erosion in degraded soils. They identified 

that forestation was associated with high water usage which leads to a decrease in 

downstream. 
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2.5 Hydrological Drought in the Volta River Basin 

The hydrology of a basin is dependent on spatial variables such as  topology, land cover/use 

and climate inputs. Three challenges emerge when assessing water balances in the Volta 

River Basin. First, demand for water for power generation has approached the supply stored 

in the water reservoir. Second, water management would require international or 

transboundary cooperation as water becomes increasingly scarce. Third, the dam's 

modulated outflow has a negative impact on downstream water users (Andreini et al., 2000; 

Kasei, 2009).  

According to Associated programme on Flood Management (APFM) (2020), the Volta 

River basin is very vulnerable to water-related disasters due to a lack of mitigation 

techniques. Over the previous two decades, climate change has contributed to disasters such 

as floods and droughts which incurred social, economic and environmental losses to almost 

two million people. 

van de Giesen et al. (2010) reported that climate models suggest there will be a shift in the 

onset of the rainy season roughly from April towards May in the Volta basin in the near 

future.  At the same time, the total amount of rainfall and the end of the rainfall season will 

remain fixed. In a related study, Mul et al. (2015) stated that the Volta River Basin is 

characterized by high seasonal rainfall variability with a distinct dry season during which 

rivers in the majority of the northern part dry up. Furthermore, the drying up of streams and 

wells in the communities during the dry season leads to frequent water shortages in the 

White Volta Basin.  

In another study, Gebrechorkos et al. (2022) used streamflow data simulated using the 

Variable Infiltration Capacity (VIC) and vector-based routing (RAPID) modelling system 

for 10,300 river reaches to assess the changes in drought duration and severity in the Volta 
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River Basin. They found that drought severity exhibited an increasing trend in the southern 

part of the basin while decreasing in the northern part of the basin. Furthermore, the trend 

analysis indicated a general decreasing trend (up to 5% per event) in drought duration in 

the northeastern part of the basin but showed an increasing trend in the southern parts of 

the basin. 

Oguntunde et al. (2006) conducted a study on the hydrological variability and trends in the 

Volta River Basin over the period 1901–2002. The study showed that the Rainfall 

variability index in the last three decades over the period 1901-2002 have been drier, with 

1983 being the driest year and 1968 being the wettest year. Runoff, on the other hand, has 

increased significantly at the rate of 0.8 mm/yr2 or 23 mm/ yr2 since 1970. Runoff before 

dam construction was higher (87.5 mm/ yr2) and varied more, with a coefficient of variation 

of 41.5% but the runoff post-dam period was 73.5 mm/ yr2 with a coefficient of variation 

of 23.9%. 

Furthermore, Kasei (2009) reported that the increase in low-flow events in the Volta River 

Basin will lead to an increase in droughts despite certain regional models projecting an 

increase in rainfall. This would have a major impact on the agricultural and energy sectors 

of communities in countries that rely on the Volta River basin for their needs. 

2.6 Impact of Climate Change on the Hydrology and Hydrological Drought in the 

Volta Basin 

Various studies have been conducted on the impact of climate change on hydrological 

drought in the Volta basin. For example, Dembélé et al. (2022) evaluated the impact of 

climate change on water resources in the Volta river basin under three Representative 

Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5). They reported that although 
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potential evaporation and air temperature were increasing under the three representative 

pathways, an increase in the magnitude of soil moisture, total runoff, actual evaporation, 

groundwater recharge and terrestrial water storage is projected under RCP8.5 scenario. 

Furthermore, the analysis of high and low flows indicated a potential increased in 

hydrological drought frequency in the Black Volta under RCP2.6 and RCP4.5 beginning in 

the mid-21st century. On the contrary, more frequent flooding was projected in the White 

Volta under RCP8.5 over the 21st century. 

In addition, Oguntunde et al. (2017) investigated the projected impacts of future climate 

change on drought in the Volta River Basin, as well as how the drought influences 

streamflow. They used the Standardized Precipitation Index (SPI) and Standardized 

Precipitation and Evapotranspiration Index (SPEI) to characterize drought, and the 

Standardized Runoff Index (SRI) to quantify hydrological drought. Their findings indicated 

that drought frequency (events per decade) when compared to the present-day episodes may 

be amplified by a factor of 1.2 in the year 2046–2065 and 1.6 in the year 2081–2100. 

Furthermore, precipitation was highly sensitive to runoff and a time lag of about 2 to 3 

months was observed between stream flow and drought indices in the Volta River Basin. 

In another study, Oguntunde et al. (2020) investigated the impact of global warming levels 

on drought characteristics in the Volta River basin and Niger River basin by employing two 

indices namely the Standardized Precipitation-Evapotranspiration Index (SPEI) and 

Standardized Precipitation Index (SPI). They found that with Standardized Precipitation-

Evapotranspiration Index (SPEI), severe drought frequency and magnitude are projected to 

increase across all basins (Volta River and Niger River basins), with the increase in 

consonance with higher global warming levels. On the other hand, the projected changes in 

severe drought frequency and magnitude are weaker for SPI than for SPEI. 
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Furthermore, Ndehedehe et al. (2016) examined the utility of standard indicators 

(Standardised Soil moisture index (SSI), standardised precipitation index (SPI), 

standardised runoff index (SRI), multivariate standardised drought index (MSDI) as well 

as Gravity Recovery and Climate Experiment (GRACE) to assess the characteristics of 

drought over the Volta River basin. They found that SPI and SRI showed a nonlinear 

relationship for wet periods, indicating that river discharge responds slowly to precipitation, 

especially after a previous extreme dry period. On the other hand, SPI and SSI exhibited a 

linear relationship with a correlation of 0.63 (that is on a 12-month scale) at a 95% 

confidence level indicating consistency in observed wet and dry periods. 

Yeboah et al. (2022) assessed climate projections in the Volta river basin using the 

CORDEX-Africa climate simulations under the Representative Concentration Pathways 

(RCPs) 4.5 and 8.5 scenarios. Their findings indicated that the Volta Basin would 

experience warmer days and night temperatures, as well as frequent drought and extreme 

precipitation events under RCPs 4.5 and 8.5 scenarios. However, RCP 4.5 showed a 

relatively lower magnitude of these extremes when compared to RCP 8.5. 

According to Kasei (2009), analysis of climate data in the Volta River basin indicated that 

the months where precipitation exceeds evapotranspiration typically occur in June, July, 

August, and September. Furthermore, temperature has been increasing over years leading 

to an increase in evapotranspiration and hence annulling any surplus amount gained from 

increased rainfall.  

McCartney et al. (2012) conducted a study utilizing a dynamic regional climate model 

(CCLM), a hydrological model (SWAT) and a water resource model (WEAP) to evaluate 

the impact of a downscaled 'middle impact' climate change scenario on existing and planned 

irrigation and hydropower schemes in the Volta River basin. Their results indicated that, 
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under a midrange climate change scenario, the CCLM model predicts a 9% decline in the 

basin-wide mean annual rainfall by 2050 and a 20% decrease by 2100. In addition to an 

increase in potential evapotranspiration, there would be a 24% and 45% decline in average 

annual basin flow by 2050 and 2100, respectively. 

In a related study, Jin et al. (2018) assessed changes in flow in the Volta river system by 

2050s and 2090s under the RCP8.5 scenarios by using High-resolution climate scenarios 

downscaled from three different Global Climate Models to drive the Integrated Catchment 

Model (INCA). Their findings reported that peak flows during the monsoon months could 

increase by up to 50% by the 2090s at the Black Volta River outflow and 10% by the 2090s 

at the Volta Lake outflow. Furthermore, the duration of drought in the Black Volta River 

may increase until the 2050s, after which overall wetter climatic circumstances may lead to 

less drought at the end of the century. Also, the future drought duration in Lake Volta is 

projected to be less frequent due to the climate pattern and long residence time of the lake 

system. Furthermore, they asserted that the impacts of changing socio-economic scenarios 

on flow are minor when compared to the impact of climate change. 

2.7 Impacts of Climate Change and land use on river basins using Hydrological 

models 

Hydrological models are potent in studying the combined effect of climate change and land 

use change on streamflow. The output from these models could be used to study the 

hydrological processes and how these two factors affect the cycle as well as understanding 

hydrological drought. Zhang et al. (2016) coupled a climate model with a hydrological 

model to study climate change and land use change in the Heihe River Basin located in 

China. The authors found that climate change was more significantly correlated to the 



 

23 

 

changes observed as it had enhanced the hydrologic response tremendously as compared to 

land use alone which was linked to reduced runoff, streamflow and groundwater recharge. 

The combined effect of both factors produced outputs similar to that obtained from climate 

change alone. Guo et al. (2008) also coupled a climate and hydrological model together and 

found that annual streamflow correlates with climate change while seasonal streamflow was 

sensitive to land use change in the Xinjiang River basin located in China. The combined 

effect produces unique results different from that obtained from land use change or climate 

change alone which underlined the need to factor both climate and land use changes in 

assessment studies. Dong et al. (2014) reported that runoff is more sensitive to land use 

change than to climate change in the Jinghe River basin in China using the SWAT model 

coupled with a sequential cluster and separation approach. Yin et al. (2017) applied the 

SWAT model to investigate the combined effect of climate and land use change on surface 

runoff and indicated that land use change and climate change influence runoff differently 

in different decades. They also observed that runoff fluxes are more sensitive to land use 

change than climate change. These studies have affirmed the capability of hydrological 

models to quantify changes that occurred as a result of climate and land use change.  

From these various reviews above, some effort has been made to analyse the impact of 

climate change on meteorological and hydrological drought. Especially, studies like 

Oguntunde et al. (2017) and Ndehedehe et al. (2016) have explored the impact of climate 

change using RCMs outputs nested in CMIP5 models.  This study will utilise a statistically 

downscaled and bias correction method on the latest CMIP6 models to enhance current 

knowledge on climate change's impact on meteorological and hydrological drought in the 

Volta Basin. This study also aims to evaluate the relationship between meteorological and 
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hydrological drought. This approach will be applied to this study by coupling the 

hydrological model (SWATplus) and CMIP6 data outputs. 
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CHAPTER THREE 

3.0    MATERIALS AND METHODS 

3.1  Study Domain 

The Volta River Basin is a transnational basin shared between six West African countries: 

Burkina Faso, Ghana, Togo, Benin, La Côte D’Ivoire and Mali (Figure 3.1). The Volta 

River Basin (VRB) is located in West Africa and lies between longitudes 5° 30’ W and 2° 

E and latitudes 5° 30’ N to 14° 30’ N (Biney, 2010). The basin has a total surface area of 

409,000 km2 and three main tributaries (Williams et al., 2016). The tributaries are the White 

Volta which takes its source from the northern part of Burkina Faso, the Black Volta which 

takes its source from the southwestern part of Burkina Faso, and the Oti Basin which 

originates from the northern part of Benin (Williams et al., 2016). The Red Volta is a major 

tributary to the White Volta in Burkina Faso. The Lower River Basin is found in the south 

of the VRB. The Black Volta, White Volta and Oti Basin flows into the Lower Volta. 

Appendix 1 shows a map of the main subbasins found in the VRB. The length of the river 

is 1850 km flowing southwardly till it empties into the Gulf of Guinea. Most of the 

catchment lies within Burkina Faso and Ghana with 43 % and 41.6 % of land areas of the 

Volta River Basin respectively (Volta Basin Authority, 2010; Darko et al., 2019). This 

represents 67 % and 65 % of the total land mass of Burkina Faso and Ghana respectively 

(Ampomah et al., 2008).  6.4 %, 3.1 %, 3.4 and 2.5 % of the VRB lies in Togo, Mali, Benin 

and Côte D’Ivoire respectively (Barry et al., 2005). The Black Volta, Oti and White Volta 

River Basins contribute 18 %, 20 %, and 25 % respectively to the water stored in the Volta 

Lake (Kasei, 2009). The Lower Volta and Oti Basins have the highest flow contribution 
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coefficient to the VRB, even though they have the smallest areas when compared with the 

Black and White Volta (Table 3.1). The Volta Lake is the largest artificial lake in West 

Africa. The Volta Lake stores water used for hydropower generation at the Akosombo dam. 

Bagré, Kompienga, Kpong, and Bui dams are other hydropower generation plants 

constructed in the VRB. Bui, Bagré and Kompienga dams are reservoir-operated dams. 

Kpong Dam is a run-of-river hydropower plant located in the Lower Volta south of the 

Akosombo dam. There are some protected ramsar sites such as Lac Dem, Barrage de Bagré, 

Barrage de la Kompienga, Lac Bam and La Vallée du Sourou in Burkina Faso; Keta Lagoon 

Complex and Songor in Ghana; Parc National de la Keran and Bassin versant Oti-

Mandouri in Togo; and Zone humide de la rivière Pendjani in Benin. 

The major economic activity of the inhabitants of the VRB is agriculture. About 70 % of 

inhabitants are dependent on rainfed agriculture (Kuntsmann and Jung, 2005). The demand 

for water in the Basin has short-up and is driven by hydropower, agriculture, mining, 

recreation, industrial consumption, transportation and domestic use (Amisigo, 2005; Mul et 

al., 2015). Urbanisation as a result of population growth and some economic activities such 

as agriculture and mining may lead to pollution that could affect water quality and 

destruction of ecosystem. Recently, both legal and illegal mining activities within the basin 

have increased, which if not managed adequately, may cause land degradation, increased 

sedimentation load and heavy metal pollution.   
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Figure 3.1: Map of the Volta River Basin, West Africa  
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Table 3.1: Area and annual flow of main tributaries (Subbasins) of the Volta River Basin 

Subbasin 

Area 

(km2) 

Mean Annual Flow 

(×106 m3) 

Flow Coefficient 

(%) 

White Volta (Nawuni) 104,749 7,673 8.3 

Black Volta (Bamboi) 149,015 9,565 10.8 

Oti (Sabari) 72,778 11,215 14.8 

Lower Volta (Senchi)  62,651 9,842 17.0 

Total 400,710   

Source: Barry et al. (2005) 
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3.1.1 Climate 

Generally, the northern part and a portion of the central part of the VRB are characterized 

by a mono-modal rainfall pattern from latitude 8 °N where The major rainfall season occurs 

in June, July and August while December, January and February characterise the dry season 

also known as harmattan. the southern part of the basin experiences a bimodal pattern of 

rainfall with two major rainfall seasons occurring in May-June-July and August-September-

October and a little dry season in August. The West African Monsoon system influences 

the climate of the basin. The convergence of moist south-westerlies from the Atlantic Ocean 

and the dry north-easterlies in West Africa forms the Inter-tropical discontinuity (ITD). The 

migration of the ITD influences moisture influx into West Africa. The ITD, Tropical 

Easterly Jet (TEJ) and the African Easterly Jet (AEJ) influence rainfall characteristics over 

the basin (Omotosho and Abiodun, 2007; Gebrechorkos et al., 2022). The rainfall follows 

a north-south gradient where the least amount of rainfall occurs in the north (400 mm/year) 

and the highest in the south (1600 mm/year) (Obuobie, 2008; Gebrechorkos et al., 2022). 

According to Amisigo (2005) was subdivided into the humid southern zone, the tropical 

transition zone and the tropical northern zone. These also correspond to the Guinea 

Savannah, Sudanian Savannah and the Sudano-Sahelian zones (Darko et al., 2019). The 

Guinea Savannah is characterised by 2 rainy seasons which peak in June and September, 

the Sudano-Sahalien and Sudanian Savannah zones have a mono-modal rainfall season 

which peaks in August/September (Amisigo, 2005; United Nations Environmental 

Programme - Global Environment Facility (UNEP-GEF), 2013; Darko et al., 2019).   

Annual potential evapotranspiration ranges between 1800 mm and 2500 mm in the coastal 

and the north of the basin respectively. There is a negative deficit between mean monthly 

rainfall and potential evapotranspiration (Amisigo, 2005). 
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Temperature also demonstrates a north-to-south gradient where the highest temperature is 

recorded in the north and the south also records a relatively lower temperature. The mean 

monthly temperature in the north varies from 36 °C to 27 °C while that of the south varies 

from 30 °C to 24 °C in March and August respectively (Oguntunde, 2004).  

 

3.1.2 Topography  

A greater portion of the elevation of the VRB ranges between 200 m and 300 m with a mean 

elevation of 257 m (Obuobie, 2008). The highest peak in the VRB is found in the Oti Basin 

at 920 m (Barry et al., 2005). The Akuapem Mountains, Fazao Mountains, Togo Mountains 

and Atakora Ranges in Benin rise from the sea northeastwards and the Kwahu Plateau 

extends northwestwards after the Akosombo Gorge (Barry et al., 2005). The Banfora 

Plateau located in Burkina Faso in the Black Volta is another relief that flanks the western 

part of the VRB (Barry et al., 2005). 

 

3.1.3 Geology and soil  

Two major geological formations characterize the geology of the Volta River Basin. They 

are the Proterozoic to Paleozoic ages consolidated sedimentary formations also known as 

the Voltaian Formation and the Precambrian basement crystalline rocks associated with the 

West African Shield (Obuobie, 2008; Barry et al., 2005; Mul et al., 2015). They occupy 

more than 90 % of the Volta River Basin (Mul et al., 2015; Aziz, 2017). The Volta River 

Basin is comprised primarily of these two geological formations (Figure 3.2). The 

Precambrian formations in the VRB are also categorized into the Birimian group, Tarkwan, 

Dahomeyan formation, and Buem and Togo formations (Obuobie, 2008). The Voltaian 

system comprises the Lower Voltaian (basal sandstone), Middle Voltaian (Obosom and Oti 
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beds) and the Upper Voltaian formation which are located in the Oti basin and Lower Volta, 

and the lower part of the Black and White Volta (Mul et al., 2015). Other Voltaian 

formations are the Quarternary alluvia deposits mostly found around the Volta Lake and 

the metasediments or volcanic sedimentary located bounded by the Middle Voltaian 

formation to the west and along the Volta delta, Togo and the northern part of Benin. The 

tertiary sandstones and the sedimentary formations are localised in the northern part of the 

Basin. The Precambrian basement crystalline rocks consist of igneous rocks, metamorphic 

rocks, anorogenic intrusions and granite-gneiss-greenstone rocks (Mul et al., 2015; 

Obuobie et al., 2016; Aziz, 2017). The sedimentary formations comprise sandstone, politic 

schist, shale, mudstones, arkose, dolomitic limestone and conglomerate, sandy and pebbly 

beds and limestones. The lithology and thickness of the weathered layer of the basement 

crystalline rocks vary (Martin, 2005; Obuobie et al., 2016). The thickness of the weathered 

layer was due to factors such as the structural properties of the rocks, topography, 

vegetation, climatic conditions and erosion (Obuobie et al., 2016). 

The soils of the Volta River Basin are formed as a result of the weathering of the various 

parent rock types identified in the basin (Andah et al., 2003; Obuobie, 2008). Using the 

Food and Agriculture Organisation and United Nations Educational, Scientific and Cultural 

Organization (FAO-UNESCO) (1974) soil classification system, eleven dominant soil 

types were identified in the VRB (Table 3.2). The soils are Acrisols, Arenosols, Cambisols, 

Fluvisols, Gleysols, Lithosols, Luvisols, Nitosols, Planosols, Regosols and Vertisols. The 

major soil type identified in the Volta River Basin is the Luvisols (59.896 %) (Obuobie, 

2008). Generally, the soils in the northern part of the basin are lower in organic content than 

the soils found in the south, especially in the forest zones. In the northern part, the soil 

structure of Luvisols is unstable and has low nutrient content thereby making them highly 
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susceptible to erosion when the slope gradient is not gentle (Obuobie, 2008).  The Regosols 

(10.609 %) and Lithosols are the next dominant soil types (10.01 %) (Table 3.2) that are 

located in the northern part of the VRB.  Regosols are highly porous and have poor water 

retention ability. In the VRB, the largest type of Regosols is the Eutric Regosols (Re33-1a-

1677) which has a sandy-loam textural class. Aresonols of the VRB are also high in sandy 

textured with low soil productivity and poor water retention capacity (Appendix 2). Luvic 

Arenosols (Ql1-1a-1614) which have a sandy textural class are the largest amongst the 

Arenosols soil types in the VRB (Appendix 2).  
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Figure 3.2: Geology map of the Volta River Basin  

Source: GLOWA-Volta project, adapted from Mul et al. (2015)  
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Table 3.2:  Soil types of the Volta River Basin 

Soil Type Area Covered (km2) PERCENTAGE (%) 

Acrisols 7479.045065 1.814 

Arenosols 13756.10074 3.337 

Cambisols 12353.77977 2.996 

Fluvisols 5676.060983 1.377 

Gleysols 2604.310329 0.632 

Lithosols 41268.30222 10.01 

Luvisols 246942.0414 59.896 

Nitosols 5742.838173 1.393 

Planosols 4874.734727 1.182 

Regosols 43739.05817 10.609 

Vertisols 15959.74795 3.871 

Water 11886.33947 2.883 

Grand Total 412282.359 100 

Luvisols is the most dominant soil in the VRB (in Bold) 

Source: FAO-UNESCO (2003)  
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3.1.4 Land use/ cover 

The VRB is dominated by Savannah land cover (Obuobie, 2008) which is characterised by 

grasses interspaced by shrubs. According to Obuobie (2008), 86 % of the basin is covered 

by the savannah, with croplands, wetlands, natural vegetation, built-up and forest cover. 

The savannah was subdivided into wooded (found in the south) and grassy (found in the 

north) savannah. The dominant land use in the VRB is agriculture (Obuobie, 2008).  

 

3.2 Data collection 

3.2.1 Spatial datasets  

The spatial datasets used in this study include the gridded climate variables, soil, land cover, 

and Digital Elevation Map (DEM). These datasets are required as input into the SWATplus 

model. A 90m hydrological conditioned DEM was obtained from HydroSHEDS version 1 

(http://www.hydrosheds.org). The HydroSHEDS was developed by Lehner et al. (2008) 

and was based on the Shuttle Radar Topography Mission (SRTM) elevation data. The 

digital soil map from the Food and Agriculture Organisation (FAO, 2003) and a land cover 

map for the year 1992 were obtained from the European Space Agency’s Climate Change 

Initiative Land Cover project (ESA CCI-LC) (ESA, 2017). The ESA land cover map was 

reclassified into similar land cover classes found in the SWATplus database using Defourny 

et al. (2017), Reinhart et al. (2021) and Tew et al. (2022). Sixteen SWATplus land use 

classes were used for this study. Table 3.3 shows the reclassification of ESA land cover 

type to correspond to SWATplus land cover types. The spatial datasets used to set up the 

SWATplus model are illustrated in Figure 3.3.  

http://www.hydrosheds.org/
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Table 3.3: Land cover types of the ESA CCI-LC data and its corresponding land cover types 

in SWATplus Database 

ID ESA Landuse 

SWAT+ 

Landuse 

SWAT+ Landuse Long 

name 

10 Cropland, rainfed AGRR agricultural_land_row 

11 Herbaceous cover CRGR cropland/grassland_mosiac 

12 Tree or shrub cover CRWO cropland/woodland_mosiac 

20 Cropland, irrigated or post-flooding CRIR 
irrigated_cropland_and_pa

sture 

30 

Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) 

(<50%) 

AGRL agricultural_land_generic 

40 

Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland 

(<50%)  
CRWO cropland/woodland_mosiac 

50 Tree cover, broadleaved, evergreen, closed to open (>15%) FRSE forest_evergreen 

60 Tree cover, broadleaved, deciduous, closed to open (>15%) FRSD forest_deciduous 

61 Tree cover, broadleaved, deciduous, closed (>40%) FRSD forest_deciduous 

62 Tree cover, broadleaved, deciduous, open (15-40%) FRSD forest_deciduous 

70 Tree cover, needleleaved, evergreen, closed to open (>15%) FRSE forest_evergreen 

71 Tree cover, needleleaved, evergreen, closed (>40%) FRSE forest_evergreen 

72 Tree cover, needleleaved, evergreen, open (15-40%) FRSE forest_evergreen 

80 Tree cover, needleleaved, deciduous, closed to open (>15%) FRSD forest_deciduous 

81 Tree cover, needleleaved, deciduous, closed (>40%) FRSD forest_deciduous 

82 Tree cover, needleleaved, deciduous, open (15-40%) FRSD forest_deciduous 

90 Tree cover, mixed leaf type (broadleaved and needleleaved) FRST forest_mixed 

100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) FRST forest_mixed 

110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) GRAS grassland 

120 Shrubland SHRB shrubland 

121 Shrubland evergreen SHRB shrubland 

122 Shrubland deciduous SHRB shrubland 

130 Grassland GRAS grassland 

140 Lichens and mosses BSVG 

barren_or_sparsley_vegetat

ed 

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) BSVG 
barren_or_sparsley_vegetat

ed 
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ID ESA Landuse 

SWAT+ 

Landuse 

SWAT+ Landuse Long 

name 

151 Sparse tree (<15%) BSVG 
barren_or_sparsley_vegetat

ed 

152 Sparse shrub (<15%) BSVG 

barren_or_sparsley_vegetat

ed 

153 Sparse herbaceous cover (<15%) BSVG 

barren_or_sparsley_vegetat

ed 

160 Tree cover, flooded, fresh or brackish water WETF wetlands_forested 

170 Tree cover, flooded, saline water WETF wetlands_forested 

180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water WETL wetlands_mixed 

190 Urban areas URBN urban 

200 Bare areas BARR Barren_Land 

201 Consolidated bare areas BARR Barren_Land 

202 Unconsolidated bare areas BARR Barren_Land 

210 Water bodies WATR Water 

220 Permanent snow and ice WATR Water 
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Figure 3.3: Land Cover, Soil map, Digital Elevation Model and Subbasins used in the 

SWATplus model for the Volta River Basin 
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3.2.2 Climate datasets 

3.2.2.1 Observation Data 

Global Meteorological Forcing Datasets for Land Surface Modelling (GMFD) and Ghana 

Meteorological Agency. The GMFD is a reanalysis dataset published by Sheffield. et al. 

