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ABSTRACT

This study investigates the influence of climate change on hydrological drought in the Volta
River Basin. The specific objectives were to assess; the potential impacts of climate change
on meteorological drought over the basin, the ability of the SWATplus model in simulating
the water balance of the basin, and the impact of future climate on hydrological droughts.
The datasets used were the observation data (GMFD and CRU) and projected climate
dataset (CMIP6 and NEX-GDDP), a digital elevation model, land use and the FAO digital
soil map (2003). The Standardized Precipitation-Evapotranspiration Index at 12- and 24-
month scales were used to characterise meteorological drought and the Standardized
Streamflow Index (SSFI) for hydrological drought at a 12-month scale. The principal
component analysis (PCA) and the wavelet analysis were utilised to assess the
spatiotemporal patterns of drought using SPEI computed from GMFD. PCA was also
performed on the SPEI of the CMIP6 and NEX-GDDP to determine the spatiotemporal
patterns of droughts. The SWATplus was calibrated and evaluated using streamflow
records at some selected stations. The calibrated model was employed to assess the future
climate change impacts using the ACCESS-CM2 output. The SSFI were then computed
using the simulated streamflow output as input data. Results showed that NEX-GDDP
model captured the climate of VRB accurately as compared to CMIP6. GMFD and CRU
perform reasonably well in the stations evaluated. Four drought modes (DM1 — north, DM2
—south, DM3 — east, and DM4 — west) obtained from 12- and 24-month SPEI explained 85
% and 87 % of variance in the VRB. The wavelet analysis reveals cycles with periodicities
ranging from 1-16 years in all DMs which corresponded to periods of drought and wetness.

Most CMIP6 and NEX-GDDP models were able to capture the spatial patterns of DM1 and



DM2. The comparison of the CMIP6 and NEX-GDDP model's ability suggests that bias
correction can either improve or reduce the models’ performance in reproducing the
drought modes. Some NEX-GDDP models performed better than the CMIP6 counterpart.
Climate change assessment in the VRB suggests an increment in temperature (1-4 °C) and
a decrease of 0-2.5 mm/year? in precipitation. Most models projected wetter conditions
under SSP5-8.5 in the Near term (2021-2050) and Far term (2081-2100) while more
precipitation is expected under SSP2-4.5 in the MF (2051-2080). The calibration of the
SWATplus model revealed- good performance in Nawuni, Sabari and Saboba with NSE
scores of 0.7, 0.68 and 0.81, R? of 0.72, 0.69 and 0.91, and Pbias (PBIAS) of -9.1, -1.9 and
-18 respectively. Bamboi had a poor NSE (0.101) but good PBIAS (22.7) and R? (0.52).
The validation statistics were satisfactory for all stations. Projected streamflow show
significant increase in the future in line with projected precipitation. Projections indicate
reduced drought events and intensities under certain scenarios. Consequently, the VRB is
expected to face increased flood risks due to projected increasing streamflow, posing
significant threats to agriculture, infrastructure, and human well-being. More efforts should

prioritize flood risk management in the VRB to address these challenges.
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CHAPTER ONE

1.0 INTRODUCTION

1.1  Background

Drought plays a crucial role in the hydrodynamic processes in any basin because it is
directly related to precipitation which is one of the key factors that control river flow.
Drought is a phenomenon whose signals can be identified as a deficiency in the average
and frequency of precipitation usually for a longer period. It is projected that West Africa
may experience a significant reduction in the length of the rainy season, longer dry spells
and more intense extreme precipitations (Sylla et al., 2016). These changes in precipitation
might lead to possible severe water shortages or flooding events in West African river
basins (Sylla et al., 2018). The longer duration of dry spells may transition into droughts
(Zhang et al., 2015a). This situation will likely adversely affect socio-economic activities
such as rainfed agriculture in West Africa. According to Adefisan et al. (2007) and Leroux
et al. (2016), agriculture in West African countries continues to be dominated by rainfall
which is the only factor whose onset determines the planting season. The variability in
rainfall and increase in mean temperature over West Africa increases the exposure of
farmers to the risk of crop failure and loss of capital (Sultan and Gaetani, 2016). According
to Nicholson (1979), drought has been a recurring phenomenon since the year 1960 in West
Africa. The occurrence of drought generally compromises food security through the
destruction of crops, reduces yield and increases in mortality rate of animals; eventually
culminating in famine. For instance, droughts occurrence in 1981 to 1983 resulted in poor

crop yield as a result of reduced rainfall leading to food insecurity in Ghana (Ofori-Sarpong,



1986). Reduction in groundwater level, surface water shortage, water supply problems,
reduction in water quality and saline water intrusion are some known impacts of drought
(European Environment Agency, 2015). Causes of meteorological and hydrological
drought globally have been linked to global warming, atmospheric circulations such as El-
Nino Southern Oscillation (ENSO) (La Nina anomalies), tropical sea surface temperature
(SST) triggering La Nina-like conditions over the Tropical Pacific Ocean, SST warming
variations on the tropical Atlantic Ocean, Indian Ocean, Land cover changes and local
feedbacks (Dai, 2011). Reduction in vegetation cover (such as forest and grassland) plays
a significant role during droughts as it affects evaporation and relative humidity and may
enhance and prolong droughts activated by tropical SSTs and atmospheric circulations (Dali,
2011).

Forest is generally known to have a direct interaction with rainfall (Sheil and Murdiyarso,
2009). Evapotranspiration produced by forests increases the moisture in the atmosphere.
Forest significantly modulates rainfall patterns and atmospheric moisture over land (Ellison
et al., 2017). Findings by Meher-Homji (1988) suggest that forest cover changes can affect
the intensity and number of dry spells of tropical storms. Also, Ellison et al. (2017) suggest
that deforestation can influence temperature at the local scale leading to changes in rainfall
and availability of water as well as the release of carbon into the atmosphere. Afforestation
has been suggested to possess the potential to increase precipitation and reduce drought
events in the Savanna part of West Africa (Diasso and Abiodun, 2018). Despite the
important roles of forests, deforestation continues to be one of the major challenges in West
Africa (Cotillon and Tappan, 2016; Kossi et al., 2019). Deforestation may contribute to a
reduction in rainfall amount and an increase in its variability as well as the consequent

impacts on micro-scale hydrology and soil conservation (Meher-Homji, 1991).
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Global warming refers to the gradual continuous rise in temperature of the earth system.
Global warming is evidence of climate change which is caused by increasing concentration
of greenhouse gases in the earth’s atmosphere. According to the recent Intergovernmental
Panel on Climate Change (IPCC) report, global warming plays a crucial role in shifting
climatic zones over many areas globally, leading to the expansion of arid climate zones and
the contraction of polar zones (Arneth et al., 2019). Thus, global warming may likely cause
an increase in the frequency and severity of drought mainly as a consequence of decreased
precipitation and increasing evaporation driven by increasing global temperatures
(Sheffield and Wood, 2008; Dai, 2011).

The Volta River Basin is an important transnational watershed in West Africa. It is relied
upon majorly for agricultural activities, hydropower generation, domestic water supply
(Barry et al., 2005) and a rich source of biodiversity (flora and fauna). There are five
hydroelectric dams located in the Volta River Basin, namely: Akosombo Dam, which has
the largest man-made lake in Africa; Kpong Dam; Bui Hydroelectric Power at Bui Gorge
in Ghana; Bagre Dam; and Kompienga in Burkina Faso. The basin provides hydrological
and ecosystem services to more than 30 million inhabitants (Liersch et al., 2023). In light
of the importance of the basin, global warming poses a serious threat to the occurrence of
drought and other extreme events in the future.

General Circulation Models (GCMs) are useful tools which have been applied to study
climate systems, weather forecasting and understanding climate change effect on the
atmospheric composition in the climate systems (Ford et al., 2010; Zhou et al. 2013;
Mechoso and Arakawa, 2015; Miao et al., 2016). GCMs application has improved our
understanding of the global climate system and influences of atmospheric phenomena such

as Southern Oscillation and storm formation (Ghosh and Misra, 2010; Cotton et al., 2011).
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GCMs have been a constant feature in the IPCC reports which analyse the impact of climate
change on a multisector scale across the globe (Knutti and Sedlac¢ek, 2013). Despite these
advantages of GCMs, their inability to accurately account for subgrid processes such as the
influences of topographic features and small-scale processes (land surface processes, cloud
formation and hurricanes) due to the spatial resolution of their grid system introduces
uncertainties and biases in their output (Salvi et al., 2011; Flato et al., 2014; Fang et al.,
2015). Most of these subgrid processes are parameterised which also introduces some
uncertainties in their outputs. Statistical and dynamic downscaling in association with bias
correlation approaches have been proposed by several studies to reduce the systematic
biases and uncertainties in the GCM outputs (Li et al., 2010; Li et al., 2014; Miao et al.,
2016; Navarro-Racines et al., 2020) These downscaling techniques improved the spatial
resolution of GCM outputs from their coarser resolution (Brands et al., 2011; Gutiérrez et
al., 2013). For instance, Li et al. (2014) applied a joint bias correction technique on
precipitation and temperature outputs of the CMIP5 model ensemble and found that the bias
correction method was able to improve the distribution of the variables individually, their
variances, mean and the correlation between them. In addition, Miao et al. (2016) employed
bias correlation methods on CMIP5 outputs. Their findings revealed that the modified
nonstationary bias correction method substantially reduces the biases in CMIP5 model
outputs and corrects the distribution of air temperature and precipitation throughout the
validation period thereby reducing the uncertainties in the GCM projections. Also, Navarro-
Racines et al. (2020) demonstrated that the delta bias correction technique was able to
reduce 50 to 70 % of the systematic biases present in the CMIP5 model projections of
maximum and minimum temperature and precipitation. The focus of this study is not to

evaluate the merits of statistical downscaling over dynamical downscaling methods but to
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explore CMIP6 outputs and statistically downscaled CMIP6 datasets to understand drought
patterns in the Volta River Basin.

Many studies have highlighted the impact of drought in this basin. Studies such as Bekoe
and Logah, (2013) and Oguntunde et al. (2017), Oguntunde et al. (2020) have investigated
the drought characteristics in the Volta River Basin. Nevertheless, it is essential to
understand the basin’s drought patterns and analyse the ability of GCM models to mimic
these patterns. This study aims to spatiotemporal characteristics of historical drought in the
Volta River Basin. The study also evaluates how well CMIP6 models and bias-corrected
CMIP6 can reproduce the identified drought patterns in the VVolta River Basin.

Several studies such as Bekoe and Logah (2013), Ndehedehe et al., (2016), Oguntunde et
al. (2017), Oguntunde et al. (2020) and Gebrechorkos et al. (2021) have projected that there
is a high likelihood of drought occurring in the future in the Volta River Basin. There has
not been a lot of studies conducted to improve the knowledge of hydrological drought in
the basin. Ndehedehe et al., (2016), Oguntunde et al. (2017) and Gebrechorkos et al. (2021)
have sought to provide answers to the influence of climate change on the occurrence of
hydrological drought using both GCMs and Regional Climate Models (RCMs). This study
seeks to enrich the existing knowledge on the impact of anthropogenic warming on the
Volta River Basin using the latest CMIP6 models coupled with a hydrological model that
has proven very useful in understanding future drought frequency by applying drought
indices (Kang & Sridhar, 2017). Knowledge from this study will be useful to the river basin
managers and decision-makers to understand drought modes and plan accordingly to adapt

to this extreme event in future



1.2 Statement of the Problem and Justification

Water supports all life processes of plants, animals and humans. As population growth
increases worldwide, the demand for water resources and ecosystem services for domestic
and industrial usage also increases. In West Africa, the population is estimated to grow from
132.2 million in the year 1980 (Fuwape and Onyekwelu, 2011) to 430 million in 2022
(United Nations, Department of Economic and Social Affairs, Population Division, 2022).
These population growths will drive demand for more food and water which may directly
lead to intensification and expansion of agriculture. In the quest to increase agriculture
production, the forest and natural vegetation are cleared to make way for agriculture
expansion in the Sahel, Savannah and Guinea Coast climate zones of West Africa. This
phenomenon was observed by Ouedraogo et al. (2010) who showed that forest land cover
is usually converted to agriculture to increase food production. As forest cover reduces, it
may not only impact precipitation characteristics of the area but also the hydrodynamics of
the catchment which may likely lead to drought as the microclimatic effect of the trees is
gradually lost and might have a feedback effect on agriculture production. Also, this
condition can be exacerbated by climate change as anthropogenic-induced CO:
concentrations can change the fluxes of latent and sensible heat, and evapotranspiration
processes which can alter the climate (Oguntunde, 2004).

Climate change poses a major existential threat to hydrological resources which may lead
to climate extremes such as floods and droughts. According to Rummukainen (2012),
anthropogenic increases in CO will affect the intensity and frequency of extreme weather
events such as floods, storms and droughts. This implies that climate change directly or
indirectly affects the characteristics of meteorological and hydrological drought in West

Africa. West Africa has been projected to be one of the most vulnerable areas on the globe
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to the impact of climate change as several economic activities are still reliant on climatic
conditions (IPCC, 2007). Climate change is identified as a major cause of precipitation
change in West Africa which may likely lead to extreme events such as droughts or floods.
Increasing changes in the characteristics of drought could have dire consequences on the
availability of food and impact the health and living conditions of human beings, making it
imperative to conduct further research to better understand how natural systems and
processes are affected by climate change in the future. Apart from agriculture, extreme
precipitation events may adversely impact the population (Peirce et al., 2022) in the VRB.
Therefore, this study seeks to understand the influence of climate change on drought
(meteorological and hydrological) duration, severity and intensity over the Volta River
basin in West Africa.

Oguntunde et al. (2020) studied meteorological drought in the VRB and suggested the
application of hydrological models such as SWAT will enhance understanding of
hydrological resources and the response to climate change in the basin. This study will
employ the use of the hydrological model and CMIP6 outputs to assess these changes. The
outcome of this study will be useful to the basin managers to understand how climate
change will affect the hydrodynamics of the basin. This will also provide valuable
information to basin managers on how anthropogenic warming may affect the
characteristics of droughts in the basin.

1.3 Aim of the Study

The aim of this study was to investigate the influence of climate change on hydrological
drought in the Volta River basin.

The specific objectives of this study are to:



i.  assess the potential impacts of climate change on meteorological drought over the
basin;

ii.  examine the performance of the SWATplus Model in simulating the hydrological
variables and water balance of the basin; and

iii.  assess the impact of future climate on hydrological droughts.

14 Research Questions
The study investigates climate change's impact on the characteristics of drought in the Volta
River Basin. To achieve the objectives of this study, the following research questions are
addressed:
i.  What are the spatiotemporal characteristics of meteorological drought in the past
and their relationship with climate change in the future?
ii.  Can the SWATplus model adequately simulate the hydrology of the Volta River
Basin?
iii.  How does climate change affect hydrological drought characteristics in the Volta

River Basin?

15  Innovation

Few studies have applied the new SWATplus model to investigate the hydrological regime
of the Volta River Basin as well as study the impact of climate change on streamflow and
hydrological drought in the Volta River Basin. In addition, this study provides insight into
the projections of meteorological and hydrological drought by the CMIP6 datasets over the
Volta River basin. Also, this research investigated the added value of bias correction
statistical downscaling of the CMIP6 datasets in understanding the past spatiotemporal

characteristics of drought in the VRB.



CHAPTER TWO

2.0 LITERATURE REVIEW

2.1  Definition of Drought

Many authors have tried to define drought. For example, Wilhite and Pulwarty (2017)
define drought as an insidious natural hazard that occurs as a result of precipitation
deficiency from average or normal amounts that, when extended over a season or longer
results in water supplies that are insufficient to meet the demands of human activities and
the environment. Droughts are not only dependent on precipitation alone but affected by
other climatic factors such as temperature, wind and low humidity which might equally
have the same influence or have even more importance than rainfall in some regions (Dai,
2011). Therefore, Sivakumar et al. (2011) integrate these factors in defining drought as a
normal and natural recurrent climatic feature which results from natural deficiency in
precipitation amount over a longer period usually a season or more in length and is also
influenced by climatic factors such as high temperature, high winds and low relative
humidity which can significantly aggravate drought severity in many regions of the world.
Consequently, drought leads to water shortages for human activities and the environment,
and further impacts the economic sectors. Drought is also associated timing of the principal
season of occurrence, delays in the onset of the rainy season, onset of rains in principal
growing crop growth stages and number of rainfall events and its intensity (Sivakumar et
al., 2011). Generally, four types of droughts have been identified which are agricultural,
meteorological, hydrological and socioeconomic droughts (Mishra and Singh 2010). The

American Meteorological Society defines the four types of drought:



Meteorological Droughts are defined in terms of the deficiency of precipitation and the
duration of this shortfall in precipitation persists.

Agricultural or Soil Moisture Droughts: Agricultural drought occurs as a result of soil
moisture deficit and is most commonly applied to non-irrigated agricultural regions. The
water demands of plants depend on the weather conditions, the plant type and the growth
stage of the plant as well as the soil’s physical and biological features.

Hydrological Droughts: Hydrological drought is a broad term which refers to the
consistent below-normal levels of water found in lakes, declining wetland areas and
decreased river discharge (van Loon, 2015). It takes a longer time for Precipitation deficits
to be felt in the hydrological system. As a result, the effects are not concurrent with those
in other economic sectors. Where irrigation is required for agriculture, hydrological drought
is used to determine agricultural drought. Hydrological drought lags both agricultural and
soil moisture drought. The reasons attributed to the occurrence of hydrological droughts are
complex since they are not only atmospherically dependent but also involve hydrological
processes that feed moisture to the atmosphere and cause storage of water and runoff to
streams (Mishra and Singh, 2011).

Socio-economic Droughts: Socio-economic drought is associated with the supply and
demand of some economic goods, which are influenced by the elements of the other types
of drought.

2.2 Impact of Historical Drought

Over the past few decades, the Earth's climate has become more unbalanced due to the
escalation of atmospheric greenhouse gases (Shahbazi, 2015), which continues to manifest

itself in the form of extreme events such as drought, floods, heatwaves, aberrant rainfall
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regimes, fires and other catastrophic occurrences worldwide (Arora, 2019). Among
weather-related disasters, drought is known for its comparatively gradual onset and
consequential time-intensive manifestation of damaging effects (Davarpanah et al., 2021).
Unfortunately, the IPCC (2014) projects climate change to modify the frequency and
severity of droughts, causing intensified impacts in certain regions and seasons. In addition,
studies like Im et al. (2017) and Arora (2019) have lent support to the prevailing scientific
consensus that the earth’s ecosystems have not only been altered but are also persistently
influenced by climate change. As a result, it is anticipated that there will be an augmentation
in unusual weather patterns like droughts due to the relationship between water and climate
(Leng et al., 2015).

Globally, the number and duration of droughts have increased by 29% since the year 2000.
Drought affected about 1.4 billion people between 1998 and 2017, resulting in $124 billion
in economic losses (United Nations Convention to Combat Desertification, 2022; Cui et al.,
2023). For instance, the Great U.S. Drought of 2012, which coincided with a heat wave and
cost more than $33 billion in damages, was the most severe drought to affect the country
since the 1930s (National Oceanic and Atmospheric Administration — National Centers for
Environmental Information (NOAA-NCEI), 2018). In addition, the related summer
heatwave directly contributed to 123 fatalities (Masters, 2013; NOAA-NCEI, 2018). In the
1900s, Europe experienced 45 major drought events which affected adversely affected
millions of people and led to economic losses amounting to about $27.8 billion. In recent
times, an annual average of 15 percent of the land area and 17 percent of the population
within the European Union has been affected by drought (Guha-Sapir et al., 2021; European
Environment Agency, 2017). The megadrought in Australia contributed to ‘mega-fires from

2019 to 2020 that resulted in the most dramatic loss of habitat for threatened species in
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postcolonial history (Wintle et al., 2020); about three billion animals were killed or
displaced in the Australian wildfires (van Eeden et al., 2020; Haque et al., 2021; Allard et
al., 2023). In the northern fringe of the Asian summer monsoon region (NASM) in China,
the severe drought that occurred from 1927 to 1929 led to a drastic reduction in streamflow
and water level in the Yellow River and Daihai Lake, respectively (Yang et al., 2014),
which consequently resulted in drought-induced famine and diseases and led to the deaths
of more than 4 million people in the provinces of Shanxi, Gansu, Ningxia, Qinghai, and
Inner Mongolia (Xu et al., 1997, as cited in Yang et al., 2014). In Brazil, drought conditions
with a 16-month duration led to the drastic reduction of the Cantareira Reservoir water level
to about 5 % of its capacity from the years 2013/2014 to 2014/2015 (Nobre et al., 2016;
Pattnayak et al., 2018).

The African continent is also deemed highly susceptible to droughts owing to the great
inconsistency in precipitation (Shiru et al., 2020). Regrettably, the majority of countries in
the continent have limited adaptive capacity to cope with the impacts of climate change.
Recent years have seen a large number of severe droughts, which led to devastating famines
and the loss of countless lives in Africa (Masih et al., 2014). Historical records show that
drought is highly prevalent in Africa experiencing about 44 % of total global drought events
which represent more than 300 events reported within 100 years. Sub-Saharan Africa has
recently seen the catastrophic effects of climatic disasters increasing in frequency and
intensity (Guha-Sapir, et al., 2021). In the West African region for instance, drought events
have caused numerous deaths and destroyed properties, hampering development and
economic development in the region since the major economic activity in the region is
rainfed agriculture. In Southern Africa, an escalation in the spatial extent of drought has

been experienced since the 1970s (Rouault and Richard, 2005) and remains a risk to water

12



management and agriculture in the region (Ayugi et al., 2022). For instance, Blamey et al.
(2018) found that more droughts occurred from the 1970s to 2017 than witnessed in the
1950s and preceding years during the summer rainfall season in several regions in South
Africa. Severe drought from 2015 to 2018 that occurred in the Western Cape of South
Africa adversely impacted the population resulting in the area being classified as a disaster
zone (Pienaar and Boonzaaier, 2018; Mahlalela et al., 2020).

Several studies investigated Sahel droughts and have however attributed the Sahel drought
to factors such as sea surface temperatures (SSTs). For example, Hoerling et al. (2006), and
Caminade and Terray (2010) studies attributed changes in sea surface temperature (SST) as
the main factor affecting Sahel drought decadal-scale and interannual variations.
Particularly, a strong relationship was observed between the tropical Pacific and Indian
oceans SSTs and inter-hemispheric (north-south) temperature gradients in the tropical
Atlantic (Ayugi et al., 2022). The north-south SST gradient (the south and north oceans
warmed and cooled after 1970) relationship is the underlying factor which induced the
Sahel drought on a decadal timeline (Ayugi et al., 2022). Bader and Latif (2011) found that
the high Indian Ocean SST which could be a residue of the 1983 and 1983 EI Nino events
had a strong relationship to the Sahel drought of 1983. They also show that the Indian Ocean
SST play a crucial role in the rainfall of the West Sahel by regulating the interannual
variability of rainfall. Gore et al. (2020) examined the impact of ENSO on drought in
Southern Africa and found that drought conditions are associated with the strength of the
El Nino while La Nina induced wetness over the region. They also found that drought is
driven by the weakening of the Walker circulation due to El Nino events across the region
while the Atlantic and Indian Oceans influence the intensity and spatial patterns of drought.

Drought trends in Northern Africa have been caused by the interaction of complex
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processes and feedback mechanisms. Some of these processes are EI Nino events, increased
vertical thermal instability from the warming troposphere, and changes in the SST of the
Atlantic Ocean which can induce low rainfall amounts in the summer months (Dai and
Zhao, 2017). Other studies have suggested that Sahel droughts are also driven by the
warming of the Atlantic Ocean as well as the Indian Ocean warming. Moulin and Chiapello
(2004) also suggested that the impact of aerosol emissions could play a crucial role in the

characteristics of droughts in the Sahel.