(2006) and is also known as Princeton Global Forcing (PGF) datasets. The GMFD was 

produced by the combination of the National Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP–NCAR) reanalysis, the World 

Meteorological Organization (WMO) Solid Precipitation Measurement Intercomparison, 

Global Precipitation Climatology Project (GPCP) daily product, Climate Research Unit 

(CRU TS3.0) and Tropical Rainfall Measuring Mission (TRMM) and evaluated against the 

Global Soil Wetness Project (GSWP-2). The dataset has been updated from 1948-2010 to 

1948-2016 at a horizontal resolution of both 0.5° X 0.5° and 0.25° X 0.25° covering the 

globe between longitude 180 °W to 180 °E and latitude 90 °N to 90 °S, and available at 3-

hourly, daily and monthly time steps. In this study, version 3 of the GMFD datasets is used. 

Precipitation, temperature (Mean, Maximum and Minimum), wind speed, downward 

shortwave at the surface and Specific humidity.  

Historical precipitation data was obtained from the Ghana Meteorological Agency and 

compared against the precipitation records of the GMFD. Precipitation is highly variable in 

West Africa therefore it is essential to assess the performance of any gridded spatial datasets 

against in-situ data. The description of the in-situ data used in this study is shown in 

Appendix 3. The new agro-climatology zones presented in Bessah et al. (2022) was used 

to classify the in-situ data during the evaluation of the GMFD and CRU precipitation data 

with GMET precipitation data. Also, the climatic zoning illustrated in Dotse et al. (2023) 
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was used throughout this study. The climatic zones are Guinea Coast (5 – 8 °N), Savanna 

(8 – 12 °N) and Sahel (12 – 16 °N). 

3.2.2.2 Climate change data 

The Sixth Model Intercomparison Phase (CMIP6) uses a scenario which integrates the 

Shared Socioeconomic Pathway (SSP) with Representative Concentration Pathway (RCP) 

(Meinshausen et al., 2019). The RCPs have been expanded to seven scenarios with forcings 

1.9, 3.4 and 7.0 W m−2 added to the already existing forcings (8.5, 6.0, 4.5 and 2.6 W m−2). 

The various SSPs are SSP1 referring to sustainability (taking the green road), SSP2 is 

middle of the road, SSP3 is regional rivalry (a rocky road), SSP4 referes to inequality (a 

road divided) and SSP5 is fossil-fuelled development (taking the highway) (Grose et al., 

2020). Simulated climate change scenario outputs from the NASA Earth Exchange (NEX) 

Global Daily Downscaled Projections (GDDP) (Thrasher et al., 2022) were downloaded 

for the study area to study the future occurrence of drought. The future climate years were 

from 2060 to 2100. The CMIP6 datasets were also downloaded and used for comparison 

between the NEX-GDDP datasets. The NEX-GDDP datasets are statistically downscaled 

and bias-corrected CMIP6 datasets using GMFD which is spatially aggregated to the 

horizontal resolution of the GMFD at 0.25° X 0.25°. The historical, SSP1-2.6, 2-4.5 and 5-

8.5 were obtained to conduct this study. A total of 15 global CMIP6 and their NEX-GDDP 

counterparts were downloaded from Earth System Grid Federation (ESGF) and NASA 

Earth Exchange (NEX) websites (https://www.nccs.nasa.gov/services/data-

collections/land-based-products/nex-gddp-cmip6). Only the historical scenario of the 

CMIP6 model outputs were downloaded on daily and monthly time steps. Table 3.4 shows 

the individual models used in this study.  
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Table 3.4: Description of CMIP6 GCM models used for the study  

Model Institution Country 
Land 

resolution 
Short name  Reference 

ACCESS-

CM2 

Commonwealth Scientific and 

Industrial Research Organisation 

(CSIRO) 

Austrialia  250 km 

ACCESS-CM2 

or 

ACCESS_CM2 

  

ACCESS-

ESM1 

Commonwealth Scientific and 

Industrial Research Organisation 

(CSIRO) 

Austrialia 250 km 
ACCESS-

ESM1 
  

BCC-

CSM2-MR 
Beijing Climate Center China 100 km BCC 

Wu et al. 

(2019) 

CanESM5 

Canadian Centre for Climate 

Modelling and Analysis, 

Environment and Climate Change 

Canada, Victoria 

Canada  500 km 
CanESM5/ 

CanESM 

Swart et 

al. (2019) 

GISS-E2-1-

G 

Goddard Institute for Space Studies 

(GISS), New York, NY, USA 

United 

States of 

America 

 250 km GISS 
 Kelley et 

al. (2020) 

HADGEM3-

GC31-LL 

Met Office Hadley Centre, Exeter, 

Devon, UK 

United 

Kingdom 
 250 km 

HADGEM3-

LL / 

HadGEM_LL 

Williams 

et al. 

(2018) 

MIROC6 

Japan Agency for Marine-Earth 

Science and Technology 

(JAMSTEC), Kanagawa, Japan, 

Atmosphere and Ocean Research 

Institute (AORI), The University of 

Tokyo, Chiba, Japan, National 

Institute for Environmental Studies 

(NIES), Ibaraki, Japan, and RIKEN 

Center for Computational Science, 

Hyogo, Japan (MIROC) 

Japan  500 km MIROC6 
 Hajima et 

al. (2020) 

MIROC-

ES2L 

Japan Agency for Marine-Earth 

Science and Technology 

(JAMSTEC), Kanagawa, Japan, 

Atmosphere and Ocean Research 

Institute (AORI), The University of 

Tokyo, Chiba, Japan, National 

Institute for Environmental Studies 

(NIES), Ibaraki, Japan, and RIKEN 

Center for Computational Science, 

Hyogo, Japan (MIROC) 

Japan  500 km 
MIROC-ES2L/ 

MIROC_ES2L 

Hajima et 

al. (2020) 

https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.1029/2019MS002025
https://doi.org/10.1029/2019MS002025
https://doi.org/10.1002/2017MS001115
https://doi.org/10.1002/2017MS001115
https://doi.org/10.1002/2017MS001115
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/gmd-13-2197-2020
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Model Institution Country 
Land 

resolution 
Short name  Reference 

CMCC-

ESM2 

Fondazione Centro Euro-

Mediterraneo sui Cambiamenti 

Climatici (CMCC), Lecce, Italy 

Italy 100 km 
CMCC-ESM2/ 

CMCC 

Lovato et 

al. (2022) 

MPI-ESM1-

HR 

Max Planck Institute for 

Meteorology (MPI-M), Hamburg, 

Germany 

Germany 100 km MPI-HR   

MPI-ESM1-

LR 

Max Planck Institute for 

Meteorology (MPI-M), Hamburg, 

Germany 

Germany 250 km MPI-LR   

MRI-ESM2-

0 

Meteorological Research Institute 

(MRI), Tsukuba, Ibaraki, Japan 
Japan 100 km MRI 

Yukimoto 

et al. 

(2019) 

NESM3 

Nanjing University of Information 

Science and Technology (NUIST), 

Nanjing, China 

China  250 km NESM3 
Cao et al. 

(2018) 

NorESM2-

LM 

NorESM Climate modeling 

Consortium, Oslo, Norway 
Norway 250 km NorESM2-LM 

Seland et 

al. (2020) 

NorESM2-

MM 

NorESM Climate modeling 

Consortium, Oslo, Norway 
Norway 100 km, NorESM2-MM 

Seland et 

al. (2020) 

Short name refers to the names the models are renamed in this study  

Source: Center for Earth System Research and Sustainability, University of Hamburg 

  

https://doi.org/10.1029/2021MS002814
https://doi.org/10.1029/2021MS002814
https://doi.org/10.2151/jmsj.2019-051
https://doi.org/10.2151/jmsj.2019-051
https://doi.org/10.2151/jmsj.2019-051
https://doi.org/10.5194/gmd-11-2975-2018
https://doi.org/10.5194/gmd-11-2975-2018
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5194/gmd-13-6165-2020
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3.2.2.3 Hydrological data 

Observed hydrological gauge station records for the VRB were obtained from the Global 

Runoff Database Centre (GRDC) (https://portal.grdc.bafg.de). The GRDC is a global 

archived centre which aims to provide hydrological gauge streamflow watersheds across 

the World. Most of the streamflow records on the GRDC website were obtained from the 

Hydrological Service Department (HSD) of Ghana. These datasets were used for the 

calibration and validation of the SWATplus model and also for comparing the outputs. 

There were a lot of gaps in the datasets and therefore stations like Nawuni, Saboba and 

Sabari were considered as most suitable on a monthly scale for calibration. The Bamboi 

gauge records were eventually used to aid in the calibration of the Black Volta despite the 

amount of missing data in the records. The hydrological gauge stations used in this station 

are described in Table 3.5. 

  



 

44 

 

 

 

 

 

 

 

 

Table 3.5: Hydrological Gauge Stations Used in the Volta River Basin 

Gauge Station Country Latitude Longitude 

Bamboi Ghana 8.15 -2.03 

Nawuni Ghana 9.7 -1.08 

Sabari Ghana 9.28 -0.23 

Saboba Togo 9.76 -0.32 

Source: Taylor et al. (2006) 
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3.3 Model Description 

The Soil and Water Assessment Tool PLUS (SWATplus or SWAT+) is developed and 

maintained by the United States Department of Agriculture (USDA) Agricultural Research 

Service (USDA-ARS) and Texas A&M AgriLife Research which is part of Texas A&M 

University. SWATplus was developed based on the limitations and challenges faced by the 

earlier model SWAT after its usage for more than 20 years and throughout many parts of 

the globe. The principles used in the development of the SWAT model are not changed in 

the SWAT+ but the input data structure and gives users more flexibility to represent 

interactions spatially and processes spatially within the catchment or watershed. SWAT+ 

can model from small watershed to river basin scale by simulating the quantity and quality 

of surface and groundwater and forecast the impact of land use and land cover, management 

practices, and climate change on the environment. SWATplus has been developed based on 

the improvement and challenges faced by the earlier model SWAT. The SWAT model 

divides the watershed into sub-basins (which is the first level of subdivision). The sub-

basins are subdivided into Hydrological Response Units (HRU) based on the land uses, soil 

and slope distribution in the watershed. The HRU signifies the basic unit of the watershed 

which is homogenous. The hydrology of the SWAT model is based on the water balance 

equation. The hydrology of the watershed model is divided into the land phase of the 

hydrology cycle and the water or routing of the hydrologic cycle. The land phase regulates 

the sediment, amount of water, pesticides and nutrient loadings of the main channel in each 

sub-basin. The routing phase comprises the movement of water, sediments, nutrients and 

pesticides through the main channel (Neitsch et al., 2011). Contrary to the SWAT model, 

the subbasins in the SWATplus are first divided into water areas and Landscape Units 

(LSUs) which aim to separate upland and floodplain processes and then after subdivided 
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into HRUs (Bieger et al., 2017). The new model improves model processes and interactions 

and also their spatial representation in the basin than observed in the old SWAT model 

(Bieger et al., 2017). Modelling of water HRUs has always been problematic in the SWAT 

model as a result of parametrisation and therefore, this issue has been resolved in the new 

model HRUs (Bieger et al., 2017). Additional spatial options that have been incorporated 

into the new model are water rights, outlets, animal herds, canals and pumps. Also, decision 

tables have been included in the SWAT+ which simulate the management, reservoir 

operations and irrigation (Arnold et al., 2018). The SWAT+ is more user-friendly and 

flexible in the spatial definition of processes such as reservoir or pond processing, HRU 

definition and their interactions. The model equations still remain the same  

The basic model equations are described in equations 1 – 4.   

The water balance equation is defined below: 

 𝑆𝑊𝑡 = 𝑆𝑊𝑜 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎
𝑡
𝑖=1 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)        (3.1) 

where 𝑆𝑊𝑡 is the soil water content during the beginning or the final stage (mmH2O), 𝑆𝑊𝑜 is 

the soil water content during the beginning or the initial stage (mmH2O), 𝑅𝑑𝑎𝑦 is the 

precipitation amount recorded on a day i (mmH2O), 𝑄𝑠𝑢𝑟𝑓  refers to the surface runoff 

amount recorded on a particular day i (mmH2O), t refers to the period (or time) (days), 𝐸𝑎 is 

the recorded evaporation amount on a day i (mmH2O)), 𝑊𝑠𝑒𝑒𝑝  refers to the quantity of water 

entering the vadose region from the soil profile on day i (mmH2O), 𝑄𝑔𝑤  the return flow 

amount on day i (mmH2O) 

 𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦 − 𝐼𝑎)

2

(𝑅𝑑𝑎𝑦 − 𝐼𝑎 + 𝑆)
 (3.2) 

where 𝑄𝑠𝑢𝑟𝑓 is accumulated runoff (rainfall excess) in mmH2O, 𝑅𝑑𝑎𝑦 is the rainfall depth 
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for the day in mmH2O, 𝐼𝑎  is the initial abstraction which includes surface storage ; 

interception and infiltration before runoff 

𝑆  is the retention parameter ( mmH2O) which is defined as:  

 𝑆 = 25.4 (
1000

𝐶𝑁
− 10) (3.3) 

Where CN is the curve number for the day. Ia is commonly given as 0.2S, hence the 

equation 4 is expressed as:  

 𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦 − 0.2𝑆)

2

(𝑅𝑑𝑎𝑦 + 0.8𝑆)
 (3.4) 

In this equation, runoff is generated when 𝑅𝑑𝑎𝑦 > 𝐼𝑎. The SCS curve number is a function 

of the permeability of the soil, land use and antecedent soil condition (Arnold et al., 2011). 

 

3.4 Methods 

3.4.1 Methods for Achieving Objective 1 

3.4.1.1 Evaluation of GMFD with Ghana meteorological datasets (GMET) 

The precipitation records of the GMFD and the GMET were compared with each other. A 

number of performance evaluation criteria (PEC) were used to assess the relation of the 

GMFD and GMET datasets. The results were also compared with CRU datasets which has 

been applied in the Basin by Taylor et al. (2006) and Oguntunde et al. (2006). The PECs 

used are the coefficient of determination (R2), correlation (R), Kling-Gupta efficiency 

(KGE), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), Root mean square error 

(RMSE) and ratio of RMSE to the standard deviation (RSR). 

The PECs were also used during the SWATplus model’s calibration and validation.  
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 𝑅2 =
[∑ (𝑄𝑚𝑜𝑏,𝑖 − 𝑄𝑚̅̅ ̅̅̅𝑜𝑏)(

𝑛
𝑖=1 𝑄𝑚𝑠,𝑖 − 𝑄̅𝑚𝑠)]

2

∑ (𝑄𝑚𝑜𝑏,𝑖 − 𝑄̅𝑚𝑜𝑏  )2 
𝑛
𝑖=1 ∑ (𝑄𝑚𝑠,𝑖−𝑄𝑚̅̅ ̅̅̅𝑠 )2 

𝑛
𝑖=1

 (3.5) 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚𝑠,𝑖 − 𝑄𝑚𝑜𝑏,𝑖 )

2 𝑛
𝑖=1

∑ (𝑄𝑚𝑜𝑏,𝑖 − 𝑄𝑚𝑜𝑏 )2 
𝑛
𝑖=1

 (3.6) 

 𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑄𝑚𝑜𝑏 − 𝑄𝑚𝑠 )𝑖
𝑛
𝑖=1

∑ 𝑄𝑚𝑜𝑏,𝑖
𝑛
𝑖=1

 (3.7) 

   

 KGE = 1 − √(r − 1)2 + (
SDs
SDob

− 1)
2

+ (
Q̅ms

Q̅mob

− 1)

2

 

 

(3.8) 

 
𝑟 =

∑ (𝑄𝑚𝑜𝑏,𝑖 − 𝑄̅𝑜𝑏) ×
𝑛
𝑖=1 (𝑄𝑚𝑠,𝑖 − 𝑄̅𝑠)

√[∑ (𝑄𝑚𝑜𝑏,𝑖 − 𝑄̅𝑚𝑜𝑏)
2𝑛

𝑖=1 × ∑ (𝑄𝑚𝑠,𝑖 − 𝑄̅𝑚𝑠)
2𝑛

𝑖=1 ]

 

 

(3.9) 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑚 𝑠,𝑖 − 𝑄𝑚 𝑜𝑏,𝑖)
𝑛
𝑖=1

𝑁
 (3.10) 

 𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝐷𝑜𝑏
 (3.11) 

 

Where: 

𝑄𝑚𝑜𝑏 is the observed streamflow or rainfall  (𝑚
3

𝑠⁄ ), 𝑄𝑚𝑠 is the simulated streamflow or 

rainfall amount (𝑚
3

𝑠⁄ ), i refers to the time step of the observed and simulated, 𝑄̅𝑚𝑜𝑏 is the 

mean of the observed rainfall or streamflow, 𝑄̅𝑚 𝑠 is the mean of the simulated rainfall or 

streamflow, n or N is the total number of time steps in the data records of the observed and 
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simulated rainfall or streamflow. SDs is the standard deviation of the observed and SDob is 

the standard deviation of the simulated.  

The R2 ranges from 0 to 1 with the best-fitted model having a value approximately 1 and 

zero being the worse fitted model. r ranges from -1 to 1. The best r value is one that 

approaches 1 when comparing models with observed data. NSE ranges from -∞ to 1 with 

1 indicating the best-fitted models. The PBIAS ranges from -100 to 100 with the best-fitted 

model having a value of zero indicating no difference between the observed and simulated 

datasets.  

3.4.1.2 Computation of standardised precipitation evapotranspiration index (SPEI) 

SPEI was introduced by Vicente-Serrano et al. (2010) to analyse drought characteristics. 

The SPEI was introduced to overcome the limitation of the Standardised Precipitation Index 

(SPI) by accounting for water balance. In this study, a three parameter log-logistic 

distribution was applied to the GMFD datasets. The SPEI package (Begueria et al., 2023) 

was employed in R software to compute SPEI indices spatially. The unbiased probability 

weighted moment (ub-pwm) which was recommended by Begueria et al. (2014) was used 

as the method for fitting the log-logistics distribution to the climatic water balance (P-PET) 

outputs. They report that the ub-pwm is able to resolve the problem of no solution and 

computed SPEI indices computed at different time scales are consistent and with equal 

variance. The rectangular kernel was used in the computation of the SPEI indices. The log-

logistic probability distribution is applied by normalising the water balance. The SPEI was 

compute at 12- and 24-month scales. The climatic water balance (WB) is computed by the 

equation below: 
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 𝑊𝐵𝑛
𝑘 =∑𝑃𝑛−1 − 𝑃𝐸𝑇𝑛−1

𝑘−1

𝑖=0

 (3.12) 

The calculated WB values are aggregated at different timescales below 

Where P is precipitation, PET is the evapotranspiration, k is the month or timescale of 

aggregation. 

The probability distribution function is given as: 

 
𝐹(𝑥) =  [1 + (

𝛼

𝑥 − 𝛾
)
𝛽

]

−1

 (3.13) 

 

where α, β and γ refer to the scale, shape and location parameters for γ > x > ∞ (Begueria 

et al., 2014) and are estimated from WB.  

After computing the F(x), the Abramowitz and Stegun (1965) classical approximation is 

used to compute the SPEI indices.  

 

 
𝑆𝑃𝐸𝐼 = 𝑊 − 

𝐶0 + 𝐶1𝑊 + 𝐶2𝑊
2

1 + 𝑑1𝑊 + 𝑑2𝑊2 + 𝑑3𝑊3
 

 

(3.14) 

 𝑊 = √−2 ln(𝑝)  for p ≤ 0.5 where p > 0.5 then p is replaced by 1-p and the 

sign reversed 

 

(3.15) 

 

p defines the probability of exceedance determined 𝑊𝐵𝑖 value and given as p = 1 - F(x) 

(Vicente-Serrano et al., 2012). 
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where 𝐶0 = 2.515517, +𝐶1= 0.802853, 𝐶2 = 0.010328, 𝑑1= 1.432788, 𝑑2 = 0.189269, and 

𝑑3 = 0.001308 (Vicente-Seranno et al., 2012). 

 

The SPEI indices were calculated for the GMFD, CMIP6 and NEX-GDDP datasets from 

1960 to 2014 during the historical assessment period. For the future estimation of drought 

indices, the SPEI indices were computed for the NEX-GDDP datasets from 1960 to 2100 

using a climatic reference period from 1971 to 2000 on a monthly time step.  

 

3.4.1.3 Computation of Principal Component Analysis (PCA) and wavelet analysis 

The Principal component analysis is a dimension-reducing technique that tries to uncover 

hidden structures in the datasets by summarising them into uncorrelated orthogonal and 

accounting for the majority of the variance. PCA has been applied by Ujeneza and Abiodun 

(2015), Oguntunde et al. (2020) and Mohammed et al. (2022) to SPEI data to understand 

the spatiotemporal characteristics of drought. In this study, the rotated PCA was employed 

to understand the spatiotemporal characteristics of drought in the VRB using the computed 

SPEI indices. The Hargreaves method (Hargreaves and Samani, 1985) of estimating 

evapotranspiration (PET) was used. Following the approaches of Diasso and Abiodun 

(2017) and Ujeneza and Abiodun (2015), the first four PCA factors were retained during 

the computation of the PCA. The first four PCA factors were the dominant factors which 

had the highest explained variance in the observed SPEI indices of the observed data. The 

study also applied wavelet analysis to understand the possible atmospheric cycles that 

control drought and wet events in the VRB. The PCA scores obtained for each factor were 

detrended and used as input for the wavelet analysis. The Morlet wavelet was used during 
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the computation of the wavelet power spectrum (Torrence and Compo, 1998; Oguntunde et 

al., 2017). 

 

3.4.1.4 Mann-Kendall trend test and Thiel’s Sens slope estimator 

The Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) is a non-parametric test that is 

used to detect monotonic trends in a dataset. This test has been widely used in 

environmental science as it does not require the data series to be normally distributed and 

can also accommodate missing values. 