2.3  Climate Change and Drought

Numerous studies have investigated and affirmed the influence of climate change on
drought frequency, duration and severity drought. Climate change possess the ability to
alters the behaviour of climatic parameters such as precipitation, temperature and many
more. With increasing greenhouse gases in the atmosphere leading to climate change,
extreme events are projected to increase concurrently. Studies like Wang et al. (2011)
investigated the soil moisture drought from 1950 — 2006 in China. Their study illustrates an
increasing trend in drought frequency with varying degrees and duration and ascribes
climate change as a possible phenomenon inducing that in China. Yuan et al. (2016) found
that runoff reduced under a balanced emphasis on all energy sources (A1B) of the Special
Report on Emissions Scenarios, leading to fewer hydrological droughts with longer
persistence and severity, which will deteriorate the historical hydrological conditions in the
Weihe River basin in China. Nosrati et al. (2018) studying climate change impacts on the
minimum hydrological drought found that climate change will induce more drought events
and increase its severity and drought-prone areas in the Atrak River basin in Iran. Zhifia et

al. (2019) identified that there is variability in the impact of hydrological drought in the
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near and far future under RCP 4.5 and 8.5 in the Puate River basin in Ecuador. They
discovered that generally the frequency and duration reduce in both the near and future
under both RCP 4.5 and 8.5 but the severity of the drought was seen to increase as compared
to the baseline period. Some areas in their study area also had drought severity reduced
under both scenarios. They recognise the complexity of terrain processes as a factor for the
variation and GCM's inability to simulate convective systems as a limitation. Oguntunde et
al. (2017) studied the characteristics of drought in the Volta River basin and found that the
frequency of drought may magnify in the future. The study considered runoff from Regional
Climate Models which occurs during precipitation event but does not account for the
characteristics and complex processes which influences streamflow in the river basins as

streamflow does not depend on precipitation events alone.

2.4 Impact of Land Use Change (Forestation or Deforestation) on Droughts

There are two schools of thought on the interactions of forest cover and precipitation. The
first school of thought views forest as a net producer of water and the other considers it as
a net user of water in the hydrological cycle. The net producer (supplier) side argues that
forest acts as a generator or recycler of water which increases and improves the overall
water balance while the net user (demand) side school of thought argues that forest is net
users of water which lead to loss of water in the water balance to the atmosphere and
advocates for policies to manage and regulate forest cover to maximise streamflow in a
region (Bennett and Barton, 2018). Studies like Ellison et al. (2017) which champion the
net producer side explains that evapotranspiration produced by forest increases the moisture

in the atmosphere. Forest has a significant modulating effect on rainfall patterns and
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atmospheric moisture over land deforestation increases temperature at the local scale and
causes changes in rainfall and water. The net user (demand) side views trees in forest cover
as contributing to water loss in catchment through the transpiration process and forests do
not have any endearing link to precipitation formation and the concept of relief rainfall is
not an inducement of forest cover but rather the relief (mountain) of the land surface
(Bennett and Barton, 2018).

Other studies looking to verify the substance of these two claims have gone further to
analyse forest influence on rainfall and drought using climate models or climate models
coupled with hydrological models. Such studies are Diasso and Abiodun (2018) show that
the influence of reforestation over the Savanna region of West Africa could affect drought
patterns in future under the RCP 4.5 scenario. Their findings revealed that reforestation
reduces temperature and frequency of drought by -0.1to -0.8 °C and 1 — 2 events per decade
respectively over the reforested region and increases rainfall by 0.8 — 1.2 mm/day. They
also realised that reforestation also induced feedback in the Sahel by increasing drought
frequency by 1 event per decade during the monsoon season. Abiodun et al. (2013)
investigated the influence of afforestation on climate change and climate extreme events
over Nigeria and discovered that afforestation induces positive feedback over afforested
areas and coastal regions by enhancing precipitation. They observed the reverse effect over
the north-eastern part of the country which enhanced warming and reduced precipitation.
Also, they note that more heatwaves and drought are likely to occur in the semi-arid regions
and these enhancements of rainfall in the other parts may lead to flooding along the coastal
regions. Lawrence and Vandecar (2015) investigated the impact of deforestation on climate
and agriculture in the tropics and found that there exists a threshold for deforestation beyond

which significant changes in rainfall are observed. Their findings also showed that with
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increasing rates of deforestation, a high incidence of heat extremes as a result of the increase
in mean temperature and, a decline in rainfall (average and frequency) may occur which
will subsequently affect agriculture. Naik and Abiodun (2016) discovered that warming and
rainfall increased in the afforested area and induced cooling in different places in the
possible future under climate change. They associated the warming to albedo characteristics
of forest cover and the cooling to the feedback effect of localised warming induced by the
forest cover. This situation induces wetness and dryness in different locations in their study
area. They observed that forestation created variation in summer drought frequency
suggesting that forestation utilisation as a climate change mitigation option can cause
undesirable results. Lima et al., 2014 observed that deforestation increased the dry season
length while affecting streamflow which eventually led to hydrological drought in some
basins in the Amazon forest region in South America. Takata and Hanasaki (2020) studies
identified that afforestation increased drought risk during the dry season as a result of the
increment in the evaporation process in Chao Phraya. Their study also revealed that
afforestation has a less profound impact than climate change and afforestation reduced
streamflow during the wet season. They conclude that afforestation aids in flood risk
reduction in the wet season. Therefore, consideration must be taken in using afforestation
as a mitigation option. Bonnesoeur et al. (2019) review of studies relating to forestation
impacts on hydrological services in the Andes revealed that generally numerous studies
have highlighted that forestation reduces streamflow and water supply downstream but
enhances hydrological regulation and reduces erosion in degraded soils. They identified
that forestation was associated with high water usage which leads to a decrease in

downstream.
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2.5  Hydrological Drought in the Volta River Basin

The hydrology of a basin is dependent on spatial variables such as topology, land cover/use
and climate inputs. Three challenges emerge when assessing water balances in the Volta
River Basin. First, demand for water for power generation has approached the supply stored
in the water reservoir. Second, water management would require international or
transboundary cooperation as water becomes increasingly scarce. Third, the dam's
modulated outflow has a negative impact on downstream water users (Andreini et al., 2000;
Kasei, 2009).

According to Associated programme on Flood Management (APFM) (2020), the Volta
River basin is very vulnerable to water-related disasters due to a lack of mitigation
techniques. Over the previous two decades, climate change has contributed to disasters such
as floods and droughts which incurred social, economic and environmental losses to almost
two million people.

van de Giesen et al. (2010) reported that climate models suggest there will be a shift in the
onset of the rainy season roughly from April towards May in the Volta basin in the near
future. At the same time, the total amount of rainfall and the end of the rainfall season will
remain fixed. In a related study, Mul et al. (2015) stated that the Volta River Basin is
characterized by high seasonal rainfall variability with a distinct dry season during which
rivers in the majority of the northern part dry up. Furthermore, the drying up of streams and
wells in the communities during the dry season leads to frequent water shortages in the
White Volta Basin.

In another study, Gebrechorkos et al. (2022) used streamflow data simulated using the
Variable Infiltration Capacity (VIC) and vector-based routing (RAPID) modelling system

for 10,300 river reaches to assess the changes in drought duration and severity in the Volta
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River Basin. They found that drought severity exhibited an increasing trend in the southern
part of the basin while decreasing in the northern part of the basin. Furthermore, the trend
analysis indicated a general decreasing trend (up to 5% per event) in drought duration in
the northeastern part of the basin but showed an increasing trend in the southern parts of
the basin.

Oguntunde et al. (2006) conducted a study on the hydrological variability and trends in the
Volta River Basin over the period 1901-2002. The study showed that the Rainfall
variability index in the last three decades over the period 1901-2002 have been drier, with
1983 being the driest year and 1968 being the wettest year. Runoff, on the other hand, has
increased significantly at the rate of 0.8 mm/yr? or 23 mm/ yr? since 1970. Runoff before
dam construction was higher (87.5 mm/ yr?) and varied more, with a coefficient of variation
of 41.5% but the runoff post-dam period was 73.5 mm/ yr? with a coefficient of variation
of 23.9%.

Furthermore, Kasei (2009) reported that the increase in low-flow events in the Volta River
Basin will lead to an increase in droughts despite certain regional models projecting an
increase in rainfall. This would have a major impact on the agricultural and energy sectors

of communities in countries that rely on the Volta River basin for their needs.

2.6 Impact of Climate Change on the Hydrology and Hydrological Drought in the
Volta Basin

Various studies have been conducted on the impact of climate change on hydrological
drought in the Volta basin. For example, Dembélé et al. (2022) evaluated the impact of
climate change on water resources in the Volta river basin under three Representative

Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5). They reported that although
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potential evaporation and air temperature were increasing under the three representative
pathways, an increase in the magnitude of soil moisture, total runoff, actual evaporation,
groundwater recharge and terrestrial water storage is projected under RCP8.5 scenario.
Furthermore, the analysis of high and low flows indicated a potential increased in
hydrological drought frequency in the Black Volta under RCP2.6 and RCP4.5 beginning in
the mid-21st century. On the contrary, more frequent flooding was projected in the White
Volta under RCP8.5 over the 21st century.

In addition, Oguntunde et al. (2017) investigated the projected impacts of future climate
change on drought in the Volta River Basin, as well as how the drought influences
streamflow. They used the Standardized Precipitation Index (SPI) and Standardized
Precipitation and Evapotranspiration Index (SPEI) to characterize drought, and the
Standardized Runoff Index (SRI) to quantify hydrological drought. Their findings indicated
that drought frequency (events per decade) when compared to the present-day episodes may
be amplified by a factor of 1.2 in the year 2046-2065 and 1.6 in the year 2081-2100.
Furthermore, precipitation was highly sensitive to runoff and a time lag of about 2 to 3
months was observed between stream flow and drought indices in the Volta River Basin.
In another study, Oguntunde et al. (2020) investigated the impact of global warming levels
on drought characteristics in the Volta River basin and Niger River basin by employing two
indices namely the Standardized Precipitation-Evapotranspiration Index (SPEI) and
Standardized Precipitation Index (SPI). They found that with Standardized Precipitation-
Evapotranspiration Index (SPEI), severe drought frequency and magnitude are projected to
increase across all basins (Volta River and Niger River basins), with the increase in
consonance with higher global warming levels. On the other hand, the projected changes in

severe drought frequency and magnitude are weaker for SPI than for SPEI.
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Furthermore, Ndehedehe et al. (2016) examined the utility of standard indicators
(Standardised Soil moisture index (SSI), standardised precipitation index (SPI),
standardised runoff index (SRI), multivariate standardised drought index (MSDI) as well
as Gravity Recovery and Climate Experiment (GRACE) to assess the characteristics of
drought over the Volta River basin. They found that SPI and SRI showed a nonlinear
relationship for wet periods, indicating that river discharge responds slowly to precipitation,
especially after a previous extreme dry period. On the other hand, SPI and SSI exhibited a
linear relationship with a correlation of 0.63 (that is on a 12-month scale) at a 95%
confidence level indicating consistency in observed wet and dry periods.

Yeboah et al. (2022) assessed climate projections in the Volta river basin using the
CORDEX-Africa climate simulations under the Representative Concentration Pathways
(RCPs) 4.5 and 8.5 scenarios. Their findings indicated that the Volta Basin would
experience warmer days and night temperatures, as well as frequent drought and extreme
precipitation events under RCPs 4.5 and 8.5 scenarios. However, RCP 4.5 showed a
relatively lower magnitude of these extremes when compared to RCP 8.5.

According to Kasei (2009), analysis of climate data in the VVolta River basin indicated that
the months where precipitation exceeds evapotranspiration typically occur in June, July,
August, and September. Furthermore, temperature has been increasing over years leading
to an increase in evapotranspiration and hence annulling any surplus amount gained from
increased rainfall.

McCartney et al. (2012) conducted a study utilizing a dynamic regional climate model
(CCLM), a hydrological model (SWAT) and a water resource model (WEAP) to evaluate
the impact of a downscaled 'middle impact' climate change scenario on existing and planned

irrigation and hydropower schemes in the Volta River basin. Their results indicated that,
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under a midrange climate change scenario, the CCLM model predicts a 9% decline in the
basin-wide mean annual rainfall by 2050 and a 20% decrease by 2100. In addition to an
increase in potential evapotranspiration, there would be a 24% and 45% decline in average
annual basin flow by 2050 and 2100, respectively.

In a related study, Jin et al. (2018) assessed changes in flow in the Volta river system by
2050s and 2090s under the RCP8.5 scenarios by using High-resolution climate scenarios
downscaled from three different Global Climate Models to drive the Integrated Catchment
Model (INCA). Their findings reported that peak flows during the monsoon months could
increase by up to 50% by the 2090s at the Black Volta River outflow and 10% by the 2090s
at the Volta Lake outflow. Furthermore, the duration of drought in the Black Volta River
may increase until the 2050s, after which overall wetter climatic circumstances may lead to
less drought at the end of the century. Also, the future drought duration in Lake Volta is
projected to be less frequent due to the climate pattern and long residence time of the lake
system. Furthermore, they asserted that the impacts of changing socio-economic scenarios

on flow are minor when compared to the impact of climate change.

2.7 Impacts of Climate Change and land use on river basins using Hydrological
models

Hydrological models are potent in studying the combined effect of climate change and land
use change on streamflow. The output from these models could be used to study the
hydrological processes and how these two factors affect the cycle as well as understanding
hydrological drought. Zhang et al. (2016) coupled a climate model with a hydrological
model to study climate change and land use change in the Heihe River Basin located in

China. The authors found that climate change was more significantly correlated to the
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changes observed as it had enhanced the hydrologic response tremendously as compared to
land use alone which was linked to reduced runoff, streamflow and groundwater recharge.
The combined effect of both factors produced outputs similar to that obtained from climate
change alone. Guo et al. (2008) also coupled a climate and hydrological model together and
found that annual streamflow correlates with climate change while seasonal streamflow was
sensitive to land use change in the Xinjiang River basin located in China. The combined
effect produces unique results different from that obtained from land use change or climate
change alone which underlined the need to factor both climate and land use changes in
assessment studies. Dong et al. (2014) reported that runoff is more sensitive to land use
change than to climate change in the Jinghe River basin in China using the SWAT model
coupled with a sequential cluster and separation approach. Yin et al. (2017) applied the
SWAT model to investigate the combined effect of climate and land use change on surface
runoff and indicated that land use change and climate change influence runoff differently
in different decades. They also observed that runoff fluxes are more sensitive to land use
change than climate change. These studies have affirmed the capability of hydrological
models to quantify changes that occurred as a result of climate and land use change.

From these various reviews above, some effort has been made to analyse the impact of
climate change on meteorological and hydrological drought. Especially, studies like
Oguntunde et al. (2017) and Ndehedehe et al. (2016) have explored the impact of climate
change using RCMs outputs nested in CMIP5 models. This study will utilise a statistically
downscaled and bias correction method on the latest CMIP6 models to enhance current
knowledge on climate change's impact on meteorological and hydrological drought in the

Volta Basin. This study also aims to evaluate the relationship between meteorological and
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hydrological drought. This approach will be applied to this study by coupling the

hydrological model (SWATplus) and CMIP6 data outputs.
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CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Study Domain

The Volta River Basin is a transnational basin shared between six West African countries:
Burkina Faso, Ghana, Togo, Benin, La Cote D’Ivoire and Mali (Figure 3.1). The Volta
River Basin (VRB) is located in West Africa and lies between longitudes 5° 30 W and 2°
E and latitudes 5° 30’ N to 14° 30’ N (Biney, 2010). The basin has a total surface area of
409,000 km? and three main tributaries (Williams et al., 2016). The tributaries are the White
Volta which takes its source from the northern part of Burkina Faso, the Black Volta which
takes its source from the southwestern part of Burkina Faso, and the Oti Basin which
originates from the northern part of Benin (Williams et al., 2016). The Red Volta is a major
tributary to the White Volta in Burkina Faso. The Lower River Basin is found in the south
of the VRB. The Black Volta, White Volta and Oti Basin flows into the Lower Volta.
Appendix 1 shows a map of the main subbasins found in the VRB. The length of the river
is 1850 km flowing southwardly till it empties into the Gulf of Guinea. Most of the
catchment lies within Burkina Faso and Ghana with 43 % and 41.6 % of land areas of the
Volta River Basin respectively (Volta Basin Authority, 2010; Darko et al., 2019). This
represents 67 % and 65 % of the total land mass of Burkina Faso and Ghana respectively
(Ampomah et al., 2008). 6.4 %, 3.1 %, 3.4 and 2.5 % of the VRB lies in Togo, Mali, Benin
and Cdte D’Ivoire respectively (Barry et al., 2005). The Black Volta, Oti and White Volta
River Basins contribute 18 %, 20 %, and 25 % respectively to the water stored in the Volta

Lake (Kasei, 2009). The Lower Volta and Oti Basins have the highest flow contribution
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coefficient to the VRB, even though they have the smallest areas when compared with the
Black and White Volta (Table 3.1). The Volta Lake is the largest artificial lake in West
Africa. The Volta Lake stores water used for hydropower generation at the Akosombo dam.
Bagré, Kompienga, Kpong, and Bui dams are other hydropower generation plants
constructed in the VRB. Bui, Bagré and Kompienga dams are reservoir-operated dams.
Kpong Dam is a run-of-river hydropower plant located in the Lower Volta south of the
Akosombo dam. There are some protected ramsar sites such as Lac Dem, Barrage de Bagré,
Barrage de la Kompienga, Lac Bam and La Vallée du Sourou in Burkina Faso; Keta Lagoon
Complex and Songor in Ghana; Parc National de la Keran and Bassin versant Oti-
Mandouri in Togo; and Zone humide de la riviere Pendjani in Benin.

The major economic activity of the inhabitants of the VRB is agriculture. About 70 % of
inhabitants are dependent on rainfed agriculture (Kuntsmann and Jung, 2005). The demand
for water in the Basin has short-up and is driven by hydropower, agriculture, mining,
recreation, industrial consumption, transportation and domestic use (Amisigo, 2005; Mul et
al., 2015). Urbanisation as a result of population growth and some economic activities such
as agriculture and mining may lead to pollution that could affect water quality and
destruction of ecosystem. Recently, both legal and illegal mining activities within the basin
have increased, which if not managed adequately, may cause land degradation, increased

sedimentation load and heavy metal pollution.

26



[-a0'00N

“Frooon

ooen—]

Joerare—]

005

Legend

[ volta River Basin
- Lake and reservoir

river

: International boundary

0 65 130 260 Kilometers
I Y Y |

G20'0"W
1

A50'0"W 29010"W 050"
1 1

2900
|

14°0'0"N =1

12°0"0"N-]

10°0'0"N =

8°0'0"N-]

6°0'0"N-]

[F14°00"N

L 12°00"N

10°00N

L se00mN

LeeoorN

T
G20'0"W

T T
400" W 26000 W 0e0o"

Figure 3.1: Map of the Volta River Basin, West Africa
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Table 3.1: Area and annual flow of main tributaries (Subbasins) of the Volta River Basin

Area Mean Annual Flow  Flow Coefficient

Subbasin (km?) (%108 m?3) (%)
White Volta (Nawuni) 104,749 7,673 8.3
Black Volta (Bamboi) 149,015 9,565 10.8
Oti (Sabari) 72,778 11,215 14.8
Lower Volta (Senchi) 62,651 9,842 17.0
Total 400,710

Source: Barry et al. (2005)
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3.1.1 Climate

Generally, the northern part and a portion of the central part of the VRB are characterized
by a mono-modal rainfall pattern from latitude 8 °N where The major rainfall season occurs
in June, July and August while December, January and February characterise the dry season
also known as harmattan. the southern part of the basin experiences a bimodal pattern of
rainfall with two major rainfall seasons occurring in May-June-July and August-September-
October and a little dry season in August. The West African Monsoon system influences
the climate of the basin. The convergence of moist south-westerlies from the Atlantic Ocean
and the dry north-easterlies in West Africa forms the Inter-tropical discontinuity (ITD). The
migration of the ITD influences moisture influx into West Africa. The ITD, Tropical
Easterly Jet (TEJ) and the African Easterly Jet (AEJ) influence rainfall characteristics over
the basin (Omotosho and Abiodun, 2007; Gebrechorkos et al., 2022). The rainfall follows
a north-south gradient where the least amount of rainfall occurs in the north (400 mm/year)
and the highest in the south (1600 mm/year) (Obuobie, 2008; Gebrechorkos et al., 2022).
According to Amisigo (2005) was subdivided into the humid southern zone, the tropical
transition zone and the tropical northern zone. These also correspond to the Guinea
Savannah, Sudanian Savannah and the Sudano-Sahelian zones (Darko et al., 2019). The
Guinea Savannah is characterised by 2 rainy seasons which peak in June and September,
the Sudano-Sahalien and Sudanian Savannah zones have a mono-modal rainfall season
which peaks in August/September (Amisigo, 2005; United Nations Environmental
Programme - Global Environment Facility (UNEP-GEF), 2013; Darko et al., 2019).
Annual potential evapotranspiration ranges between 1800 mm and 2500 mm in the coastal
and the north of the basin respectively. There is a negative deficit between mean monthly

rainfall and potential evapotranspiration (Amisigo, 2005).
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Temperature also demonstrates a north-to-south gradient where the highest temperature is
recorded in the north and the south also records a relatively lower temperature. The mean
monthly temperature in the north varies from 36 °C to 27 °C while that of the south varies

from 30 °C to 24 °C in March and August respectively (Oguntunde, 2004).

3.1.2 Topography

A greater portion of the elevation of the VRB ranges between 200 m and 300 m with a mean
elevation of 257 m (Obuobie, 2008). The highest peak in the VRB is found in the Oti Basin
at 920 m (Barry et al., 2005). The Akuapem Mountains, Fazao Mountains, Togo Mountains
and Atakora Ranges in Benin rise from the sea northeastwards and the Kwahu Plateau
extends northwestwards after the Akosombo Gorge (Barry et al., 2005). The Banfora
Plateau located in Burkina Faso in the Black Volta is another relief that flanks the western

part of the VRB (Barry et al., 2005).

3.1.3 Geology and soil

Two major geological formations characterize the geology of the Volta River Basin. They
are the Proterozoic to Paleozoic ages consolidated sedimentary formations also known as
the Voltaian Formation and the Precambrian basement crystalline rocks associated with the
West African Shield (Obuobie, 2008; Barry et al., 2005; Mul et al., 2015). They occupy
more than 90 % of the Volta River Basin (Mul et al., 2015; Aziz, 2017). The Volta River
Basin is comprised primarily of these two geological formations (Figure 3.2). The
Precambrian formations in the VRB are also categorized into the Birimian group, Tarkwan,
Dahomeyan formation, and Buem and Togo formations (Obuobie, 2008). The Voltaian

system comprises the Lower Voltaian (basal sandstone), Middle Voltaian (Obosom and Oti
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beds) and the Upper Voltaian formation which are located in the Oti basin and Lower Volta,
and the lower part of the Black and White Volta (Mul et al., 2015). Other Voltaian
formations are the Quarternary alluvia deposits mostly found around the Volta Lake and
the metasediments or volcanic sedimentary located bounded by the Middle Voltaian
formation to the west and along the Volta delta, Togo and the northern part of Benin. The
tertiary sandstones and the sedimentary formations are localised in the northern part of the
Basin. The Precambrian basement crystalline rocks consist of igneous rocks, metamorphic
rocks, anorogenic intrusions and granite-gneiss-greenstone rocks (Mul et al., 2015;
Obuobie et al., 2016; Aziz, 2017). The sedimentary formations comprise sandstone, politic
schist, shale, mudstones, arkose, dolomitic limestone and conglomerate, sandy and pebbly
beds and limestones. The lithology and thickness of the weathered layer of the basement
crystalline rocks vary (Martin, 2005; Obuobie et al., 2016). The thickness of the weathered
layer was due to factors such as the structural properties of the rocks, topography,
vegetation, climatic conditions and erosion (Obuobie et al., 2016).

The soils of the Volta River Basin are formed as a result of the weathering of the various
parent rock types identified in the basin (Andah et al., 2003; Obuobie, 2008). Using the
Food and Agriculture Organisation and United Nations Educational, Scientific and Cultural
Organization (FAO-UNESCO) (1974) soil classification system, eleven dominant soil
types were identified in the VRB (Table 3.2). The soils are Acrisols, Arenosols, Cambisols,
Fluvisols, Gleysols, Lithosols, Luvisols, Nitosols, Planosols, Regosols and Vertisols. The
major soil type identified in the Volta River Basin is the Luvisols (59.896 %) (Obuobie,
2008). Generally, the soils in the northern part of the basin are lower in organic content than
the soils found in the south, especially in the forest zones. In the northern part, the soil

structure of Luvisols is unstable and has low nutrient content thereby making them highly
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susceptible to erosion when the slope gradient is not gentle (Obuobie, 2008). The Regosols
(10.609 %) and Lithosols are the next dominant soil types (10.01 %) (Table 3.2) that are
located in the northern part of the VRB. Regosols are highly porous and have poor water
retention ability. In the VRB, the largest type of Regosols is the Eutric Regosols (Re33-1a-
1677) which has a sandy-loam textural class. Aresonols of the VRB are also high in sandy
textured with low soil productivity and poor water retention capacity (Appendix 2). Luvic
Arenosols (Ql1-1a-1614) which have a sandy textural class are the largest amongst the

Arenosols soil types in the VRB (Appendix 2).
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Table 3.2: Soil types of the Volta River Basin

Soil Type Area Covered (km?) PERCENTAGE (%)
Acrisols 7479.045065 1.814
Arenosols 13756.10074 3.337
Cambisols 12353.77977 2.996
Fluvisols 5676.060983 1.377
Gleysols 2604.310329 0.632
Lithosols 41268.30222 10.01
Luvisols 246942.0414 59.896
Nitosols 5742.838173 1.393
Planosols 4874.734727 1.182
Regosols 43739.05817 10.609
Vertisols 15959.74795 3.871
Water 11886.33947 2.883
Grand Total 412282.359 100

Luvisols is the most dominant soil in the VRB (in Bold)

Source: FAO-UNESCO (2003)
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3.1.4 Land use/ cover

The VRB is dominated by Savannah land cover (Obuobie, 2008) which is characterised by
grasses interspaced by shrubs. According to Obuobie (2008), 86 % of the basin is covered
by the savannah, with croplands, wetlands, natural vegetation, built-up and forest cover.
The savannah was subdivided into wooded (found in the south) and grassy (found in the

north) savannah. The dominant land use in the VRB is agriculture (Obuobie, 2008).

3.2  Data collection

3.2.1 Spatial datasets

The spatial datasets used in this study include the gridded climate variables, soil, land cover,
and Digital Elevation Map (DEM). These datasets are required as input into the SWATplus
model. A 90m hydrological conditioned DEM was obtained from HydroSHEDS version 1

(http://www.hydrosheds.org). The HydroSHEDS was developed by Lehner et al. (2008)

and was based on the Shuttle Radar Topography Mission (SRTM) elevation data. The
digital soil map from the Food and Agriculture Organisation (FAO, 2003) and a land cover
map for the year 1992 were obtained from the European Space Agency’s Climate Change
Initiative Land Cover project (ESA CCI-LC) (ESA, 2017). The ESA land cover map was
reclassified into similar land cover classes found in the SWATplus database using Defourny
et al. (2017), Reinhart et al. (2021) and Tew et al. (2022). Sixteen SWATplus land use
classes were used for this study. Table 3.3 shows the reclassification of ESA land cover
type to correspond to SWATDpIus land cover types. The spatial datasets used to set up the

SWATDplus model are illustrated in Figure 3.3.
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Table 3.3: Land cover types of the ESA CCI-LC data and its corresponding land cover types

in SWATDplus Database

SWAT+ SWAT+ Landuse Long
1D ESA Landuse
Landuse  name
10 Cropland, rainfed AGRR agricultural_land_row
11 Herbaceous cover CRGR cropland/grassland_mosiac
12 Tree or shrub cover CRWO cropland/woodland_mosiac
irrigated_cropland_and_pa
20 Cropland, irrigated or post-flooding CRIR
sture
Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover)
30 AGRL agricultural_land_generic
(<50%)
Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland
40 CRWO cropland/woodland_maosiac
(<50%)
50  Tree cover, broadleaved, evergreen, closed to open (>15%) FRSE forest_evergreen
60 Tree cover, broadleaved, deciduous, closed to open (>15%) FRSD forest_deciduous
61  Tree cover, broadleaved, deciduous, closed (>40%) FRSD forest_deciduous
62  Tree cover, broadleaved, deciduous, open (15-40%) FRSD forest_deciduous
70  Tree cover, needleleaved, evergreen, closed to open (>15%) FRSE forest_evergreen
71  Tree cover, needleleaved, evergreen, closed (>40%) FRSE forest_evergreen
72 Tree cover, needleleaved, evergreen, open (15-40%) FRSE forest_evergreen
80 Tree cover, needleleaved, deciduous, closed to open (>15%) FRSD forest_deciduous
81  Tree cover, needleleaved, deciduous, closed (>40%) FRSD forest_deciduous
82  Tree cover, needleleaved, deciduous, open (15-40%) FRSD forest_deciduous
90 Tree cover, mixed leaf type (broadleaved and needleleaved) FRST forest_mixed
100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) FRST forest_mixed
110  Mosaic herbaceous cover (>50%) / tree and shrub (<50%) GRAS grassland
120  Shrubland SHRB shrubland
121  Shrubland evergreen SHRB shrubland
122 Shrubland deciduous SHRB shrubland
130 Grassland GRAS grassland
barren_or_sparsley_vegetat
140  Lichens and mosses BSVG
ed
barren_or_sparsley_vegetat
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) BSVG

ed
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SWAT+ SWAT+ Landuse Long
1D ESA Landuse
Landuse  name
barren_or_sparsley_vegetat
151  Sparse tree (<15%) BSVG
ed
barren_or_sparsley_vegetat
152  Sparse shrub (<15%) BSVG
ed
barren_or_sparsley_vegetat
153  Sparse herbaceous cover (<15%) BSVG
ed
160 Tree cover, flooded, fresh or brackish water WETF wetlands_forested
170  Tree cover, flooded, saline water WETF wetlands_forested
180  Shrub or herbaceous cover, flooded, fresh/saline/brakish water WETL wetlands_mixed
190  Urban areas URBN urban
200 Bare areas BARR Barren_Land
201  Consolidated bare areas BARR Barren_Land
202  Unconsolidated bare areas BARR Barren_Land
210  Water bodies WATR Water
220  Permanent snow and ice WATR Water
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Figure 3.3: Land Cover, Soil map, Digital Elevation Model and Subbasins used in the

SWATplus model for the Volta River Basin
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3.2.2 Climate datasets

3.2.2.1 Observation Data

Global Meteorological Forcing Datasets for Land Surface Modelling (GMFD) and Ghana
Meteorological Agency. The GMFD is a reanalysis dataset published by Sheffield. et al.
(2006) and is also known as Princeton Global Forcing (PGF) datasets. The GMFD was
produced by the combination of the National Centers for Environmental Prediction—
National Center for Atmospheric Research (NCEP-NCAR) reanalysis, the World
Meteorological Organization (WMO) Solid Precipitation Measurement Intercomparison,
Global Precipitation Climatology Project (GPCP) daily product, Climate Research Unit
(CRU TS3.0) and Tropical Rainfall Measuring Mission (TRMM) and evaluated against the
Global Soil Wetness Project (GSWP-2). The dataset has been updated from 1948-2010 to
1948-2016 at a horizontal resolution of both 0.5° X 0.5° and 0.25° X 0.25° covering the
globe between longitude 180 °W to 180 °E and latitude 90 °N to 90 °S, and available at 3-
hourly, daily and monthly time steps. In this study, version 3 of the GMFD datasets is used.
Precipitation, temperature (Mean, Maximum and Minimum), wind speed, downward
shortwave at the surface and Specific humidity.

Historical precipitation data was obtained from the Ghana Meteorological Agency and
compared against the precipitation records of the GMFD. Precipitation is highly variable in
West Africa therefore it is essential to assess the performance of any gridded spatial datasets
against in-situ data. The description of the in-situ data used in this study is shown in
Appendix 3. The new agro-climatology zones presented in Bessah et al. (2022) was used
to classify the in-situ data during the evaluation of the GMFD and CRU precipitation data

with GMET precipitation data. Also, the climatic zoning illustrated in Dotse et al. (2023)
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was used throughout this study. The climatic zones are Guinea Coast (5 — 8 °N), Savanna
(8 — 12 °N) and Sahel (12 — 16 °N).

3.2.2.2 Climate change data

The Sixth Model Intercomparison Phase (CMIP6) uses a scenario which integrates the
Shared Socioeconomic Pathway (SSP) with Representative Concentration Pathway (RCP)
(Meinshausen et al., 2019). The RCPs have been expanded to seven scenarios with forcings
1.9,3.4and 7.0 W m—2 added to the already existing forcings (8.5, 6.0, 4.5 and 2.6 W m—2).
The various SSPs are SSP1 referring to sustainability (taking the green road), SSP2 is
middle of the road, SSP3 is regional rivalry (a rocky road), SSP4 referes to inequality (a
road divided) and SSP5 is fossil-fuelled development (taking the highway) (Grose et al.,
2020). Simulated climate change scenario outputs from the NASA Earth Exchange (NEX)
Global Daily Downscaled Projections (GDDP) (Thrasher et al., 2022) were downloaded
for the study area to study the future occurrence of drought. The future climate years were
from 2060 to 2100. The CMIP6 datasets were also downloaded and used for comparison
between the NEX-GDDP datasets. The NEX-GDDP datasets are statistically downscaled
and bias-corrected CMIP6 datasets using GMFD which is spatially aggregated to the
horizontal resolution of the GMFD at 0.25° X 0.25°. The historical, SSP1-2.6, 2-4.5 and 5-
8.5 were obtained to conduct this study. A total of 15 global CMIP6 and their NEX-GDDP
counterparts were downloaded from Earth System Grid Federation (ESGF) and NASA
Earth Exchange (NEX)  websites (https://www.nccs.nasa.gov/services/data-
collections/land-based-products/nex-gddp-cmip6). Only the historical scenario of the
CMIP6 model outputs were downloaded on daily and monthly time steps. Table 3.4 shows

the individual models used in this study.
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Table 3.4: Description of CMIP6 GCM models used for the study

Model Institution Country Lanc_j Short name Reference
resolution
ACCESS- Commonwealth  Scientific  and ACCESS-CM2
CM2 Industrial Research Organisation  Austrialia 250 km  or
(CSIRO) ACCESS_CM2
Commonwealth  Scientific  and
é\éll\allESS- Industrial Research Organisation Austrialia 250 km QS“CA:ESS
(CSIRO)
BCC- . . Wu et al.
CSM2-MR Beijing Climate Center China 100 km BCC (2019)
Canadian Centre for Climate
Modelling and Analysis, CanESM5/ Swart et
CanESM5 Environment and Climate Change Canada 500 km CanESM al. (2019)
Canada, Victoria
GISS-E2-1-  Goddard Institute for Space Studies SLtJar;Lt:gf 250km  GISS Kelley et
G (GISS), New York, NY, USA - al. (2020)
America
HADGEM3- Met Office Hadley Centre, Exeter, United HADGEM3- Williams
GC31-LL Devon, UK Kingdom 250 km LL { etal.
' HadGEM_LL (2018)
Japan Agency for Marine-Earth
Science and Technology
(JAMSTEC), Kanagawa, Japan,
Atmosphere and Ocean Research
Institute (AORI), The University of Hajima et
MIROCS Tokyo, Chiba, Japan, National Japan 500km  MIROC6 al. (2020)
Institute for Environmental Studies
(NIES), Ibaraki, Japan, and RIKEN
Center for Computational Science,
Hyogo, Japan (MIROC)
Japan Agency for Marine-Earth
Science and Technology
(JAMSTEC), Kanagawa, Japan,
Atmosphere and Ocean Research
MIROC- Institute (AORI), The University of Japan 500 km MIROC-ES2L/ Hajima et
ES2L Tokyo, Chiba, Japan, National P MIROC_ES2L  al. (2020)

Institute for Environmental Studies
(NIES), Ibaraki, Japan, and RIKEN
Center for Computational Science,
Hyogo, Japan (MIROC)

41


https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.1029/2019MS002025
https://doi.org/10.1029/2019MS002025
https://doi.org/10.1002/2017MS001115
https://doi.org/10.1002/2017MS001115
https://doi.org/10.1002/2017MS001115
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/gmd-13-2197-2020

Land

Model Institution Country - Short name Reference
resolution
Fondazione Centro Euro-
CMCC- - . . . CMCC-ESM2/  Lovato et
ESM2 Mediterraneo  sui  Cambiamenti Italy 100 km CMCC al. (2022)

Climatici (CMCC), Lecce, Italy

Max Planck Institute for

m:\F:I-ESMl- Meteorology (MPI-M), Hamburg, Germany  100km  MPI-HR
Germany
Max  Planck Institute  for
EAFI:I'ESML Meteorology (MPI-M), Hamburg, Germany  250km  MPI-LR
Germany
MRI-ESM2-  Meteorological Research Institute Japan 100 km MRI ;ualilmoto
0 (MRI), Tsukuba, Ibaraki, Japan (2019)
Nanjing University of Information Cao et al
NESM3 Science and Technology (NUIST), China 250 km  NESM3 '
- - (2018)
Nanjing, China
NorESM2- NorESM Climate modeling Seland et
LM Consortium, Oslo, Norway Norway 250km  NorESM2-LM (2020)
NorESM2- NorESM Climate modeling Seland et
MM Consortium, Oslo, Norway Norway 100km,  NorESM2-MM al. (2020)

Short name refers to the names the models are renamed in this study

Source: Center for Earth System Research and Sustainability, University of Hamburg

42


https://doi.org/10.1029/2021MS002814
https://doi.org/10.1029/2021MS002814
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https://doi.org/10.2151/jmsj.2019-051
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https://doi.org/10.5194/gmd-11-2975-2018
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5194/gmd-13-6165-2020

3.2.2.3 Hydrological data

Observed hydrological gauge station records for the VRB were obtained from the Global
Runoff Database Centre (GRDC) (https://portal.grdc.bafg.de). The GRDC is a global
archived centre which aims to provide hydrological gauge streamflow watersheds across
the World. Most of the streamflow records on the GRDC website were obtained from the
Hydrological Service Department (HSD) of Ghana. These datasets were used for the
calibration and validation of the SWATplus model and also for comparing the outputs.
There were a lot of gaps in the datasets and therefore stations like Nawuni, Saboba and
Sabari were considered as most suitable on a monthly scale for calibration. The Bamboi
gauge records were eventually used to aid in the calibration of the Black Volta despite the
amount of missing data in the records. The hydrological gauge stations used in this station

are described in Table 3.5.
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Table 3.5: Hydrological Gauge Stations Used in the Volta River Basin

Gauge Station Country Latitude Longitude
Bamboi Ghana 8.15 -2.03
Nawuni Ghana 9.7 -1.08
Sabari Ghana 9.28 -0.23
Saboba Togo 9.76 -0.32

Source: Taylor et al. (2006)
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3.3  Model Description

The Soil and Water Assessment Tool PLUS (SWATplus or SWAT+) is developed and
maintained by the United States Department of Agriculture (USDA) Agricultural Research
Service (USDA-ARS) and Texas A&M AgriLife Research which is part of Texas A&M
University. SWATplus was developed based on the limitations and challenges faced by the
earlier model SWAT after its usage for more than 20 years and throughout many parts of
the globe. The principles used in the development of the SWAT model are not changed in
the SWAT+ but the input data structure and gives users more flexibility to represent
interactions spatially and processes spatially within the catchment or watershed. SWAT+
can model from small watershed to river basin scale by simulating the quantity and quality
of surface and groundwater and forecast the impact of land use and land cover, management
practices, and climate change on the environment. SWATDplus has been developed based on
the improvement and challenges faced by the earlier model SWAT. The SWAT model
divides the watershed into sub-basins (which is the first level of subdivision). The sub-
basins are subdivided into Hydrological Response Units (HRU) based on the land uses, soil
and slope distribution in the watershed. The HRU signifies the basic unit of the watershed
which is homogenous. The hydrology of the SWAT model is based on the water balance
equation. The hydrology of the watershed model is divided into the land phase of the
hydrology cycle and the water or routing of the hydrologic cycle. The land phase regulates
the sediment, amount of water, pesticides and nutrient loadings of the main channel in each
sub-basin. The routing phase comprises the movement of water, sediments, nutrients and
pesticides through the main channel (Neitsch et al., 2011). Contrary to the SWAT model,
the subbasins in the SWATDplus are first divided into water areas and Landscape Units

(LSUs) which aim to separate upland and floodplain processes and then after subdivided
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into HRUs (Bieger et al., 2017). The new model improves model processes and interactions
and also their spatial representation in the basin than observed in the old SWAT model
(Bieger et al., 2017). Modelling of water HRUs has always been problematic in the SWAT
model as a result of parametrisation and therefore, this issue has been resolved in the new
model HRUs (Bieger et al., 2017). Additional spatial options that have been incorporated
into the new model are water rights, outlets, animal herds, canals and pumps. Also, decision
tables have been included in the SWAT+ which simulate the management, reservoir
operations and irrigation (Arnold et al., 2018). The SWAT+ is more user-friendly and
flexible in the spatial definition of processes such as reservoir or pond processing, HRU
definition and their interactions. The model equations still remain the same

The basic model equations are described in equations 1 — 4.

The water balance equation is defined below:
SWy = SW, + 2%:1(Rday - qurf —E, — M/seep - ng) (3.1)

where SW; is the soil water content during the beginning or the final stage (mmH,0), SW, is
the soil water content during the beginning or the initial stage (mmH,0), Rg4q, is the
precipitation amount recorded on a day i (MmH,0), Qs refers to the surface runoff
amount recorded on a particular day i (mmH,0), t refers to the period (or time) (days), E, is
the recorded evaporation amount on a day i (mmH,0)), Ws,.,, refers to the quantity of water
entering the vadose region from the soil profile on day i (mmH,0), Q4 the return flow

amount on day i (mmH,O0)

(Rday - Ia)z

qurf = (Rday — Ia n S) (32)

where Qg is accumulated runoff (rainfall excess) in mmH,0, R4, is the rainfall depth
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for the day in mmH,O0, I, is the initial abstraction which includes surface storage ;

interception and infiltration before runoff

S is the retention parameter ( mmH,0) which is defined as:

1000 ) (3.9

Where CN is the curve number for the day. la is commonly given as 0.2S, hence the

equation 4 is expressed as:

0 = (Raay — 0.25)?
ST (Ryqy + 0.8S)

(3.4)

In this equation, runoff is generated when R4, > I,. The SCS curve number is a function

of the permeability of the soil, land use and antecedent soil condition (Arnold et al., 2011).

3.4 Methods
3.4.1 Methods for Achieving Objective 1

3.4.1.1 Evaluation of GMFD with Ghana meteorological datasets (GMET)

The precipitation records of the GMFD and the GMET were compared with each other. A
number of performance evaluation criteria (PEC) were used to assess the relation of the
GMFD and GMET datasets. The results were also compared with CRU datasets which has
been applied in the Basin by Taylor et al. (2006) and Oguntunde et al. (2006). The PECs
used are the coefficient of determination (R?), correlation (R), Kling-Gupta efficiency
(KGE), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), Root mean square error
(RMSE) and ratio of RMSE to the standard deviation (RSR).

The PECs were also used during the SWATplus model’s calibration and validation.
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[Z?:l(Qmob,i - Q_mob)( Qms,i - Qms)]z

RE = ’ s (3.5)
2ie1(@mep; — Qmyp )? Xin,(Qmg;—Qm, )?
Tl= (Qmsi - Qmobi )2
NSE=1-S-1t—= ' 36
T (QMMop; — Qg )2 (3.6)
PBIAS = 100 x Zi=1(Qnmob —Qms ), o)
i=1 QMop,;
SD 2 (_Zm 2
e _J o+ (1) + (e ) (38
. i1 (Q@mop,; — Qop) X (@M — Q)
\/[ ?=1(Qm°b'i - QmOD)Z X Z?:l(Qms,i - Qms)z] (3.9)
RMSE = j 1 (Qm s = Qmon) (3.10)
N
R = RMSE 211
~ SD,, (3.11)

Where:

. . 3 . :
Qm,,, is the observed streamflow or rainfall (™°/ s), Qmyg is the simulated streamflow or

. 3 . . . — .
rainfall amount (" /), i refers to the time step of the observed and simulated, Qm,, is the
mean of the observed rainfall or streamflow, Qm , is the mean of the simulated rainfall or

streamflow, n or N is the total number of time steps in the data records of the observed and
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simulated rainfall or streamflow. SDq is the standard deviation of the observed and SD}, is
the standard deviation of the simulated.

The R? ranges from 0 to 1 with the best-fitted model having a value approximately 1 and
zero being the worse fitted model. r ranges from -1 to 1. The best r value is one that
approaches 1 when comparing models with observed data. NSE ranges from -co to 1 with
1 indicating the best-fitted models. The PBIAS ranges from -100 to 100 with the best-fitted
model having a value of zero indicating no difference between the observed and simulated

datasets.

3.4.1.2 Computation of standardised precipitation evapotranspiration index (SPEI)

SPEI was introduced by Vicente-Serrano et al. (2010) to analyse drought characteristics.
The SPEI was introduced to overcome the limitation of the Standardised Precipitation Index
(SPI) by accounting for water balance. In this study, a three parameter log-logistic
distribution was applied to the GMFD datasets. The SPEI package (Begueria et al., 2023)
was employed in R software to compute SPEI indices spatially. The unbiased probability
weighted moment (ub-pwm) which was recommended by Begueria et al. (2014) was used
as the method for fitting the log-logistics distribution to the climatic water balance (P-PET)
outputs. They report that the ub-pwm is able to resolve the problem of no solution and
computed SPEI indices computed at different time scales are consistent and with equal
variance. The rectangular kernel was used in the computation of the SPEI indices. The log-
logistic probability distribution is applied by normalising the water balance. The SPEI was
compute at 12- and 24-month scales. The climatic water balance (WB) is computed by the

equation below:
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k-1
wBk = Z P, ,— PET,_, (3.12)

=0

The calculated WB values are aggregated at different timescales below
Where P is precipitation, PET is the evapotranspiration, k is the month or timescale of
aggregation.

The probability distribution function is given as:

)ﬁl (3.13)

F(x) = [1+(x—y

where a, 3 and y refer to the scale, shape and location parameters for y > x > oo (Begueria
et al., 2014) and are estimated from WB.
After computing the F(x), the Abramowitz and Stegun (1965) classical approximation is

used to compute the SPEI indices.

Co + C,W + C,W?2 (3.14)

SPEI =W —
1+ d W+ d,W2 + dsW3

W = /=2In(p) for p <0.5 where p > 0.5 then p is replaced by 1-p and the (3.15)

sign reversed

p defines the probability of exceedance determined W B; value and given as p = 1 - F(x)

(Vicente-Serrano et al., 2012).
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where C, = 2.515517, +C,= 0.802853, C, = 0.010328, d,= 1.432788, d, = 0.189269, and

d; =0.001308 (Vicente-Seranno et al., 2012).

The SPEI indices were calculated for the GMFD, CMIP6 and NEX-GDDP datasets from
1960 to 2014 during the historical assessment period. For the future estimation of drought
indices, the SPEI indices were computed for the NEX-GDDP datasets from 1960 to 2100

using a climatic reference period from 1971 to 2000 on a monthly time step.

3.4.1.3 Computation of Principal Component Analysis (PCA) and wavelet analysis

The Principal component analysis is a dimension-reducing technique that tries to uncover
hidden structures in the datasets by summarising them into uncorrelated orthogonal and
accounting for the majority of the variance. PCA has been applied by Ujeneza and Abiodun
(2015), Oguntunde et al. (2020) and Mohammed et al. (2022) to SPEI data to understand
the spatiotemporal characteristics of drought. In this study, the rotated PCA was employed
to understand the spatiotemporal characteristics of drought in the VRB using the computed
SPEI indices. The Hargreaves method (Hargreaves and Samani, 1985) of estimating
evapotranspiration (PET) was used. Following the approaches of Diasso and Abiodun
(2017) and Ujeneza and Abiodun (2015), the first four PCA factors were retained during
the computation of the PCA. The first four PCA factors were the dominant factors which
had the highest explained variance in the observed SPEI indices of the observed data. The
study also applied wavelet analysis to understand the possible atmospheric cycles that
control drought and wet events in the VRB. The PCA scores obtained for each factor were

detrended and used as input for the wavelet analysis. The Morlet wavelet was used during
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the computation of the wavelet power spectrum (Torrence and Compo, 1998; Oguntunde et

al., 2017).