The Mann-Kendall test is computed by the following equations below: 

 𝑆𝑘 =∑ ∑ sgn(𝑋𝑗 − 𝑋𝑖)
𝑁

𝑗=𝑖+1

𝑁

𝑖=1
 (3.16) 

Where  𝑋𝑗 and 𝑋𝑘 are sequential data values of length N in years such that k is greater than 

i and where sgn function is defined as: 

 

 sgn(𝑋𝑗 − 𝑋𝑖) = {

1 if (𝑋𝑗 − 𝑋𝑘) > 0

0 if (𝑋𝑗 − 𝑋𝑘) = 0

−1 if (𝑋𝑗 − 𝑋𝑘) < 0

 (3.17) 

The Mann-Kendall statistic's variance is determined using the following formulas under the 

null hypotheses of no trend and independence of the series: 

 𝑉𝑎𝑟(𝑆𝑘) =
𝑁(𝑁 − 1)(2𝑁 + 5) − ∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑔
𝑝=1

18
 (3.18) 

 

g represents the number of tied groups and Where tp refers to the number of data values in 

the Pth group. If the data series contains tied values, only then is the summing term in the 

numerator applied. The standard normal test statistic 𝑍𝑠 is calculated using the statistic 𝑆𝑘, 
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which assumes a normal distribution for samples with n ≥ 10 and sample sizes greater than 

10. 

 

 𝑍𝑠 =

{
 
 

 
 

𝑆𝑘 − 1

√𝑉𝐴𝑅(𝑆𝑘)
, for  𝑆𝑘 > 0

0, for          𝑆𝑘 = 0
𝑆𝑘 + 1

√𝑉𝐴𝑅(𝑆𝑘)
, 𝑆𝑘 < 0

 (3.19) 

Compute the probability associated with this normalised test statistic. The probability 

density function for a normal distribution with a mean of 0 and a standard deviation of 1 is 

given by the following equation: 

 

 𝑓(𝑍𝑠) =
1

√2𝜋
𝑒−

𝑍𝑠
2

2  (3.20) 

If 𝑍𝑠 is negative and the computed probability exceeds the level of significance, the trend 

is considered to be decreasing. If the 𝑍𝑠 is positive and the computed probability is above 

the level of significance, the trend is said to be increasing. There is no trend if the estimated 

probability is lower than the level of significance. 

3.4.1.5 Modified Mann Kendall Test  

Autocorrelation or serial correlation in a data series affects the power of the Mann-Kendall 

test and may increase the likelihood of type 1 error (Yue et al. 2004). The method of 

removing serial correlation proposed by Yue and Wang (2004) was applied to the Mann-

Kendall test by using the correction approach of Yue and Wang (2004). 

 𝑉𝑎𝑟∗(𝑆𝑚𝑘) =  𝑉𝑎𝑟(𝑆𝑚𝑘)  × 
𝑁

𝑁∗
 (3.21) 
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Where N is the actual sample size of data (ASS), N* is the effective or equivalent sample 

size (ESS) and 
𝑁

𝑁∗
 is the correction factor for correcting the serial dependence. Additional 

equations explaining how the effective sample size was obtained is presented in Yue and 

Wang (2004). 

The Theil-Sen’s slope estimator has been used to establish the true slope magnitude of the 

monotonic trend detected by the MK test statistics wherever it is present in the time series. 

It is a robust method for fitting a line to a time series data by utilising the median of the 

slopes of all through pairs of two-dimensional sample points. An unbiased median slope 

estimator approach is used to estimate the magnitude of the trend which was proposed by 

Sen (1968) and further modified by Hirsch et al. (1982). The modified Mann-Kendall and 

Sen’s slope estimates were computed for each spatial grid of the GMFD data. These 

statistics were also computed for the NEX-GDDP datasets for both the historical and future 

periods. Future periods were subdivided into Near term (NF) which ranges from the year 

2021 to 2050, Mid term (MF) from 2051 to 2080, and Far term (FF) from 2081 to 2100. 

These time slices of the future were inspired by a simple division based on a 20-year 

climatology. In this study, a 30-year climatology was utilised in defining the NF and MF 

while 20 years for FF due to the availability of records. The baseline period (Historical 

reference) selected was between 1971 to 2000. This was influenced by the availability of 

GMFD datasets. 

 

3.4.1.6 Runs theory 

The runs theory proposed by Yevjevich (1967) was applied to the SPEI drought indices to 

extract the drought characteristics of both the past and the future. This was used to estimate 
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the Severity, Intensity, Duration and Return period of drought using the SPEI indices as 

input. An R software package called drought_features found on GitHub (adrHuerta/ 

drought_features) and developed by Adrian Huerta was utilised. This package was 

developed based on the definition of drought characteristics in Le et al. (2019) and 

Ogunrinde et al. (2020). 

The drought characteristics are defined below: 

The focus of this study was to study the moderate to extreme drought event in the VRB 

which is defined by the SPEI index below -1. 

Duration (Du) of an event refers to the duration of a drought event is known as the 

consecutive months where SPEI indices were below -1. 

Cumulative Intensity (CI) refers to the cumulative SPEI indices during the drought event. 

Severity (S): It is the cumulative drought intensities during the drought event. 

Interarrival time or Return period (T) of droughts is the interval between the start of two 

successive drought events, regardless of their length, within the same drought where the 

SPEI is below -1. It covers both the current drought and subsequent non-drought periods. 

Intensity (I) of drought refers to the magnitude of drought of a particular month that was 

below -1. 

3.4.2 Methods for Achieving Objective 2 

This presents the methods used to achieve objective 2 which aims to calibrate and validate 

a SWATplus model for the VRB. 

3.4.2.1 SWATplus model set-up, calibration and validation  

The VRB was subdivided into 26 subbasins, 304 landscape units (LSU), 17909 HRUs and 

238 channels. The watershed was delineated with a channel threshold of 141851 sq. km 
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channel threshold. A shapefile of five reservoirs was created and added to the SWATplus 

model during the watershed delineation. The DEM inversion method was applied to create 

the landscape unit in the VRB. Five slope classes were utilised to define slope based on the 

Canadian Soil Information Service. Slopes of 0 - 4 % represent flat land, 4 – 9 % presents 

moderate slope, 9 – 15 % represent gentle slope, 15 – 30 % represent steep slope and > 30 

% refer to extremely to excessively steep slopes. During the HRU definition, no area filter 

method was used. From the land cover map utilised in the VRB, 51 % of the land use/cover 

was associated to agricultural use (CRIR (0.39 %), AGRR (31.84 %), AGRL (7.3 %), 

CRGR (4.55 %) and   CRWO (6.91 %)), 19.1 % was forested land (FRST (0.08 %), FRSD 

(18.73 %) and FRSE (0.26%)), sparsely vegetated (BSVG) was 0.03 %, Barren or bareland 

(BARR) 0.02%, and Urban (URBN) was 0.06 %. In the SWATplus editor, the Variable 

storage flow routing method and the Hargreaves PET method were used after the HRU 

definition. Also reservoir information was included into the model setup. The Kpong dam 

was the only run of river dam in the VRB. Reservoir information incorporated in the 

SWATplus editior are listed in the Table 3.6. The principal spillway volume and area were 

estimated from reservoir volume and head information obtained from the Volta River 

Authority (VRA) using appropriate regression equations. The climatic parameters (i.e. 

temperature, precipitation, wind speed, humidity, and solar radiation) from the GMFD were 

included into the model. After the above, the SWATplus model was simulated before 

calibration was performed. 

The calibration of the SWATplus model was conducted in the SWAT+ Toolbox software. 

Calibration was performed on a monthly time step from 1985 to 1995 with the first four 

years of simulation as warmup years. Validation of the model performed with streamflow 

records from 1996 to 2002. The Nash-Sutcliffe efficiency was used as the target objective 
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function during the calibration of the model. The PBIAS and R2 are the other performance 

evaluation criteria that were used to evaluate the goodness of fit of the model during 

calibration and validation. A number of 30 parameters which were related to streamflow, 

groundwater, management and hydrological response unit were considered. The selection 

of the parameters was influenced by Obuobie (2008), Aziz (2017) and the SWATplus 

manual. The sensitivity analysis conducted in this study is presented in the next section. 

After calibration and validation, best-fitted parameters were adapted into the model and 

simulated to obtain streamflow for the period between 1970 and 2005. Also, climatic 

parameters of the ACCESS-CM2 model were used to simulate streamflow from 1970 to 

2100. The streamflow is then used to compute the Standardised Streamflow Index. 
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3.4.2.2 Sensitivity analysis 

Sensitivity analysis is used often in environmental science to identify model parameters or 

parameter sets which have a greater influence on the model output before calibration. This 

analysis helps to understand which model parameters have significant contributions to the 

model output (Zhang et al., 2015b) and thereby aids in the selection of a considerably small 

number of parameters as compared with the utilization of all model parameters during 

calibration. Sensitivity analysis has been widely used in fields, such as risk assessment, 

economics, engineering and hydrology, and it has become instrumental in the systems 

pharmacology arena to guide the understanding and development of a complex model. 

SWAT-CUP has been widely used by most users to perform SWAT model sensitivity 

analysis, calibration and evaluation. Two methods of sensitivity analysis were performed 

namely; one-at-a-time sensitivity analysis and global sensitivity. The first sensitivity test 

was performed before model calibration by varying a particular parameter over a number 

of simulations. The latter sensitivity analysis was performed after the calibration runs had 

been completed to measure the sensitive parameters as they vary and interact with each 

other. In contrast, the SWAT+ Toolbox recommend that sensitivity analysis should be 

performed before model calibration. In this study, sensitivity analyses were performed 

before and after calibration was carried out. This was done because the authors recognized 

that the sensitivity analysis might have no direct impact on model calibration because it 

could be an independent process like in the SWAT-CUP where it is performed after 

calibration or before calibration using algorithms like SOBOL, Morris OAT and Fourier 

Amplitude. Due to the size and computing facility available (Laptop), the recommended 

number of seeds and sample sizes required to perform the sensitivity analysis in SWAT+ 

Toolbox was computationally expensive for the whole Volta River Basin. Therefore, this 
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influenced the decision to use Morris’s One-At-Time (OAT) elementary effects screening 

method (MOAT) approach (Morris, 1991) in R-SWAT to perform global sensitivity 

analysis after the model had been calibrated. The advantage of the R-SWAT method relies 

on its ability to enable parallel processing which reduces the computational time 

significantly. The Morris method uses a one-at-a-time sampling approach where a single 

parameter is modified at a particular step. The MOAT method was applied with two 

different repetition times (r). In the first analysis an r value was set at 4 with a time jump at 

3 and level set at 5 to define the intervals in the parameter range which was applied to 35 

parameters found in the SWATplus model. The MOAT approach was obtained from the 

sensitivity package (Iooss et al., 2022) in R software. The repetition times for the second 

analysis was increased to 20 based on the findings of Gan et al. (2014). The determination 

of sampling combinations which define the number of simulations is based on the 

expression below: 

N =  r ×  (p +  1)          (3.22)

  

Where N is the total number of simulations to be performed, r is the repetition times and p 

is the number of parameters under evaluation. The MOAT approach are illustrated in 

equation 3.23 to 3.27 as found in Gan et al. (2014). 

For n-dimension s-level orthogonal point space, where each 𝑎𝑖 may take on values from 0, 

{1/(s-1), 2/(s-1),…,1}. The elementary effect of the ith input is defined as 𝑚𝑖. 

𝑚𝑖 = (𝑓(𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖 + ∆, 𝑎𝑖+1, . . . , 𝑎𝑛) − 𝑓(𝑎))/∆             (3.23) 

∆ is determined by the 1/(s-1). In cases where s is an even number, it is normally = p/[2(p-

1)]. The final Morris measures for the ith input when the process is repeated r times. 
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𝜇𝑖 = ∑

𝑚𝑖(𝑗)

𝑟

𝑟

𝑗=1

 
 (3.24) 

     

And  

 

𝜎𝑖 = √∑
(𝑚𝑖(𝑗)  −  𝜇𝑖)2

𝑟

𝑟

𝑗=1

 

(3.25) 

Where 𝜇𝑖  and 𝜎𝑖 define the mean and standard deviation of 𝑚𝑖  respectively.  

 
𝜇𝑖
∗ = ∑

|𝑚𝑖(𝑗)|

𝑟

𝑟

𝑗=1

 
(3.26) 

For the Morris OAT (MOAT) method, the higher the 𝜇𝑖 (or 𝜇𝑖
∗) value, the more sensitive is 

input parameter 𝑎𝑖. On the other hand, the higher the standard deviation (𝜎𝑖)  the more 

interaction input parameter 𝑎𝑖 has with other inputs.  

The multi-regression approach employed in SWAT-CUP was also used to detect the 

parameters which were sensitive. The regression equation is given below.  

 
g =  ∑𝛽𝑖𝑏𝑖

𝑚

𝑖=1

 
(3.27) 

g is the average value of the objective function which is the NSE, 𝑏𝑖  is the parameter and  

𝛽𝑖 is the coefficient of the parameter. The Student t-test and the p-value were used to 

evaluate the sensitivity of a parameter. The more sensitive parameters have a p-value less 

than 0.05 and a comparably larger Student t-test value (Abbaspour et al., 2007). 

Finally, the SOBOL algorithm was used to assess the sensitivity of some parameters using 

the Nawuni streamflow station by creating a small watershed with the SWATplus model as 

its catchment alone. The creation of the subcatchment of Nawuni significantly reduced the 
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size and files that would be analysed when using the entire Volta River Basin for the 

SOBOL analysis. A seed of 50 which corresponds to 2400 sample size was set in the 

SWAT+ Toolbox software to run this sensitivity analysis. The parameters considered were 

SCS condition II curve number (cn2), Pothole evaporation coefficient (cn3_swf), 

Manning's 'n' value for overland flow (ovn), Average slope steepness in HRU in m/m 

(slope), Average slope length for erosion in m (slope_len), Lateral flow travel time (days) 

(lat_ttime), Slope length for lateral subsurface flow (lat_len), Lateral soil flow coefficient 

(latq_co), Maximum canopy storage (canmx), Soil evaporation compensation factor (esco), 

Plant water uptake compensation factor (epco), Average distance to stream (dis_stream), 

Soil percolation coefficient (perco), PET coefficient (petco),  Depth from soil surface to 

bottom of layer in mm (z), Moist bulk density (bd), Available water capacity of the soil 

layer (awc), Saturated hydraulic conductivity in mm/hr (k), Clay content % soil weight 

(clay), Silt content in % soil weight (silt), Moist soil albedo (alb), Moist soil albedo (alb), 

Surface runoff lag coefficient (surlag), Channel depth (chd), Channel slope (chs), Channel 

length (chl), Channel Manning's n (chn), Channel bottom conductivity (chk), Channel clay 

percent of bank and bed (ch_clay), channel dry bulk density  (ch_bd), Channel side slope 

(chss), Baseflow alpha factor (alpha), maximum daily baseflow  when all channels are 

contributing (bf_max), Minimum aquifer storage to allow return flow in metres (flo_min) 

and Groundwater "revap" coefficient (revap_co), Threshold depth of water in the shallow 

aquifer for “revap” or percolation to the deep aquifer to occur (revap_min). 
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3.4.3 Methods for Achieving Objective 3 

 Computation of standardised streamflow index (SSFI) and cross correlation analysis 

The standardised streamflow index was first introduced by Modarres (2007) which aimed 

to produce an index based assessment of hydrological drought. The structure and 

computation of the SSFI was further expanded by Telesca et al. (2012). They investigated 

the appropriate distribution suitable to compute the SSFI and recommended log-logistic 

distribution. The SSFI follows the computation of the Standardised Precipitation Index 

(SPI) except that the streamflow records replace the precipitation input in the SPI. The R 

software package SPEI was applied in computing the SSFI. In this study, the log-logistic 

distribution was applied. The reference climatic reference period was 1971 to 2000. The 

SSFI was computed for the simulated historical period from 1960 to 2005 and 1960 to 2100 

for the ACCESS-CM2 model.  

The Pearson cross-correlation was performed on the SPEI drought indices and the SSFI 

drought indices to understand the propagation of drought from meteorological to 

hydrological drought.  
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CHAPTER FOUR 

4.0    RESULTS AND DISCUSSION 

4.1 Evaluation of Climate Data with Observation  

4.1.1 Evaluation of spatial observation data 

Precipitation is arguably the key climatic variable in West Africa that controls economic 

activities such as Agriculture. Unfortunately, the weather stations in West Africa remain 

inadequate and poorly distributed. Aside from the spatial distribution, the temporal records 

of some stations have a considerable percentage of missing data which presents a major 

challenge when utilising these data records in research studies. Therefore, Precipitation 

records of GMET, CRU and GMFD were evaluated using some statistical performance 

criteria. Table 4.1 presents the results of the statistical evaluation computed between the 

monthly GMET stations’ precipitation records and the precipitation records of the two 

gridded datasets (CRU and GMFD) extracted for each GMET stations. Generally, CRU 

slightly performs better than GMFD in most of the criteria considered across stations. The 

two spatial climate datasets performed better in Bole, Wa, Tamale and Yendi, located in the 

Northern part of Ghana. These stations had the least PBIAS between -4.3 % and 1.3 %, 

NSE value greater than 0.5, KGE greater than 0.75 and RSR less than 0.7. The two spatial 

climate datasets performed satisfactorily among the coastal stations (Accra, Takoradi, 

Axim, Ada Foah and Tema). The computed NSE values for both CRU and GMFD at Accra, 

Takoradi, Axim and Tema (CRU only) were greater than or equal to 0.5 while that of Ada 

Foah and Tema (GMFD) were lower than the 0.5 (NSE threshold). KGE values of most of 

the coastal stations were less than 0.5 except for Accra and Takoradi which had values 
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greater than 0.5 indicating a good skill of the CRU and GMFD. The percentage bias within 

the Coastal Climatic Zone (CCZ) ranges between -29.9 and 56.2 % for GMFD and -29.3 

and 64.2 % for CRU. The GMFD's highest overestimation of rainfall occurred at Tema 

(56.2 %) but it was still closer to CRU (53.4 %), and the highest underestimation of rainfall 

at Axim (-29.9 %) which was also closer to the CRU value of -29.3 %. The CRU's highest 

overestimation of rainfall occurred at Ada Foah (64.2 %) which was bigger than the 39 % 

obtained with GMFD at the same location, and the highest underestimation of rainfall at 

Axim (-29.3 %). Extracted values of stations (i.e. Wenchi, Sunyani, Kumasi, Akim Oda, 

Koforidua, Akuse, Akatsi and Ho) located in the Forest Climatic Zone (FCZ) of the country 

showed good skill but their statistics were lower when compared with the stations in the 

Savanna Climatic Zone (SCZ). In the FCZ, Akatsi, Akim Oda and Akuse which were closer 

to the CCZ had NSE less than 0.5 for both CRU and GMFD except for Akuse (CRU only). 

On the contrary, their KGE values were greater than or equal to 0.6 demonstrating a good 

agreement with the GMET records except for Akatsi. The KGE of the rest of the stations in 

the FCZ was greater than or equal to 0.67. Both GMFD and CRU NSE values at Koforidua, 

Kumasi, Sunyani and Wenchi satisfied the 0.5 thresholds. Only NSE values computed with 

GMFD were lesser than the threshold at Ho (0.49). Majority of the computed percentage 

bias in the FCZ ranged from -14.5 to 2.9 % for CRU and -15.9 to 1.2 % for GMFD. The 

Akatsi was the only station with higher PBIAS for both CRU (41.3 %) and GMFD (45.8 

%). According to Knoben et al. (2019), KGE values do not have an appropriate benchmark 

but KGE = -0.41 (or 1- √2) is an acceptable benchmark rather than using the concept of 

KGE = 0 (similar to NSE = 0) because they are inherently different. They indicate that any 

KGE value within the range of -0.41 < KGE ≤ 1 is acceptable. From the results of Table 

4.1, the KGE values computed between the GMET and both CRU and GMFD for all 
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stations fall within this acceptable range. Even though CRU performed slightly better than 

GMFD at most of the stations considering all the performance evaluation criteria (PEC) 

used, GMFD was slightly better than CRU in several stations when certain PECs were 

considered. For example, comparing RMSE obtained for CRU and GMFD, Ada Foah and 

Axim were the only stations where GMFD was better than CRU.  Also, at Axim, the RSR 

value of GMFD (0.7) was slightly better than CRU (0.71). The NSE values of GMFD at 

Ada Foah (0.43) and Axim (0.51) were greater than that of CRU (0.33 for Ada Foah and 

0.5 for Axim). PBIAS of GMFD at Ada Foah, Akuse, Kete Krachi, Kumasi, Takoradi and 

Wa were also slightly better than that of CRU. KGE of GMFD at Ada Foah, Axim, Kete 

Krachi, Kumasi, Takoradi and Wenchi were also slightly better than that of CRU at the 

same stations. These results were similar to Hassan et al. (2020) who evaluated the 

performance of Climate Forecast Station Reanalysis (CFSR), CRU and GMFD against in-

situ data in the Niger Delta using RMSE, R2 and Mean Bias Error (MBE) They observed 

that GMFD and CRU performed better than CFSR. They concluded CRU generally 

performed slightly better than GMFD. The differences between GMFD and CRU were not 

huge, therefore GMFD and CRU are good spatial substitutes for GMET stations. GMFD 

was used in this study because it had been used to downscaled and bias correct the NEX-

GDDP CMIP6 datasets. 
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4.2 Evaluation of Spatiotemporal relationship between Observation and Climate 

Model Outputs 

Annual Precipitation in the Volta River Basin has a North-South gradient where the 

Southern part records the highest total annual rainfall amount (1200 mm) and the basin's 

northern part records the least rainfall (Figure 4.1). Generally, the model ensemble of the 

NEX-GDDP performed slightly better than the CMIP6 model ensemble when compared to 

the observed (GMFD). The model of the CMIP6 and the NEX-GDDP were able to 

reproduce the rainfall pattern with correlation values of 0.99 and 1 respectively during the 

reference period. NEX-GDDP ensemble precipitation records showed a spatial bias of -10 

mm to -20 mm throughout the whole basin. In contrast, a positive bias greater than 5 mm 

in the central and southern parts of the basin was exhibited by the CMIP6 ensemble. 

Similarly, the northern and eastern parts of the basin had a negative bias greater than -20 

mm. High evaporative demand was present in the basin's northern part, which gradually 

declined southwards in the observation data and the ensembles of both CMIP6 and NEX-

GDDP. Both models underestimated the potential evapotranspiration with the largest 

underestimation occurring in the CMIP6. A -10 mm to 1 mm bias was found in the NEX-

GDDP ensemble mean while a bias value between 1 mm to -210 mm in the CMIP6 

ensemble mean. Even with these biases, both CMIP6 and NEX-GDDP models have a 

positive spatial correlation of 0.96 and 1 respectively. The ability of the models to account 

for the climatic water balance followed similar trends where the statistically downscaled 

and bias-corrected NEX-GDDP output performed reasonably better than the CMIP6 output 

(Figure 4.1). NEX-GDDP ensemble models also outperformed CMIP6 model ensemble 

mean when temperature records were assessed (Figure 4.2). The average, maximum and 

minimum temperature records of NEX-GDDP had a better spatial pattern with a correlation 
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value of 1.0 and the least bias as against the CMIP6 ensemble. Taylor’s diagram 

representing the spatial characteristics (normalized spatial standard deviation and pattern 

correlation) of individual CMIP6 and NEX-GDDP models is illustrated in Figure 4.3. All 

the NEX-GDDP outputs converge near the observation for all variables (precipitation, 

average, maximum and minimum temperature). This demonstrated how efficient the bias-

correction technique was in improving the model outputs. In contrast, CMIP6 individual 

models deviate from the observed in all variables assessed. Performing a peer-to-peer 

assessment, some CMIP6 such as CMCC, MRI, ACCESS-CM2, GISS, NorESM2-LM and 

HadGEM-LL models were good at simulating the patterns of precipitation (correlation (r) 

ranging from 0.7 to 0.95 and normalised standard deviation (σ) between 0.6 and 1.4). In 

addition, CMCC, ACCESS-ESM1, ACCESS-CM2, GISS, MPI-LR, MPI-HR, NESM3, 

MRI and HadGEM-LL also performed better than their peers in simulating spatial patterns 

of maximum temperature (r ranging from 0.8 to 0.95 and σ between 0.6 and 1.4) as 

compared to the others. Also, CMCC, ACCESS-ESM1, ACCESS-CM2, GISS and 

HadGEM-LL were better at simulating average temperature (r ranging from 0.5 to 0.8 and 

σ between 0.6 and 1.4). ACCESS-ESM1, ACCESS-CM2, MIROC6, CanESM5, GISS and 

MIROC-E2SL were relatively better in simulating minimum temperature (r ranging from 

0.3 to 0.5 and σ between 0.6 and 1.4). ACCESS-CM2 and GISS were the only CMIP6 

models that exhibited good performance in all climatic variables evaluated. 

The ability of the models in capturing the annual cycle of rainfall was assessed (Fig. 4.4). 

In general, CMIP6 models capture the unimodal annual cycles of precipitation in the 

Savannah and Sahel zones in the Volta River Basin (Fig 4.4). As observed in the GMFD, 

the major rainfall seasons of the Savannah and the Sahel occur between July and September 

with the peak rainfall recorded in August (Figure 4.4a). This occurs due to the movement 
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of the intertropical Discontinuity (ITD) to its northmost position (20 – 22 °N) in West Africa 

in August encouraging moisture advection from the Gulf of Guinea penetrating more inland 

of West Africa (Omotosho and Abiodun, 2007). In addition, the strength of the African 

Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ) highly affect rainfall amounts in West 

Africa (Jung, 2006). A model’s ability to capture the influence of these jet streams also 

enhances its ability to simulate precipitation in West Africa reasonably well. Most CMIP6 

models capture the unimodal rainfall pattern in these zones with peak rainfall occurring in 

August in the Savannah zone. For instance, all models except BCC (in July), MRI (in May) 

and CanESM5 (in July) have their highest rainfall in the month of August. MRI, GISS, 

HadGEM-LL and ACCESS-CM2 underestimated rainfall while all other models 

overestimated the peak rainfall season in the Savannah zone. A similar pattern was seen in 

the Sahel with NorESM2-MM and MIROC6 overestimating peak rainfall. This result is in 

agreement with Dotse et al. (2023) who also found that NorESM2-MM overestimates 

precipitation in the VRB. Precipitation pattern in the Guinea Coast zones was characterised 

by a bimodal pattern with the peaks of the major season and the minor season occurring in 

June and September respectively. 

In the Guinea Coast zone, rainfall exhibits a bimodal pattern with two peak records 

occurring in June (major season) and September/October (minor season). CMIP6 models; 

MIROC6, NorESM2-MM and HadGEM-LL captured the bimodal precipitation patterns 

that are characteristic of the zone but could not capture the characteristics of the rainfall 

peaks except NorESM2-MM. For instance, MIROC6, NorESM2-MM and HadGEM-LL 

simulated the two rainfall peaks in July (minor season) and September (major season), June 

(major season) and September (minor season), and April (minor season) and August (major 
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season), respectively. Only NorESM2-MM could correctly capture the bimodal rainfall 

pattern in the Guinea Coast zone with some overestimation. All CMIP6 models 

overestimate the minimum temperature during the Northern Hemisphere summer which is 

also the rainy season in the Volta River basin.  

CMIP6 models capture the annual cycle of minimum, average and maximum temperature 

with either overestimation or underestimation during different months in the year with the 

peak temperature in some models having a 1-month lag. MIROC6 and NESM3 simulated 

a higher overestimation and underestimation of maximum temperature than other models 

in all the climatic zones, respectively. In agreement with the findings of Limantol et al. 

(2023), NorES2-MM, BCC and MPI-HR overestimate the average temperature in all the 

climatic zones. Akinsanola et al. (2020) reported that GCM models generally struggle to 

capture processes of the West African Monsoon system very well. GCMs are not able to 

capture fine-scale processes such as complex topography, land cover processes, coastal 

lines, and mesoscale convection as a result of their coarse horizontal resolution (Dosio et 

al. 2021). The bias-corrected NEX-GDDP models improved all models' ability to capture 

the annual cycle significantly (Figure 4.4b). The bias-correction method performed 

remarkably in all the zones in the river basin. This was because the bias correction was able 

to not only correct the spatial distribution of model outputs but also significantly reduce 

model biases (Guo et al., 2018).   
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Figure 4.3: Taylor diagram of CMIP6 and NEX model data for average values of climatic 

variables (average, maximum and minimum temperature and precipitation) for the study 

period (1960-2014). Red coloured dots are negatively correlated to the observed, and 

yellow (CMIP6) and blue (NEX) dots are positively correlated with the observed   

1 – GMFD 

2 – ACCESS-CM2 

3 – ACCESS-ESM1 

4 – BCC 

5 – CanESM5 

6 – CMCC 

7 – GISS 

8 – HadGEM-LL 

9 – HadGEM-MM 

10 – MIROC6 

11 – MIROC-ES2L 

12 – MPI-HR 

13 – MPI-LR 

14 – MRI 

15 – NESM3 

16 – NorESM2-LM 

17 - NorESM2-MM 
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4.3 Drought Patterns in the Volta River Basin 

Figure 4.5 and 4.6 illustrate the results of principal component analysis for 12- and 24-

month accumulated SPEI drought computed using the observed (GMFD). The first four 

PCA loadings identified during the analysis were referred to as the distinct drought modes 

present in the Volta River Basin (hereafter DM1, DM2, DM3, and DM4). The four principal 

components explained about 85 and 87 % of drought variability in the 12- and 24-month 

scale respectively. Each drought mode (DM) exhibits unique spatiotemporal characteristics. 

DM1 explains 24 and 22.1 % of the 12- and 24-month scale SPEI respectively. Its highest 

positive loading (≥ 0.8) was seen in the northern part of Burkina Faso and south-eastern 

Mali which is also the northern part of the basin. The climatic zone of the area is Sahel 

where the PCA scores show the highest correlation (r= 96) with the SPEI time series. This 

is the driest part of the basin with the least annual rainfall amount of 600 mm (Obuobie et 

al., 2017). Drought has been reported in some studies to have occurred in this area 

(Nicholson and Grist, 2001; Nicholson, 2013). Studies like Graetz (1991), Nicholson et al. 

(1998) and Nicholson (2013) have also reported drought in the 1970s which lasted 

throughout most of the 1980s and led to severe economic losses and affected food security 

and livelihoods of the population in the region. The drought variability in 12- and 24-month 

are very similar spatially and temporally and hence the 12-month scale will be mostly 

discussed. 

The SPEI time series over the area indicates a historical dry period spanning from the 1960s 

to the late 1970s. The drought ended in 1978 when a short wet period was observed till 

1981, followed by a short dry period lasting till around 1984. This was followed by an 

intermittent longer wet period and shorter dry period from 1984 to 2006. A general wet 

period was observed from 2006 to 2014. The drought frequency was the highest in the 
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1960s (47 events per decade) and 1970s (50 events per decade) and reduced to its lowest in 

the 1980s to 0 events per decade, 1990s to 3 events per decade and 2000s to 2 events per 

decade (Fig. 4.7). The DM2 was located at the southern part of the Basin, in an area where 

the Volta Lake was constructed and extending to the point where the Volta River drains 

into the Gulf of Guinea. This was where it shows its highest PCA loadings of between 0.8 

to 1 and explains about 29 % of the SPEI variance. A strong correction of 0.91 exists 

between this region's SPEI and the PCA scores. The SPEI shows a wet condition from 1960 

to 1970 followed by a predominantly dry condition from 1972 to 2003 with some notable 

wet periods from 1979 to 1981, 1984 to 1986 and 1991 to 1993. This was followed by a 

predominantly wet period till 2014. From Figure 4.7, the drought frequency was at its 

highest in the 1970s (38 events per decade) and reduced to 16 events per decade in the 

2000s. The DM2 results were in agreement with the results of Diasso and Abiodun (2017). 

For instance, the region corresponds to the fourth drought mode they identified where 

southern Ghana experienced the worst drought conditions in the 1980s. However, there 

were notable differences in the drought frequency computed per decade and magnitude 

owing to the difference in the reanalyses data (CRU) used as observed. The third drought 

mode (DM3) has its highest loading (PCA value from 0.8 to 1) over the eastern part of the 

VRB and northeastern, southeastern, northwestern and north of Ghana, Burkina Faso, Benin 

and Togo respectively. The PCA score has a strong correlation of 0.79 with the SPEI over 

the region. The drought indices show drought conditions occurring in each decade during 

the period of analysis.  The longest drought duration occurred between 1984 and 1990 while 

the longest wet period was between 2007 and 2013 (Fig. 4.5). The highest drought 

magnitude occurred in 1962 (Fig 4.5) but had its highest frequency in the 1980s (33 events 

per decade) (Figure 4.7a).  The drought frequency identifies an alternating cyclical pattern 
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within the basin in adjacent decades (Figure 4.7a). For instance, the drought frequency was 

22 events per decade in the 1960s which declined to 19 events per decade in the 1970s 

which then recorded its highest frequency of 33 events per decade in the 1980s and later 

declined to 12 events per decade in the 1990s, then finally increased in the 2000s (28 events 

per decade).  DM4 explains 13.9 and 15.3 % of the variance in 12 and 24-month SPEIs 

respectively and shows positive loadings (0.6) over northwestern Ghana and western 

Burkina Faso. The main drought occurred in the 1960s, 1970s and 2000s. The drought 

frequency decreased from 26 events per decade to 6 events per decade on the 12-month 

scale and 25 events per decade to 4 events per decade on the 24-month scale. An alternating 

dry and wet period was present from 1960 to 1978 followed by a prolonged wet period up 

till 2001. The longest prolonged drought occurred from 2001 to 2013. 
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Figure 4.5: Principal component loadings on the left panel illustrate spatial patterns of 12-

month scale drought and temporal SPEI and PCA scores on the right. The correlation “r” 

between the PCA scores and the SPEI from the region in the red box is found in the bracket. 
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Figure 4.6: Principal component loadings on the left panel illustrate spatial patterns of 24-

month scale drought and temporal SPEI and PCA scores on the right. The correlation “r” 

between the PCA scores and the SPEI from the region in the red box is found in the bracket. 
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Figure 4.7: Decadal Variation of 12- and 24-month drought frequencies over DMs regions 

indicated with red boxes in Fig. 4.5 and 4.6 
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Figure 4.8 illustrates the wavelet power spectrum of all drought modes’ PCA scores for the 

12-month scale SPEI using a significance value of 0.5 to identify deviations in regions that 

were areas with black contours (Fig. 4.8). The score1, score2, score3 and score4 

corresponding to DM1, DM2, DM3 and DM4 respectively. Generally, there was a 1- to 4-

year cycle existing in the wavelet power spectrum in all the drought modes. The wavelet 

power spectrum of DM1 shows a significant 4- to 8-year cycle which occurred from 1970 

to 1985. During this period, drought conditions were most prevalent in the region (Fig. 4.5). 

This cycle could have a direct influence on the drought variability during that period. This 

was followed by a cycle with a periodicity of 1 to 4 years (Fig. 4.8) which was present from 

1985 to 2014, and was predominantly wet (Fig. 4.6). In the wavelet power spectrum of 

DM2, 4 major cycles were visible (Fig. 4.8). Two cycles were identified between 1960 and 

1973, the first with a 1- to 2-year cycle and a 2- to 4-year cycle. These 2 distinct cycles 

corresponded to years where the region was predominantly wet (Fig. 4.6). This 2- to 4-year 

cycle is associated with the Quasi-Biennial Oscillation (QBO) (Torrence and Webster, 

1999; Diasso and Abiodun, 2017; Oguntunde et al., 2017). Conversely, Diasso and Abiodun 

(2017) found that QBO did not correlate with the 2- to 4-year cycle identified in the wavelet 

analysis of the drought modes in eastern Sahel and northern Nigeria. They indicated that 

the cycle had significant coherence with the Atlantic Multi-decadal Oscillation (AMO) and 

Tropical Southern Atlantic (TSA) in the eastern Sahel drought mode and AMO and Tropical 

Northern Atlantic (TNA) in the drought mode located in northern Nigeria. The third cycle 

which was a 4- to 8-year cycle existed from 1977 to 1993. From Fig. 4.6, this range of years 

was predominantly characterised by drought conditions in the region.  The fourth cycle was 

present from 1990 to 2010. It has a 1- to 4-year cycle and overlaps with the third cycle 

between 1990 to 1993. Except for the overlapping years of the third and fourth cycles where 



 

83 

 

a wet condition exists, the range of years was characterised by predominantly drought 

conditions (1991 to 2003) and predominantly wet conditions from 2003 to 2010 (Fig. 4.6). 

In the wavelet power spectrum of DM3, three major cycles were visible (Fig. 4.8). The first 

had a 1- to 4-year cycle, which was predominantly wet when compared with Fig. 4.6. This 

cycle overlapped with the 1- to 2-year cycle from 1968 to 1972, resulting in dry conditions. 

The 1- to 4-year cycle (Fig. 4.8) was also observed from 1982 to 2001, where a 

predominantly dry condition persisted and interfaced with wet conditions between 1992 

and 1999 (Fig. 4.6). These predominant wet conditions correspond to the period where the 

cycle overlapped with a 12- to 16-year cycle (1990–1997). The 1- to 2-year cycle was also 

observed between 1978–1981 and 2003–2010, where there were dry and wet conditions 

respectively (Fig. 4.6). DM4’s wavelet power spectrum identified three cycles. The first 

cycle was a 1- to 4-year cycle, which was observed in the years 1963–1970, 1981–1987, 

1996–2002 and 2005–2011. These ranges of years corresponded to dry conditions, wet 

conditions, wet conditions, and dry conditions in Fig. 4.6 respectively. The second cycle 

was a 2- to 6-year cycle that persisted from 1966 to 1975. It corresponded to a 

predominantly dry condition (Fig. 4.6). The second cycle overlapped with the first cycle 

between 1967 and 1969, which resulted in wet conditions within that period. The last cycle 

was a 1- to 2-year cycle that persisted in the years 1992–1996 and 2011–2012 (Fig. 4.8), 

corresponding to wet and dry conditions, respectively (Fig. 4.6). The non-uniqueness of the 

cycles could be a result of the interactions of these cycles with other atmospheric indices. 
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Figure 4.8: The wavelet power spectrum of 12-month SPEI drought mode over the Volta 

River Basin. The cone of influence is indicated by the white areas. The significant areas are 

marked by black contours.  
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4.4 Representation of Drought Patterns in CMIP6 and NEX-GDDP Model 

Outputs 

The ability of Global models to represent drought patterns identified in the observed data 

was important to its application in understanding drought projection in the future. It 

indicates the  

skill of the Global models to simulate inherent characteristics of the climate system over 

the Volta River Basin. Figures 4.9a and 4.9b compare the PCA loadings of the 12-month 

SPEI simulated drought modes (DMs) by the CMIP6 models with observed (GMFD). The 

PCA loadings simulated by the CMIP6 models were arranged based on their similarities 

with the observed drought modes identified from PCA loadings of the observed (Fig. 4.5) 

and were not arranged based on the increasing or decreasing order of the explained variance 

of the models. In general, all models reproduce DM1 and DM2 well similar to the observed 

pattern with varying explained variance and spatial extent. About 67 % of the CMIP6 

models, namely ACCESS-CM2, ACCESS-ESM, BCC, CanESM5, GISS, HadGEM-LL, 

MIROC6, MIROC-ES2L, CMCC-ESM and NorESM2-MM were able to reproduce all the 

drought modes. For DM1, CMCC-ESM, BCC, GISS, MIROC6, ACCESS-ESM1 and 

HadGEM-LL outperformed other models with correlations greater or equal to 0.9 and a 

normalized standard deviation (σ) between 0.8 to 1.2 (Fig. 4.11). The best models were 

BCC and ACCESS-ESM1 which had normalized standard deviations of approximately 1. 

From Figure 4.11, models such as ACCESS-CM2, NorESM2-MM, CanESM5, NorESM2-

LM and MIROC-ES2L also exhibited good performance in reproducing DM1 with a pattern 

correlation ranging from 0.8 to 0.89 and normalized standard deviation of between 0.8 and 

1.2.  MRI (r = 0.85, σ = 0.66) MPI-HR (r = 0.8, σ = 0.77) showed a reasonable performance 

when compared to the DM1 region of the observed (Fig. 4.11).  The least performing 
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models were MPI-LR (r = 0.73, σ = 0.85) and NESM3 (r = 0.76, σ = 0.583). In DM2, 

NorESM2-MM, NorESM2-LM and CMCC were the best-performing models with pattern 

correlation equal to or greater than 0.95 and a normalized standard deviation of 

approximately 1.0. This was followed by GISS and ACCESS-ESM which had a pattern 

correlation of 0.9 and normalized standard deviation of approximately 1. BCC and 

HadGEM-LL also performed well with a pattern correlation of 0.9 and a normalized 

standard deviation ranging between 0.8 and 1.2 (Fig. 4.11). ACCESS-CM2 (r = 0.87, σ = 

0.7), MPI-HR (r = 0.88, σ = 0.77), MIROC6 (r = 0.89, σ = 1.186), MIROC-ES2L (r = 0.79, 

σ = 0.834) and MRI (r = 0.91, σ = 0.674) also performed reasonably well with a correlation 

greater than 0.79 and normalized standard deviation greater than 0.6.MPI-LR and 

CanESM5 were the least performing models with a correlation of 0.75 and normalized 

standard deviation of 0.71 and 1.067 respectively. NESM3 had a strong correlation of 0.85 

but had a lower normalized standard deviation of 0.576.  

In DM3, the CMCC, GISS, HadGEM-LL and MIROC6 outperformed all the models with 

a correlation greater than 0.85 and a normalized standard deviation of approximately 1 

(Figure 4.11). Subsequently, ACCESS-CM2, NorESM2-MM and ACCESS-ESM1 also 

performed reasonably well with a normalized standard deviation between 0.8 and 1.2 and a 

correlation greater than 0.7. BCC showed a strong correlation (0.89) with the observed 

pattern but had a normalized standard deviation of 1.39 further away from the observed. 

The worst-performing models were NESM3, MPI-HR and MPI-LR which had a lower 

correlation of less than 0.5. Even though MRI could not reproduce the DM3 observed in 

the GMFD, it exhibited a drought pattern that was present in the central part of the basin 

and extended to the eastern and western boundaries of the basin. Thus, MRI performed 

fairly in reproducing DM3 when compared with observation. 
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In DM4, CMCC, GISS, HadGEM-LL, ACCESS-CM2, ACCESS-ESM1 and MIROC6 

were the best performing models with correlations greater than 0.7 and normalized standard 

deviations between 0.8 and 1.2. HadGEM-LL outperformed all the models in reproducing 

the DM4. BCC also had a correlation greater than 0.7 but had a normalized standard 

deviation greater than 1.2, similar to its behaviour in DM3. The worst-performing models 

were NESM3, MPI-LR, MPI-HR and MRI, with correlations less than 0.2. In general, all 

models’ performance decreased in their ability to reproduce DM3 and DM4.  

From Figure 4.9a and 4.9b, all the models show that DM1 had the greatest explained 

variance except for BCC, GISS, HadGEM-LL and CMCC where DM2 had the greatest 

explained variance as seen in the observation. ACCESS-CM2 (88 %) and HadGEM-LL (81 

%) had a total explained variance closer to that of GMFD (85 %). The rest of them had a 

total explained variance greater than 88 % except for BCC which had a total explained 

variance of 78 %.  
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Figures 4.10a and 4.10b compare the PCA loadings of the 12-month SPEI simulated 

drought modes (DMs) by the NEX-GDDP models with observed (GMFD) similar to 

Figures 4.9a and 4.9b. Similar to the results seen in CMIP6, the NEX-GDDP models 

reproduce DM1 and DM2 well comparable to the patterns seen in the GMFD with varying 

explained variance and spatial extent. Unlike CMIP6, about 73 % of the models, namely 

ACCESS-CM2, ACCESS-ESM, BCC, CanESM5, GISS, HadGEM-LL, MIROC6, 

MIROC-ES2L, CMCC-ESM and NorESM2-MM, NorESM2-LM were able to reproduce 

all the drought modes. The noticeable difference was NorESM2-LM where statistical 

downscaling and bias correction were able to improve the model’s ability to reproduce DM3 

and DM4 patterns with a low PCA loadings value between 0.2 and 0.6. Figure 4.11 

compares the CMIP6 and NEX-GDDP models’ performances in reproducing the drought 

modes. Bias corrected and statistically downscaled either improves or reduces the 

performance of each model under different drought modes (DMs). For example, in DM1, 

ACCESS-CM2, HadGEM-LL, MIROC6, MPI-HR, MPI-LR and NESM3 saw 

improvement in their correlation value by a magnitude of 0.02 to 0.06. A slight increment 

of 0.01 was observed in the correlation values of CanESM5, ACCESS-ESM1, GISS, BCC 

and CMCC. On the contrary, the correlation values of MIROC-ES2L, NorESM2-MM, MRI 

and NorESM2-LM reduced by magnitudes 0.01, 0.01, 0.03 and 0.04 respectively. Also, 

models such as MRI, NorESM2-MM, MPI-HR and MIROC-ES2L, MIROC6, ACCESS-

ESM1 and CanESM5 slightly improved in their normalized standard deviation. In DM2, 

there were general improvements in the correlation of models except for MRI which 

decreased from 0.91 to 0.89. Although the correlation of MRI decreased, the normalized 

standard deviation improved. Models with the most significant improvements in their 

correlation were MIROC6 (0.89 to 0.97), MPI-LR (0.67 to 0.95), ACCESS-CM2 (0.87 to 
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0.92), MIROC-ES2L (0.79 to 0.93) and CanESM5 (0.74 to 0.89). There were no changes 

in the correlation of NorESM2-MM and CMCC but a slight reduction in their normalized 

standard deviation. In DM3, there were improvements in the correlations and the 

normalized standard deviation of ACCESS-CM2, ACCESS-ESM1, BCC, CanESM5 and 

MIROC6.  GISS, HadGEM-LL, MIROC-ES2L and NorESM2-LM models’ correlation 

improved but reduced slightly in their normalized standard deviation. Models that saw a 

reduction in their correlation but improvement in the normalized standard deviation were 

NorESM2-MM and CMCC. The MRI model’s correlation and normalized standard 

deviation were reduced. Bias correlation was not able to improve the model’s ability to 

reproduce DM3. In DM4, ACCESS-ESM1, BCC, CanESM5, MIROC6 and NorESM2-LM 

improved in both their correlations and the normalized standard deviations. ACCESS-CM2 

model’s correlation improved but the normalized standard deviations reduced. Similarly, 

the correlation of GISS, MIROC-ES2L, CMCC and NorESM2-MM increased but reduced 

slightly in their normalized standard deviation. The bias correlation did not improve the 

ability of MPI-HR, MPI-LR and NESM3 to reproduce DM3  and DM4 as observed in the 

CMIP6. 

From Figure 4.10a and 4.10b, all the NEX-GDDP models show that DM1 had the highest 

explained variance except for GISS, HadGEM-LL and CMCC where DM2 had the highest 

explained variance as seen in the observation and BCC where DM4 had the highest 

explained variance. After statistical downscaling and bias correction, the total variance 

explained by all the DMs increased higher than the total variance observed in their original 

CMIP6 models. 
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In summary, NEX-GDDP models such as MIROC6, ACCESS-CM2, ACCESS-ESM1, 

CanESM5, GISS and BCC were generally better than their CMIP6 counterparts in 

reproducing drought modes over the Volta River Basin.   
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Figure 4.11: The Taylor diagram comparing pattern correlation and spatial normalized 

standard deviation of observed and simulated DMs for both CMIP6 and NEX-GDDP 

models 
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4.5 Climate Change and Variability in the Volta River Basin 

This section assessed climate change using Theil Sen’s slope analysis on annual 

temperature and rainfall data for both GMFD (observed data and NEX-GDDP data for the 

historical, Near, Mid and Far term. 

4.5.1 Analysis of Historical Trends in Climatic Variables  

Figure 4.12 illustrates the historical trends in precipitation performed using Thiel Sen’s 

Slope analysis using observations (CRU and GMFD) and 15 NEX-GDDP models datasets, 

and their ensemble mean. From the graph, GMFD and CRU show that precipitation has 

been decreasing in most parts of the Volta River Basin (VRB) at a magnitude of about -2.5 

mm/year2 during the historical period. Only the trends in some eastern parts of VRB were 

statistically significant at a p-value of 0.05 in the CRU datasets. In the GMFD, statistically 

significant trends were observed in some areas in the eastern, southwestern, central part and 

western parts of the basin. Positive trends in precipitation of about 2.5 mm/year2 were in 

the central and northern part of the basin but they were not statistically significant.                      