3.4.1.4 Mann-Kendall trend test and Thiel’s Sens slope estimator

The Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) is a non-parametric test that is
used to detect monotonic trends in a dataset. This test has been widely used in
environmental science as it does not require the data series to be normally distributed and
can also accommodate missing values.

The Mann-Kendall test is computed by the following equations below:

N N
S, = Z Z sgn(X; — X;) (3.16)
i=14=j=i+1

Where X; and X, are sequential data values of length N in years such that k is greater than

i and where sgn function is defined as:

1if(Xj—Xk) >0
sgn(Xj _Xi) =< 0if (X]- - X)) =0 (3.17)
-1 if(Xj - X)) <0

The Mann-Kendall statistic's variance is determined using the following formulas under the
null hypotheses of no trend and independence of the series:

N(N —1)(2N +5) = X7 _; t,(t, — 1)(2t, +5)
18

Var(Sy) = (3.18)

g represents the number of tied groups and Where tp refers to the number of data values in
the Pth group. If the data series contains tied values, only then is the summing term in the

numerator applied. The standard normal test statistic Z; is calculated using the statistic Sy,
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which assumes a normal distribution for samples with n > 10 and sample sizes greater than

10.

S —1
lf"—,for S.>0
VAR(S)
Z, = { 0, for S,=0 (3.19)
S +1
l—, <0
JVARGSD)

Compute the probability associated with this normalised test statistic. The probability
density function for a normal distribution with a mean of 0 and a standard deviation of 1 is

given by the following equation:

72

1z
f(Zs)=Ee 2 (3.20)

If Z, is negative and the computed probability exceeds the level of significance, the trend
is considered to be decreasing. If the Z; is positive and the computed probability is above
the level of significance, the trend is said to be increasing. There is no trend if the estimated
probability is lower than the level of significance.

3.4.1.5 Modified Mann Kendall Test

Autocorrelation or serial correlation in a data series affects the power of the Mann-Kendall
test and may increase the likelihood of type 1 error (Yue et al. 2004). The method of
removing serial correlation proposed by Yue and Wang (2004) was applied to the Mann-

Kendall test by using the correction approach of Yue and Wang (2004).

N
Var*(Smi) = Var(Spe) X (3.21)

N*
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Where N is the actual sample size of data (ASS), N is the effective or equivalent sample
size (ESS) and Nl is the correction factor for correcting the serial dependence. Additional

equations explaining how the effective sample size was obtained is presented in Yue and
Wang (2004).

The Theil-Sen’s slope estimator has been used to establish the true slope magnitude of the
monotonic trend detected by the MK test statistics wherever it is present in the time series.
It is a robust method for fitting a line to a time series data by utilising the median of the
slopes of all through pairs of two-dimensional sample points. An unbiased median slope
estimator approach is used to estimate the magnitude of the trend which was proposed by
Sen (1968) and further modified by Hirsch et al. (1982). The modified Mann-Kendall and
Sen’s slope estimates were computed for each spatial grid of the GMFD data. These
statistics were also computed for the NEX-GDDP datasets for both the historical and future
periods. Future periods were subdivided into Near term (NF) which ranges from the year
2021 to 2050, Mid term (MF) from 2051 to 2080, and Far term (FF) from 2081 to 2100.
These time slices of the future were inspired by a simple division based on a 20-year
climatology. In this study, a 30-year climatology was utilised in defining the NF and MF
while 20 years for FF due to the availability of records. The baseline period (Historical
reference) selected was between 1971 to 2000. This was influenced by the availability of

GMFD datasets.

3.4.1.6 Runs theory
The runs theory proposed by Yevjevich (1967) was applied to the SPEI drought indices to

extract the drought characteristics of both the past and the future. This was used to estimate
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the Severity, Intensity, Duration and Return period of drought using the SPEI indices as
input. An R software package called drought features found on GitHub (adrHuerta/
drought_features) and developed by Adrian Huerta was utilised. This package was
developed based on the definition of drought characteristics in Le et al. (2019) and
Ogunrinde et al. (2020).

The drought characteristics are defined below:

The focus of this study was to study the moderate to extreme drought event in the VRB
which is defined by the SPEI index below -1.

Duration (Du) of an event refers to the duration of a drought event is known as the
consecutive months where SPEI indices were below -1.

Cumulative Intensity (CI) refers to the cumulative SPEI indices during the drought event.
Severity (S): It is the cumulative drought intensities during the drought event.
Interarrival time or Return period (T) of droughts is the interval between the start of two
successive drought events, regardless of their length, within the same drought where the
SPEI is below -1. It covers both the current drought and subsequent non-drought periods.
Intensity (I) of drought refers to the magnitude of drought of a particular month that was

below -1.

3.4.2 Methods for Achieving Objective 2

This presents the methods used to achieve objective 2 which aims to calibrate and validate

a SWATDplus model for the VRB.
3.4.2.1 SWATplus model set-up, calibration and validation
The VRB was subdivided into 26 subbasins, 304 landscape units (LSU), 17909 HRUs and

238 channels. The watershed was delineated with a channel threshold of 141851 sg. km
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channel threshold. A shapefile of five reservoirs was created and added to the SWATplus
model during the watershed delineation. The DEM inversion method was applied to create
the landscape unit in the VRB. Five slope classes were utilised to define slope based on the
Canadian Soil Information Service. Slopes of 0 - 4 % represent flat land, 4 — 9 % presents
moderate slope, 9 — 15 % represent gentle slope, 15 — 30 % represent steep slope and > 30
% refer to extremely to excessively steep slopes. During the HRU definition, no area filter
method was used. From the land cover map utilised in the VRB, 51 % of the land use/cover
was associated to agricultural use (CRIR (0.39 %), AGRR (31.84 %), AGRL (7.3 %),
CRGR (4.55 %) and CRWO (6.91 %)), 19.1 % was forested land (FRST (0.08 %), FRSD
(18.73 %) and FRSE (0.26%)), sparsely vegetated (BSVG) was 0.03 %, Barren or bareland
(BARR) 0.02%, and Urban (URBN) was 0.06 %. In the SWATDplus editor, the Variable
storage flow routing method and the Hargreaves PET method were used after the HRU
definition. Also reservoir information was included into the model setup. The Kpong dam
was the only run of river dam in the VRB. Reservoir information incorporated in the
SWATDplus editior are listed in the Table 3.6. The principal spillway volume and area were
estimated from reservoir volume and head information obtained from the Volta River
Authority (VRA) using appropriate regression equations. The climatic parameters (i.e.
temperature, precipitation, wind speed, humidity, and solar radiation) from the GMFD were
included into the model. After the above, the SWATplus model was simulated before
calibration was performed.

The calibration of the SWATplus model was conducted in the SWAT+ Toolbox software.
Calibration was performed on a monthly time step from 1985 to 1995 with the first four
years of simulation as warmup years. Validation of the model performed with streamflow

records from 1996 to 2002. The Nash-Sutcliffe efficiency was used as the target objective
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function during the calibration of the model. The PBIAS and R? are the other performance
evaluation criteria that were used to evaluate the goodness of fit of the model during
calibration and validation. A number of 30 parameters which were related to streamflow,
groundwater, management and hydrological response unit were considered. The selection
of the parameters was influenced by Obuobie (2008), Aziz (2017) and the SWATplus
manual. The sensitivity analysis conducted in this study is presented in the next section.

After calibration and validation, best-fitted parameters were adapted into the model and
simulated to obtain streamflow for the period between 1970 and 2005. Also, climatic
parameters of the ACCESS-CM2 model were used to simulate streamflow from 1970 to

2100. The streamflow is then used to compute the Standardised Streamflow Index.
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Table 3.6: Characteristics of reservoirs found in the Voltain the SWATplus

MORES IYRES RES ESA RES EVOL RES PSA RES PVOL RES VOL
Reservoir Source
(month) (year) (ha) (*10E4 m3) (ha) (*10E4 m3) (m3)

Bagre February 1995 43900 336300 25200 168900 168900 Obuobie (2008)

Generated in SWATplus except MORES
and IYRES which were obtained from
Kompienga January 1984 19038.55 190385.49 16555.26 165552.6 165552.6 Sandwidi (2007)

Bui May 2013 44000 1257000 35000 772000 694800 Aziz (2017)

obtained from Volta River Authority
Akosombo  August 1965 848200 148000000 50917991 785957124 785957124 (VRA)
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Generated in SWATplus except MORES
and I'YRES which were obtained from
Kpong January 1981 3620.026 36200.26 3147.85 31478 49 165552.6 VRA

MORES = Month the reservoir became operational, I'YRES = Year of the simulation the reservoir became operational, RES_ESA = Reservoir
surface area when the reservoir is filled to the emergency spillway, RES_EVOL = Volume of water needed to fill the reservoir to the emergency
spillway, RES_PSA = Reservoir surface area when the reservoir is filled to the principal spillway, RES_PVOL = Volume of water needed to fill
the reservoir to the principal spillway, and RES_VOL = Initial reservoir volume



3.4.2.2 Sensitivity analysis

Sensitivity analysis is used often in environmental science to identify model parameters or
parameter sets which have a greater influence on the model output before calibration. This
analysis helps to understand which model parameters have significant contributions to the
model output (Zhang et al., 2015b) and thereby aids in the selection of a considerably small
number of parameters as compared with the utilization of all model parameters during
calibration. Sensitivity analysis has been widely used in fields, such as risk assessment,
economics, engineering and hydrology, and it has become instrumental in the systems
pharmacology arena to guide the understanding and development of a complex model.
SWAT-CUP has been widely used by most users to perform SWAT model sensitivity
analysis, calibration and evaluation. Two methods of sensitivity analysis were performed
namely; one-at-a-time sensitivity analysis and global sensitivity. The first sensitivity test
was performed before model calibration by varying a particular parameter over a number
of simulations. The latter sensitivity analysis was performed after the calibration runs had
been completed to measure the sensitive parameters as they vary and interact with each
other. In contrast, the SWAT+ Toolbox recommend that sensitivity analysis should be
performed before model calibration. In this study, sensitivity analyses were performed
before and after calibration was carried out. This was done because the authors recognized
that the sensitivity analysis might have no direct impact on model calibration because it
could be an independent process like in the SWAT-CUP where it is performed after
calibration or before calibration using algorithms like SOBOL, Morris OAT and Fourier
Amplitude. Due to the size and computing facility available (Laptop), the recommended
number of seeds and sample sizes required to perform the sensitivity analysis in SWAT+

Toolbox was computationally expensive for the whole Volta River Basin. Therefore, this
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influenced the decision to use Morris’s One-At-Time (OAT) elementary effects screening
method (MOAT) approach (Morris, 1991) in R-SWAT to perform global sensitivity
analysis after the model had been calibrated. The advantage of the R-SWAT method relies
on its ability to enable parallel processing which reduces the computational time
significantly. The Morris method uses a one-at-a-time sampling approach where a single
parameter is modified at a particular step. The MOAT method was applied with two
different repetition times (r). In the first analysis an r value was set at 4 with a time jump at
3 and level set at 5 to define the intervals in the parameter range which was applied to 35
parameters found in the SWATplus model. The MOAT approach was obtained from the
sensitivity package (looss et al., 2022) in R software. The repetition times for the second
analysis was increased to 20 based on the findings of Gan et al. (2014). The determination
of sampling combinations which define the number of simulations is based on the
expression below:

N=rx((p+1 (3.22)

Where N is the total number of simulations to be performed, r is the repetition times and p
is the number of parameters under evaluation. The MOAT approach are illustrated in
equation 3.23 to 3.27 as found in Gan et al. (2014).
For n-dimension s-level orthogonal point space, where each a; may take on values from 0,
{1/(s-1), 2/(s-1),...,1}. The elementary effect of the ith input is defined as m;.

m; = (f(ay,...,a;_1,a; + A ajyq,---,a,) — f(a))/A (3.23)
A is determined by the 1/(s-1). In cases where s is an even number, it is normally = p/[2(p-

1)]. The final Morris measures for the ith input when the process is repeated r times.
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T m;(j) (3.24)
Hi = z "
j=1
And
, _ , (3.25)
B Z (m;(j) — )
ag; =
. T
j=1
Where u; and o; define the mean and standard deviation of m; respectively.
(3.26)

r .
= Z Imi ()
' r
j=1

For the Morris OAT (MOAT) method, the higher the y; (or ;) value, the more sensitive is
input parameter a;. On the other hand, the higher the standard deviation (og;) the more
interaction input parameter a; has with other inputs.

The multi-regression approach employed in SWAT-CUP was also used to detect the
parameters which were sensitive. The regression equation is given below.

m (3.27)

g is the average value of the objective function which is the NSE, b; is the parameter and
B; is the coefficient of the parameter. The Student t-test and the p-value were used to
evaluate the sensitivity of a parameter. The more sensitive parameters have a p-value less
than 0.05 and a comparably larger Student t-test value (Abbaspour et al., 2007).

Finally, the SOBOL algorithm was used to assess the sensitivity of some parameters using
the Nawuni streamflow station by creating a small watershed with the SWATplus model as

its catchment alone. The creation of the subcatchment of Nawuni significantly reduced the
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size and files that would be analysed when using the entire Volta River Basin for the
SOBOL analysis. A seed of 50 which corresponds to 2400 sample size was set in the
SWAT+ Toolbox software to run this sensitivity analysis. The parameters considered were
SCS condition Il curve number (cn2), Pothole evaporation coefficient (cn3_swf),
Manning's 'n" value for overland flow (ovn), Average slope steepness in HRU in m/m
(slope), Average slope length for erosion in m (slope_len), Lateral flow travel time (days)
(lat_ttime), Slope length for lateral subsurface flow (lat_len), Lateral soil flow coefficient
(latg_co), Maximum canopy storage (canmx), Soil evaporation compensation factor (esco),
Plant water uptake compensation factor (epco), Average distance to stream (dis_stream),
Soil percolation coefficient (perco), PET coefficient (petco), Depth from soil surface to
bottom of layer in mm (z), Moist bulk density (bd), Available water capacity of the soil
layer (awc), Saturated hydraulic conductivity in mm/hr (k), Clay content % soil weight
(clay), Silt content in % soil weight (silt), Moist soil albedo (alb), Moist soil albedo (alb),
Surface runoff lag coefficient (surlag), Channel depth (chd), Channel slope (chs), Channel
length (chl), Channel Manning's n (chn), Channel bottom conductivity (chk), Channel clay
percent of bank and bed (ch_clay), channel dry bulk density (ch_bd), Channel side slope
(chss), Baseflow alpha factor (alpha), maximum daily baseflow when all channels are
contributing (bf_max), Minimum aquifer storage to allow return flow in metres (flo_min)
and Groundwater "revap™ coefficient (revap_co), Threshold depth of water in the shallow

aquifer for “revap” or percolation to the deep aquifer to occur (revap _min).
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3.4.3 Methods for Achieving Objective 3

Computation of standardised streamflow index (SSFI) and cross correlation analysis
The standardised streamflow index was first introduced by Modarres (2007) which aimed
to produce an index based assessment of hydrological drought. The structure and
computation of the SSFI was further expanded by Telesca et al. (2012). They investigated
the appropriate distribution suitable to compute the SSFI and recommended log-logistic
distribution. The SSFI follows the computation of the Standardised Precipitation Index
(SPI) except that the streamflow records replace the precipitation input in the SPI. The R
software package SPEI was applied in computing the SSFI. In this study, the log-logistic
distribution was applied. The reference climatic reference period was 1971 to 2000. The
SSFI was computed for the simulated historical period from 1960 to 2005 and 1960 to 2100
for the ACCESS-CM2 model.

The Pearson cross-correlation was performed on the SPEI drought indices and the SSFI
drought indices to understand the propagation of drought from meteorological to

hydrological drought.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSION

4.1 Evaluation of Climate Data with Observation

4.1.1 Evaluation of spatial observation data

Precipitation is arguably the key climatic variable in West Africa that controls economic
activities such as Agriculture. Unfortunately, the weather stations in West Africa remain
inadequate and poorly distributed. Aside from the spatial distribution, the temporal records
of some stations have a considerable percentage of missing data which presents a major
challenge when utilising these data records in research studies. Therefore, Precipitation
records of GMET, CRU and GMFD were evaluated using some statistical performance
criteria. Table 4.1 presents the results of the statistical evaluation computed between the
monthly GMET stations’ precipitation records and the precipitation records of the two
gridded datasets (CRU and GMFD) extracted for each GMET stations. Generally, CRU
slightly performs better than GMFD in most of the criteria considered across stations. The
two spatial climate datasets performed better in Bole, Wa, Tamale and Yendi, located in the
Northern part of Ghana. These stations had the least PBIAS between -4.3 % and 1.3 %,
NSE value greater than 0.5, KGE greater than 0.75 and RSR less than 0.7. The two spatial
climate datasets performed satisfactorily among the coastal stations (Accra, Takoradi,
Axim, Ada Foah and Tema). The computed NSE values for both CRU and GMFD at Accra,
Takoradi, Axim and Tema (CRU only) were greater than or equal to 0.5 while that of Ada
Foah and Tema (GMFD) were lower than the 0.5 (NSE threshold). KGE values of most of

the coastal stations were less than 0.5 except for Accra and Takoradi which had values
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greater than 0.5 indicating a good skill of the CRU and GMFD. The percentage bias within
the Coastal Climatic Zone (CCZ) ranges between -29.9 and 56.2 % for GMFD and -29.3
and 64.2 % for CRU. The GMFD's highest overestimation of rainfall occurred at Tema
(56.2 %) but it was still closer to CRU (53.4 %), and the highest underestimation of rainfall
at Axim (-29.9 %) which was also closer to the CRU value of -29.3 %. The CRU's highest
overestimation of rainfall occurred at Ada Foah (64.2 %) which was bigger than the 39 %
obtained with GMFD at the same location, and the highest underestimation of rainfall at
Axim (-29.3 %). Extracted values of stations (i.e. Wenchi, Sunyani, Kumasi, Akim Oda,
Koforidua, Akuse, Akatsi and Ho) located in the Forest Climatic Zone (FCZ) of the country
showed good skill but their statistics were lower when compared with the stations in the
Savanna Climatic Zone (SCZ). In the FCZ, Akatsi, Akim Oda and Akuse which were closer
to the CCZ had NSE less than 0.5 for both CRU and GMFD except for Akuse (CRU only).
On the contrary, their KGE values were greater than or equal to 0.6 demonstrating a good
agreement with the GMET records except for Akatsi. The KGE of the rest of the stations in
the FCZ was greater than or equal to 0.67. Both GMFD and CRU NSE values at Koforidua,
Kumasi, Sunyani and Wenchi satisfied the 0.5 thresholds. Only NSE values computed with
GMFD were lesser than the threshold at Ho (0.49). Majority of the computed percentage
bias in the FCZ ranged from -14.5 to 2.9 % for CRU and -15.9 to 1.2 % for GMFD. The
Akatsi was the only station with higher PBIAS for both CRU (41.3 %) and GMFD (45.8
%). According to Knoben et al. (2019), KGE values do not have an appropriate benchmark
but KGE = -0.41 (or 1- \2) is an acceptable benchmark rather than using the concept of
KGE = 0 (similar to NSE = 0) because they are inherently different. They indicate that any
KGE value within the range of -0.41 < KGE < 1 is acceptable. From the results of Table

4.1, the KGE values computed between the GMET and both CRU and GMFD for all
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stations fall within this acceptable range. Even though CRU performed slightly better than
GMFD at most of the stations considering all the performance evaluation criteria (PEC)
used, GMFD was slightly better than CRU in several stations when certain PECs were
considered. For example, comparing RMSE obtained for CRU and GMFD, Ada Foah and
Axim were the only stations where GMFD was better than CRU. Also, at Axim, the RSR
value of GMFD (0.7) was slightly better than CRU (0.71). The NSE values of GMFD at
Ada Foah (0.43) and Axim (0.51) were greater than that of CRU (0.33 for Ada Foah and
0.5 for Axim). PBIAS of GMFD at Ada Foah, Akuse, Kete Krachi, Kumasi, Takoradi and
Wa were also slightly better than that of CRU. KGE of GMFD at Ada Foah, Axim, Kete
Krachi, Kumasi, Takoradi and Wenchi were also slightly better than that of CRU at the
same stations. These results were similar to Hassan et al. (2020) who evaluated the
performance of Climate Forecast Station Reanalysis (CFSR), CRU and GMFD against in-
situ data in the Niger Delta using RMSE, R? and Mean Bias Error (MBE) They observed
that GMFD and CRU performed better than CFSR. They concluded CRU generally
performed slightly better than GMFD. The differences between GMFD and CRU were not
huge, therefore GMFD and CRU are good spatial substitutes for GMET stations. GMFD
was used in this study because it had been used to downscaled and bias correct the NEX-

GDDP CMIP6 datasets.
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Table 4.1: Statistical result of performance evaluation criteria used to assess the ability of

CRU and GMFD to represent GMET station data

GMFD CRU

Station/ PEC RMSE PBIAS% RSR NSE R? KGE |RMSE PBIAS% RSR NSE R? KGE
Accra 48.4 37 068 053 063 0.55 |42.02 34.8 059 065 073 0.6

Akim Oda 65.14 -15.9 078 0.4 0.46 0.6 63.84 -11.2 076 042 05 0.67
Akatsi 67.58 45.8 1.04 -0.09 034 037 (6145 41.3 095 0.1 04 045
Ada Foah 62.13 39 075 043 052 047 |67.47 64.2 082 033 06 032
Akuse 53.54 1.2 074 044 048 0.66 |48.43 2.9 067 054 056 0.72
Axim 112,19 -29.9 0.7 051 067 043 |[11437 -293 071 05 0.66 0.41
Bole 57.87 13 0.7 051 059 076 |[51.33 13 062 061 066 0.81
Ho 55.86 -8.8 071 049 053 0.69 |48.88 -5 062 061 062 0.74
Kete Krachi 61.1 -9.2 054 071 072 0.71 |57.33 -10 051 0.74 0.77 0.68
Koforidua 53.53 -15.6 0.7 051 057 0.67 |46.47 -14.5 061 063 067 0.71
Kumasi 47.47 -3.5 056 068 069 0.77 |46.37 -3.9 055 0.7 0.7 075
Sunyani 53.12 -0.8 068 054 057 0.75 |45.72 0.4 058 066 0.66 0.77
Takoradi 56.07 20.8 062 062 068 0.72 |53 243 058 066 0.72 0.7

Tamale 48.29 -2.9 053 072 073 0.84 |37.93 -2.4 042 083 083 0.87
Tema 53.2 56.2 079 037 058 0.38 |47.26 53.4 071 05 0.68 0.43
Wa 42.61 -0.9 051 074 075 0.86 |36.18 -4.3 043 082 082 0.86
Wenchi 49.24 -10.1 0.6 0.64 0.67 077 |[44.01 -8.7 053 071 073 0.75
Yendi 49.61 -4.1 049 076 0.76 0.84 |41.86 -2.8 042 083 083 084

PEC = performance evaluation criteria, RMSE = Root Mean Square Error, RSR = Root Mean Standard Deviation Ratio, R? = coefficient
of determination, NSE = Nash-Sutcliffe efficiency, Kling-Gupta efficiency
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4.2  Evaluation of Spatiotemporal relationship between Observation and Climate
Model Outputs

Annual Precipitation in the Volta River Basin has a North-South gradient where the
Southern part records the highest total annual rainfall amount (1200 mm) and the basin's
northern part records the least rainfall (Figure 4.1). Generally, the model ensemble of the
NEX-GDDP performed slightly better than the CMIP6 model ensemble when compared to
the observed (GMFD). The model of the CMIP6 and the NEX-GDDP were able to
reproduce the rainfall pattern with correlation values of 0.99 and 1 respectively during the
reference period. NEX-GDDP ensemble precipitation records showed a spatial bias of -10
mm to -20 mm throughout the whole basin. In contrast, a positive bias greater than 5 mm
in the central and southern parts of the basin was exhibited by the CMIP6 ensemble.
Similarly, the northern and eastern parts of the basin had a negative bias greater than -20
mm. High evaporative demand was present in the basin's northern part, which gradually
declined southwards in the observation data and the ensembles of both CMIP6 and NEX-
GDDP. Both models underestimated the potential evapotranspiration with the largest
underestimation occurring in the CMIP6. A -10 mm to 1 mm bias was found in the NEX-
GDDP ensemble mean while a bias value between 1 mm to -210 mm in the CMIP6
ensemble mean. Even with these biases, both CMIP6 and NEX-GDDP models have a
positive spatial correlation of 0.96 and 1 respectively. The ability of the models to account
for the climatic water balance followed similar trends where the statistically downscaled
and bias-corrected NEX-GDDP output performed reasonably better than the CMIP6 output
(Figure 4.1). NEX-GDDP ensemble models also outperformed CMIP6 model ensemble
mean when temperature records were assessed (Figure 4.2). The average, maximum and

minimum temperature records of NEX-GDDP had a better spatial pattern with a correlation
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value of 1.0 and the least bias as against the CMIP6 ensemble. Taylor’s diagram
representing the spatial characteristics (normalized spatial standard deviation and pattern
correlation) of individual CMIP6 and NEX-GDDP models is illustrated in Figure 4.3. All
the NEX-GDDP outputs converge near the observation for all variables (precipitation,
average, maximum and minimum temperature). This demonstrated how efficient the bias-
correction technique was in improving the model outputs. In contrast, CMIP6 individual
models deviate from the observed in all variables assessed. Performing a peer-to-peer
assessment, some CMIP6 such as CMCC, MRI, ACCESS-CM2, GISS, NorESM2-LM and
HadGEM-LL models were good at simulating the patterns of precipitation (correlation (r)
ranging from 0.7 to 0.95 and normalised standard deviation (c) between 0.6 and 1.4). In
addition, CMCC, ACCESS-ESM1, ACCESS-CM2, GISS, MPI-LR, MPI-HR, NESM3,
MRI and HadGEM-LL also performed better than their peers in simulating spatial patterns
of maximum temperature (r ranging from 0.8 to 0.95 and o between 0.6 and 1.4) as
compared to the others. Also, CMCC, ACCESS-ESM1, ACCESS-CM2, GISS and
HadGEM-LL were better at simulating average temperature (r ranging from 0.5 to 0.8 and
o between 0.6 and 1.4). ACCESS-ESM1, ACCESS-CM2, MIROC6, CanESM5, GISS and
MIROC-E2SL were relatively better in simulating minimum temperature (r ranging from
0.3 to 0.5 and o between 0.6 and 1.4). ACCESS-CM2 and GISS were the only CMIP6
models that exhibited good performance in all climatic variables evaluated.