Unlike CRU, GMFD identified more areas in the VRB which has experienced a reduction 

in historical precipitation amount. The result is in agreement with Oguntunde et al. (2006) 

in which rainfall in the VRB experienced a decreasing trend of magnitude 6 mm/year2 from 

1970 to 2002. The difference in the magnitude of change could be a result of the difference 

in rainfall product use and the slight differences in study periods. The results also revealed 

that statistically significant precipitation increments were observed in the majority of the 

NEX-GDDP models such as ACCESS-CM2, ACCESS-ESM1, MIROC-ES2L, MPI-HR, 

MPI-LR, MRI, NorESM2-MM, NorESM2-LM, NESM3 and the Ensemble mean of the 

models which occurred almost throughout the entire basin. The NESM3 model recorded 
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the highest precipitation increment ranging from 2.5 to 10 mm/year2 with the eastern part 

of the VRB having the greatest change amount ranging between 7.5 to 10 mm/year2. 

Additionally, the NorESM2-LM was the second-highest model with an increment in 

precipitation amount between 2.5 to 7.5 mm/year2 after NESM3 followed by NorESM2-

MM. The GISS model was the only model that simulated a general statistically significant 

decrease in precipitation (0 to -2.5 mm/year2) throughout the entire basin. Models like BCC, 

HadGEM-LL and MIROC6 slope analyses show a dipole change pattern where most of the 

northern part of the basin had an increasing precipitation trend between 0 to 2.5 mm/year2 

and the southern part experienced a decreasing trend between 0 to -2.5 mm/year2 during the 

period of analysis. The Ensemble mean of the NEX-GDDP models showed a statistically 

significant increasing trend in precipitation with a magnitude of between 0 to 2 mm/year2 

throughout the whole basin. 

Historical average temperature records present an increasing trend pattern in both CRU and 

GMFD with most changes occurring in the northmost and eastern part of the VRB (Figure 

4.13) which was statistically significant at a p-value of 0.05. The northern and eastern parts 

increased by a magnitude of 0.03 to 0.04 °C/year while the rest of the basin saw increments 

of 0.01 to 0.02 °C/year. From Figure 4.13, all the NEX-GDDP models simulated increasing 

temperature trends during the historical period. The warmest models were ACCESS-ESM1 

and CMCC which had significant positive trends of magnitudes between 0.04 to 0.05 

°C/year for most parts of latitude 10 °N upwards and magnitudes between 0.03 to 0.04 

°C/year south of latitude 10 °N. The Ensemble mean of the models features a positive trend 

of magnitudes 0.03 to 0.04 °C/year spanning from east to west of the basin north of latitude 

10 °N and 0.02 to 0.03 °C/year in most parts of the basin. The results obtained for the 

observed were in agreement with Okafor et al. (2019) who examined changes in historical 
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climate within the rainy season (May to October for VRB, Sahel and Soudano Sahel), minor 

rainy season, major and minor dry season in the VRB by using Mann Kendall trend test and 

Thiel Sen’s Slope. In the overall VRB, precipitation and temperature change were 0.44 

mm/season and 0.02 °C/season in the rainy season and 0.10 mm/year2 and 0.03 °C/season 

in the dry season respectively, only temperature changes were within the 95 % confidence 

level. More than 75 % of rainfall amounts are recorded during the rainy season (May to 

October). In the Sahel and Soudano Sahel region (similar to this study Sahel and Savannah 

zones) temperature changes were 0.02 °C/season in the rainy season and 0.03 °C/season in 

the dry season while precipitation changes ranged from 0.53 to 0.99 mm/ season and 0.0 to 

0.15 mm/season in the wet and dry season respectively. They observed that, in the Guinea 

Coast, changes in precipitation and temperature range between -1.33 to 0.83 mm/season 

and 0.02 to 0.03 °C/season in both the wet and dry seasons. Their result falls within the 

range of values obtained in this study.  
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Figure 4.12: Comparison of historical (from 1960 to 2014) precipitation trends of 

observation (GMFD and CRU) and NEX-GDDP models using Thiel Sen’s slope. The black 

crosses represent areas with trends that are significant at a 95 % confidence level 
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Figure 4.13: Comparison of historical (from 1960 to 2014) average temperature trends of 

observation (GMFD and CRU) and NEX-GDDP models using Thiel Sen’s slope. The black 

crosses represent areas with trends that are significant at a 95 % confidence level 
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4.5.2 Future trends in climatic variables  

4.5.2.1 Future trends in precipitation  

Figures 4.14, 4.15 and 4.16 present the results of the estimated slope and trend detected in 

precipitation under SSP 1-2.6 emission scenario for the Near term (NF), Mid term (MF) 

and Far term (FF). From Figure 4.14, ACCESS-CM2, CanESM5, HadGEM-LL, CMCC, 

and MRI projected a potential increase in precipitation amount in the NF occurring from 

the central part of the basin and moving northward. In HadGEM-LL and MRI, this 

increment in precipitation will occur across the Black Volta, White Volta and Oti Basin 

while models such as ACCESS-CM2, CanESM5 and CMCC suggest that precipitation will 

increase in all the subbasins of the VRB Black Volta, White Volta, Oti and Lower Volta 

Basin. These changes were statistically significant at a p-value of 0.05. NESM3 and 

MIROC-ES2L projected decreasing precipitation in VRB. In NESM3, all the subbasins of 

the VRB will experience a statistically significant reduction in precipitation with most 

changes occurring in part of White and Black Volta (between -10 to -15 mm/year2). 

ACCESS-ESM1, MPI-LR, NorESM2-LM, NorESM2-MM and GISS models projection of 

precipitation changes were not widespread within the VRB.  Most noticeable among these 

models were GISS which projected decreasing precipitation in the Black Volta and 

NorESM2-MM which shows significant reductions in small portions of Black and White 

Volta. MIROC-ES2L shows that precipitation in most parts of the Lower Volta and some 

areas of the Black Volta will decrease. MIROC6 projected a decrease in precipitation in the 

northern and eastern parts, and increasing precipitation in the Black Volta of the VRB. In 

the MPI-LR model, only the northern part of the VRB will see an increment in precipitation 

while some parts of the Black Volta, White and Oti Basin will under precipitation reduction. 
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From these results, there was less agreement between models on the projection of 

precipitation in the NF. In the Ensemble mean of the models, there was a projected decrease 

in precipitation in most parts of the Black Volta and some areas in Lower Volta while a 

little part of the eastern and northern portion of the VRB might have a positive precipitation 

change.  

In the Mid term (Figure 4.15), most of the models projected a statistically significant 

decrease in precipitation in VRB. Models that projected statistically significant changes 

covering more than 50 % of the VRB were ACCESS-CM2, ACCESS-ESM1, BCC, GISS, 

MPI-HR and the Ensemble Mean. The NorESM2-MM projected a statistically significant 

decrease in precipitation in most of the VRB from latitude 9 °N northwards and positive 

gains of 5 to 15 mm/year2 south of latitude 8 °N. The Ensemble Mean shows that most part 

(more than 75 %) of the basin will experience a reduction in precipitation of magnitude -5 

to -10 mm/year2 and 0 to 5 mm/year2 gains around the river mouth and southern edge. The 

models that simulated statistically significant gains in precipitation were the CMCC and 

HadGEM-LL. While changes were cut across the entire basin in CMCC with major gains 

around the river mouth and southern edge, gains were localised between latitude 13 °N and 

7 °N in the HadGEM-LL. Almost the entire VRB basin experienced any change in the 

CanESM5, the only significant positive change was seen at the northmost edge of the VRB 

where the international border between Mali and Burkina Faso.  

 

  



 

103 

 

 

 

Figure 4.14: Comparison of Near term (from 2021 to 2050) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figure 4.15: Comparison of Mid term (from 2051 to 2080) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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In the Far term (Figure 4.16), most of the models projected a statistically significant increase 

in precipitation in most regions of the VRB. Models that projected statistically significant 

changes covering about 50 % or more of the VRB were ACCESS-ESM1, CanESM5, 

MIROC-ES2L, MPI-HR, MPI-HR, MRI and the Ensemble Mean. Most of the statistically 

significant changes occur throughout the entire VRB. In the GISS, there was a statistically 

significant decrease (0 to 5 mm/year2) in precipitation in the northern part of the VRB and 

an increase (0 to 5 mm/year2) in precipitation in the southern part from about latitude 10 

°N.  Similarly, the CMCC models exhibit similar characteristics to the GISS. The observed 

decrease in the precipitation extends towards the eastern part of the VRB which highlights 

some of the difference between the spatial pattern of the two models. The magnitude of the 

decrease in precipitation ranges between 0 to 15 mm/year2 while the increase ranges from 

0 to 20 mm/year2. Unlike in the Near and Mid term, the MPI-HR projected had a statistically 

significant positive change in precipitation over the VRB.  

The Ensemble means projections of precipitation change defer from that of the Near and 

Mid term. Positive changes were projected in the Far term which spreads over almost the 

entire basin. In the Near and Mid term, a decrease in precipitation of similar magnitude was 

projected over the VRB which affects more areas in the Mid term than in the Near term 

under SSP1-26.  
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Figure 4.16: Comparison of Far term (from 2081 to 2100) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figures 4.17, 4.18 and 4.19 present the results of the estimated slope and trend detected in 

precipitation under SSP 2-4.5 emission scenario for the Near term (NF), Mid term (MF) 

and Far term (FF). From Figure 4.17, the models ACCESS-CM2, ACCESS-ESM1, 

CanESM5, CMCC, NESM3, NorESM2-LM and NorESM2-MM projected more 

statistically significant positive change in precipitation than negative trends. In ACCESS-

CM2, positive gains in precipitation were projected over the northern part of the VRB from 

latitude 11 °N extending from the east to the west part of the VRB. The gains range from 5 

to 15 mm/year2 with the highest at the northern edge of the basin around the border of Mali 

and Burkina Faso. There were positive changes (0 - 5 mm/year2) around the southern edge 

of the VRB and Akosombo dam areas while a negative trend (0 – 5 mm/year2) extends from 

the central part of the VRB to the eastern part. In ACCESS-ESM1, a statistically significant 

positive change (0 – 10 mm/year2) was present between latitude 10 °N and 7 °N extending 

from the east to west. There also existed a negative trend (0 – 15 mm/year2) around the 

southern edge of the VRB and Kpong dam areas. In CanESM5, the positive trend occurred 

throughout the entire VRB and they were statistically significant. In CMCC, statistically 

significant changes occurred only in the northern part of VRB from latitude 10 °N. In 

NESM3, a statistically significant positive trend existed around the eastern part of VRB 

over northeastern Ghana, southeastern Burkina Faso and northern Togo and Benin. In 

NorESM2-LM, a statistically significant positive trend (5 – 25 mm/year2) was detected in 

the southern part of the VRB from latitude 8 °N. In NorESM2-MM, a statistically 

significant positive trend (5 – 20 mm/year2) was found in the northern part from latitude 11 

°N and the southern part of latitude 10 °N of the VRB.  

Models such as BCC, GISS, HadGEM-LL, MIROC-ES2L, MPI-HR and MRI projected 

more negative trends than positive trends in the VRB. In the BCC model, statistically 
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significant negative changes (5 – 15 mm/year2) mostly occurred in the southern part of the 

VRB from latitude 8 °N southward. Some small areas in the north of the VRB also showed 

a statistically significant negative trend (0 – 5 mm/year2) and small areas in the east of the 

VRB over the border of Benin and Burkina Faso showed a statistically significant positive 

trend (0 – 5 mm/year2). In GISS, most parts of the basin were projected to experience 

changes ranging from 0 – 15 mm/year2 from latitude 11 °N southwards while some areas 

in the north were projected to experience positive changes (0 – 5 mm/year2). The HadGEM-

LL model was projected to have statistically significant negative changes (0 – 15 mm/year2) 

extending from the north to south of the entire basin which was localised along the central 

and western parts of the VRB. There was a statistically significant positive trend (0 – 10 

mm/year2) in the eastern part of the VRB around southeastern Burkina Faso. Most parts of 

the MIROC-ES2L model projected a major statistically significant decrease in precipitation 

(0 – 20 mm/year2) in the central and northern parts of the VRB from latitude 9 °N. Some 

parts of the southern parts from latitude 8 °N southwards. In MPI-HR more than 60 % of 

the basin might experience statistically significant negative trends (5 to 30 mm/year2). In 

MRI, almost the entire VRB was projected negative trends (5 to 20 mm/year2) which were 

statistically significant. The greatest decrease (10 – 15 mm/year2) occurred around the Lake 

Volta area and central Togo. The MPI-LR model showed less than 10 % of the VRB 

experienced any kind of change in the precipitation. The MIROC6 model showed the 

northern part of the VRB from latitude 10.5 °N might experience statistically significant 

positive trends (0 – 15 mm/year2) and statistically significant negative trends (0 – 10 

mm/year2) in the southern part of the basin from latitude 10 °N. In the Ensemble mean, 

statistically significant negative trends exceeded the statistically significant positive trends. 

The statistically significant negative trends (0 – 10 mm/year2) occurred from the east to 
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west part of the VRB between latitude 11 °N and 6 °N. The positive statistically significant 

change occurred in the northern and eastern parts of the VRB from latitude 11 °N.  

In the Mid term (Figure 4.18), ACCESS-CM2, CanESM5, CMCC, HadGEM-LL, MPI-HR, 

NorESM2-LM and NorESM2-MM projected more statistically significant positive change 

in precipitation more than negative trends while BCC, GISS, MIROC6, MIROC-ES2L, 

MPI-LR and MRI projected more statistically significant negative change in precipitation 

more than positive trends in the VRB. In ACCESS-CM2, a positive statistically significant 

change (0 – 10 mm/year2) throughout the entire VRB. This is different from the patterns 

observed in the NF where the areas projected to experience changes were not basinwide but 

less than 50 % of the VRB as observed in the MF. Similarly, CanESM5 changes were 

similar to that of the CanESM5 model in the NF where a positive statistically significant 

change was projected basinwide. The only difference between them is the magnitude where 

CanESM5 in MF had a higher range of 5 to 25 mm/year2. Major precipitation gains were 

observed at Black Volta, White Volta and Oti Basin along the Upper West region and Oti 

Region of Ghana, south and central Burkina Faso. The changes (0 – 10 mm/year2) in 

HadGEM-LL were also found throughout the VRB and were statistically significant. The 

changes occurred in all the subbasins. In CMCC, a positive statistically significant change 

(0 – 10 mm/year2) localised from within latitude 13 °N to 8 °N from the east to west of the 

VRB. More areas showed statistically significant changes in the CMCC MF than NF. In 

MPI-HR, a positive statistically significant change (0 – 15 mm/year2) in all the subbasins 

occurring in the east, west south and north of the VRB. This is different from changes in 

the NF where changes show a decrease in precipitation. The statistically significant changes 

occurred in less than 40 % of the VRB. In NorESM2-LM, a positive statistically significant 

change (5 – 20 mm/year2) occurred in most parts from latitude 12 °N southwards while a 
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positive statistically significant change (5 – 15 mm/year2) was observed in most parts from 

latitude 9 °N northwards extending from east to west in the VRB projected by NorESM2-

MM. More areas showed statistically significant positive changes in the NorESM2-LM MF 

than NF. The case is different from NorESM2-MM where more areas showed statistically 

significant positive changes in the NF than MF. 

In BCC, a projected negative significant change (0 – 15 mm/year2) was observed in most 

parts of the basin. These changes were seen in the White Volta, Lower Volta and Oti basins. 

More areas showed significant changes in the BCC MF than NF. In GISS, a negative 

statistically significant change (0 – 10 mm/year2) was projected over most parts of the VRB 

from latitude 8 °N northwards. In the MF, changes are more skewed to the north unlike in 

the south as seen in NF. The magnitude is also higher in the NF than in MF. In MIROC6, 

negative changes were observed within latitudes 11 °N and 7 °N which was skewed more 

towards the east of the VRB. Comparing the NF and MF, the MF only showed negative 

significant trends while positive and negative trends were observed in NF. MIROC-ES2L 

projected a negative statistically significant trend from the central to northern parts of the 

VRB. This was different from patterns observed in the NF which exhibited both negative 

and negative trends.  In MPI-LR, a projected negative significant trend (5 – 20 mm/year2) 

from latitude 8 °N. There were more negative significant changes in the MF than observed 

in the NF. MRI projected negative significant changes in the northern parts from latitude 

13 °N northwards and southern parts from latitude 8 °N of the basin. NESM3 projected 

almost equal portions of the basin that might experience negative and positive significant 

changes. Positive significant changes occurred from the central to eastern parts around 

latitudes 8 °N and 11 °N of the VRB and negative significant changes in the western around 

latitudes 7 °N and 9 °N. There were more areas projected to experience significant changes 
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in the MF than in the NF. Similar to NESM3, the ACCESS-ESM1 also projected almost 

equal portions of the basin that might experience negative and positive significant changes. 

The difference between them was that ACCESS-ESM1 projected significant negative 

changes (5 – 15 mm/year2) from latitude about 10 °N northwards and significant positive 

changes (5 – 15 mm/year2). This deviates from the patterns observed in the NF which had 

fewer areas projected to experience significant changes. Also, a lot more areas might 

experience decreased precipitation. In the Ensemble mean, more areas were projected to 

experience significant positive changes (0 – 5 mm/year2) in more than 70 % of the VRB 

which is skewed southwards from latitude 12 °N and extended from the east to the west. 

This differs from the NF where there were more negative significant changes and positive 

significant changes in the north extending to the east. 

In the FF (Figure 4.19), the models ACCESS-CM2, CMCC, HadGEM-LL, MIROC6, 

MIROC-ES2L, NESM3 and NorESM2-MM projected more areas with a positive 

statistically significant increase in precipitation than negative changes in the VRB. 

Precipitation in the ACCESS-CM2 model is projected to decrease in the north and increase 

around the central to the eastern part of the VRB and the border between Ghana and Burkina 

Faso, and in the south, from latitude 9 °N in the FF. The changes in these areas were 

statistically significant. The model projected more areas becoming wetter in the MF than in 

the NF and the FF. The NF will also be wetter than the FF. In CMCC, the projected positive 

statistically significant changes (10 – 30 mm/year2) occurred from latitude 10 °N, 

propagating southward and statistically significant negative changes (5 – 20 mm/year2) 

from latitude 12 °N in the northern part of the VRB, which extends from the east to the 

west. Precipitation was projected to increase in the FF more than in the MF and in the MF 

more than in the NF. In HadGEM-LL, statistically significant positive changes were 
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localised within latitudes 9 and 11 °N and extended from the central to western parts of the 

VRB. Precipitation was projected to increase in the MF more than in the FF and in the FF 

more than in the NF. In the MIROC6, most areas of the VRB were projected to experience 

statistically significant positive changes (0 – 15 mm/year2) with the greatest magnitude 

occurring in northern Ghana around the Upper East and West Regions, and northern Togo 

(around the Savanes Region) and Benin. Precipitation was projected to be greater during 

the FF, followed by the NF, and lastly the MF. MIROC-ES2L generally projected 

statistically significant gains (5 – 30 mm/year2) in rainfall in most parts of the basin with 

the highest magnitude of change (25 – 30 mm/year2) anticipated around the Bui Dam, 

Bamboi and their environs. Precipitation was projected to be greater during the FF, followed 

by the MF, and lastly the NF. In the NESM3, the statistically significant positive changes 

(5 – 20 mm/year2) were localised around the Volta Lake areas. Precipitation was projected 

to be greater during the NF, followed by the FF, and lastly the MF, but more areas might 

experience significant changes during the MF than the NF and in the MF than the FF. In 

NorESM2-LM, projected statistically significant positive changes (5 – 20 mm/year2) from 

latitude 9 °N northwards with most change areas skewed from the central towards the west 

of the VRB. Statistically significant negative changes (5 – 20 mm/year2) might occur in the 

southern parts of the VRB from latitude 8 °N southward. Overall precipitation gains were 

projected to occur more in the MF than in the FF and in the FF than in the NF.  

The models ACCESS-ESM1, BCC, CanESM5, GISS, MPI-HR, MPI-LR and MRI 

projected more areas with a negative statistically significant increase in precipitation than 

positive changes in the VRB in the FF (Figure 4.19). For example, the ACCESS-ESM1 

model projected that the majority of areas in the VRB would experience a reduction of 5–

20 mm/year2 in rainfall, especially in the northern and eastern parts. It is projected that more 
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areas will experience a reduction in rainfall in the FF than in the MF, and the MF more than 

in the NF, where there will be more areas with an increase than a decrease. In BCC, 

significant changes occurred in more areas in the northern part from latitude 10 °N 

northward than in the southern part between latitude 6.5 °N and the mouth of the VRB. In 

the BCC model, more areas would undergo rainfall reduction in the MF than in the FF, and 

the MF more than in the NF. In CanESM5, a reduction in precipitation might occur in 

greater parts of the VRB, which was mostly observed from latitude 13 °N southward and 

extends from east to west. More reductions in precipitation were anticipated to occur in the 

eastern and southern parts of the basin. There would be more gains in precipitation in the 

MF than the NF and will shift to reduce in the FF. The GISS model projected a statistically 

significant negative change in the southern part of the basin from latitude 6.5 °N to the 

mouth of the river. The Model projected more areas with significant reductions in 

precipitation in the NF than the MF, and in the MF than the FF. MPI-HR projected a loss 

in precipitation of 5 – 20 mm/year2 in more than 50% of the VRB. These changes are 

statistically significant. Comparing precipitation patterns during the different future 

periods, more gains are expected in the MF, followed by the NF, and then the FF. 

Precipitation decreased significantly in the FF. In MPI-LR, projected statistically 

significant losses in precipitation of 5 – 30 mm/year2 in the northern and eastern parts of 

the VRB. The biggest magnitude of change (23 – 30 mm/year2) was in the northern part of 

Benin. There would be more gains in precipitation in the MF than the FF and will shift to 

reduce in the NF. 

The NorESM2-MM projected that almost 99 % of the changes in rainfall observed in the 

VRB were not statistically significant in the FF. A very small part of the northmost edge of 

the VRB exhibited statistically significant negative changes. The Ensemble mean of the 
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models projected statistically significant negative changes from latitude 10 °N northward 

and statistically significant positive changes from about 10 °N southward which is skewed 

towards the western part of the VRB. Comparing precipitation patterns during the different 

future periods, more gains are expected in the MF, followed by the FF, and then the NF. 
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Figure 4.17: Comparison of Near term (from 2021 to 2050) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figure 4.18: Comparison of Mid term (from 2051 to 2080) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figure 4.19: Comparison of Far term (from 2081 to 2100) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figures 4.20, 4.21 and 4.22 present the results of the estimated slope and trend detected in 

precipitation under SSP 5-8.5 emission scenario for the Near term (NF), Mid term (MF) 

and Far term (FF) respectively. From Figure 4.20, the models CanESM5, CMCC, MIROC6, 

MPI-HR, and MRI projected more statistically significant positive changes in precipitation 

than negative trends, while the models like ACCESS-CM2, ACCESS-ESM1, BCC, GISS, 

HadGEM-LL and NorESM2-LM projected the opposite in the NF. Other models, such as 

MIROC-ES2L, MPI-LR, NESM3 and NorESM2-MM, projected statistically significant 

negative and positive changes with almost equal areas of significant change in the VRB. 

Their spatial patterns differ from model to model. For instance, NorESM2-MM projected 

more areas (> 60 % of the VRB) that will experience changes in precipitation while 

MIROC-ES2L, MPI-LR and NESM3 projected less than 40 % of the VRB will experience 

changes. The CanESM5, CMCC and MPI-HR projected that more than 60 % of the basin 

would experience an increase in rainfall. The models with high precipitation biases were 

CanESM5 and MPI-HR with most areas of change values between 10 and 30 mm/year2. 

The model with less precipitation bias was GISS with statistically significant decreases in 

precipitation in the NF.    

On the contrary, the models ACCESS-CM2, CMCC, MPI-HR, MPI-LR and NorESM2-LM 

projected more significant positive changes in precipitation than negative trends, while the 

models like ACCESS-ESM1, BCC, CanESM5, GISS, HadGEM-LL, MIROC-ES2L, 

NESM3, MRI and NorESM2-MM projected the opposite in the MF (Figure 4.21). The 

number of areas projected to undergo positive significant changes increased appreciably in 

ACCESS-CM2, MPI-LR and NorESM2-LM, where areas with positive significant areas 

became dominant in the VRB in the MF, unlike as projected in the NF. Similarly, 

CanESM5, MIROC-ES2L, NESM3, NorESM2-MM and MRI also projected more areas to 
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experience negative statistically significant changes different from the spatial patterns 

observed in the NF. MIROC6 projected almost equal proportions of areas that would 

experience negative and positive change, which were significant. This was different from 

spatial patterns in the NF, where most of the changes projected were significant positive 

changes. In the MF, the wettest model was MPI-HR and the driest was MRI. 

Additionally, the models ACCESS-CM2, BCC, CanESM5, CMCC, HadGEM-LL, MPI-

LR, MRI, NESM3 and NorESM2-MM projected more significant positive changes in 

precipitation than negative trends, while the models like ACCESS-ESM1, GISS, MIROC6, 

MIROC-ES2L, MPI-HR and NorESM2-LM projected the opposite in the FF (Figure 4.22). 

The model with high precipitation bias was NESM3, with most areas of change values 

between 10 and 50 mm/year2. The model with less precipitation bias was MPI-HR, with 

most areas experiencing significant decreases in precipitation between -10 and 60 

mm/year2. The ACCESS-ESM1 and GISS models were projected to have more significant 

negative changes throughout the NF, the MF and the FF. For instance, in the ACCESS 

model, more spatial areas experienced significant changes in the MF, followed by the FF, 

and then the NF. The highest change in precipitation magnitude was recorded in the FF, 

ranging from -30 to -40 mm/year2. Also, in the GISS model, significant changes occurred 

throughout the VRB in both the NF and the MF, which was more than spatial changes in 

the FF. The highest change in precipitation was recorded in the FF, ranging from -20 to -30 

mm/year2. The CMCC was the only model that showed gains in precipitation throughout 

all future periods. There were more statistically significant areas of change and the highest 

magnitude of change (30 – 40 mm/year2) in the FF, followed by the NF, and then the MF. 

The HadGEM-LL and the BCC projected dominantly significant negative spatial changes 

in the NF and the MF and statistically significant positive spatial changes in the FF. The 
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vice-versa is seen in MPI-HR, where it projected dominantly significant positive changes 

in the NF and the MF and the opposite in the FF. ACCESS-CM2 and NorESM2-LM also 

projected dominantly significant negative spatial changes in the NF and significant positive 

spatial changes in the MF and the FF. On the contrary, CanESM5 and MRI projected 

dominantly significant positive spatial changes in the NF and the FF and significant positive 

spatial changes in the MF. 

The Ensemble means of the models in the NF (Figure 4.20), the MF (Figure 4.21) and the 

FF (Figure 4.22) showed distinct spatial patterns of change in the basin. For example, the 

Ensemble mean in the NF (Figure 4.20), projected significant positive changes (0 – 10 

mm/year2) from latitude 9 °N northwards and significant negative changes (0 – 5 mm/year2) 

from latitude 8 °N southward, both changes spread from the eastern to the western edges of 

the VRB. Conversely, the spatial patterns are different revealing dominant significant 

negative changes (0 – 10 mm/year2) originating from latitude 12 °N southward and covering 

most of the basin below this 12 °N latitude in the MF. On the contrary, the Ensemble mean 

in the FF projected more significant positive changes (0 – 5 mm/year2) majorly localised 

around the eastern, the northern and some areas in the central part of the VRB.  
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Figure 4.20: Comparison of Near term (from 2021 to 2050) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figure 4.21: Comparison of Mid term (from 2051 to 2080) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figure 4.22: Comparison of Far term (from 2081 to 2100) precipitation trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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4.5.2.1 Future trends in temperature  

Figures 4.23 to 4.31 presents the results of the Modified Mann Kendall and Sen’s Slope 

trend of temperature for SSP1-26, SSP2-45 and SSP5-85, and the different period (NF, MF 

and FF).  

Figures 4.23, 4.24 and 4.25 illustrate Sen’s Slope computation for average temperature in 

the VRB, at NF, MF and FF respectively. From Figure 4.23, all the models except 

NorESM2-LM projected statistically significant temperature increase in most parts (more 

than 80%) of the VRB in the Near term (NF). All models had statistically significant 

changes ranging from 0 to 0.06 °C/year. The warmest model was CMCC with a change 

magnitude of 0.045 to 0.06 °C/year in the north of VRB from latitude 10 °N northwards 

and 0.03 to 0.045 °C/year southwards. Other models like ACCESS-CM2, GISS and 

MIROC-ES2L also projected more increase in temperature magnitude of 0.03 to 0.045 

°C/year throughout the entire VRB. The NESM3 was the least warm model. There were no 

statistically significant changes observed in the NorESM2-LM in the NF. The Ensemble 

mean of the models projected statistically significant temperature increase (0.03 to 0.045 

°C/year) throughout the entire VRB.  

Figure 4.24 presents Sen’s Slope result for the Mid term (MF). The ACCESS-ESM1, 

CanESM5, MRI and NorESM2-MM projected significant increases in temperature (0 to 

0.03 °C/year) in most parts of the VRB in the Mid term (MF). CMCC projections were in 

this range but covered less than 50 % of the VRB. HadGEM-LL and NorESM2-LM 

projected no significant changes in temperature despite the former and the latter projecting 

decreases and increases in temperature in most of VRB respectively. The NESM3 projected 

decreases in temperature trend (-0.015 to 0 °C/year) in less than 50 % of the basin. This 

was the less warm model because it had mostly significant negative changes. The BCC 
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model also projected a significant decreasing temperature (-0.015 to 0 °C/year) in the east 

and an increasing temperature (0 to 0.015 °C/year) change in the north and south of VRB. 

ACCESS-CM2 and MPI-LR showed projected significant decreases in temperature, while 

MPI-HR also projected significant temperature increase in less than 10 % of the VRB. The 

warmest models were CanESM5 and MRI. The Ensemble mean of the models projected 

significant increases (0 to 0.015 °C/year) over the entire VRB.  

In the Far term (FF) (Figure 4.25), most of the models projected a significant decreasing 

temperature change in the VRB except ACCESS-CM2, CMCC, MPI-LR, MRI and 

NorESM2-MM. ACCESS-CM2, MPI-LR and MRI showed no significant change in 

temperature in the VRB. CMCC and NorESM2-MM showed significant temperature 

increase of magnitudes 0.015 to 0.03 °C/year and 0.15 to 0.045 °C/year over less than 50 

% and more than 70%, respectively. The coldest models were the BCC, CanESM5 and 

MIROC-ES2L with change magnitude ranging between -0.06 to -0.015 °C/year in most 

parts of VRB. In the Ensemble mean of the models, projected significant decreases in 

temperature (-0.015 to 0 °C/year) were observed basinwide in the VRB.  
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Figure 4.23: Comparison of Near term (from 2021 to 2050) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figure 4.24: Comparison of Mid term (from 2051 to 2080) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level  
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Figure 4.25: Comparison of Far term (from 2081 to 2100) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level  
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Figures 4.26, 4.27 and 4.28 illustrate Sen’s slope computation for average temperature in 

the VRB at NF, MF and FF, respectively, under SSP2-4.5. From Figure 4.26, all the models 

projected statistically significant temperature increase between 0 and 0.06 °C/year in the 

entire VRB in the Near term (NF). This is similar to the spatial patterns observed in the NF 

under SSP1-26, where most of the models except NorESM2-LM projected statistically 

significant changes. The model with the highest statistically significant temperature 

increase (0.03 to 0.06 °C/year) was ACCESS-CM2. Other models with similar magnitudes 

of change were ACCESS-ESM1, CMCC, GISS, HadGEM-LL and NorESM2-LM. The 

least warm models were MIROC-ES2L and NESM3. The ensemble mean projected that 

more than 90 % of the VRB will experience 0.03 to 0.045 °C/year statistically significant 

increases and 0.015 to 0.03 °C/year along the southern edge of the VRB. 

All the models projected statistically significant temperature increase between 0 and 0.06 

°C/year in the entire VRB in the Mid term (MF) (Figure 4.27). This was similar to the 

spatial patterns in the NF except for differences in their magnitude and NorESM2-LM being 

statistically significant in the MF. The warmest model was HadGEM-LL, with more areas 

in the VRB having magnitudes of change between 0.03 and 0.045 °C/year. ACCESS-CM2, 

ACCESS-ESM1, BCC and MPI-LR, with more than 50 % of the basin having projected 

changes from 0.03 to 0.045 °C/year. The highest magnitudes of change (0.045 to 0.06 

°C/year) were seen in the ACCESS-ESM1 and MPI-LR. The least warm model was MPI-

HR, with most areas projecting magnitudes of change from 0 to 0.015 °C/year in more than 

50 % of the basin. In the ensemble mean, projected statistically significant temperature 

increase (0.015 to 0.03 °C/year) throughout the entire basin 
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In the Far term (FF) (Figure 4.28), most of the models projected a significant increasing 

temperature change in the VRB except MROC-ES2L and NorESM2-MM, which showed 

no statistically significant changes in the VRB. BCC had the highest significant magnitude 

of change (0.06 to 0.075 °C/year), occurring in a very tiny fraction in the north of the VRB. 

Generally, significant changes occurred in less than 40 % of the VRB projections of the 

BCC model. ACCESS-ESM1 was the warmest model in the FF, with more areas having 

change values between 0.03 and 0.06 °C/year. Other models, such as CanESM5 and 

HadGEM-LL, also showed most areas of the VRB undergoing 0.03 and 0.06 °C/year, like 

ACCESS-ESM1, except that they also had more areas under 0.015 and 0.03 °C/year 

temperature change when compared to the latter. NESM3 showed less than 5 % of the VRB 

will experience a 0.015 to 0.03 °C/year temperature increase, occurring in the west of the 

VRB. The ensemble of the models projected statistically significant temperature increase 

(0.015 to 0.03 °C/year) throughout the VRB. This was similar to the patterns observed in 

the ensemble in the MF. Comparing the ensemble means of the different periods, the 

magnitudes projected in the NF were greater than those of the MF and FF. 

 

 



 

131 

 

Figure 4.26: Comparison of Near term (from 2021 to 2050) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level 
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Figure 4.27: Comparison of Mid term (from 2051 to 2080) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level  
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Figure 4.28: Comparison of Far term (from 2081 to 2100) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level  
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Under the SSp5-8.5 scenario, temperature trends in the VRB increased in the NF (Figure 

4.29), MF (Figure 4.30) and FF (Figure 4.31). In the NF, all the models and their ensemble 

mean projected statistically significant temperature increase between 0 and 0.09 °C/year 

throughout the entire VRB (Figure 4.29). Most of the models projected that temperature 

change would be higher in the northern half of the VRB. MRI and MIROC6 showed that 

the southern part of the basin would experience more prominent temperature changes than 

the northern part. The warmest model was GISS (0.045 – 0.09 °C/year), and the least warm 

model was MPI-HR (0 – 0.03 °C/year). Other warm models within the range of change of 

the GISS model were HadGEM-LL, ACCESS-CM2 and NorESM2-MM. The ensemble 

mean showed most areas in the VRB will experience a 0.045 to 0.06 °C/year temperature 

change. Only some small areas, from the mouth of the river to about latitude 6 °N in the 

south of VRB, exhibited a 0.03 to 0.045 °C/year temperature change. 

In the Mid term (Figure 4.30), all the models generally projected warmer conditions (0.015 

– 0.12 °C/year) than those observed in the NF (Figure 4.29). These temperature changes 

were significant throughout the VRB. The warmest model was CanESM5 (0.075 – 0.12 

°C/year) and the least warm model was MPI-HR (0.015 – 0.06 °C/year). Other models, like 

the HadGEM-LL and MRI, also showed warmer trends with temperature changes between 

0.06 and 0.105 °C/year. The ensemble mean projected that the entire VRB will experience 

0.06 to 0.075 °C/year significant increases and 0.045 to 0.06 °C/year along the southern 

edge of the VRB. These temperature changes in the ensemble mean were greater in 

magnitude in the MF than in the NF. 
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In the Far term (Figure 4.30), all the models generally projected warmer conditions within 

magnitudes of 0.015 – 0.15 °C/year. About 60 % of the models, namely, ACCESS-CM2, 

ACCESS-ESM1, HadGEM-LL, CanESM5, GISS, MIROC6, MIROC-ES2L, MPI-HR and 

MPI-LR, were warmer in the FF than in the MF. Alternatively, about 40 % of the models, 

namely, BCC, CMCC, MRI, NESM3, NorESM2-LM and NorESM2-MM, were also less 

warm in the FF than in the MF. The warmest models were ACCESS-CM2 and HadGEM-

LL, while the least warm model was BCC. The temperature changes observed in all the 

models were significant and occurred throughout the basin. The ensemble mean of the 

models projected that temperature might increase between 0.075 and 0.09 °C/year in the 

north of the basin from about latitude 10 °N northward and between 0.06 and 0.075 °C/year 

southwards of the same latitude. The ensemble projected more warming in the FF than in 

the MF and the MF than in the NF. 

Generally, under the SSP1-2.6 scenario, ACCESS-ESM1, BCC, CanESM5, CMCC, GISS, 

HadGEM-LL, MIROC6, MPI-HR and MRI projected significant temperature changes 

between future periods, decreased from the NF, the MF and the FF. On the contrary, MPI-

LR and NESM3 suggested the NF would be warmer than the FF and the FF warmer than 

the MF. Other models illustrated distinct temperature change patterns different from those 

mentioned above. For instance, the projection of the NF and MF by the NorESM2-LM 

model showed no significant temperature trends in the NF or the MF but negative 

significant temperature trends in the north of the VRB in the FF. In addition, ACCESS-

CM2 showed different patterns of change, where the temperature of the VRB in the NF was 

significant, small areas were significant in the MF, and no significant temperature trends 

were seen in the FF. Also, MIROC-ES2L projected positive significant trends in the NF, 

but in the MF, there was a positive temperature trend throughout the basin, but it was not 
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statistically significant in the MF, while most of the VRB might be under negative 

significant trends in the FF. Finally, in the NorESM2-MM model, the FF, NF and MF define 

the order of decreasing significant temperature trends in the VRB. 

Under the SSP2-4.5 scenario, ACCESS-CM2, ACCESS-ESM1, BCC, CMCC, GISS and 

MPI-HR projected that the NF would be hotter than the MF and the MF would be hotter 

than the FF. Alternatively, MIROC6, MPI-LR, MRI and NESM3 also projected that the 

MF would be hotter than the NF, and the NF would be hotter than the FF. On the contrary, 

CanESM5 and HadGEM-LL projected that the FF would be hotter than the NF, and the NF 

would be hotter than the MF. Models such as MIROC-ES2L, NorESM2-LM and 

NorESM2-MM portrayed distinct temporal patterns. For example, there was no significant 

temperature change in the FF, while the NF was warmer than the MF projected by the 

NorESM2-LM. In contrast, there was no significant temperature change in the FF, while 

the MF was warmer than the NF projected by the MIROC-ES2L. Alternatively, the 

NorESM2-MM projected that the NF was warmer than the FF, and the FF was warmer than 

the MF. 

Under the SSP5-8.5 scenario, nine models, namely ACCESS-CM2, ACCESS-ESM1, 

CanESM5, GISS, HadGEM-LL, MIROC6, MIROC-ES2L, MPI-HR and MPI-LR, 

projected that the FF would be warmer than the MF and the MF would be hotter than the 

NF. On the contrary, BCC, MRI and NorESM2-LM also projected that the MF would be 

warmer than the FF and the FF would be hotter than the NF. Alternatively, CMCC and 

NorESM2-MM projected that the MF was warmer than the NF and the FF was warmer than 

the MF. The FF and MF of the NESM3 showed equivalent temperature trends but they were 

warmer than NF. 
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The temporal trends observed in the ensemble mean under the different scenarios were 

unique to each other. For example, the FF was warmer than the MF, and the MF was 

subsequently also warmer than the NF under SSP5-8.5. In addition, the NF was warmer 

than the MF and FF, and the MF and FF had equivalent magnitudes of temperature change 

and distribution under SSP2-4.5. Under SSP1-2.6, the NF was warmer than the MF and the 

MF was warmer than the FF. 

Inter-SSP comparison of the significant temperature trends for FF revealed that all models 

except MIROC-ES2L, MPI-LR, MRI and NorESM2-MM identified SSP5-8.5 as warmer 

than SSP2-4.5 and SSP1-2.6, and SSP2-4.5 as warmer than SSP1-2.6. Conversely, MIROC-

ES2L, MPI-LR, MRI and NorESM2-MM showed that SSP5-8.5 was warmer than SSP2-

4.5 and SSP1-2.6, and SSP1-2.6 was warmer than SSP2-4.5. In MIROC-ES2L, significant 

temperature changes were observed only in SSP5-8.5 and SSP1-2.6, with SSP5-8.5 being 

warmer than SSP1-2.6. Alternatively, only SSP5-8.5 and SSP2-4.5 had significant 

temperature changes projected by the MPI-LR and MRI models. SSP5-8.5 was warmer than 

SSP2-4.5. Results in the MF revealed that 9 models had the same direction of trends 

observed in the FF, where projections for SSP5-8.5 were warmer, followed by SSP2-4.5, 

and then SSP1-2.6. NorESM2-LM, MPI-LR, HadGEM-LL, GISS and ACCESS-CM2 have 

similar patterns except that they simulated no significant temperature trends under the 

SSP1-2.6 in the MF. The NorESM2-MM patterns were similar to those observed in FF 

except that there were no significant temperature trends under the SSP2-4.5. Similar to MF 

and FF, the NF showed most models (ten) had the SSP5-8.5 as the warmest, followed by 

the SSP2-4.5 and the SSP1-2.6. CMCC and MIROC-ES2L in the NF had the same patterns 

as NorESM2-MM in the FF, while MPI-HR revealed that SSP2-4.5 would be warmer, 

followed by SSP1-2.6 and SSP5-8.5.  
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From the results, models exhibit different spatial patterns in precipitation which is 

consistent with the findings of Eyring et al. (2016). Eyring et al. (2016) indicated that 

models do not converge on their projections of the magnitude of change in rainfall 

characteristics for any given location but models could show more agreement on expected 

temperature change. Similarly, Dembélé et al. (2022) also identified the conflicting 

projections of GCM-RCM models under different Representative Concentration Pathways 

(RCP) in the VRB. Inter-SSP comparison revealed that most of the GCMs (MPI-HR, MPI-

LR, MRI, MIROC-ES2L, NESM3, CanESM5 and CMCC) and the ensemble mean 

projected more rainfall under SSP5-8.5 than in all other scenarios in the NF. MIROC6, 

NorESM2-MM, NorESM2-LM, ACCESS-CM2, ACCESS-ESM1 and BCC projected 

more rainfall under SSP5-8.5 than in all other scenarios in the NF while GISS and 

HadGEM-LL showed that under SSP1-2.6, the VRB would become wetter than all the other 

scenarios. In the Mid term, most of the models namely: NorESM2-MM, ACCESS-CM2, 

ACCESS-ESM1, CanESM5, CMCC, GISS and HadGEM-LL, and the ensemble mean 

projected more rainfall under SSP2-4.5 than all the scenarios while SSP5-8.5 was projected 

to be wetter by MIROC6, MPI-HR, MPI-LR, NESM3 and NorESM2-LM. Other models 

like MIROC-ES2L, MRI and ACCESS-CM2 also showed that SSP1-2.6 would be wetter 

than all the scenarios. In the Far term, most models namely: MPI-LR, NESM3, NorESM2-

MM, ACCESS-CM2, BCC, CanESM5, HadGEM-LL and the ensemble mean simulated 

more rainfall under SSP5-8.5 while MPI-HR, MRI, ACCESS-ESM1 and GISS projected 

more rainfall under SSP1-2.6. Alternatively, GCMs like MIROC6, MIROC-ES2L, 

NorESM2-LM and CMCC projected more precipitation under SSP2-4.5. Overall, more 

precipitation was projected under SSP5-8.5 by majority of the models (7) and multi-model 

ensemble mean in the NF and FF than under SSP2-4.5 (6 in NF and 4 in FF), and under 
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SSP2-4.5 than in SSP1-2.6 (2 in NF and 4 in FF). Also, more precipitation was projected 

under SSP2-4.5 by majority of the models (7) and multi-model ensemble mean in the MF 

than under SSP5-8.5 (5), and under SSP5-8.5 than in SSP1-2.6 (3). This is consistent with 

the findings of Eyring et al. (2016), who reported that there would be a 16–24% increment 

in heavy precipitation intensity in most areas globally in the future. This increase can be 

attributed to the model's evapotranspiration process being accelerated by the increasing 

temperatures in SSP5-8.5, which increase the amount of moisture in the atmosphere and 

enhance moisture convergence at low levels, leading to an increase in precipitation events 

(Donat et al., 2016; Dembélé et al., 2022; Adeyeri et al., 2019). Increment in precipitation 

increases the probability of flood occurrence and also poses a major risk to agricultural 

production (Agyekum et al., 2022).  
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Figure 4.29: Comparison of Near term (from 2021 to 2050) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level  
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Figure 4.30: Comparison of Mid term (from 2051 to 2080) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level  
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Figure 4.31: Comparison of Far term (from 2081 to 2100) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel 

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 % 

confidence level  
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4.5.3 Influence of climate change on meteorological drought in each drought modes 

The boxplots shown in Figures 4.32, 4.33, 4.34 and 4.35 illustrate the changes in drought 

intensities (SPEI < -1) for DM1, DM2, DM3 and DM4 respectively. From Figure 4.32, the 

observed data (GMFD) during the historical reference period had an almost normal 

distribution with a little negative skewness and a median of approximately zero. Less than 

25 % of the SPEI indices were below the -1 threshold, which corresponds to moderate-to-

extreme drought. During the historical reference period, the BCC, ensemble of the models, 

MPI-HR and MRI had an equivalent median value as observed under SSP1-2.6. The 

ensemble mean distribution was similar to what was identified in the GMFD. GISS, 

MIROC6 and MIROC-ES2L had medians (≈ 0.2) slightly greater than zero and skewed 

positively. The other models had means below zero, indicating a drying signal with more 

than 75 % of the SPEI indices below zero. The driest model was CanESM5 which had a 

median value below the -1 threshold. The HadGEM-LL model was the wettest during the 

historical period for all the scenarios. More than 85 % of the models and their ensemble 

mean indicated a robust drying occurred during the historical reference under SSP2-4.5 and 

5-8.5. MIRCO6 had the widest spread, and its median was closer to the observed than any 

model under the SSP2-4.5 and 5-8.5 scenarios. Model projections indicated robust wetting 

in the future (NF, MF and FF) under SSP2-4.5 and 5-8.5. This is because close to 85 % of 

models and their ensemble mean have a good agreement on the trajectory of change. 

MIROC6 and HadGEM-LL are models that deviate from all the others. HadGEM-LL 

projected an intensification of drought in all future periods under SSP2-4.5 and 5-8.5, while 

MIROC6 showed that about 25 % of the SPEI indices would be below the threshold during 

the NF and FF under SSP5-8.5 and the FF under SSP2-4.5. Similar patterns were observed 

in DM2 (Figure 4.33), DM3 (Figure 4.34) and DM4 (Figure 4.35). Projections of drought 
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in the future under SSP1-2.6 told a different story. About 66 % of models were in agreement 

with a shift from normal or drier conditions to wetter conditions in the Near term from the 

past when compared with the GMFD. Similar to the Near term, not much deviation is seen 

among models in the Mid term from their behaviour in the NF. Models such as GISS, 

HadGEM-LL, the ensemble mean of the models, MIROC6 and MRI show a general shift 

to dryness, with more than 25 % of the drought indices indicating moderate to severe 

drought. A comparison of models to their historical reference in DM1 revealed that about 

53 % of the models projected decreasing drought events in all future periods. The BCC, 

MIROC-ES2L and MPI-HR models projected the NF would decrease while the MF and FF 

increased, and MIROC6 projected an increase in the NF and FF and a decrease in the MF. 