The ability of the models in capturing the annual cycle of rainfall was assessed (Fig. 4.4).
In general, CMIP6 models capture the unimodal annual cycles of precipitation in the
Savannah and Sahel zones in the Volta River Basin (Fig 4.4). As observed in the GMFD,
the major rainfall seasons of the Savannah and the Sahel occur between July and September

with the peak rainfall recorded in August (Figure 4.4a). This occurs due to the movement
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of the intertropical Discontinuity (ITD) to its northmost position (20 — 22 °N) in West Africa
in August encouraging moisture advection from the Gulf of Guinea penetrating more inland
of West Africa (Omotosho and Abiodun, 2007). In addition, the strength of the African
Easterly Jet (AEJ) and Tropical Easterly Jet (TEJ) highly affect rainfall amounts in West
Africa (Jung, 2006). A model’s ability to capture the influence of these jet streams also
enhances its ability to simulate precipitation in West Africa reasonably well. Most CMIP6
models capture the unimodal rainfall pattern in these zones with peak rainfall occurring in
August in the Savannah zone. For instance, all models except BCC (in July), MRI (in May)
and CanESMS5 (in July) have their highest rainfall in the month of August. MRI, GISS,
HadGEM-LL and ACCESS-CM2 underestimated rainfall while all other models
overestimated the peak rainfall season in the Savannah zone. A similar pattern was seen in
the Sahel with NorESM2-MM and MIROCG6 overestimating peak rainfall. This result is in
agreement with Dotse et al. (2023) who also found that NorESM2-MM overestimates
precipitation in the VRB. Precipitation pattern in the Guinea Coast zones was characterised
by a bimodal pattern with the peaks of the major season and the minor season occurring in
June and September respectively.

In the Guinea Coast zone, rainfall exhibits a bimodal pattern with two peak records
occurring in June (major season) and September/October (minor season). CMIP6 models;
MIROC6, NorESM2-MM and HadGEM-LL captured the bimodal precipitation patterns
that are characteristic of the zone but could not capture the characteristics of the rainfall
peaks except NorESM2-MM. For instance, MIROC6, NorESM2-MM and HadGEM-LL
simulated the two rainfall peaks in July (minor season) and September (major season), June

(major season) and September (minor season), and April (minor season) and August (major
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Figure 4.1: Spatial patterns of averaged values from 1960 to 2014 of climatic variables (Precipitation, Potential Evapotranspiration and
Climatic Water balance) for Observed (GMFD), CMIP6 model ensembles and NEX-GDDP multi model ensembles
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Figure 4.2: Spatial patterns of averaged values from 1960 to 2014 of climatic variables (mean, maximum and minimum temperature)
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season), respectively. Only NorESM2-MM could correctly capture the bimodal rainfall
pattern in the Guinea Coast zone with some overestimation. All CMIP6 models
overestimate the minimum temperature during the Northern Hemisphere summer which is
also the rainy season in the Volta River basin.

CMIP6 models capture the annual cycle of minimum, average and maximum temperature
with either overestimation or underestimation during different months in the year with the
peak temperature in some models having a 1-month lag. MIROC6 and NESM3 simulated
a higher overestimation and underestimation of maximum temperature than other models
in all the climatic zones, respectively. In agreement with the findings of Limantol et al.
(2023), NoreS2-MM, BCC and MPI-HR overestimate the average temperature in all the
climatic zones. Akinsanola et al. (2020) reported that GCM models generally struggle to
capture processes of the West African Monsoon system very well. GCMs are not able to
capture fine-scale processes such as complex topography, land cover processes, coastal
lines, and mesoscale convection as a result of their coarse horizontal resolution (Dosio et
al. 2021). The bias-corrected NEX-GDDP models improved all models' ability to capture
the annual cycle significantly (Figure 4.4b). The bias-correction method performed
remarkably in all the zones in the river basin. This was because the bias correction was able
to not only correct the spatial distribution of model outputs but also significantly reduce

model biases (Guo et al., 2018).
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4.3  Drought Patterns in the Volta River Basin

Figure 4.5 and 4.6 illustrate the results of principal component analysis for 12- and 24-
month accumulated SPEI drought computed using the observed (GMFD). The first four
PCA loadings identified during the analysis were referred to as the distinct drought modes
present in the VVolta River Basin (hereafter DM1, DM2, DM3, and DM4). The four principal
components explained about 85 and 87 % of drought variability in the 12- and 24-month
scale respectively. Each drought mode (DM) exhibits unique spatiotemporal characteristics.
DM1 explains 24 and 22.1 % of the 12- and 24-month scale SPEI respectively. Its highest
positive loading (> 0.8) was seen in the northern part of Burkina Faso and south-eastern
Mali which is also the northern part of the basin. The climatic zone of the area is Sahel
where the PCA scores show the highest correlation (r= 96) with the SPEI time series. This
is the driest part of the basin with the least annual rainfall amount of 600 mm (Obuobie et
al., 2017). Drought has been reported in some studies to have occurred in this area
(Nicholson and Grist, 2001; Nicholson, 2013). Studies like Graetz (1991), Nicholson et al.
(1998) and Nicholson (2013) have also reported drought in the 1970s which lasted
throughout most of the 1980s and led to severe economic losses and affected food security
and livelihoods of the population in the region. The drought variability in 12- and 24-month
are very similar spatially and temporally and hence the 12-month scale will be mostly
discussed.

The SPEI time series over the area indicates a historical dry period spanning from the 1960s
to the late 1970s. The drought ended in 1978 when a short wet period was observed till
1981, followed by a short dry period lasting till around 1984. This was followed by an
intermittent longer wet period and shorter dry period from 1984 to 2006. A general wet

period was observed from 2006 to 2014. The drought frequency was the highest in the
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1960s (47 events per decade) and 1970s (50 events per decade) and reduced to its lowest in
the 1980s to 0 events per decade, 1990s to 3 events per decade and 2000s to 2 events per
decade (Fig. 4.7). The DM2 was located at the southern part of the Basin, in an area where
the Volta Lake was constructed and extending to the point where the Volta River drains
into the Gulf of Guinea. This was where it shows its highest PCA loadings of between 0.8
to 1 and explains about 29 % of the SPEI variance. A strong correction of 0.91 exists
between this region's SPEI and the PCA scores. The SPEI shows a wet condition from 1960
to 1970 followed by a predominantly dry condition from 1972 to 2003 with some notable
wet periods from 1979 to 1981, 1984 to 1986 and 1991 to 1993. This was followed by a
predominantly wet period till 2014. From Figure 4.7, the drought frequency was at its
highest in the 1970s (38 events per decade) and reduced to 16 events per decade in the
2000s. The DM2 results were in agreement with the results of Diasso and Abiodun (2017).
For instance, the region corresponds to the fourth drought mode they identified where
southern Ghana experienced the worst drought conditions in the 1980s. However, there
were notable differences in the drought frequency computed per decade and magnitude
owing to the difference in the reanalyses data (CRU) used as observed. The third drought
mode (DM3) has its highest loading (PCA value from 0.8 to 1) over the eastern part of the
VRB and northeastern, southeastern, northwestern and north of Ghana, Burkina Faso, Benin
and Togo respectively. The PCA score has a strong correlation of 0.79 with the SPEI over
the region. The drought indices show drought conditions occurring in each decade during
the period of analysis. The longest drought duration occurred between 1984 and 1990 while
the longest wet period was between 2007 and 2013 (Fig. 4.5). The highest drought
magnitude occurred in 1962 (Fig 4.5) but had its highest frequency in the 1980s (33 events

per decade) (Figure 4.7a). The drought frequency identifies an alternating cyclical pattern
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within the basin in adjacent decades (Figure 4.7a). For instance, the drought frequency was
22 events per decade in the 1960s which declined to 19 events per decade in the 1970s
which then recorded its highest frequency of 33 events per decade in the 1980s and later
declined to 12 events per decade in the 1990s, then finally increased in the 2000s (28 events
per decade). DM4 explains 13.9 and 15.3 % of the variance in 12 and 24-month SPEIs
respectively and shows positive loadings (0.6) over northwestern Ghana and western
Burkina Faso. The main drought occurred in the 1960s, 1970s and 2000s. The drought
frequency decreased from 26 events per decade to 6 events per decade on the 12-month
scale and 25 events per decade to 4 events per decade on the 24-month scale. An alternating
dry and wet period was present from 1960 to 1978 followed by a prolonged wet period up

till 2001. The longest prolonged drought occurred from 2001 to 2013.
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Figure 4.5: Principal component loadings on the left panel illustrate spatial patterns of 12-
month scale drought and temporal SPEI and PCA scores on the right. The correlation “r”

between the PCA scores and the SPEI from the region in the red box is found in the bracket.
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Figure 4.8 illustrates the wavelet power spectrum of all drought modes’ PCA scores for the
12-month scale SPEI using a significance value of 0.5 to identify deviations in regions that
were areas with black contours (Fig. 4.8). The scorel, score2, score3 and score4
corresponding to DM1, DM2, DM3 and DM4 respectively. Generally, there was a 1- to 4-
year cycle existing in the wavelet power spectrum in all the drought modes. The wavelet
power spectrum of DM1 shows a significant 4- to 8-year cycle which occurred from 1970
to 1985. During this period, drought conditions were most prevalent in the region (Fig. 4.5).
This cycle could have a direct influence on the drought variability during that period. This
was followed by a cycle with a periodicity of 1 to 4 years (Fig. 4.8) which was present from
1985 to 2014, and was predominantly wet (Fig. 4.6). In the wavelet power spectrum of
DM2, 4 major cycles were visible (Fig. 4.8). Two cycles were identified between 1960 and
1973, the first with a 1- to 2-year cycle and a 2- to 4-year cycle. These 2 distinct cycles
corresponded to years where the region was predominantly wet (Fig. 4.6). This 2- to 4-year
cycle is associated with the Quasi-Biennial Oscillation (QBO) (Torrence and Webster,
1999; Diasso and Abiodun, 2017; Oguntunde et al., 2017). Conversely, Diasso and Abiodun
(2017) found that QBO did not correlate with the 2- to 4-year cycle identified in the wavelet
analysis of the drought modes in eastern Sahel and northern Nigeria. They indicated that
the cycle had significant coherence with the Atlantic Multi-decadal Oscillation (AMO) and
Tropical Southern Atlantic (TSA) in the eastern Sahel drought mode and AMO and Tropical
Northern Atlantic (TNA) in the drought mode located in northern Nigeria. The third cycle
which was a 4- to 8-year cycle existed from 1977 to 1993. From Fig. 4.6, this range of years
was predominantly characterised by drought conditions in the region. The fourth cycle was
present from 1990 to 2010. It has a 1- to 4-year cycle and overlaps with the third cycle

between 1990 to 1993. Except for the overlapping years of the third and fourth cycles where
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a wet condition exists, the range of years was characterised by predominantly drought
conditions (1991 to 2003) and predominantly wet conditions from 2003 to 2010 (Fig. 4.6).
In the wavelet power spectrum of DM3, three major cycles were visible (Fig. 4.8). The first
had a 1- to 4-year cycle, which was predominantly wet when compared with Fig. 4.6. This
cycle overlapped with the 1- to 2-year cycle from 1968 to 1972, resulting in dry conditions.
The 1- to 4-year cycle (Fig. 4.8) was also observed from 1982 to 2001, where a
predominantly dry condition persisted and interfaced with wet conditions between 1992
and 1999 (Fig. 4.6). These predominant wet conditions correspond to the period where the
cycle overlapped with a 12- to 16-year cycle (1990-1997). The 1- to 2-year cycle was also
observed between 1978-1981 and 2003-2010, where there were dry and wet conditions
respectively (Fig. 4.6). DM4’s wavelet power spectrum identified three cycles. The first
cycle was a 1- to 4-year cycle, which was observed in the years 1963-1970, 1981-1987,
1996-2002 and 2005-2011. These ranges of years corresponded to dry conditions, wet
conditions, wet conditions, and dry conditions in Fig. 4.6 respectively. The second cycle
was a 2- to 6-year cycle that persisted from 1966 to 1975. It corresponded to a
predominantly dry condition (Fig. 4.6). The second cycle overlapped with the first cycle
between 1967 and 1969, which resulted in wet conditions within that period. The last cycle
was a 1- to 2-year cycle that persisted in the years 1992-1996 and 2011-2012 (Fig. 4.8),
corresponding to wet and dry conditions, respectively (Fig. 4.6). The non-uniqueness of the

cycles could be a result of the interactions of these cycles with other atmospheric indices.
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Figure 4.8: The wavelet power spectrum of 12-month SPEI drought mode over the Volta
River Basin. The cone of influence is indicated by the white areas. The significant areas are

marked by black contours.
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4.4  Representation of Drought Patterns in CMIP6 and NEX-GDDP Model
Outputs

The ability of Global models to represent drought patterns identified in the observed data
was important to its application in understanding drought projection in the future. It
indicates the

skill of the Global models to simulate inherent characteristics of the climate system over
the Volta River Basin. Figures 4.9a and 4.9b compare the PCA loadings of the 12-month
SPEI simulated drought modes (DMs) by the CMIP6 models with observed (GMFD). The
PCA loadings simulated by the CMIP6 models were arranged based on their similarities
with the observed drought modes identified from PCA loadings of the observed (Fig. 4.5)
and were not arranged based on the increasing or decreasing order of the explained variance
of the models. In general, all models reproduce DM1 and DM2 well similar to the observed
pattern with varying explained variance and spatial extent. About 67 % of the CMIP6
models, namely ACCESS-CM2, ACCESS-ESM, BCC, CanESM5, GISS, HadGEM-LL,
MIROC6, MIROC-ES2L, CMCC-ESM and NorESM2-MM were able to reproduce all the
drought modes. For DM1, CMCC-ESM, BCC, GISS, MIROC6, ACCESS-ESM1 and
HadGEM-LL outperformed other models with correlations greater or equal to 0.9 and a
normalized standard deviation (o) between 0.8 to 1.2 (Fig. 4.11). The best models were
BCC and ACCESS-ESM1 which had normalized standard deviations of approximately 1.
From Figure 4.11, models such as ACCESS-CM2, NorESM2-MM, CanESM5, NorESM2-
LM and MIROC-ES2L also exhibited good performance in reproducing DM1 with a pattern
correlation ranging from 0.8 to 0.89 and normalized standard deviation of between 0.8 and
1.2. MRI(r=0.85,6=0.66) MPI-HR (r= 0.8, 6 = 0.77) showed a reasonable performance

when compared to the DM1 region of the observed (Fig. 4.11). The least performing
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models were MPI-LR (r = 0.73, ¢ = 0.85) and NESM3 (r = 0.76, 6 = 0.583). In DM2,
NorESM2-MM, NorESM2-LM and CMCC were the best-performing models with pattern
correlation equal to or greater than 0.95 and a normalized standard deviation of
approximately 1.0. This was followed by GISS and ACCESS-ESM which had a pattern
correlation of 0.9 and normalized standard deviation of approximately 1. BCC and
HadGEM-LL also performed well with a pattern correlation of 0.9 and a normalized
standard deviation ranging between 0.8 and 1.2 (Fig. 4.11). ACCESS-CM2 (r=0.87, 6 =
0.7), MPI-HR (r = 0.88, 6 = 0.77), MIROC6 (r = 0.89, ¢ = 1.186), MIROC-ES2L (r = 0.79,
0 =0.834) and MRI (r=0.91, o = 0.674) also performed reasonably well with a correlation
greater than 0.79 and normalized standard deviation greater than 0.6.MPI-LR and
CanESM5 were the least performing models with a correlation of 0.75 and normalized
standard deviation of 0.71 and 1.067 respectively. NESM3 had a strong correlation of 0.85
but had a lower normalized standard deviation of 0.576.

In DM3, the CMCC, GISS, HadGEM-LL and MIROC6 outperformed all the models with
a correlation greater than 0.85 and a normalized standard deviation of approximately 1
(Figure 4.11). Subsequently, ACCESS-CM2, NorESM2-MM and ACCESS-ESML1 also
performed reasonably well with a normalized standard deviation between 0.8 and 1.2 and a
correlation greater than 0.7. BCC showed a strong correlation (0.89) with the observed
pattern but had a normalized standard deviation of 1.39 further away from the observed.
The worst-performing models were NESM3, MPI-HR and MPI-LR which had a lower
correlation of less than 0.5. Even though MRI could not reproduce the DM3 observed in
the GMFD, it exhibited a drought pattern that was present in the central part of the basin
and extended to the eastern and western boundaries of the basin. Thus, MRI performed

fairly in reproducing DM3 when compared with observation.
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In DM4, CMCC, GISS, HadGEM-LL, ACCESS-CM2, ACCESS-ESM1 and MIROC6
were the best performing models with correlations greater than 0.7 and normalized standard
deviations between 0.8 and 1.2. HadGEM-LL outperformed all the models in reproducing
the DM4. BCC also had a correlation greater than 0.7 but had a normalized standard
deviation greater than 1.2, similar to its behaviour in DM3. The worst-performing models
were NESM3, MPI-LR, MPI-HR and MRI, with correlations less than 0.2. In general, all
models’ performance decreased in their ability to reproduce DM3 and DM4.

From Figure 4.9a and 4.9b, all the models show that DM1 had the greatest explained
variance except for BCC, GISS, HadGEM-LL and CMCC where DM2 had the greatest
explained variance as seen in the observation. ACCESS-CM2 (88 %) and HadGEM-LL (81
%) had a total explained variance closer to that of GMFD (85 %). The rest of them had a
total explained variance greater than 88 % except for BCC which had a total explained

variance of 78 %.
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Figure 4.9a: The PCA loadings of 12-month SPEI for the observed (GMFD) and CMIP6 models over the Volta River Basin from 1960
to 2014. The percentage of the variance explained by each DM is indicated in the lower right corner. The PCA loadings of the models
were not in increasing or decreasing order of the variance explained but arranged according to their similarities with the PCA loadings

of the observed
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Figure 4.9b: Same as Figure 4.9a for models CMCC-ESM2, MPI-ESM1-HR, MPI-ESM1-LR, MRI-ESM2-0, NESM3, NorESM2-LM

and NorESM2-MM
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Figures 4.10a and 4.10b compare the PCA loadings of the 12-month SPEI simulated
drought modes (DMs) by the NEX-GDDP models with observed (GMFD) similar to
Figures 4.9a and 4.9b. Similar to the results seen in CMIP6, the NEX-GDDP models
reproduce DM1 and DM2 well comparable to the patterns seen in the GMFD with varying
explained variance and spatial extent. Unlike CMIP6, about 73 % of the models, namely
ACCESS-CM2, ACCESS-ESM, BCC, CanESM5, GISS, HadGEM-LL, MIROCS,
MIROC-ES2L, CMCC-ESM and NorESM2-MM, NorESM2-LM were able to reproduce
all the drought modes. The noticeable difference was NorESM2-LM where statistical
downscaling and bias correction were able to improve the model’s ability to reproduce DM3
and DM4 patterns with a low PCA loadings value between 0.2 and 0.6. Figure 4.11
compares the CMIP6 and NEX-GDDP models’ performances in reproducing the drought
modes. Bias corrected and statistically downscaled either improves or reduces the
performance of each model under different drought modes (DMs). For example, in DML,
ACCESS-CM2, HadGEM-LL, MIROC6, MPI-HR, MPI-LR and NESM3 saw
improvement in their correlation value by a magnitude of 0.02 to 0.06. A slight increment
of 0.01 was observed in the correlation values of CanESM5, ACCESS-ESM1, GISS, BCC
and CMCC. On the contrary, the correlation values of MIROC-ES2L, NorESM2-MM, MRI
and NorESM2-LM reduced by magnitudes 0.01, 0.01, 0.03 and 0.04 respectively. Also,
models such as MRI, NorESM2-MM, MPI-HR and MIROC-ES2L, MIROC6, ACCESS-
ESM1 and CanESMS5 slightly improved in their normalized standard deviation. In DM2,
there were general improvements in the correlation of models except for MRI which
decreased from 0.91 to 0.89. Although the correlation of MRI decreased, the normalized
standard deviation improved. Models with the most significant improvements in their

correlation were MIROC6 (0.89 to 0.97), MPI-LR (0.67 to 0.95), ACCESS-CM2 (0.87 to
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0.92), MIROC-ES2L (0.79 to 0.93) and CanESM5 (0.74 to 0.89). There were no changes
in the correlation of NorESM2-MM and CMCC but a slight reduction in their normalized
standard deviation. In DM3, there were improvements in the correlations and the
normalized standard deviation of ACCESS-CM2, ACCESS-ESM1, BCC, CanESM5 and
MIROC6. GISS, HadGEM-LL, MIROC-ES2L and NorESM2-LM models’ correlation
improved but reduced slightly in their normalized standard deviation. Models that saw a
reduction in their correlation but improvement in the normalized standard deviation were
NorESM2-MM and CMCC. The MRI model’s correlation and normalized standard
deviation were reduced. Bias correlation was not able to improve the model’s ability to
reproduce DM3. In DM4, ACCESS-ESM1, BCC, CanESM5, MIROC6 and NorESM2-LM
improved in both their correlations and the normalized standard deviations. ACCESS-CM2
model’s correlation improved but the normalized standard deviations reduced. Similarly,
the correlation of GISS, MIROC-ES2L, CMCC and NorESM2-MM increased but reduced
slightly in their normalized standard deviation. The bias correlation did not improve the
ability of MPI-HR, MPI-LR and NESM3 to reproduce DM3 and DM4 as observed in the
CMIPG.

From Figure 4.10a and 4.10b, all the NEX-GDDP models show that DM1 had the highest
explained variance except for GISS, HadGEM-LL and CMCC where DM2 had the highest
explained variance as seen in the observation and BCC where DM4 had the highest
explained variance. After statistical downscaling and bias correction, the total variance
explained by all the DMs increased higher than the total variance observed in their original

CMIP6 models.
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In summary, NEX-GDDP models such as MIROC6, ACCESS-CM2, ACCESS-ESM1,
CanESM5, GISS and BCC were generally better than their CMIP6 counterparts in

reproducing drought modes over the Volta River Basin.
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Figure 4.10a: The PCA loadings of 12-month SPEI for the observed (GMFD) and NEX-GDDP models over the VVolta River Basin from
1960 to 2014. The percentage of the variance explained by each DM was indicated in the lower right corner. The PCA loadings of the
models were not in increasing or decreasing order of the variance explained but arranged according to their similarities with the PCA

loadings of the observed
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Figure 4.10b: Same as Figure 4.10a for models CMCC-ESM2, MPI-ESM1-HR, MPI-ESM1-LR, MRI-ESM2-0, NESM3, NorESM2-

LM and NorESM2-MM
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45  Climate Change and Variability in the Volta River Basin
This section assessed climate change using Theil Sen’s slope analysis on annual
temperature and rainfall data for both GMFD (observed data and NEX-GDDP data for the

historical, Near, Mid and Far term.