Also, HadGEM-LL and GISS indicated a gradual increment in drought over all the terms, 

and MRI and the Ensemble mean projected a decrease in drought events in the NF and MF 

while also showing an increase in the FF. In DM2, DM3 and DM4, the majority of the 

models show a decreasing trend in the occurrence of drought below the threshold 

throughout. Models that showed deviation are the BCC and HadGEM-LL projected 

increase in drought events in all future terms in DM2, DM3 and DM4. MIROC-ES2L 

projected a decrease in drought events in the NF and MF and an increase in the FF in DM2 

and DM4 while MRI showed a decrease in NF and MF and an increase in the FF in both 

DM3 and 4. GISS showed a decrease in the NF and MF, and an increase in the FF in DM3 

and, a decrease in the NF and an increase in the MF and FF in DM4. MPI-HR also projected 

a decrease in drought events in the NF and FF and an increase in the MF in DM3, and the 

vice-versa in DM4 while MIROC6 showed a decrease in the NF and MF and an increase in 

the FF in both DM3 and DM4. Most models generally project more normal to near normal 

conditions (-1 < SPEI < 1) in the future under SSP1-2.6 than observed in other scenarios. 
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Figure 4.32:   Historical and projected drought intensity (moderate-to-extreme drought) of 

all the models and GMFD (observation data) under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 

for Drought Mode One (DM1) 
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Figure 4.33: The same as Figure 4.32 but for Drought Mode Two (DM2) 
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Figure 4.34:  The same as Figure 4.32 but for Drought Mode Three (DM3) 
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  Figure 4.35: The same as Figure 4.32 but for Drought Mode Four (DM4) 
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To better understand the impact of climate change on some drought characteristics, Run’s 

Theory was performed on the observation data (GMFD) and the Ensemble of the models 

utilised in this study (Table 4.2). The results indicate that 9, 17, 18 and 18 continuous 

drought events have occurred in DM1, DM2, DM3 and DM4 respectively during the 

reference period. Also, SSP1-2.6 results generally underestimated the number of continuous 

events in all DMs except in DM3 where it had the same value as the observed. Similarly, 

the number of continuous drought events reduced in all future terms for all DMs except for 

the FF and DM1. Generally, the SSP1-2.6 overestimate slightly the mean severity (6.93), 

intensity (1.3), duration and return period of drought in the historical series. DMs portray 

distinct drought characteristics in the future. For instance, in the NF under SSP1-2.6, the 

DM1 is projected to have the highest mean severity and intensity with an average of 5 

months’ duration and the longest return period of 120 months. Similarly, DM3 is projected 

to have the highest mean severity and intensity in the MF and DM1 in the FF. The mean 

severity (12.15) and duration of drought increased in the FF in DM1 than the historical 

value but the intensity was lower than simulated observed values.  In DM2, the mean 

characteristics of drought except for the return period of drought reduced in all future terms. 

In DM3, drought severity and intensity decreased in the NF and FF but increased in the MF. 

Mean severity and intensity reduced in the DM4 for the NF and MF while a slight increment 

in severity of 0.32 was observed in the FF. This increment did not exacerbate the intensity 

of drought. The SSP2-4.5 and 5-8.5 overestimated drought events where all the months 

were under drought conditions during the reference period. In addition, no drought event 

was recorded in the future. This could be attributed to the high increase in precipitation 

projected in the Ensemble of the models under these scenarios as discussed earlier. This is 

supported by the findings of Almazroui et al. (2020) who found that precipitation is 
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expected to increase in the Near and Far term under these scenarios. The results of this study 

deviate from the findings of Oguntunde et al. (2017) in which the authors suggested that 

drought would increase in the future (2046 -2065 and 2081-2100) when they studied 

drought frequency and intensity using CMIP5 climate models downscaled by RCA regional 

climate models. The disagreement could be associated with the difference in the Global 

Climate models used as CMIP6 projections of precipitation and temperature are higher than 

projections made by CMIP5 models (Almazroui et al., 2020).  
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4.6 Assessment of SWATplus Model Performance in the Volta River Basin  

4.6.1 Calibration and validation of the SWATplus model 

The SWATplus model was setup for the VRB basin using the 1992 land use map, the SRTM 

DEM, climate data from the GMFD, and the FAO soil map. Figure 4.36 presents the results 

obtained during the calibration and validation of the SWATplus model. The calibration was 

conducted between 1987 and 1995, with the initial 2 years being the warmup period. Results 

of the calibration from the Nawuni, Saboba, Sabari and Bamboi gauging stations revealed 

that stations Nawuni, Saboba and Sabari present in the White Volta and Oti Basin 

performed well. For example, the coefficient of determination (R2) for Nawuni, Saboba and 

Sabari were 0.72, 0.91 and 0.69, respectively, which indicated a strong performance of the 

model to simulate the hydrology of the VRB at these stations (Figure 4.36). Using the 

criteria recommended by Moriasi et al. (2007), the Nash-Sutcliffe efficiency (NSE) value 

obtained for Saboba (0.81) was very good, and that of Nawuni and Sabari was good. In 

addition, the PBIAS statistics of the Nawuni (-9.1 %) and Sabari (-1.9 %) were very good, 

and that of the Sabobo was good when compared to the recommended values in Table 4.3. 

The Bamboi station, which was selected for the calibration of the Black Volta, showed an 

unsatisfactory performance in the NSE (0.101) but performed satisfactorily when the 

PBIAS (22.7 %) and the R2 were considered. Most hydrological studies (Akpoti et al., 2016; 

Aziz, 2017; Amisigo et al., 2018; Logah et al., 2023) that have been conducted in the Black 

Volta Basin have primarily utilised the Bui station data record for calibration. In this study, 

the inclusion of the reservoir into the SWATplus model during model delineation removed 

any channel corresponding to the Bui gauging for delineation. The simulated streamflow of 

Channel 188, which was directly downstream of the Bui dam, was compared with the 
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streamflow of the Bui gauging station. The results showed that the NSE (0.34) was better 

than that of Bamboi, and the hydrograph shows an overestimation of streamflow, which is 

expected as the channel was downstream of the Bui gauging station. The R2 (0.71) was 

considerably better than the value obtained for the Bamboi gauging station. During the 

validation period (1996 to 2003), the NSE values of Saboba (0.73) and Sabari (0.69) were 

good based on the recommendations made in Table 4.3, while that of Nawuni (0.58) and 

Bamboi (0.51) were satisfactory. PBIAS of Bamboi (-7.7 %) was very good, Saboba (-11.1 

%) was good, and Nawuni (18 %) and Sabari (-21.6 %) were satisfactory. The R2 values of 

all the stations were good and were higher than 0.65. From these results, the SWATplus 

model developed for the Volta River Basin was suitable for application in understanding 

the impact of climate change on the hydrology of the VRB. 
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Figure 4.36: Calibration (1989-1995) and Validation (1996-2003) plots for each gauging 

station and their simulated SWATplus streamflow results  



 

155 

 

 

  

T
a
b

le 4
.3

: P
erfo

rm
an

ce ev
alu

atio
n
 criteria fo

r S
W

A
T

 m
o
d
el assessm

en
t u

sin
g
 m

o
n
th

ly
 tim

e step
 

  
  

  
P

B
IA

S
 (%

) 

P
e
rfo

r
m

a
n

ce 

R
a
tin

g
 

R
S

R
 

N
S

E
 

S
trea

m
flo

w
 

S
ed

im
en

t 
N

, P
 

V
ery

 g
o
o
d

 
0
.0

0
 ≤

 R
S

R
 ≤

 0
.5

0
 

0
.7

5
 ≤

 N
S

E
 ≤

 1
.0

0
 

P
B

IA
S

 <
 ±

1
0

 
P

B
IA

S
 <

 ±
1
5

 
P

B
IA

S
 <

 ±
2
5

 

G
o
o
d
 

0
.5

0
 <

 R
S

R
 ≤

 0
.6

0
 

0
.6

5
 <

 N
S

E
 ≤

 0
.7

5
 

±
1
0
 ≤

 P
B

IA
S

 <
 

±
1
5

 

±
1
5
 ≤

 P
B

IA
S

 <
 

±
3
0

 

±
2
5
 ≤

 P
B

IA
S

 <
 

±
4
0

 

S
atisfacto

ry
 

0
.6

0
 <

 R
S

R
 ≤

 0
.7

0
 

0
.5

0
 <

 N
S

E
 ≤

 0
.6

5
 

±
1
5
 ≤

 P
B

IA
S

 <
 

±
2
5

 

±
3
0
 ≤

 P
B

IA
S

 <
 

±
5
5

 

±
4
0
 ≤

 P
B

IA
S

 <
 

±
7
0

 

U
n
satisfacto

ry
 

R
S

R
 >

 0
.7

0
 

N
S

E
 ≤

 0
.5

0
 

P
B

IA
S

 ≥
 ±

2
5

 
P

B
IA

S
 ≥

 ±
5
5

 
P

B
IA

S
 ≥

 ±
7
0

 
 R

S
R

 is th
e ratio

 o
f th

e R
M

S
E

 an
d
 stan

d
ard

 d
ev

iatio
n
 o

f m
easu

red
 d

ata, N
S

E
 is th

e N
ash

-S
u
tcliffe E

fficien
c
y
, an

d
 P

B
IA

S
 is th

e P
ercen

t 

B
ias.  

S
o
u
rce: M

o
riasi et a

l. (2
0
0

7
) 



 

156 

 

4.6.2 Sensitivity analysis 

The sensitivity of SWATplus model parameters was assessed for the VRB. The regression 

model, the Sobol and the Morris OAT (MOAT) global sensitivity methods were applied 

after calibration using the understanding from global sensitivity analysis in SWAT_CUP. 

Because the SWATplus model has never been applied to the Volta River Basin previously, 

this study examines the sensitivity of thirty-five (35) model parameters that relate to 

hydrological response unit, channel routing, groundwater and soil. The results of the first 

MOAT analysis which represents 144 samples identified moist bulk density of soil (bd) and 

curve number (cn2) as the most sensitive, the next most sensitive parameters were 

percolation coefficient (perco) and soil depth (Z) (Figure 4.37). The PET coefficient 

(petco), pothole evaporation coefficient (cn3_swf and soil evaporation compensation factor 

(esco) also showed some sensitivity and, plant uptake compensation factor (epco), available 

water capacity of the soil layer (awc), lateral flow coefficient latq_co, soil saturated 

hydraulic conductivity (k), clay, epco and  chl showed some slight sensitivity. The second 

MOAT analysis results with 720 samples identified cn2, cn3_swf and perco as the most 

sensitive, followed by esco, petco, Z, bd, awc, lat_len, k, clay and epco (Figure 4.37). Wang 

and Solomatine, (2019) demonstrated that the MOAT was efficient and converged faster at 

a smaller sampling size of 100. They iterated that the larger the sampling size the higher the 

improvement of the MOAT in identifying sensitive parameters. In addition, the Sobol was 

applied to Nawuni and Pwalugu using the SWAT+ Toolbox (Table 4.4) at seed amounts of 

50 and 100 representing 2400 and 4800 samples, respectively. The results showed that the 

sampling size was small and did not make the Sobol analysis converge thereby generating 

1st-order sensitivity negative indices for some parameters, which was unsatisfactory 

(Nossent et al., 2011; Wang and Solomatine, 2019). Wang and Solomatine (2019) noted 
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that a large sampling size is required to make the Sobol sensitivity indices converge, leading 

to a considerable increase in computation time depending on the model complexities and 

number of parameters used. In the application of the Sobol technique in the SWAT+ 

Toolbox, the analysis took more than a month to complete the computation of sensitivity 

indices for 5 seeds for the VRB using a laptop with 32 GB RAM and 2.7 GHz processing 

speed. This made it computationally expensive to run Sobol analysis for a minimum of 

10,000 samples reported by Wang and Solomatine (2019). Table 4.4 shows the result of the 

Sobol analysis for Nawuni and Pwalugu stations. Any parameter with a sensitivity index 

with three decimal places or less was considered significant in this study. From the results, 

cn2, petco, perco, revap_co, z, esco, flo_min, cn3_swf, and awc were classified as sensitive. 

Finally, the multi-regression analysis was performed to identify sensitive parameters after 

500 model calibration simulations. The results are presented in Table 4.5. The results 

revealed that cn2, alpha, slope_len, cn3_swf, ch_clay, chl, revap_co, slope, bd, clay, chk, 

chd, silt and alb were the most sensitive parameters having a p-value less than 0.05 

(Abbaspour, 2015). The cn2 was the most sensitive parameter in the basin identified in all 

the sensitivity analyses conducted.  
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Figure 4.37: Global Sensitivity analysis using MOAT at the repetition value of 4 (top) and 

20 (down) 
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Table 4.4: Sensitivity Analysis of Nawuni and Pwalugu using the Sobol method 

Station Group Change Type Name Unit 
1st Order 

Sensitivity 

Nawuni      

 hru Percent cn2  0.10327010  

 hru Replace petco fraction 0.05128169  

 hru Replace perco fraction 0.01365749  

 aqu Replace revap_co  0.00720238  

 sol Percent z mm 0.00671128  

 hru Replace esco  0.00216661  

 rte Percent chn  0.00016490  

 aqu Replace alpha days 0.00004283  

 hru Percent slope m/m 0.00001601  

 hru Replace epco  0.00001357  

 sol Percent alb  0.00000800  

 hru Percent lat_ttime days 0.00000000  

 rte Percent ch_bd (g/cm**3) 0.00000000  

 aqu Percent bf_max mm 0.00000000  

 hru Percent slope_len m 0.00000000  

 hru Percent ovn  0.00000000  

 hru Percent canmx mm/H20 -0.00000289  

 hru Percent lat_len m -0.00001067  

 sol Percent awc mm_H20/mm -0.00083892  

 sol Percent k mm/hr -0.00091722  

 aqu Percent flo_min m -0.00869976  

 aqu Percent revap_min m -0.01158543  

 hru Percent cn3_swf  -0.02145861  

Pwalugu      

 hru Percent cn2  0.2401097177  

 hru Replace esco  0.0917247572  

 hru Percent cn3_swf  0.0439971466  

 hru Replace petco fraction 0.0096150879  

 sol Percent awc mm_H20/mm 0.0051390746  

 aqu Percent flo_min m 0.0037510463  

 sol Percent z mm 0.0028505414  

 hru Replace perco fraction 0.0024702629  

 aqu Replace revap_co  0.0011749411  

 rte Percent chn  0.0000478956  

 hru Percent slope m/m 0.0000166744  

 hru Replace epco  0.0000087904  

 sol Percent alb  0.0000001949  

 hru Percent ovn  0.0000000000  

 rte Percent ch_bd (g/cm**3) 0.0000000000  
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Station Group Change Type Name Unit 
1st Order 

Sensitivity 

 hru Percent slope_len m 0.0000000000  

 hru Percent lat_ttime days 0.0000000000  

 aqu Percent bf_max mm 0.0000000000  

 hru Percent canmx mm/H20 -0.0000001984  

 hru Percent lat_len m -0.0000012057  

 aqu Replace alpha days -0.0001654174  

 sol Percent k mm/hr -0.0009983021  

 aqu Percent revap_min m -0.0210382755  

The parameters marked in red were identified as sensitive 
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Table 4.5: Global sensitivity of SWATplus parameters using Multi-regression analysis 

SWAT 

Parameters 
Description Std. Error t-stats P-value 

Significant 

Codes 

cn2 
SCS condition II curve number 

2.66E-03 
-

14.198 
2E-16 *** 

alpha Baseflow alpha factor (1/days) 2.74E-01 -4.98 8.98E-07 *** 

alb Moist soil albedo 1.87E-03 4.679 3.80E-06 *** 

slope_len 
Average slope length for 

erosion (m) 
1.76E-03 -4.276 2.31E-05 *** 

cn3_swf Pothole evaporation coefficient 3.67E-03 3.463 0.000584 *** 

ch_clay 
Channel clay percent of bank 

and bed 
3.56E-03 -3.417 0.000689 *** 

chl Channel length 2.26E-03 -3.054 0.002385 ** 

revap_co 
Groundwater "revap" 

coefficient 
2.62E-03 -2.787 0.005543 ** 

slope 
Average slope steepness in 

HRU (m/m) 
2.62E-03 2.671 0.00783 ** 

bd 

Moist bulk density (Mg/m3 or 

g/cm3) 
3.42E-03 -2.594 0.009774 ** 

clay Clay content (% soil weight) 2.66E-03 -2.365 0.018448 * 

chk Channel bottom conductivity 2.34E-03 -2.19 0.029047 * 

chd Channel depth 3.62E-03 2.118 0.034709 * 

silt Silt content (% soil weight) 2.74E-03 -2.001 0.046025 * 

ovn 
Manning's 'n' value for 

overland flow 
2.32E-03 1.949 0.051876 . 

dis_stream Average distance to stream 2.22E-06 1.933 0.053878 . 

lat_len 
Slope length for lateral 

subsurface flow 
1.52E-03 -1.787 0.074559 . 

chn Channel Manning's n value 2.76E-03 -1.537 0.124987  

perco Soil percolation coefficient 2.13E-01 -1.294 0.196258  

ch_bd channel dry bulk density 3.35E-03 -1.199 0.231204  

latq_co Lateral soil flow coefficient 3.08E-01 -1.054 0.29237  

petco PET coefficient 3.44E-03 1.018 0.309039  

revap_min 

Threshold depth of water in the 

shallow aquifer for “revap” or 

percolation to the deep aquifer 

to occur (mm H2O) 

3.68E-03 -0.9 0.368576  

awc 

Available water capacity of the 

soil layer (mm H2O/mm soil) 
3.54E-03 0.889 0.374534  

esco 
Soil evaporation compensation 

factor 
2.78E-01 0.691 0.490051  
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SWAT 

Parameters 
Description Std. Error t-stats P-value 

Significant 

Codes 

      

surlag Surface runoff lag coefficient 9.15E-03 0.67 0.50295  

bf_max 

maximum daily baseflow  

when all channels are 

contributing 

9.22E-02 -0.657 0.511815  

flo_min 
Minimum aquifer storage to 

allow return flow (m) 
2.57E-03 -0.624 0.532936  

chs Channel slope 1.74E-03 -0.623 0.533624  

canmx Maximum canopy storage 2.51E-03 0.423 0.67275  

lat_ttime Lateral flow travel time (days) 1.14E-03 -0.194 0.846274  

chss Channel side slope 2.86E-03 0.134 0.893503  

epco 
Plant water uptake 

compensation factor 
2.11E-01 0.123 0.902347  

k 
Saturated hydraulic 

conductivity (mm/hr) 
3.24E-03 0.102 0.918405  

z 
Depth from soil surface to 

bottom of layer (mm) 
3.06E-03 -0.091 0.92738  

Significant codes: 0 = ‘***’, 0.001 = ‘**’, 0.01 = ‘*’, and > 0.05 = ‘.’. t-stats = Student T-

Statistics 
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The best values of parameters identified in each global sensitivity analysis during 

calibration were incorporated in the SWAT+ Toolbox and run in manual calibration mode. 

The integration of these parameters generated NSE and PBIAS values closer to the values 

obtained when all the parameters were utilised. Most parameters only present in the multi-

regression sensitivity analysis were discarded except alpha because they did not improve 

the general model statistics when incorporated during the manual calibration. The 

parameters and their best calibration values utilised in the VRB’s SWATplus model are 

listed in Table 4.6. 
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Table 4.6: The combined SWATplus parameters sensitive in the VRB 

Type Parameter 
Change 

Type 

Min 

Value 

Best 

calibrated 

Value 

Fitted_Value 
Max 

Value 
Unit 

hru cn2 Percent -40 -16.6079 -16.6079 40  

hru cn3_swf Percent -40 -17.0174 -17.0174 40  

hru lat_len Replace 1 4.00996 4.00996 150 m 

hru latq_co Replace 0 0.16702 0.16702 1  

hru esco Replace 0 0.12735 0.12735 1  

hru epco Replace 0 0.79473 0.79473 1  

hru perco Replace 0 0.41248 0.41248 1 fraction 

hru petco Percent -40 -35.5287 -35.5287 40 fraction 

sol z Percent -40 26.8965 26.8965 40 mm 

sol bd Percent -40 -39.3494 -39.3494 40 mg/m**3 

sol awc Percent -40 -26.7193 -26.7193 40 mm_H20/mm 

sol k Percent -40 -36.9626 -36.9626 40 mm/hr 

sol clay Percent -40 -9.80593 -9.80593 40  

aqu alpha Replace 0 0.02292 0.02292 1 days 

aqu flo_min Percent -40 15.8323 15.8323 40 m 

aqu revap_co Percent -40 -1.53593 -1.53593 40  
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4.7 Climate Change Impact on Hydrology and Hydrological Drought in the Volta 

River Basin 

4.7.1 Climate change impact on hydrology 

The impact of climate change on the hydrology of the VRB was assessed using the 

ACCESS-CM2 model as climate input for the calibrated SWATplus model of the VRB. 

Figure 4.38 illustrates the streamflow hydrograph of the annual cycle of the VRB during 

the ACCESS-CM2 historical, Near term, Mid term and Far term, and the observed 

streamflow records of Nawuni, Bamboi, Saboba and Sabari gauging stations. The results 

showed that the ACCESS-CM2 underestimated the peak streamflow from August to 

October and overestimated the streamflow during the low flow period from December to 

February period in all the stations during the baseline period. The model demonstrated 

robustness in capturing the annual cycle of streamflow in all the gauging stations during the 

historical periods. These performances were also observed in the future, especially in 

Nawuni, Sabari and Bamboi. Streamflow was projected to increase in the future (Near, Mid 

and Far term) by over 200 m3/s. The characteristics of change during the future are distinct. 

For instance, the model projected more streamflow would be generated under scenario 

SSP1-2.6 in the NF more than the other scenarios and observed in all the stations. In 

addition, SSP2-4.5 projected more streamflow in the MF and FF in all the stations. Table 

4.7 gives the streamflow change magnitude for the future terms and the observation at the 

baseline period. The streamflow projection suggested that Nawuni on the White Volta and 

Bamboi on the Black Volta would experience greater streamflow changes. Assessment of 

other hydroclimatological parameters such as water yield, potential evapotranspiration, 

actual evapotranspiration, lateral flow, surface runoff, soil water content and precipitation   
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Figure 4.38: Hydrograph of the streamflow annual cycle of the observed hydrological 

gauge stations (Nawuni, Bamboi, Sabari and Saboba) and their simulated streamflow from 

the ACCESS-CM2 model’s historical and Future periods (NF, MF and FF) and SSP1-2.6, 

2-4.5 and 5-8.5  
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were carried out (Table 4.8). The result revealed that during the baseline period, average 

annual surface runoff and lateral flow contributed about 55 % and 45 % of the water yield. 

This changed in the future when more surface runoff (> 65 %) was generated in all the 

future periods as a result of the projected increment in precipitation. The largest water yield 

amounts were generated under SSP2-4.5 during the Mid and Far term. Similarly, the 

projection of precipitation by the ACCESS-CM2 model was higher during the MF and FF 

under scenario SSP2-4.5. Other parameters like the averaged deep percolation and soil 

water content also increased proportionally to the increment in precipitation. Average actual 

evapotranspiration (et) reduced throughout the future periods under all the climate change 

scenarios. The lowest et value was observed in the SSP1-2.6 during the FF. Potential 

evapotranspiration (PET) increased in all the scenarios with the greatest magnitude of 

change observed in the FF under SSP5-8.5. This is due to the model reaching its highest 

temperature record of 5 °C globally under SSp5-8.5 (Tebaldi et al., 2021). Even though 

PET was increasing, the water balance (Pr – PET) suggests a reduction in the water deficit 

in all future periods except the FF period under SSP5-8.5 than witnessed in the baseline.  
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4.7.2 Climate change impact on hydrological drought occurrence 

4.7.2.1 Historical and future patterns of hydrological drought 

The observed Standardized Streamflow Index (SSFI) for Nawuni, Saboba, Sabari and 

Bamboi are shown in Figure 4.39. SSFI generally identifies hydrological drought in the 

1970s, 1980s, 1990s and 2000s in all the gauging stations. The hydrological drought that 

occurred during the 1980s was the longest duration and the highest intensity in all the 

stations evaluated. The highest drought intensity was observed in the Bamboi station’s SSFI 

drought indices on the Black Volta during the 1980s. These results correspond to the 

reported low inflow rates of Volta Lake which affected the hydropower generation in the 

Akosombo Dam (Bekoe and Logah, 2013). Bekoe and Logah (2013) reported that Volta 

Lake recorded the lowest intake volumes in the years 1983-1984, 1997-98, 2003 and 2006-

2007 but found that hydrological drought accounted for low intake volume in 1983-1984, 

1997 and 2006-2007. Figure 4.39 indicates that hydrological drought persisted longer than 

in 1983-1984 in all stations analysed. Also, 1997 was not a drought year but 2003 was rather 

a drought year from the findings of this study. The dissimilarities of the results could be a 

result of differences in the data utilised as well as the methodology employed since they 

used the Probability of Exceedance (POE) method while this study applied the SSFI. 

Gebrechorkos et al. (2022) identified that moderate drought severity was the highest during 

the 1980s in all subbasins and moderate drought severity decreased in the 1990s and 2000s 

in the Black Volta. The results of this study agree with their finding. For Instance, Bamboi 

(Fig 4.42d) on the Black Volta reveals a decreasing moderate drought intensity and duration 

from the 1980s to the 1990s and 2000s.  
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Figure 4.40 illustrates the result of the simulated Standardized Streamflow Index (SSFI) for 

Nawuni, Saboba, Sabari and Bamboi under scenarios SSP1-2.6, 2-4.5 and 5-8.5. From the 

results, the hydrological condition of the Volta River Basin during the historical period 

(1963 to 2014) alternated between dry and wet conditions. In all stations, drought conditions 

occurred during 1972 to 1975, 1982 to 1989, 1996 to 1997, 2002 to 2004 and 2006-2007 to 

2008. The result partially agrees with Bekoe and Logah (2013), who stipulated that 

hydrological drought occurred only during 1983-1984, 1997 and 2006-2007. This affirms 

the ability of the bias-corrected and statistically downscaled ACCESS-CM2 model output 

to capture the historical hydrological drought in the VRB. The projection of hydrological 

drought in the VRB shows a shift from alternating dry and wet conditions to permanently 

wet conditions in the future. The trajectory of wet conditions indicates the presence of 

extreme wet indices from moderately, severe and extreme wet conditions in the VRB under 

all the scenarios at all the gauging stations utilised in the study. Jin et al. (2018) also found 

that streamflow would increase in the future from the 2050s while drought conditions 

persist before that period under RCP8.5. The departure of this study from their results is 

that extreme wet conditions occurred much earlier in the 2020s. Table 4.9 and 4.10 shows 

the number of wet and drought events in the historical and future (Near, Mid and Far term) 

periods. From the result, moderate drought was predominantly present in all the stations 

during the historical periods (Table 4.10). In the future, no drought events were projected 

under all the scenarios and all the stations. Generally, wetter events were projected under 

SSP2-4.5 more than all the scenarios at all the stations except for Bamboi where wetter 

events were greater in SSP5-8.5 (Table 4.9). Severe and extreme wet conditions would 

become a normal feature in all future terms in all the locations and under all the scenarios. 

In Nawuni, more extreme wet events would occur under SSP2-4.5 with the most extreme 
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events observed in the Far term and severe wet events in the Mid term. More wet events are 

projected under SSP5-8.5 than under SSP1-2.6 but they mostly consist of moderately wet 

conditions. In Saboba and Sabari in the Oti Basin, more wet events were simulated under 

SSP2-4.5 and also had the highest extreme wet events than all other scenarios. The number 

of severe wet events was greater under SSP1-2.6 in Saboba and under SSP2-4.5 in Sabari. 

More extreme wet events were projected at Bamboi under SSP1-2.6 and 2-4.5 with the 

highest number of events under SSP2-4.5 being slightly larger than events in SSP1-2.6. 

Even though more wet events were projected under SSP5-8.5 at Bamboi, they were mostly 

dominated by severe and extreme conditions, where the severe events were higher in all the 

scenarios but the number of extreme wet events was considerably lower than values 

observed under SSP1-2.6. 

The Volta River Basin will be more flood-prone than drought-prone in the future. The 

projections of increases in wet events in the VRB can have both positive and negative 

effects on the inhabitants and their socioeconomic outlook. For instance, excess amount of 

rainfall can enhance agricultural activities and improve household income in the VRB 

(Dotse et al., 2023). Alternatively, the number and magnitude of wet events projected in 

the VRB could directly lead to frequent occurrence floods which can impact food security, 

infrastructure (i.e. housing, bridges, roads and many more), health and also claim lives. 

Balgah et al. (2023) found that flooding impacts food security through the destruction of 

crops, stored seeds, loss of livestock and farm infrastructure. The major economic activity 

of the inhabitants of the VRB is agriculture and therefore the occurrence of flooding may 

have dire consequences on their livelihood and income (Lawanson et al., 2023). Flooding 

could also affect human capital by affecting their health through communicable and non-

communicable water-borne diseases and vector-borne diseases (Saulnier et al., 2018).   
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Figure 4.39: Historical Standardised Streamflow Index (SSFI) for Nawuni (a), Saboba (b), 

Sabari (c) and Bamboi (d) hydrological gauging stations  
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Figure 4.40: Simulated drought indices (Standardised Streamflow Index) for stations 

Nawuni (a, b & c), Bamboi (j, k & l), Sabari (g, h, & i) and Saboba (d, e & f) under SSP1-

2.6, 2-4.5 and 5-8.5 scenarios 
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Dotse et al. (2023) suggest that the increments in rainfall amount directly leading to an 

increase in streamflow will increase hydropower generation in the VRB. Even though this 

assessment is valid, flooding could lead to soil erosion and land degradation which will 

ultimately increase the sediment load in the Volta River and may adversely affect the lake 

volume and the dam structure. 
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4.7.2.2 Relationship between Meteorological and Hydrological Drought 

The relationship between meteorological and hydrological drought was assessed. Using 

Oguntunde et al. (2017) as a reference, the 12-month SPEI was correlated with 12-month 

SSFI indices to understand the propagation of meteorological to hydrological drought in all 

four stations (Nawuni, Saboba, Sabari and Bamboi) in the VRB. Shukla and Wood (2008) 

also found that there was a high correlation between 12-month accumulated SPEI and 12-

month SSFI indices. The cross-correlation between the SPEI and 12-month SSFI indices is 

present in Figure 4.41 at different lag times. The lag series with the maximum correlation 

was considered the propagation time. From the result, the maximum correlation was greater 

than 0.5 and occurred at lag -1 in Nawuni, Saboba and Sabari. This suggests that the 12-

month meteorological drought lags the hydrological drought by one month. At Bamboi, the 

highest correction value was less than 0.3 indicating a poor correlation between the SPEI 

and SSFI indices. The maximum correlation occurred at lag -2 suggesting hydrological 

drought leads meteorological drought by 2 months. This result is contrary to the findings of 

Oguntunde et al. (2017) where meteorological drought leads hydrological drought by 2-3 

months. Ho et al. (2021) found that other factors apart from precipitation could affect 

hydrological drought leading to runoff and evapotranspiration deficits preceding that of 

precipitation. 
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Figure 4.41: Cross-correlation between Standardised Precipitation-Evapotranspiration 

Index (SPEI) and Standardised Streamflow Index (SSFI) at a 12-month accumulation 

period 
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

5.1.1 Potential impact of climate change on spatiotemporal characteristics of 

meteorological drought and the performance of model outputs 

The following conclusions are derived from this research on the potential impact of climate 

change, spatiotemporal drought characteristics as well as performance of CMIP6 and NEX-

GDDP models. 

 Evaluation of GMFD precipitation reveals that it performs well comparable to CRU 

when assessed against in-situ stations. 

 NEX-GDDP outperforms CMIP6 in capturing the spatial patterns and annual cycle 

of climatic variables with higher pattern correlation and less spatial bias in the VRB. 

Only CMIP6 model, NorESM2-MM reasonably captured the peak rainfall months 

in the Guinea Coast zone. 

 There is little agreement between GCM models on the spatiotemporal 

characteristics of precipitation and temperature change. Historical trends in 

precipitation and temperature indicate a decreasing (-2.5 mm/year2) and increasing 

(0.01 – 0.05 °C/year) trends respectively. NEX-GDDP models generally simulated 

increasing historical precipitation and temperature trend which was evident in the 

ensemble mean except for GISS with decreasing trend in precipitation. 

 Majority of models projected more precipitation change under SSP5-8.5 in the NF 

and FF while more precipitation is expected under SSP2-4.5 in the MF. 
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 Four Drought modes (DMs) identified in the VRB explains 85 % and 87 % of the 

variability of 12- and 24-month scale SPEI respectively. These DMs are associated 

with different cycles ranging from 1 to 16 years that links to either predominantly 

wet or dry periods in the basin. 

 NEX-GDDP models such as ACCESS-CM2, ACCESS-ESM1, GISS and BCCC 

performed slightly better in reproducing DMs than their CMIP6 versions. 

Nevertheless, bias correction and statistical downscaling in NEX-GDDP models 

does not improve their ability to reproduce all DMs.  

 Ensemble mean of models projects potential decrease in meteorological drought 

events and intensities in the future under SSP2-4.5 and 5-8.5 but rather plagued by 

extreme wetter conditions. More normal conditions are observed under SSP1-2.6. 

 

5.1.2 Performance of SWATplus model in simulating the water balance of the Volta 

River Basin 

 SWATplus model was calibrated, validated and found to reasonably simulate the 

hydrology of the VRB.  

 

5.1.3 Projections of climate change impact on streamflow and hydrological drought 

in the Volta River Basin 

 Simulation suggest significantly increase in the future streamflow due to a projected 

increase in rainfall amount in the future. Consequently, hydrological drought events 

and its characteristics are projected to decrease drastically in the future. 
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Hydrological drought leads meteorological drought by one month in all stations. 

The major issue that will pose a greater threat to the VRB is flooding.  

5.2 Limitations of the Study 

The research utilised the NEX-GDDP CMIP6 output to assess the impact of climate change 

on meteorological and hydrological drought in the VRB. The models utilised showing a 

good performance in capturing some aspects of the climate of the VRB, they remain 

projections of the future and are characterised by large uncertainties which can affect the 

result of this study. Another limitation relates to the acquisition of in-situ datasets. These 

datasets can be plaques by systematic and random errors which can affect the accuracy of 

the results of this study. Finally, the author’s inability to assess adequate information to 

model reservoir operations and irrigation in this research could impact the results obtained 

in this study.  

 

5.3 Contribution to Knowledge 

1. The research provided valuable insights into climate change impacts in the Volta 

River Basin. 

2. The extensive use of climate and hydrological models have added to the body of 

knowledge on meteorological and hydrological droughts on the far and short term 

basis in the Volta River Basin. 

3. Valuable information for guided decision making and planning to safeguard the 

Volta River Basin’s vital services and resources has been provided. 
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5.4 Recommendations 

The findings of this study provides valuable insights into the climate change impacts on the 

VRB and provide information for informed decision-making and planning to safeguard the 

basin's vital services and resources.  

The increase in flood events will pose a major risk to agriculture, infrastructure, 

transportation and quality of human lives. Concerted effort and planning must be 

undertaken in the VRB to improve adaptation and mitigation to climate change impact 

specifically more importance must be placed on reducing the impacts of floods. 

Areas for further studies 

The findings of this research could be improved by simulating the impact of land use or 

cover change impact on streamflow. This will help enrich our understanding of how 

vegetation can play a key role in mitigating the effect of climate change in the VRB. In 

addition, reservoir operations and irrigation could be included to enhance the robustness of 

the results. Also, future studies can focus on climate change's impact on drought using 

dynamically downscaled CMIP6 outputs under different global warming levels (GWL). 
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APPENDICES 

APPENDIX 1: Map of Volta River Basin indicating the main subbasins (Black Volta, 

White Volta, Oti and Lower Volta Basins) 

 

Source: Williams et al. (2016) 
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APPENDIX 2: Soil types and characteristics of the Volta River Basin 

Dominant 

Soil Group 

Soil Name Sub_Type 

No. 

LAYERS 

Hydrolo

gical 

Group 

TEXTURE Area 

Area 

(km^2) 

Area 

Perce

ntage 

(%) 

Acrisols Af18-1a-1024 Ferric 2 C SANDY_LOAM 333.89 

7479.05 1.81 

Af2-1025 Ferric 2 C SANDY_CLAY_LOAM 1602.65 

Ao10-1a-1048 Orthic 2 C SANDY_LOAM 200.33 

Ao11-b-1051 Orthic 2 D LOAM 333.89 

Ao13-1052 Orthic 2 D LOAM 66.78 

Ao1-ab-1046 Orthic 2 D SANDY_CLAY_LOAM 1535.88 

Ao46-a-1058 Orthic 2 C SANDY_CLAY_LOAM 1335.54 

Ao59-a-1063 Orthic 2 C SANDY_CLAY_LOAM 1201.99 

Ap22-2a-1074 Plinthic 2 C SANDY_CLAY_LOAM 868.1 

Cambisols Be1-1081 Eutric 2 D LOAM 667.77 

12353.7

8 

3 

Be25-1083 Eutric 2 D CLAY_LOAM 6744.5 

Be42-2-3b-

1093 
Eutric 2 D CLAY_LOAM 267.11 

Be7-1b-1096 Eutric 2 C SANDY_LOAM 400.66 

Bf5-2-3ab-

1102 
Ferralic 2 C CLAY_LOAM 333.89 

Bv2-1138 Vertic 2 D CLAY 1602.65 

Bv2-3a-1140 Vertic 2 D CLAY 1068.44 

Bv3-1141 Vertic 2 D CLAY 267.11 

Bv6-1145 Vertic 2 D CLAY 1001.66 

Gleysols G1-3a-1192  2 C CLAY 801.33 

2604.31 0.63 

G4-a-1198  2 C LOAM 600.99 

G5-a-1199  2 D CLAY_LOAM 1001.66 

G6-a-1200  2 C LOAM 200.33 

Lithosols I-60  2 C LOAM 1736.21 

41268.3 10.01 I-Ao-1227 

Orthic 

Cambisols 

2 D LOAM 4540.85 

I-b-1323  2 C LOAM 2203.65 
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Dominant 

Soil Group 

Soil Name Sub_Type 

No. 

LAYERS 

Hydrolo

gical 

Group 

TEXTURE Area 

Area 

(km^2) 

Area 

Perce

ntage 

(%) 

I-Be-1230 

Eutric 

Cambisols 

2 D LOAM 267.11 

I-Be-a-1232 

Eutric 

Cambisols 
2 D LOAM 9081.7 

I-G-1253 Gleysols 2 C LOAM 1535.88 

I-Lf-1255 

Ferric 

Luvisols 
2 C SANDY_CLAY_LOAM 1068.44 

I-Lf-c-1270 
Ferric 

Luvisols 

2 C SANDY_CLAY_LOAM 3272.08 

I-Lf-Lp-1257 

Ferric 

Luvisols 
2 D SANDY_CLAY_LOAM 801.33 

I-Lf-Rd-1264 

Ferric 

Luvisols- 

Dystric 

Regosols 

2 D LOAM 13088.33 

I-Rd-79 

Dystric 

Regosols 
2 D LOAM 200.33 

I-Re-b-1294 
Eutric 

Regosols 

2 C LOAM 2604.31 

I-Ws-1298 

Solodic 

Planosols 

2 D LOAM 868.1 

Fluvisols J2-a-1327  2 C LOAM 5075.07 

5676.06 1.38 
Je1-1359 Eutric 2 C LOAM 600.99 

Luvisols Lf1-1a-1423 Ferric 2 C LOAMY_SAND 3472.41 

5742.84 1.39 

Lf1-1a-1424 Ferric 2 C LOAMY_SAND 11151.79 

Lf12-1a-1427 Ferric 2 C SANDY_LOAM 734.55 

Lf12-a-1429 Ferric 2 C SANDY_CLAY_LOAM 267.11 

Lf12-b-1431 Ferric 2 C SANDY_CLAY_LOAM 6744.5 

Lf13-1432 Ferric 2 C SANDY_CLAY_LOAM 734.55 

Lf18-1434 Ferric 2 C SANDY_CLAY_LOAM 3806.3 

Lf20-1a-1436 Ferric 2 C SANDY_LOAM 13689.32 
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Dominant 

Soil Group 

Soil Name Sub_Type 

No. 

LAYERS 

Hydrolo

gical 

Group 

TEXTURE Area 

Area 

(km^2) 

Area 

Perce

ntage 

(%) 

Lf25-1438 Ferric 2 C SANDY_CLAY_LOAM 1135.21 

Lf26-a-1442 Ferric 2 C SANDY_CLAY_LOAM 333.89 

Lf26-a-1443 Ferric 2 C SANDY_CLAY_LOAM 200.33 

Lf26-a-1444 Ferric 2 C SANDY_CLAY_LOAM 17362.07 

Lf30-132 Ferric 2 C SANDY_CLAY_LOAM 1135.21 

Lf30-1a-1450 Ferric 2 C SANDY_LOAM 3205.31 

Lf31-a-1453 Ferric 2 C SANDY_CLAY_LOAM 28113.2 

Lf32-1a-1457 Ferric 2 C SANDY_LOAM 600.99 

Lf32-a-1458 Ferric 2 C SANDY_CLAY_LOAM 1535.88 

Lf34-a-1459 Ferric 2 C SANDY_CLAY_LOAM 2270.42 

Lf35-1460 Ferric 2 C SANDY_CLAY_LOAM 4006.63 

Lf37-1463 Ferric 2 C SANDY_CLAY_LOAM 4340.52 

Lf38-1464 Ferric 2 C SANDY_CLAY_LOAM 133.55 

Lf41-2a-1469 Ferric 2 C SANDY_CLAY_LOAM 133.55 

Lf7-a-1492 Ferric 2 C SANDY_CLAY_LOAM 9081.7 

Lf8-a-1494 Ferric 2 C SANDY_CLAY_LOAM 12954.77 

Lg10-1499 Gleyic 2 C SANDY_CLAY_LOAM 66.78 

Lg1-1495 Gleyic 2 C SANDY_CLAY_LOAM 1135.21 

Lg12-1501 Gleyic 2 C SANDY_CLAY_LOAM 1402.32 

Lg1-3a-1496 Gleyic 2 C CLAY 5475.73 

Lg23-a-1508 Gleyic 2 C SANDY_CLAY_LOAM 600.99 

Lg28-1a-1513 Gleyic 2 C SANDY_LOAM 7479.05 

Lg3-1a-785 Gleyic 2 C SANDY_LOAM 1602.65 

Lg3-2a-786 Gleyic 2 C SANDY_CLAY_LOAM 4340.52 

Lg5-2a-1515 Gleyic 2 C SANDY_CLAY_LOAM 7946.49 

Lg5-3a-1516 Gleyic 2 C SANDY_CLAY 2270.42 

Lg8-1520 Gleyic 2 C SANDY_CLAY_LOAM 1201.99 

Lg9-1522 Gleyic 2 C SANDY_CLAY_LOAM 2537.53 

Lp10-1a-1527 Plinthic 2 C SANDY_LOAM 133.55 

Lp2-1529 Plinthic 2 C SANDY_CLAY_LOAM 2136.87 

Lp2-a-1530 Plinthic 2 C SANDY_CLAY_LOAM 22771.02 
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Dominant 

Soil Group 

Soil Name Sub_Type 

No. 

LAYERS 

Hydrolo

gical 

Group 

TEXTURE Area 

Area 

(km^2) 

Area 

Perce

ntage 

(%) 

Lp3-a-1956 Plinthic 2 D SANDY_CLAY_LOAM 1068.44 

Lp4-1532 Plinthic 2 D SANDY_CLAY_LOAM 3205.31 

Lp4-1533 Plinthic 2 D SANDY_CLAY_LOAM 9949.8 

Lp5-1534 Plinthic 2 D SANDY_CLAY_LOAM 267.11 

Lp5-1a-1536 Plinthic 2 C SANDY_LOAM 17495.62 

Lp6-1a-1540 Plinthic 2 C SANDY_LOAM 13221.88 

Lp7-1541 Plinthic 2 D SANDY_CLAY_LOAM 5141.84 

Lp8-1542 Plinthic 2 D SANDY_CLAY_LOAM 5809.62 

Lp9-1543 Plinthic 2 D SANDY_CLAY_LOAM 2537.53 

Nitosols Nd1-1544 Dystric 2 C LOAM 1135.21 

5742.84 1.39 

Nd3-1565 Dystric 2 C LOAM 133.55 

Nd7-1570 Dystric 2 C LOAM 2203.65 

Nd9-1574 Dystric 2 C SANDY_CLAY_LOAM 200.33 

Ne21-b-1589 Eutric 2 C LOAM 667.77 

Ne6-2b-1592 Eutric 2 C LOAM 1402.32 

Arenosols Qc1-1598 Cambic 2 B SAND 2203.65 

13756.1 3.34 

Ql1-1a-1614 Luvic 2 B SAND 10350.46 

Ql3-1a-1630 Luvic 2 C SANDY_LOAM 801.33 

Ql7-1637 Luvic 2 B LOAMY_SAND 400.66 

Regosols Rd1-1a-1647 Dystric 2 C LOAMY_SAND 133.55 

43739.0

6 
10.61 

Re24-1665 Eutric 2 C LOAM 1602.65 

Re24-1667 Eutric 2 C LOAM 333.89 

Re24-1a-1669 Eutric 2 C SANDY_LOAM 267.11 

Re33-1673 Eutric 2 C SANDY_CLAY_LOAM 1469.1 

Re33-1674 Eutric 2 C SANDY_CLAY_LOAM 6343.83 

Re33-1a-1676 Eutric 2 C SANDY_LOAM 600.99 

Re33-1a-1677 Eutric 2 C SANDY_LOAM 17695.95 

Re34-1a-1680 Eutric 2 C SANDY_LOAM 3873.08 

Re35-1a-1684 Eutric 2 C LOAMY_SAND 2136.87 

Re35-1a-1685 Eutric 2 C LOAMY_SAND 2604.31 

Re36-1a-1687 Eutric 2 C SANDY_LOAM 6677.72 
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Dominant 

Soil Group 

Soil Name Sub_Type 

No. 

LAYERS 
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Vertisols Vc10-1717 Chromic 2 D CLAY 1001.66 

15959.7

5 
3.87 

Vc11-1718 Chromic 2 D CLAY 333.89 

Vc1-1715 Chromic 2 D CLAY 2403.98 

Vc12-1719 Chromic 2 D CLAY 2671.09 

Vc1-3a-1716 Chromic 2 D CLAY 868.1 

Vc1-3a-954 Chromic 2 D CLAY 1736.21 

Vc4-1726 Chromic 2 D CLAY 267.11 

Vc8-1729 Chromic 2 D CLAY 600.99 

Vc9-1730 Chromic 2 D CLAY 6076.72 

Water 

WATER-1972  1 D WATER 11886.34 

11886.3

4 
2.88 

Planosols Ws12-1a-

1751 

Solodic 2 C SANDY_LOAM 267.11 

4874.73 1.18 

Ws2-1752 Solodic 2 C LOAM 66.78 

Ws2-1a-1754 Solodic 2 C SANDY_LOAM 2136.87 

Ws4-1757 Solodic 2 D LOAM 333.89 

Ws4-1a-1758 Solodic 2 C SANDY_LOAM 267.11 

Ws6-1760 Solodic 2 D CLAY_LOAM 934.88 

Ws6-1a-1761 Solodic 2 D SANDY_CLAY_LOAM 868.1 
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APPENDIX 3: Description of Ghana Meteorological Agency synoptic stations used in this 

study 

 

Station 

Longitude Latitude 

Accra -0.17 5.65 

Ada Foah 0.61 5.79 

Akatsi 0.80 6.12 

Akim Oda -0.97 5.93 

Akuse 0.12 6.10 

Axim -2.24 4.87 

Bole -2.48 9.03 

Kete Krachi -0.17 7.80 

Koforidua -0.25 6.08 

Kumasi -1.62 6.68 

Sunyani -2.30 7.33 

Takoradi -1.77 4.88 

Tamale -0.85 9.43 

Tema 0.02 5.70 

Wa -2.50 10.05 

Wenchi -2.10 7.74 

Yendi -0.02 9.45 

Но 0.48 6.61 

 

 