45.1 Analysis of Historical Trends in Climatic Variables

Figure 4.12 illustrates the historical trends in precipitation performed using Thiel Sen’s
Slope analysis using observations (CRU and GMFD) and 15 NEX-GDDP models datasets,
and their ensemble mean. From the graph, GMFD and CRU show that precipitation has
been decreasing in most parts of the Volta River Basin (VRB) at a magnitude of about -2.5
mm/year? during the historical period. Only the trends in some eastern parts of VRB were
statistically significant at a p-value of 0.05 in the CRU datasets. In the GMFD, statistically
significant trends were observed in some areas in the eastern, southwestern, central part and
western parts of the basin. Positive trends in precipitation of about 2.5 mm/year? were in
the central and northern part of the basin but they were not statistically significant.
Unlike CRU, GMFD identified more areas in the VRB which has experienced a reduction
in historical precipitation amount. The result is in agreement with Oguntunde et al. (2006)
in which rainfall in the VRB experienced a decreasing trend of magnitude 6 mm/year? from
1970 to 2002. The difference in the magnitude of change could be a result of the difference
in rainfall product use and the slight differences in study periods. The results also revealed
that statistically significant precipitation increments were observed in the majority of the
NEX-GDDP models such as ACCESS-CM2, ACCESS-ESM1, MIROC-ES2L, MPI-HR,
MPI-LR, MRI, NorESM2-MM, NorESM2-LM, NESM3 and the Ensemble mean of the

models which occurred almost throughout the entire basin. The NESM3 model recorded
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the highest precipitation increment ranging from 2.5 to 10 mm/year? with the eastern part
of the VRB having the greatest change amount ranging between 7.5 to 10 mm/year?.
Additionally, the NorESM2-LM was the second-highest model with an increment in
precipitation amount between 2.5 to 7.5 mm/year? after NESM3 followed by NorESM2-
MM. The GISS model was the only model that simulated a general statistically significant
decrease in precipitation (0 to -2.5 mm/year?) throughout the entire basin. Models like BCC,
HadGEM-LL and MIROCS6 slope analyses show a dipole change pattern where most of the
northern part of the basin had an increasing precipitation trend between 0 to 2.5 mm/year?
and the southern part experienced a decreasing trend between 0 to -2.5 mm/year? during the
period of analysis. The Ensemble mean of the NEX-GDDP models showed a statistically
significant increasing trend in precipitation with a magnitude of between 0 to 2 mm/year?
throughout the whole basin.

Historical average temperature records present an increasing trend pattern in both CRU and
GMFD with most changes occurring in the northmost and eastern part of the VRB (Figure
4.13) which was statistically significant at a p-value of 0.05. The northern and eastern parts
increased by a magnitude of 0.03 to 0.04 °C/year while the rest of the basin saw increments
of 0.01 to 0.02 °Clyear. From Figure 4.13, all the NEX-GDDP models simulated increasing
temperature trends during the historical period. The warmest models were ACCESS-ESM1
and CMCC which had significant positive trends of magnitudes between 0.04 to 0.05
°Clyear for most parts of latitude 10 °N upwards and magnitudes between 0.03 to 0.04
°Clyear south of latitude 10 °N. The Ensemble mean of the models features a positive trend
of magnitudes 0.03 to 0.04 °C/year spanning from east to west of the basin north of latitude
10 °N and 0.02 to 0.03 °C/year in most parts of the basin. The results obtained for the

observed were in agreement with Okafor et al. (2019) who examined changes in historical
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climate within the rainy season (May to October for VRB, Sahel and Soudano Sahel), minor
rainy season, major and minor dry season in the VRB by using Mann Kendall trend test and
Thiel Sen’s Slope. In the overall VRB, precipitation and temperature change were 0.44
mm/season and 0.02 °C/season in the rainy season and 0.10 mm/year? and 0.03 °C/season
in the dry season respectively, only temperature changes were within the 95 % confidence
level. More than 75 % of rainfall amounts are recorded during the rainy season (May to
October). In the Sahel and Soudano Sahel region (similar to this study Sahel and Savannah
zones) temperature changes were 0.02 °C/season in the rainy season and 0.03 °C/season in
the dry season while precipitation changes ranged from 0.53 to 0.99 mm/ season and 0.0 to
0.15 mm/season in the wet and dry season respectively. They observed that, in the Guinea
Coast, changes in precipitation and temperature range between -1.33 to 0.83 mm/season
and 0.02 to 0.03 °C/season in both the wet and dry seasons. Their result falls within the

range of values obtained in this study.
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Figure 4.12: Comparison of historical (from 1960 to 2014) precipitation trends of
observation (GMFD and CRU) and NEX-GDDP models using Thiel Sen’s slope. The black

crosses represent areas with trends that are significant at a 95 % confidence level
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Figure 4.13: Comparison of historical (from 1960 to 2014) average temperature trends of
observation (GMFD and CRU) and NEX-GDDP models using Thiel Sen’s slope. The black

crosses represent areas with trends that are significant at a 95 % confidence level
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45.2 Future trends in climatic variables

4.5.2.1 Future trends in precipitation

Figures 4.14, 4.15 and 4.16 present the results of the estimated slope and trend detected in
precipitation under SSP 1-2.6 emission scenario for the Near term (NF), Mid term (MF)
and Far term (FF). From Figure 4.14, ACCESS-CM2, CanESM5, HadGEM-LL, CMCC,
and MRI projected a potential increase in precipitation amount in the NF occurring from
the central part of the basin and moving northward. In HadGEM-LL and MRI, this
increment in precipitation will occur across the Black Volta, White Volta and Oti Basin
while models such as ACCESS-CM2, CanESM5 and CMCC suggest that precipitation will
increase in all the subbasins of the VRB Black Volta, White Volta, Oti and Lower Volta
Basin. These changes were statistically significant at a p-value of 0.05. NESM3 and
MIROC-ES2L projected decreasing precipitation in VRB. In NESM3, all the subbasins of
the VRB will experience a statistically significant reduction in precipitation with most
changes occurring in part of White and Black Volta (between -10 to -15 mm/year?).
ACCESS-ESM1, MPI-LR, NorESM2-LM, NorESM2-MM and GISS models projection of
precipitation changes were not widespread within the VRB. Most noticeable among these
models were GISS which projected decreasing precipitation in the Black Volta and
NorESM2-MM which shows significant reductions in small portions of Black and White
Volta. MIROC-ES2L shows that precipitation in most parts of the Lower Volta and some
areas of the Black Volta will decrease. MIROCS6 projected a decrease in precipitation in the
northern and eastern parts, and increasing precipitation in the Black Volta of the VRB. In
the MPI-LR model, only the northern part of the VRB will see an increment in precipitation

while some parts of the Black Volta, White and Oti Basin will under precipitation reduction.
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From these results, there was less agreement between models on the projection of
precipitation in the NF. In the Ensemble mean of the models, there was a projected decrease
in precipitation in most parts of the Black Volta and some areas in Lower Volta while a
little part of the eastern and northern portion of the VRB might have a positive precipitation
change.

In the Mid term (Figure 4.15), most of the models projected a statistically significant
decrease in precipitation in VRB. Models that projected statistically significant changes
covering more than 50 % of the VRB were ACCESS-CM2, ACCESS-ESM1, BCC, GISS,
MPI-HR and the Ensemble Mean. The NorESM2-MM projected a statistically significant
decrease in precipitation in most of the VRB from latitude 9 °N northwards and positive
gains of 5 to 15 mm/year? south of latitude 8 °N. The Ensemble Mean shows that most part
(more than 75 %) of the basin will experience a reduction in precipitation of magnitude -5
to -10 mm/year? and 0 to 5 mm/year? gains around the river mouth and southern edge. The
models that simulated statistically significant gains in precipitation were the CMCC and
HadGEM-LL. While changes were cut across the entire basin in CMCC with major gains
around the river mouth and southern edge, gains were localised between latitude 13 °N and
7 °N in the HadGEM-LL. Almost the entire VRB basin experienced any change in the
CanESMD5, the only significant positive change was seen at the northmost edge of the VRB

where the international border between Mali and Burkina Faso.
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Figure 4.14: Comparison of Near term (from 2021 to 2050) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.15: Comparison of Mid term (from 2051 to 2080) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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In the Far term (Figure 4.16), most of the models projected a statistically significant increase
in precipitation in most regions of the VRB. Models that projected statistically significant
changes covering about 50 % or more of the VRB were ACCESS-ESM1, CanESM5,
MIROC-ES2L, MPI-HR, MPI-HR, MRI and the Ensemble Mean. Most of the statistically
significant changes occur throughout the entire VRB. In the GISS, there was a statistically
significant decrease (0 to 5 mm/year?) in precipitation in the northern part of the VRB and
an increase (0 to 5 mm/year?) in precipitation in the southern part from about latitude 10
°N. Similarly, the CMCC models exhibit similar characteristics to the GISS. The observed
decrease in the precipitation extends towards the eastern part of the VRB which highlights
some of the difference between the spatial pattern of the two models. The magnitude of the
decrease in precipitation ranges between 0 to 15 mm/year? while the increase ranges from
0 to 20 mm/year?. Unlike in the Near and Mid term, the MPI-HR projected had a statistically
significant positive change in precipitation over the VRB.

The Ensemble means projections of precipitation change defer from that of the Near and
Mid term. Positive changes were projected in the Far term which spreads over almost the
entire basin. In the Near and Mid term, a decrease in precipitation of similar magnitude was
projected over the VRB which affects more areas in the Mid term than in the Near term

under SSP1-26.
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Figure 4.16: Comparison of Far term (from 2081 to 2100) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figures 4.17, 4.18 and 4.19 present the results of the estimated slope and trend detected in
precipitation under SSP 2-4.5 emission scenario for the Near term (NF), Mid term (MF)
and Far term (FF). From Figure 4.17, the models ACCESS-CM2, ACCESS-ESM1,
CanESM5, CMCC, NESM3, NorESM2-LM and NorESM2-MM projected more
statistically significant positive change in precipitation than negative trends. In ACCESS-
CM2, positive gains in precipitation were projected over the northern part of the VRB from
latitude 11 °N extending from the east to the west part of the VRB. The gains range from 5
to 15 mm/year? with the highest at the northern edge of the basin around the border of Mali
and Burkina Faso. There were positive changes (0 - 5 mm/year?) around the southern edge
of the VRB and Akosombo dam areas while a negative trend (0 — 5 mm/year?) extends from
the central part of the VRB to the eastern part. In ACCESS-ESML, a statistically significant
positive change (0 — 10 mm/year?) was present between latitude 10 °N and 7 °N extending
from the east to west. There also existed a negative trend (0 — 15 mm/year?) around the
southern edge of the VRB and Kpong dam areas. In CanESM5, the positive trend occurred
throughout the entire VRB and they were statistically significant. In CMCC, statistically
significant changes occurred only in the northern part of VRB from latitude 10 °N. In
NESM3, a statistically significant positive trend existed around the eastern part of VRB
over northeastern Ghana, southeastern Burkina Faso and northern Togo and Benin. In
NorESM2-LM, a statistically significant positive trend (5 — 25 mm/year?) was detected in
the southern part of the VRB from latitude 8 °N. In NorESM2-MM, a statistically
significant positive trend (5 — 20 mm/year?) was found in the northern part from latitude 11
°N and the southern part of latitude 10 °N of the VRB.

Models such as BCC, GISS, HadGEM-LL, MIROC-ES2L, MPI-HR and MRI projected

more negative trends than positive trends in the VRB. In the BCC model, statistically
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significant negative changes (5 — 15 mm/year?) mostly occurred in the southern part of the
VRB from latitude 8 °N southward. Some small areas in the north of the VRB also showed
a statistically significant negative trend (0 — 5 mm/year?) and small areas in the east of the
VRB over the border of Benin and Burkina Faso showed a statistically significant positive
trend (0 — 5 mm/year?). In GISS, most parts of the basin were projected to experience
changes ranging from 0 — 15 mm/year? from latitude 11 °N southwards while some areas
in the north were projected to experience positive changes (0 —5 mm/year?). The HadGEM-
LL model was projected to have statistically significant negative changes (0 — 15 mm/year?)
extending from the north to south of the entire basin which was localised along the central
and western parts of the VRB. There was a statistically significant positive trend (0 — 10
mm/year?) in the eastern part of the VRB around southeastern Burkina Faso. Most parts of
the MIROC-ES2L model projected a major statistically significant decrease in precipitation
(0 — 20 mm/year?) in the central and northern parts of the VRB from latitude 9 °N. Some
parts of the southern parts from latitude 8 °N southwards. In MPI-HR more than 60 % of
the basin might experience statistically significant negative trends (5 to 30 mm/year?). In
MRI, almost the entire VRB was projected negative trends (5 to 20 mm/year?) which were
statistically significant. The greatest decrease (10 — 15 mm/year?) occurred around the Lake
Volta area and central Togo. The MPI-LR model showed less than 10 % of the VRB
experienced any kind of change in the precipitation. The MIROC6 model showed the
northern part of the VRB from latitude 10.5 °N might experience statistically significant
positive trends (0 — 15 mm/year?) and statistically significant negative trends (0 — 10
mm/year?) in the southern part of the basin from latitude 10 °N. In the Ensemble mean,
statistically significant negative trends exceeded the statistically significant positive trends.

The statistically significant negative trends (0 — 10 mm/year?) occurred from the east to
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west part of the VRB between latitude 11 °N and 6 °N. The positive statistically significant
change occurred in the northern and eastern parts of the VRB from latitude 11 °N.

In the Mid term (Figure 4.18), ACCESS-CM2, CanESM5, CMCC, HadGEM-LL, MPI-HR,
NorESM2-LM and NorESM2-MM projected more statistically significant positive change
in precipitation more than negative trends while BCC, GISS, MIROC6, MIROC-ES2L,
MPI-LR and MRI projected more statistically significant negative change in precipitation
more than positive trends in the VRB. In ACCESS-CM2, a positive statistically significant
change (0 — 10 mm/year?) throughout the entire VRB. This is different from the patterns
observed in the NF where the areas projected to experience changes were not basinwide but
less than 50 % of the VRB as observed in the MF. Similarly, CanESM5 changes were
similar to that of the CanESM5 model in the NF where a positive statistically significant
change was projected basinwide. The only difference between them is the magnitude where
CanESMS5 in MF had a higher range of 5 to 25 mm/year?. Major precipitation gains were
observed at Black Volta, White Volta and Oti Basin along the Upper West region and Oti
Region of Ghana, south and central Burkina Faso. The changes (0 — 10 mm/year?) in
HadGEM-LL were also found throughout the VRB and were statistically significant. The
changes occurred in all the subbasins. In CMCC, a positive statistically significant change
(0 — 10 mm/year?) localised from within latitude 13 °N to 8 °N from the east to west of the
VRB. More areas showed statistically significant changes in the CMCC MF than NF. In
MPI-HR, a positive statistically significant change (0 — 15 mm/year?) in all the subbasins
occurring in the east, west south and north of the VRB. This is different from changes in
the NF where changes show a decrease in precipitation. The statistically significant changes
occurred in less than 40 % of the VRB. In NorESM2-LM, a positive statistically significant

change (5 — 20 mm/year?) occurred in most parts from latitude 12 °N southwards while a
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positive statistically significant change (5 — 15 mm/year?) was observed in most parts from
latitude 9 °N northwards extending from east to west in the VRB projected by NorESM2-
MM. More areas showed statistically significant positive changes in the NorESM2-LM MF
than NF. The case is different from NorESM2-MM where more areas showed statistically
significant positive changes in the NF than MF.

In BCC, a projected negative significant change (0 — 15 mm/year?) was observed in most
parts of the basin. These changes were seen in the White Volta, Lower Volta and Oti basins.
More areas showed significant changes in the BCC MF than NF. In GISS, a negative
statistically significant change (0 — 10 mm/year?) was projected over most parts of the VRB
from latitude 8 °N northwards. In the MF, changes are more skewed to the north unlike in
the south as seen in NF. The magnitude is also higher in the NF than in MF. In MIROCS,
negative changes were observed within latitudes 11 °N and 7 °N which was skewed more
towards the east of the VRB. Comparing the NF and MF, the MF only showed negative
significant trends while positive and negative trends were observed in NF. MIROC-ES2L
projected a negative statistically significant trend from the central to northern parts of the
VRB. This was different from patterns observed in the NF which exhibited both negative
and negative trends. In MPI-LR, a projected negative significant trend (5 — 20 mm/year?)
from latitude 8 °N. There were more negative significant changes in the MF than observed
in the NF. MRI projected negative significant changes in the northern parts from latitude
13 °N northwards and southern parts from latitude 8 °N of the basin. NESM3 projected
almost equal portions of the basin that might experience negative and positive significant
changes. Positive significant changes occurred from the central to eastern parts around
latitudes 8 °N and 11 °N of the VRB and negative significant changes in the western around

latitudes 7 °N and 9 °N. There were more areas projected to experience significant changes
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in the MF than in the NF. Similar to NESM3, the ACCESS-ESML1 also projected almost
equal portions of the basin that might experience negative and positive significant changes.
The difference between them was that ACCESS-ESML1 projected significant negative
changes (5 — 15 mm/year?) from latitude about 10 °N northwards and significant positive
changes (5 — 15 mm/year?). This deviates from the patterns observed in the NF which had
fewer areas projected to experience significant changes. Also, a lot more areas might
experience decreased precipitation. In the Ensemble mean, more areas were projected to
experience significant positive changes (0 — 5 mm/year?) in more than 70 % of the VRB
which is skewed southwards from latitude 12 °N and extended from the east to the west.
This differs from the NF where there were more negative significant changes and positive
significant changes in the north extending to the east.

In the FF (Figure 4.19), the models ACCESS-CM2, CMCC, HadGEM-LL, MIROCS,
MIROC-ES2L, NESM3 and NorESM2-MM projected more areas with a positive
statistically significant increase in precipitation than negative changes in the VRB.
Precipitation in the ACCESS-CM2 model is projected to decrease in the north and increase
around the central to the eastern part of the VRB and the border between Ghana and Burkina
Faso, and in the south, from latitude 9 °N in the FF. The changes in these areas were
statistically significant. The model projected more areas becoming wetter in the MF than in
the NF and the FF. The NF will also be wetter than the FF. In CMCC, the projected positive
statistically significant changes (10 — 30 mm/year?) occurred from latitude 10 °N,
propagating southward and statistically significant negative changes (5 — 20 mm/year?)
from latitude 12 °N in the northern part of the VRB, which extends from the east to the
west. Precipitation was projected to increase in the FF more than in the MF and in the MF

more than in the NF. In HadGEM-LL, statistically significant positive changes were
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localised within latitudes 9 and 11 °N and extended from the central to western parts of the
VRB. Precipitation was projected to increase in the MF more than in the FF and in the FF
more than in the NF. In the MIROCG6, most areas of the VRB were projected to experience
statistically significant positive changes (0 — 15 mm/year?) with the greatest magnitude
occurring in northern Ghana around the Upper East and West Regions, and northern Togo
(around the Savanes Region) and Benin. Precipitation was projected to be greater during
the FF, followed by the NF, and lastly the MF. MIROC-ES2L generally projected
statistically significant gains (5 — 30 mm/year?) in rainfall in most parts of the basin with
the highest magnitude of change (25 — 30 mm/year?) anticipated around the Bui Dam,
Bamboi and their environs. Precipitation was projected to be greater during the FF, followed
by the MF, and lastly the NF. In the NESM3, the statistically significant positive changes
(5 — 20 mm/year?) were localised around the Volta Lake areas. Precipitation was projected
to be greater during the NF, followed by the FF, and lastly the MF, but more areas might
experience significant changes during the MF than the NF and in the MF than the FF. In
NorESM2-LM, projected statistically significant positive changes (5 — 20 mm/year?) from
latitude 9 °N northwards with most change areas skewed from the central towards the west
of the VRB. Statistically significant negative changes (5 — 20 mm/year?) might occur in the
southern parts of the VRB from latitude 8 °N southward. Overall precipitation gains were
projected to occur more in the MF than in the FF and in the FF than in the NF.

The models ACCESS-ESM1, BCC, CanESM5, GISS, MPI-HR, MPI-LR and MRI
projected more areas with a negative statistically significant increase in precipitation than
positive changes in the VRB in the FF (Figure 4.19). For example, the ACCESS-ESM1
model projected that the majority of areas in the VRB would experience a reduction of 5—

20 mm/year? in rainfall, especially in the northern and eastern parts. It is projected that more
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areas will experience a reduction in rainfall in the FF than in the MF, and the MF more than
in the NF, where there will be more areas with an increase than a decrease. In BCC,
significant changes occurred in more areas in the northern part from latitude 10 °N
northward than in the southern part between latitude 6.5 °N and the mouth of the VRB. In
the BCC model, more areas would undergo rainfall reduction in the MF than in the FF, and
the MF more than in the NF. In CanESMD5, a reduction in precipitation might occur in
greater parts of the VRB, which was mostly observed from latitude 13 °N southward and
extends from east to west. More reductions in precipitation were anticipated to occur in the
eastern and southern parts of the basin. There would be more gains in precipitation in the
MF than the NF and will shift to reduce in the FF. The GISS model projected a statistically
significant negative change in the southern part of the basin from latitude 6.5 °N to the
mouth of the river. The Model projected more areas with significant reductions in
precipitation in the NF than the MF, and in the MF than the FF. MPI-HR projected a loss
in precipitation of 5 — 20 mm/year? in more than 50% of the VRB. These changes are
statistically significant. Comparing precipitation patterns during the different future
periods, more gains are expected in the MF, followed by the NF, and then the FF.
Precipitation decreased significantly in the FF. In MPI-LR, projected statistically
significant losses in precipitation of 5 — 30 mm/year? in the northern and eastern parts of
the VRB. The biggest magnitude of change (23 — 30 mm/year?) was in the northern part of
Benin. There would be more gains in precipitation in the MF than the FF and will shift to
reduce in the NF.

The NorESM2-MM projected that almost 99 % of the changes in rainfall observed in the
VRB were not statistically significant in the FF. A very small part of the northmost edge of

the VRB exhibited statistically significant negative changes. The Ensemble mean of the
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models projected statistically significant negative changes from latitude 10 °N northward
and statistically significant positive changes from about 10 °N southward which is skewed
towards the western part of the VRB. Comparing precipitation patterns during the different

future periods, more gains are expected in the MF, followed by the FF, and then the NF.
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Figure 4.17: Comparison of Near term (from 2021 to 2050) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.18: Comparison of Mid term (from 2051 to 2080) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.19: Comparison of Far term (from 2081 to 2100) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %
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Figures 4.20, 4.21 and 4.22 present the results of the estimated slope and trend detected in
precipitation under SSP 5-8.5 emission scenario for the Near term (NF), Mid term (MF)
and Far term (FF) respectively. From Figure 4.20, the models CanESM5, CMCC, MIROCS,
MPI-HR, and MRI projected more statistically significant positive changes in precipitation
than negative trends, while the models like ACCESS-CM2, ACCESS-ESML1, BCC, GISS,
HadGEM-LL and NorESM2-LM projected the opposite in the NF. Other models, such as
MIROC-ES2L, MPI-LR, NESM3 and NorESM2-MM, projected statistically significant
negative and positive changes with almost equal areas of significant change in the VRB.
Their spatial patterns differ from model to model. For instance, NorESM2-MM projected
more areas (> 60 % of the VRB) that will experience changes in precipitation while
MIROC-ES2L, MPI-LR and NESM3 projected less than 40 % of the VRB will experience
changes. The CanESM5, CMCC and MPI-HR projected that more than 60 % of the basin
would experience an increase in rainfall. The models with high precipitation biases were
CanESM5 and MPI-HR with most areas of change values between 10 and 30 mm/year?.
The model with less precipitation bias was GISS with statistically significant decreases in
precipitation in the NF.

On the contrary, the models ACCESS-CM2, CMCC, MPI-HR, MPI-LR and NorESM2-LM
projected more significant positive changes in precipitation than negative trends, while the
models like ACCESS-ESM1, BCC, CanESM5, GISS, HadGEM-LL, MIROC-ES2L,
NESM3, MRI and NorESM2-MM projected the opposite in the MF (Figure 4.21). The
number of areas projected to undergo positive significant changes increased appreciably in
ACCESS-CM2, MPI-LR and NorESM2-LM, where areas with positive significant areas
became dominant in the VRB in the MF, unlike as projected in the NF. Similarly,

CanESM5, MIROC-ES2L, NESM3, NorESM2-MM and MRI also projected more areas to
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experience negative statistically significant changes different from the spatial patterns
observed in the NF. MIROCG6 projected almost equal proportions of areas that would
experience negative and positive change, which were significant. This was different from
spatial patterns in the NF, where most of the changes projected were significant positive
changes. In the MF, the wettest model was MPI-HR and the driest was MRI.

Additionally, the models ACCESS-CM2, BCC, CanESM5, CMCC, HadGEM-LL, MPI-
LR, MRI, NESM3 and NorESM2-MM projected more significant positive changes in
precipitation than negative trends, while the models like ACCESS-ESML1, GISS, MIROCS,
MIROC-ES2L, MPI-HR and NorESM2-LM projected the opposite in the FF (Figure 4.22).
The model with high precipitation bias was NESM3, with most areas of change values
between 10 and 50 mm/year?. The model with less precipitation bias was MPI1-HR, with
most areas experiencing significant decreases in precipitation between -10 and 60
mm/year?. The ACCESS-ESM1 and GISS models were projected to have more significant
negative changes throughout the NF, the MF and the FF. For instance, in the ACCESS
model, more spatial areas experienced significant changes in the MF, followed by the FF,
and then the NF. The highest change in precipitation magnitude was recorded in the FF,
ranging from -30 to -40 mm/year?. Also, in the GISS model, significant changes occurred
throughout the VRB in both the NF and the MF, which was more than spatial changes in
the FF. The highest change in precipitation was recorded in the FF, ranging from -20 to -30
mm/year?. The CMCC was the only model that showed gains in precipitation throughout
all future periods. There were more statistically significant areas of change and the highest
magnitude of change (30 — 40 mm/year?) in the FF, followed by the NF, and then the MF.
The HadGEM-LL and the BCC projected dominantly significant negative spatial changes

in the NF and the MF and statistically significant positive spatial changes in the FF. The
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vice-versa is seen in MPI-HR, where it projected dominantly significant positive changes
in the NF and the MF and the opposite in the FF. ACCESS-CM2 and NorESM2-LM also
projected dominantly significant negative spatial changes in the NF and significant positive
spatial changes in the MF and the FF. On the contrary, CanESM5 and MRI projected
dominantly significant positive spatial changes in the NF and the FF and significant positive
spatial changes in the MF.

The Ensemble means of the models in the NF (Figure 4.20), the MF (Figure 4.21) and the
FF (Figure 4.22) showed distinct spatial patterns of change in the basin. For example, the
Ensemble mean in the NF (Figure 4.20), projected significant positive changes (0 — 10
mm/year?) from latitude 9 °N northwards and significant negative changes (0 —5 mm/year?)
from latitude 8 °N southward, both changes spread from the eastern to the western edges of
the VRB. Conversely, the spatial patterns are different revealing dominant significant
negative changes (0 — 10 mm/year?) originating from latitude 12 °N southward and covering
most of the basin below this 12 °N latitude in the MF. On the contrary, the Ensemble mean
in the FF projected more significant positive changes (0 — 5 mm/year?) majorly localised

around the eastern, the northern and some areas in the central part of the VRB.
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Figure 4.20: Comparison of Near term (from 2021 to 2050) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.21: Comparison of Mid term (from 2051 to 2080) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.22: Comparison of Far term (from 2081 to 2100) precipitation trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level

123



4.5.2.1 Future trends in temperature

Figures 4.23 to 4.31 presents the results of the Modified Mann Kendall and Sen’s Slope
trend of temperature for SSP1-26, SSP2-45 and SSP5-85, and the different period (NF, MF
and FF).

Figures 4.23, 4.24 and 4.25 illustrate Sen’s Slope computation for average temperature in
the VRB, at NF, MF and FF respectively. From Figure 4.23, all the models except
NorESM2-LM projected statistically significant temperature increase in most parts (more
than 80%) of the VRB in the Near term (NF). All models had statistically significant
changes ranging from 0 to 0.06 °C/year. The warmest model was CMCC with a change
magnitude of 0.045 to 0.06 °C/year in the north of VRB from latitude 10 °N northwards
and 0.03 to 0.045 °Cl/year southwards. Other models like ACCESS-CM2, GISS and
MIROC-ES2L also projected more increase in temperature magnitude of 0.03 to 0.045
°Clyear throughout the entire VRB. The NESM3 was the least warm model. There were no
statistically significant changes observed in the NorESM2-LM in the NF. The Ensemble
mean of the models projected statistically significant temperature increase (0.03 to 0.045
°Clyear) throughout the entire VRB.

Figure 4.24 presents Sen’s Slope result for the Mid term (MF). The ACCESS-ESM1,
CanESM5, MRI and NorESM2-MM projected significant increases in temperature (0 to
0.03 °Clyear) in most parts of the VRB in the Mid term (MF). CMCC projections were in
this range but covered less than 50 % of the VRB. HadGEM-LL and NorESM2-LM
projected no significant changes in temperature despite the former and the latter projecting
decreases and increases in temperature in most of VRB respectively. The NESM3 projected
decreases in temperature trend (-0.015 to 0 °C/year) in less than 50 % of the basin. This

was the less warm model because it had mostly significant negative changes. The BCC
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model also projected a significant decreasing temperature (-0.015 to 0 °C/year) in the east
and an increasing temperature (0 to 0.015 °C/year) change in the north and south of VRB.
ACCESS-CM2 and MPI-LR showed projected significant decreases in temperature, while
MPI-HR also projected significant temperature increase in less than 10 % of the VRB. The
warmest models were CanESM5 and MRI. The Ensemble mean of the models projected
significant increases (0 to 0.015 °C/year) over the entire VRB.

In the Far term (FF) (Figure 4.25), most of the models projected a significant decreasing
temperature change in the VRB except ACCESS-CM2, CMCC, MPI-LR, MRI and
NorESM2-MM. ACCESS-CM2, MPI-LR and MRI showed no significant change in
temperature in the VRB. CMCC and NorESM2-MM showed significant temperature
increase of magnitudes 0.015 to 0.03 °C/year and 0.15 to 0.045 °C/year over less than 50
% and more than 70%, respectively. The coldest models were the BCC, CanESM5 and
MIROC-ES2L with change magnitude ranging between -0.06 to -0.015 °C/year in most
parts of VRB. In the Ensemble mean of the models, projected significant decreases in

temperature (-0.015 to 0 °C/year) were observed basinwide in the VRB.

125



B ACCESS-CM2 " ACCESS-ESM1-5 . BCC-CSM2-MR " CanESM5
. PR e
@ Q - Q w2 @ .
=l o h= =l
=1 3 = =1
=3 = = £
c c [ = c
(=] o o (=]
- — & 3 e 9
s o s
4 T T 4 T T 4 T T 4 T T
a2 e 4 4 2 a ) f . 4 a0 ) ' a2 o |
Latitude Latitude Latitude Latitude
. CMCC-ESM2 . GISSE2-1-G HadGEM3-GC31-LL MIROCE
w
L 2 @ )] @
° k= = =}
3 3 3 3
o " =] =) o
c c c c
S S S S
P i} g — |
o .
4 T T T T T 1 + T T T T T 1 4 T T T T T 1 4 T T T T T 1
. P 2 B & a4 a2 p B « 2z s . P 2 .
Latitude Latitude Latitude Latitude
“ MIROC-ES2L . MPI-ESM1-2-HR . MPI-ESM1-2-LR " MRI-ESM2-0
o O © e o
o o e 5 ke i o
= =1 =] = =
£ ol E 2 2 . : £ ol
c c c &L c
(=] o [=] o
= 1 R — e = e
e &4 T [ e
4 T T T T T 4 T T T T T 4 T T T T T 4 T T T
B 4 a2 e 2 4 & 4 2 ) f e 4 a2 o 2 . P 2 .
Latitude Latitude Latitude Latitude
NESM3 NorESM2-LM NorESM2-MM Ensemble
% " % %
'. . .‘- ..
@ D - @ @
kS i o ° =
=] ~ 3 3 =]
= = = =
g ] = E e g o
= c c c
S S S S
= 5+ = &4 = &4 = 8
o o o o
4 T T + T T T 4 T T 4 T T
« 2 o B 4 2 a 2 B - 2 e . « 2 .
Latitude Latitude Latitude Latitude
Sen's Slope deg Clyear
-0.06 0045  -0.03 -0.015 0 0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 0.15

Figure 4.23: Comparison of Near term (from 2021 to 2050) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.24: Comparison of Mid term (from 2051 to 2080) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.25: Comparison of Far term (from 2081 to 2100) temperature trends of NEX-

GDDP models under Socioeconomic Shared Pathways SSP 1-2.6 scenario using Thiel

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figures 4.26, 4.27 and 4.28 illustrate Sen’s slope computation for average temperature in
the VRB at NF, MF and FF, respectively, under SSP2-4.5. From Figure 4.26, all the models
projected statistically significant temperature increase between 0 and 0.06 °C/year in the
entire VRB in the Near term (NF). This is similar to the spatial patterns observed in the NF
under SSP1-26, where most of the models except NorESM2-LM projected statistically
significant changes. The model with the highest statistically significant temperature
increase (0.03 to 0.06 °C/year) was ACCESS-CM2. Other models with similar magnitudes
of change were ACCESS-ESM1, CMCC, GISS, HadGEM-LL and NorESM2-LM. The
least warm models were MIROC-ES2L and NESM3. The ensemble mean projected that
more than 90 % of the VRB will experience 0.03 to 0.045 °C/year statistically significant
increases and 0.015 to 0.03 °C/year along the southern edge of the VRB.

All the models projected statistically significant temperature increase between 0 and 0.06
°Clyear in the entire VRB in the Mid term (MF) (Figure 4.27). This was similar to the
spatial patterns in the NF except for differences in their magnitude and NorESM2-LM being
statistically significant in the MF. The warmest model was HadGEM-LL, with more areas
in the VRB having magnitudes of change between 0.03 and 0.045 °C/year. ACCESS-CM2,
ACCESS-ESM1, BCC and MPI-LR, with more than 50 % of the basin having projected
changes from 0.03 to 0.045 °Cl/year. The highest magnitudes of change (0.045 to 0.06
°Clyear) were seen in the ACCESS-ESM1 and MPI-LR. The least warm model was MPI-
HR, with most areas projecting magnitudes of change from 0 to 0.015 °C/year in more than
50 % of the basin. In the ensemble mean, projected statistically significant temperature

increase (0.015 to 0.03 °C/year) throughout the entire basin
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In the Far term (FF) (Figure 4.28), most of the models projected a significant increasing
temperature change in the VRB except MROC-ES2L and NorESM2-MM, which showed
no statistically significant changes in the VRB. BCC had the highest significant magnitude
of change (0.06 to 0.075 °C/year), occurring in a very tiny fraction in the north of the VRB.
Generally, significant changes occurred in less than 40 % of the VRB projections of the
BCC model. ACCESS-ESM1 was the warmest model in the FF, with more areas having
change values between 0.03 and 0.06 °C/year. Other models, such as CanESM5 and
HadGEM-LL, also showed most areas of the VRB undergoing 0.03 and 0.06 °C/year, like
ACCESS-ESM1, except that they also had more areas under 0.015 and 0.03 °C/year
temperature change when compared to the latter. NESM3 showed less than 5 % of the VRB
will experience a 0.015 to 0.03 °C/year temperature increase, occurring in the west of the
VRB. The ensemble of the models projected statistically significant temperature increase
(0.015 to 0.03 °Clyear) throughout the VRB. This was similar to the patterns observed in
the ensemble in the MF. Comparing the ensemble means of the different periods, the

magnitudes projected in the NF were greater than those of the MF and FF.
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Figure 4.26: Comparison of Near term (from 2021 to 2050) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level

131



. ACCESS-CM2 . ACCESS-ESM1-5 . BCC-CSM2-MR . CanESMs
—
" PR e
[ o © o [
=l o h= =l
=1 3 = =1
) £ R g
c c [ = c
(=] o o (=]
- - & 4 8 - &9

" Latitude " Latitude " Latitude

CMCC-ESM2 GISS-E2-1-G HadGEM3-GC31-LL MIROCE

144 14 o 1 144

Long:tude
Lon;gtude
Longsltud e
Long:tude

4 T T T T T + T T

Latitude Latitude

T T 4 T T

PN
Latitude

Lo
Latitude

MIROC-ES2L MPI-ESM1-2-HR MPI-ESM1-2-LR MRI-ESM2-0
—

14 4 . e 14

Longitude
Longsltude
Lnngsitude
Longaltude

Lo P ) P . P
Latitude Latitude Latitude Latitude
NESM3 NorESM2-LM NorESM2-MM Ensemble
% w " 1
“ u w “
o O O ©
=} o = =}
2 2 2 2
E oy £ E £
= c c c
51 51 S 51
- 59 - E 4 &4 - &1
. o . .
4 T T + T 4 T T @
« a0 . s 4 a2 a . P . « e o .
Latitude Latitude Latitude Latitude
Sen's Slope deg Clyear
77 77 7 7 7"EEEEE 22— I
-0.06 0045  -0.03 -0.015 0 0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 0.15

Figure 4.27: Comparison of Mid term (from 2051 to 2080) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.28: Comparison of Far term (from 2081 to 2100) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 2-4.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Under the SSp5-8.5 scenario, temperature trends in the VRB increased in the NF (Figure
4.29), MF (Figure 4.30) and FF (Figure 4.31). In the NF, all the models and their ensemble
mean projected statistically significant temperature increase between 0 and 0.09 °C/year
throughout the entire VRB (Figure 4.29). Most of the models projected that temperature
change would be higher in the northern half of the VRB. MRI and MIROC6 showed that
the southern part of the basin would experience more prominent temperature changes than
the northern part. The warmest model was GISS (0.045 — 0.09 °C/year), and the least warm
model was MPI-HR (0 — 0.03 °C/year). Other warm models within the range of change of
the GISS model were HadGEM-LL, ACCESS-CM2 and NorESM2-MM. The ensemble
mean showed most areas in the VRB will experience a 0.045 to 0.06 °C/year temperature
change. Only some small areas, from the mouth of the river to about latitude 6 °N in the

south of VRB, exhibited a 0.03 to 0.045 °C/year temperature change.

In the Mid term (Figure 4.30), all the models generally projected warmer conditions (0.015
— 0.12 °Clyear) than those observed in the NF (Figure 4.29). These temperature changes
were significant throughout the VRB. The warmest model was CanESM5 (0.075 — 0.12
°Clyear) and the least warm model was MPI-HR (0.015 — 0.06 °C/year). Other models, like
the HadGEM-LL and MRI, also showed warmer trends with temperature changes between
0.06 and 0.105 °C/year. The ensemble mean projected that the entire VRB will experience
0.06 to 0.075 °Clyear significant increases and 0.045 to 0.06 °C/year along the southern
edge of the VRB. These temperature changes in the ensemble mean were greater in

magnitude in the MF than in the NF.
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In the Far term (Figure 4.30), all the models generally projected warmer conditions within
magnitudes of 0.015 — 0.15 °C/year. About 60 % of the models, namely, ACCESS-CM2,
ACCESS-ESM1, HadGEM-LL, CanESM5, GISS, MIROC6, MIROC-ES2L, MPI-HR and
MPI-LR, were warmer in the FF than in the MF. Alternatively, about 40 % of the models,
namely, BCC, CMCC, MRI, NESM3, NorESM2-LM and NorESM2-MM, were also less
warm in the FF than in the MF. The warmest models were ACCESS-CM2 and HadGEM-
LL, while the least warm model was BCC. The temperature changes observed in all the
models were significant and occurred throughout the basin. The ensemble mean of the
models projected that temperature might increase between 0.075 and 0.09 °C/year in the
north of the basin from about latitude 10 °N northward and between 0.06 and 0.075 °C/year
southwards of the same latitude. The ensemble projected more warming in the FF than in
the MF and the MF than in the NF.

Generally, under the SSP1-2.6 scenario, ACCESS-ESM1, BCC, CanESM5, CMCC, GISS,
HadGEM-LL, MIROC6, MPI-HR and MRI projected significant temperature changes
between future periods, decreased from the NF, the MF and the FF. On the contrary, MPI-
LR and NESM3 suggested the NF would be warmer than the FF and the FF warmer than
the MF. Other models illustrated distinct temperature change patterns different from those
mentioned above. For instance, the projection of the NF and MF by the NorESM2-LM
model showed no significant temperature trends in the NF or the MF but negative
significant temperature trends in the north of the VRB in the FF. In addition, ACCESS-
CM2 showed different patterns of change, where the temperature of the VRB in the NF was
significant, small areas were significant in the MF, and no significant temperature trends
were seen in the FF. Also, MIROC-ES2L projected positive significant trends in the NF,

but in the MF, there was a positive temperature trend throughout the basin, but it was not
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statistically significant in the MF, while most of the VRB might be under negative
significant trends in the FF. Finally, in the NorESM2-MM model, the FF, NF and MF define
the order of decreasing significant temperature trends in the VRB.

Under the SSP2-4.5 scenario, ACCESS-CM2, ACCESS-ESM1, BCC, CMCC, GISS and
MPI-HR projected that the NF would be hotter than the MF and the MF would be hotter
than the FF. Alternatively, MIROC6, MPI-LR, MRI and NESM3 also projected that the
MF would be hotter than the NF, and the NF would be hotter than the FF. On the contrary,
CanESM5 and HadGEM-LL projected that the FF would be hotter than the NF, and the NF
would be hotter than the MF. Models such as MIROC-ES2L, NorESM2-LM and
NorESM2-MM portrayed distinct temporal patterns. For example, there was no significant
temperature change in the FF, while the NF was warmer than the MF projected by the
NorESM2-LM. In contrast, there was no significant temperature change in the FF, while
the MF was warmer than the NF projected by the MIROC-ES2L. Alternatively, the
NorESM2-MM projected that the NF was warmer than the FF, and the FF was warmer than
the MF.

Under the SSP5-8.5 scenario, nine models, namely ACCESS-CM2, ACCESS-ESM1,
CanESM5, GISS, HadGEM-LL, MIROC6, MIROC-ES2L, MPI-HR and MPI-LR,
projected that the FF would be warmer than the MF and the MF would be hotter than the
NF. On the contrary, BCC, MRI and NorESM2-LM also projected that the MF would be
warmer than the FF and the FF would be hotter than the NF. Alternatively, CMCC and
NorESM2-MM projected that the MF was warmer than the NF and the FF was warmer than
the MF. The FF and MF of the NESM3 showed equivalent temperature trends but they were

warmer than NF.
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The temporal trends observed in the ensemble mean under the different scenarios were
unique to each other. For example, the FF was warmer than the MF, and the MF was
subsequently also warmer than the NF under SSP5-8.5. In addition, the NF was warmer
than the MF and FF, and the MF and FF had equivalent magnitudes of temperature change
and distribution under SSP2-4.5. Under SSP1-2.6, the NF was warmer than the MF and the
MF was warmer than the FF.

Inter-SSP comparison of the significant temperature trends for FF revealed that all models
except MIROC-ES2L, MPI-LR, MRI and NorESM2-MM identified SSP5-8.5 as warmer
than SSP2-4.5 and SSP1-2.6, and SSP2-4.5 as warmer than SSP1-2.6. Conversely, MIROC-
ES2L, MPI-LR, MRI and NorESM2-MM showed that SSP5-8.5 was warmer than SSP2-
4.5 and SSP1-2.6, and SSP1-2.6 was warmer than SSP2-4.5. In MIROC-ES2L, significant
temperature changes were observed only in SSP5-8.5 and SSP1-2.6, with SSP5-8.5 being
warmer than SSP1-2.6. Alternatively, only SSP5-8.5 and SSP2-4.5 had significant
temperature changes projected by the MPI-LR and MRI models. SSP5-8.5 was warmer than
SSP2-4.5. Results in the MF revealed that 9 models had the same direction of trends
observed in the FF, where projections for SSP5-8.5 were warmer, followed by SSP2-4.5,
and then SSP1-2.6. NorESM2-LM, MPI-LR, HadGEM-LL, GISS and ACCESS-CM2 have
similar patterns except that they simulated no significant temperature trends under the
SSP1-2.6 in the MF. The NorESM2-MM patterns were similar to those observed in FF
except that there were no significant temperature trends under the SSP2-4.5. Similar to MF
and FF, the NF showed most models (ten) had the SSP5-8.5 as the warmest, followed by
the SSP2-4.5 and the SSP1-2.6. CMCC and MIROC-ES2L in the NF had the same patterns
as NorESM2-MM in the FF, while MPI-HR revealed that SSP2-4.5 would be warmer,

followed by SSP1-2.6 and SSP5-8.5.
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From the results, models exhibit different spatial patterns in precipitation which is
consistent with the findings of Eyring et al. (2016). Eyring et al. (2016) indicated that
models do not converge on their projections of the magnitude of change in rainfall
characteristics for any given location but models could show more agreement on expected
temperature change. Similarly, Dembélé et al. (2022) also identified the conflicting
projections of GCM-RCM models under different Representative Concentration Pathways
(RCP) in the VRB. Inter-SSP comparison revealed that most of the GCMs (MPI-HR, MPI-
LR, MRI, MIROC-ES2L, NESM3, CanESM5 and CMCC) and the ensemble mean
projected more rainfall under SSP5-8.5 than in all other scenarios in the NF. MIROCS,
NorESM2-MM, NorESM2-LM, ACCESS-CM2, ACCESS-ESM1 and BCC projected
more rainfall under SSP5-8.5 than in all other scenarios in the NF while GISS and
HadGEM-LL showed that under SSP1-2.6, the VRB would become wetter than all the other
scenarios. In the Mid term, most of the models namely: NorESM2-MM, ACCESS-CM2,
ACCESS-ESM1, CanESM5, CMCC, GISS and HadGEM-LL, and the ensemble mean
projected more rainfall under SSP2-4.5 than all the scenarios while SSP5-8.5 was projected
to be wetter by MIROC6, MPI-HR, MPI-LR, NESM3 and NorESM2-LM. Other models
like MIROC-ES2L, MRI and ACCESS-CM2 also showed that SSP1-2.6 would be wetter
than all the scenarios. In the Far term, most models namely: MPI-LR, NESM3, NorESM2-
MM, ACCESS-CM2, BCC, CanESM5, HadGEM-LL and the ensemble mean simulated
more rainfall under SSP5-8.5 while MPI-HR, MRI, ACCESS-ESM1 and GISS projected
more rainfall under SSP1-2.6. Alternatively, GCMs like MIROC6, MIROC-ES2L,
NorESM2-LM and CMCC projected more precipitation under SSP2-4.5. Overall, more
precipitation was projected under SSP5-8.5 by majority of the models (7) and multi-model

ensemble mean in the NF and FF than under SSP2-4.5 (6 in NF and 4 in FF), and under
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SSP2-4.5 than in SSP1-2.6 (2 in NF and 4 in FF). Also, more precipitation was projected
under SSP2-4.5 by majority of the models (7) and multi-model ensemble mean in the MF
than under SSP5-8.5 (5), and under SSP5-8.5 than in SSP1-2.6 (3). This is consistent with
the findings of Eyring et al. (2016), who reported that there would be a 16-24% increment
in heavy precipitation intensity in most areas globally in the future. This increase can be
attributed to the model's evapotranspiration process being accelerated by the increasing
temperatures in SSP5-8.5, which increase the amount of moisture in the atmosphere and
enhance moisture convergence at low levels, leading to an increase in precipitation events
(Donat et al., 2016; Dembélé et al., 2022; Adeyeri et al., 2019). Increment in precipitation
increases the probability of flood occurrence and also poses a major risk to agricultural

production (Agyekum et al., 2022).
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Figure 4.29: Comparison of Near term (from 2021 to 2050) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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Figure 4.30: Comparison of Mid term (from 2051 to 2080) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel

Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %
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Figure 4.31: Comparison of Far term (from 2081 to 2100) temperature trends of NEX-
GDDP models under Socioeconomic Shared Pathways SSP 5-8.5 scenario using Thiel
Sen’s slope. The black crosses represent areas with trends that are significant at a 95 %

confidence level
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4.5.3 Influence of climate change on meteorological drought in each drought modes
The boxplots shown in Figures 4.32, 4.33, 4.34 and 4.35 illustrate the changes in drought
intensities (SPEI < -1) for DM1, DM2, DM3 and DM4 respectively. From Figure 4.32, the
observed data (GMFD) during the historical reference period had an almost normal
distribution with a little negative skewness and a median of approximately zero. Less than
25 % of the SPEI indices were below the -1 threshold, which corresponds to moderate-to-
extreme drought. During the historical reference period, the BCC, ensemble of the models,
MPI-HR and MRI had an equivalent median value as observed under SSP1-2.6. The
ensemble mean distribution was similar to what was identified in the GMFD. GISS,
MIROCG6 and MIROC-ES2L had medians (= 0.2) slightly greater than zero and skewed
positively. The other models had means below zero, indicating a drying signal with more
than 75 % of the SPEI indices below zero. The driest model was CanESM5 which had a
median value below the -1 threshold. The HadGEM-LL model was the wettest during the
historical period for all the scenarios. More than 85 % of the models and their ensemble
mean indicated a robust drying occurred during the historical reference under SSP2-4.5 and
5-8.5. MIRCOG6 had the widest spread, and its median was closer to the observed than any
model under the SSP2-4.5 and 5-8.5 scenarios. Model projections indicated robust wetting
in the future (NF, MF and FF) under SSP2-4.5 and 5-8.5. This is because close to 85 % of
models and their ensemble mean have a good agreement on the trajectory of change.
MIROC6 and HadGEM-LL are models that deviate from all the others. HadGEM-LL
projected an intensification of drought in all future periods under SSP2-4.5 and 5-8.5, while
MIROCS6 showed that about 25 % of the SPEI indices would be below the threshold during
the NF and FF under SSP5-8.5 and the FF under SSP2-4.5. Similar patterns were observed

in DM2 (Figure 4.33), DM3 (Figure 4.34) and DM4 (Figure 4.35). Projections of drought
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in the future under SSP1-2.6 told a different story. About 66 % of models were in agreement
with a shift from normal or drier conditions to wetter conditions in the Near term from the
past when compared with the GMFD. Similar to the Near term, not much deviation is seen
among models in the Mid term from their behaviour in the NF. Models such as GISS,
HadGEM-LL, the ensemble mean of the models, MIROC6 and MRI show a general shift
to dryness, with more than 25 % of the drought indices indicating moderate to severe
drought. A comparison of models to their historical reference in DML revealed that about
53 % of the models projected decreasing drought events in all future periods. The BCC,
MIROC-ES2L and MPI-HR models projected the NF would decrease while the MF and FF
increased, and MIROCSG projected an increase in the NF and FF and a decrease in the MF.
Also, HadGEM-LL and GISS indicated a gradual increment in drought over all the terms,
and MRI and the Ensemble mean projected a decrease in drought events in the NF and MF
while also showing an increase in the FF. In DM2, DM3 and DM4, the majority of the
models show a decreasing trend in the occurrence of drought below the threshold
throughout. Models that showed deviation are the BCC and HadGEM-LL projected
increase in drought events in all future terms in DM2, DM3 and DM4. MIROC-ES2L
projected a decrease in drought events in the NF and MF and an increase in the FF in DM2
and DM4 while MRI showed a decrease in NF and MF and an increase in the FF in both
DM3 and 4. GISS showed a decrease in the NF and MF, and an increase in the FF in DM3
and, a decrease in the NF and an increase in the MF and FF in DM4. MPI-HR also projected
a decrease in drought events in the NF and FF and an increase in the MF in DM3, and the
vice-versa in DM4 while MIROCG6 showed a decrease in the NF and MF and an increase in
the FF in both DM3 and DM4. Most models generally project more normal to near normal

conditions (-1 < SPEI < 1) in the future under SSP1-2.6 than observed in other scenarios.
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Figure 4.32: Historical and projected drought intensity (moderate-to-extreme drought) of
all the models and GMFD (observation data) under the SSP1-2.6, SSP2-4.5 and SSP5-8.5

for Drought Mode One (DM1)
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Figure 4.33: The same as Figure 4.32 but for Drought Mode Two (DM2)
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Figure 4.34: The same as Figure 4.32 but for Drought Mode Three (DM3)
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Figure 4.35: The same as Figure 4.32 but for Drought Mode Four (DM4)
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To better understand the impact of climate change on some drought characteristics, Run’s
Theory was performed on the observation data (GMFD) and the Ensemble of the models
utilised in this study (Table 4.2). The results indicate that 9, 17, 18 and 18 continuous
drought events have occurred in DM1, DM2, DM3 and DM4 respectively during the
reference period. Also, SSP1-2.6 results generally underestimated the number of continuous
events in all DMs except in DM3 where it had the same value as the observed. Similarly,
the number of continuous drought events reduced in all future terms for all DMs except for
the FF and DM1. Generally, the SSP1-2.6 overestimate slightly the mean severity (6.93),
intensity (1.3), duration and return period of drought in the historical series. DMs portray
distinct drought characteristics in the future. For instance, in the NF under SSP1-2.6, the
DML is projected to have the highest mean severity and intensity with an average of 5
months’ duration and the longest return period of 120 months. Similarly, DM3 is projected
to have the highest mean severity and intensity in the MF and DML1 in the FF. The mean
severity (12.15) and duration of drought increased in the FF in DM1 than the historical
value but the intensity was lower than simulated observed values. In DM2, the mean
characteristics of drought except for the return period of drought reduced in all future terms.
In DM3, drought severity and intensity decreased in the NF and FF but increased in the MF.
Mean severity and intensity reduced in the DM4 for the NF and MF while a slight increment
in severity of 0.32 was observed in the FF. This increment did not exacerbate the intensity
of drought. The SSP2-4.5 and 5-8.5 overestimated drought events where all the months
were under drought conditions during the reference period. In addition, no drought event
was recorded in the future. This could be attributed to the high increase in precipitation
projected in the Ensemble of the models under these scenarios as discussed earlier. This is

supported by the findings of Almazroui et al. (2020) who found that precipitation is
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expected to increase in the Near and Far term under these scenarios. The results of this study
deviate from the findings of Oguntunde et al. (2017) in which the authors suggested that
drought would increase in the future (2046 -2065 and 2081-2100) when they studied
drought frequency and intensity using CMIP5 climate models downscaled by RCA regional
climate models. The disagreement could be associated with the difference in the Global
Climate models used as CMIP6 projections of precipitation and temperature are higher than

projections made by CMIP5 models (Almazroui et al., 2020).

150



Table 4.2: Drought Characteristics of the Observed and Ensemble of the Models averaged over the time periods under SSP1-2.6, 2-4.5
and 5-8.5
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4.6  Assessment of SWATplus Model Performance in the Volta River Basin

4.6.1 Calibration and validation of the SWATplus model

The SWATDplus model was setup for the VRB basin using the 1992 land use map, the SRTM
DEM, climate data from the GMFD, and the FAO soil map. Figure 4.36 presents the results
obtained during the calibration and validation of the SWATplus model. The calibration was
conducted between 1987 and 1995, with the initial 2 years being the warmup period. Results
of the calibration from the Nawuni, Saboba, Sabari and Bamboi gauging stations revealed
that stations Nawuni, Saboba and Sabari present in the White Volta and Oti Basin
performed well. For example, the coefficient of determination (R?) for Nawuni, Saboba and
Sabari were 0.72, 0.91 and 0.69, respectively, which indicated a strong performance of the
model to simulate the hydrology of the VRB at these stations (Figure 4.36). Using the
criteria recommended by Moriasi et al. (2007), the Nash-Sutcliffe efficiency (NSE) value
obtained for Saboba (0.81) was very good, and that of Nawuni and Sabari was good. In
addition, the PBIAS statistics of the Nawuni (-9.1 %) and Sabari (-1.9 %) were very good,
and that of the Sabobo was good when compared to the recommended values in Table 4.3.
The Bamboi station, which was selected for the calibration of the Black Volta, showed an
unsatisfactory performance in the NSE (0.101) but performed satisfactorily when the
PBIAS (22.7 %) and the R? were considered. Most hydrological studies (Akpoti et al., 2016;
Aziz, 2017; Amisigo et al., 2018; Logah et al., 2023) that have been conducted in the Black
Volta Basin have primarily utilised the Bui station data record for calibration. In this study,
the inclusion of the reservoir into the SWATplus model during model delineation removed
any channel corresponding to the Bui gauging for delineation. The simulated streamflow of

Channel 188, which was directly downstream of the Bui dam, was compared with the
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streamflow of the Bui gauging station. The results showed that the NSE (0.34) was better
than that of Bamboi, and the hydrograph shows an overestimation of streamflow, which is
expected as the channel was downstream of the Bui gauging station. The R? (0.71) was
considerably better than the value obtained for the Bamboi gauging station. During the
validation period (1996 to 2003), the NSE values of Saboba (0.73) and Sabari (0.69) were
good based on the recommendations made in Table 4.3, while that of Nawuni (0.58) and
Bamboi (0.51) were satisfactory. PBIAS of Bamboi (-7.7 %) was very good, Saboba (-11.1
%) was good, and Nawuni (18 %) and Sabari (-21.6 %) were satisfactory. The R? values of
all the stations were good and were higher than 0.65. From these results, the SWATplus
model developed for the Volta River Basin was suitable for application in understanding

the impact of climate change on the hydrology of the VRB.
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Figure 4.36: Calibration (1989-1995) and Validation (1996-2003) plots for each gauging

station and their simulated SWATplus streamflow results
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Table 4.3: Performance evaluation criteria for SWAT model assessment using monthly time step

PBIAS (%)
3133%8 RSR NSE Streamflow Sediment N, P
Rating
Very good 0.00 <RSR <£0.50 0.75<NSE<1.00 PBIAS < +10 PBIAS < 15 PBIAS < +25
+10 < PBIAS < +15 < PBIAS < +25 < PBIAS <
Good 0.50 <RSR<0.60 0.65<NSE<0.75 +15 +30 +40
+15 <PBIAS < +30 < PBIAS < +40 < PBIAS <
Satisfactory 0.60 <RSR <0.70 0.50 <NSE <0.65 +25 +55 +70
Unsatisfactory RSR >0.70 NSE <0.50 PBIAS > +25 PBIAS > +55 PBIAS > +70

RSR is the ratio of the RMSE and standard deviation of measured data, NSE is the Nash-Sutcliffe Efficiency, and PBIAS is the Percent

Bias.

Source: Moriasi et al. (2007)
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4.6.2 Sensitivity analysis

The sensitivity of SWATplus model parameters was assessed for the VRB. The regression
model, the Sobol and the Morris OAT (MOAT) global sensitivity methods were applied
after calibration using the understanding from global sensitivity analysis in SWAT_CUP.
Because the SWATplus model has never been applied to the VVolta River Basin previously,
this study examines the sensitivity of thirty-five (35) model parameters that relate to
hydrological response unit, channel routing, groundwater and soil. The results of the first
MOAT analysis which represents 144 samples identified moist bulk density of soil (bd) and
curve number (cn2) as the most sensitive, the next most sensitive parameters were
percolation coefficient (perco) and soil depth (Z) (Figure 4.37). The PET coefficient
(petco), pothole evaporation coefficient (cn3_swf and soil evaporation compensation factor
(esco) also showed some sensitivity and, plant uptake compensation factor (epco), available
water capacity of the soil layer (awc), lateral flow coefficient latq_co, soil saturated
hydraulic conductivity (k), clay, epco and chl showed some slight sensitivity. The second
MOAT analysis results with 720 samples identified cn2, cn3_swf and perco as the most
sensitive, followed by esco, petco, Z, bd, awc, lat_len, k, clay and epco (Figure 4.37). Wang
and Solomatine, (2019) demonstrated that the MOAT was efficient and converged faster at
a smaller sampling size of 100. They iterated that the larger the sampling size the higher the
improvement of the MOAT in identifying sensitive parameters. In addition, the Sobol was
applied to Nawuni and Pwalugu using the SWAT+ Toolbox (Table 4.4) at seed amounts of
50 and 100 representing 2400 and 4800 samples, respectively. The results showed that the
sampling size was small and did not make the Sobol analysis converge thereby generating
1st-order sensitivity negative indices for some parameters, which was unsatisfactory

(Nossent et al., 2011; Wang and Solomatine, 2019). Wang and Solomatine (2019) noted
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that a large sampling size is required to make the Sobol sensitivity indices converge, leading
to a considerable increase in computation time depending on the model complexities and
number of parameters used. In the application of the Sobol technique in the SWAT+
Toolbox, the analysis took more than a month to complete the computation of sensitivity
indices for 5 seeds for the VRB using a laptop with 32 GB RAM and 2.7 GHz processing
speed. This made it computationally expensive to run Sobol analysis for a minimum of
10,000 samples reported by Wang and Solomatine (2019). Table 4.4 shows the result of the
Sobol analysis for Nawuni and Pwalugu stations. Any parameter with a sensitivity index
with three decimal places or less was considered significant in this study. From the results,
cn2, petco, perco, revap_co, z, esco, flo_min, cn3_swf, and awc were classified as sensitive.
Finally, the multi-regression analysis was performed to identify sensitive parameters after
500 model calibration simulations. The results are presented in Table 4.5. The results
revealed that cn2, alpha, slope_len, cn3_swf, ch_clay, chl, revap_co, slope, bd, clay, chk,
chd, silt and alb were the most sensitive parameters having a p-value less than 0.05
(Abbaspour, 2015). The cn2 was the most sensitive parameter in the basin identified in all

the sensitivity analyses conducted.
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Table 4.4: Sensitivity Analysis of Nawuni and Pwalugu using the Sobol method

Station Group Change Type Name Unit Slgagt:\?ﬁc;

Nawuni
hru Percent cn2 0.10327010
hru Replace petco fraction 0.05128169
hru Replace perco fraction 0.01365749
aqu Replace revap_co 0.00720238
sol Percent z mm 0.00671128
hru Replace esco 0.00216661
rte Percent chn 0.00016490
aqu Replace alpha days 0.00004283
hru Percent slope m/m 0.00001601
hru Replace epco 0.00001357
sol Percent alb 0.00000800
hru Percent lat_ttime days 0.00000000
rte Percent ch_bd (g/cm**3) 0.00000000
aqu Percent bf_max mm 0.00000000
hru Percent slope_len m 0.00000000
hru Percent ovn 0.00000000
hru Percent canmx mm/H20 -0.00000289
hru Percent lat_len m -0.00001067
sol Percent awc mm_H20/mm -0.00083892
sol Percent k mm/hr -0.00091722
aqu Percent flo_min m -0.00869976
aqu Percent revap_min m -0.01158543
hru Percent cn3_swf -0.02145861

Pwalugu
hru Percent cn2 0.2401097177
hru Replace esco 0.0917247572
hru Percent cn3_swf 0.0439971466
hru Replace petco fraction 0.0096150879
sol Percent awc mm_H20/mm 0.0051390746
aqu Percent flo_min m 0.0037510463
sol Percent z mm 0.0028505414
hru Replace perco fraction 0.0024702629
aqu Replace revap_co 0.0011749411
rte Percent chn 0.0000478956
hru Percent slope m/m 0.0000166744
hru Replace epco 0.0000087904
sol Percent alb 0.0000001949
hru Percent ovn 0.0000000000
rte Percent ch_bd (g/cm**3) 0.0000000000
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1st Order

Station Group Change Type Name Unit Sensitivity
hru Percent slope_len m 0.0000000000
hru Percent lat_ttime days 0.0000000000
aqu Percent bf_max mm 0.0000000000
hru Percent canmx mm/H20 -0.0000001984
hru Percent lat_len m -0.0000012057
aqu Replace alpha days -0.0001654174
sol Percent k mm/hr -0.0009983021
aqu Percent revap_min m -0.0210382755

The parameters marked in red were identified as sensitive
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Table 4.5: Global sensitivity of SWATplus parameters using Multi-regression analysis

Paiz\r/nAe:;rs Description Std. Error  t-stats = P-value Si%ci)l;ig:mt
cn2 SCS condition Il curve number 2 66E-03 14.-198 2E-16 .
alpha Baseflow alpha factor (1/days) 5 74E.01 498 8.98E-07 Fokok
alb Moist soil albedo 187E-03 4679  3.80E-06 Hoxn
slope_len eAr‘c’)iirsﬂe(m)Sk’pe length for 4 76r 03 4276 2.31E-05 Hoxx
cn3_swf Pothole evaporation coefficient 3.67E-03 3463  0.000584 —_—
ch_clay gnhj‘ggz' clay percent of bank 5 56 3 3417 0.000689 Hoxx
chl Channel length 2.26E-03 -3.054 0.002385 wox
revap_co SJ:#:‘SZ‘;T” VA" 5 69E-03  -2.787  0.005543 ok
slope ﬁ‘éelja?:] mf)"’pe steepness i, 6oE.03 2671  0.00783 ok
Moist bulk density (Mg/m3 or
bd glem3) 3.42E-03 -2594 0.009774 **
clay Clay content (% soil weight) 266E-03 -2.365 0.018448 *
chk Channel bottom conductivity 2 34E-03 219  0.029047 *
chd Channel depth 362E-03 2118  0.034709 *
silt Silt content (% soil weight) 274E-03 -2.001 0.046025 *
ovn Manings T VU T o39e03 1049 0.051876
dis_stream  /Average distance to stream 220E-06 1.933 0.053878
lat_len ?Lljggﬁrfagsl:‘?;\ljv for lateral 4 5oe 03 1787  0.074559
chn Channel Manning's n value 276E-03  -1537 0.124987
perco Soil percolation coefficient 213E-01 -1.294 0.196258
ch_bd channel dry bulk density 3.35E-03  -1.199  0.231204
latq_co Lateral soil flow coefficient 3.08E-01 -1.054 029237
petco PET coefficient 3.44E-03  1.018  0.309039
Threshold depth of water in the
to occur (mm H20)
Available water capacity of the
awc soil layer (mm H20/mm soil) 3.54E-03 0.889 0.374534
esco Soil evaporation compensation 2 78E-01 0691  0.490051

factor
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SWAT Description Std. Error tstats  P-value  Sldnificant
Parameters Codes

surlag Surface runoff Iag coefficient 9.15E-03 0.67 0.50295

maximum  daily  baseflow
bf _max when all channels are 9.22E-02  -0.657 0.511815
contributing
Minimum aquifer storage to

flo_min 257E-03  -0.624 0.532936
allow return flow (m)

chs Channel slope 1.74E-03  -0.623 0.533624

canmx Maximum canopy storage 2.51E-03 0423  0.67275

lat_ttime ~ Lateral flow travel time (days) 1 14g.03  -0.194 0.846274

chss Channel side slope 286E-03  0.134  0.893503

epco Plant — water Uptake 5 19E01 0123 0.902347

Compensatlon factor

K Saturated hydraulic 5 o4e03 0102 0.918405
conductivity (mm/hr)

; Depth from soil surface to 306E-03 -0091 092738

bottom of layer (mm)

Significant codes: 0 = “***°/(0.001 = “**° /(0.01 = **’, and > 0.05 = °.". t-stats = Student T-

Statistics
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The best values of parameters identified in each global sensitivity analysis during
calibration were incorporated in the SWAT+ Toolbox and run in manual calibration mode.
The integration of these parameters generated NSE and PBIAS values closer to the values
obtained when all the parameters were utilised. Most parameters only present in the multi-
regression sensitivity analysis were discarded except alpha because they did not improve
the general model statistics when incorporated during the manual calibration. The

parameters and their best calibration values utilised in the VRB’s SWATplus model are

listed in Table 4.6.
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Table 4.6: The combined SWATplus parameters sensitive in the VRB

Change Min Bes't . Max .

Type Parameter Type Value i:/allbrated Fitted_Value value Unit
alue

hru cn2 Percent -40 -16.6079 -16.6079 40
hru cn3_swf Percent -40 -17.0174 -17.0174 40
hru lat_len Replace 1 4.00996 4.00996 150 m
hru latg_co Replace 0 0.16702 0.16702 1
hru €sco Replace 0 0.12735 0.12735 1
hru epco Replace 0 0.79473 0.79473 1
hru perco Replace 0 0.41248 0.41248 1 fraction
hru petco Percent -40 -35.5287 -35.5287 40 fraction
sol z Percent -40 26.8965 26.8965 40 mm
sol bd Percent -40 -39.3494 -39.3494 40 mg/m**3
sol awc Percent -40 -26.7193 -26.7193 40 mm_H20/mm
sol k Percent -40 -36.9626 -36.9626 40 mm/hr
sol clay Percent -40 -9.80593 -9.80593 40
aqu alpha Replace 0 0.02292 0.02292 1 days
aqu flo_min Percent -40 15.8323 15.8323 40 m
aqu revap_co Percent -40 -1.53593 -1.53593 40

164



4.7  Climate Change Impact on Hydrology and Hydrological Drought in the Volta
River Basin

4.7.1 Climate change impact on hydrology

The impact of climate change on the hydrology of the VRB was assessed using the
ACCESS-CM2 model as climate input for the calibrated SWATplus model of the VRB.
Figure 4.38 illustrates the streamflow hydrograph of the annual cycle of the VRB during
the ACCESS-CM2 historical, Near term, Mid term and Far term, and the observed
streamflow records of Nawuni, Bamboi, Saboba and Sabari gauging stations. The results
showed that the ACCESS-CM2 underestimated the peak streamflow from August to
October and overestimated the streamflow during the low flow period from December to
February period in all the stations during the baseline period. The model demonstrated
robustness in capturing the annual cycle of streamflow in all the gauging stations during the
historical periods. These performances were also observed in the future, especially in
Nawuni, Sabari and Bamboi. Streamflow was projected to increase in the future (Near, Mid
and Far term) by over 200 m3/s. The characteristics of change during the future are distinct.
For instance, the model projected more streamflow would be generated under scenario
SSP1-2.6 in the NF more than the other scenarios and observed in all the stations. In
addition, SSP2-4.5 projected more streamflow in the MF and FF in all the stations. Table
4.7 gives the streamflow change magnitude for the future terms and the observation at the
baseline period. The streamflow projection suggested that Nawuni on the White Volta and
Bamboi on the Black Volta would experience greater streamflow changes. Assessment of
other hydroclimatological parameters such as water yield, potential evapotranspiration,

actual evapotranspiration, lateral flow, surface runoff, soil water content and precipitation
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Figure 4.38: Hydrograph of the streamflow annual cycle of the observed hydrological
gauge stations (Nawuni, Bamboi, Sabari and Saboba) and their simulated streamflow from
the ACCESS-CM2 model’s historical and Future periods (NF, MF and FF) and SSP1-2.6,

2-4.5 and 5-8.5
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were carried out (Table 4.8). The result revealed that during the baseline period, average
annual surface runoff and lateral flow contributed about 55 % and 45 % of the water yield.
This changed in the future when more surface runoff (> 65 %) was generated in all the
future periods as a result of the projected increment in precipitation. The largest water yield
amounts were generated under SSP2-4.5 during the Mid and Far term. Similarly, the
projection of precipitation by the ACCESS-CM2 model was higher during the MF and FF
under scenario SSP2-4.5. Other parameters like the averaged deep percolation and soil
water content also increased proportionally to the increment in precipitation. Average actual
evapotranspiration (et) reduced throughout the future periods under all the climate change
scenarios. The lowest et value was observed in the SSP1-2.6 during the FF. Potential
evapotranspiration (PET) increased in all the scenarios with the greatest magnitude of
change observed in the FF under SSP5-8.5. This is due to the model reaching its highest
temperature record of 5 °C globally under SSp5-8.5 (Tebaldi et al., 2021). Even though
PET was increasing, the water balance (Pr — PET) suggests a reduction in the water deficit

in all future periods except the FF period under SSP5-8.5 than witnessed in the baseline.
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Table 4.7: Projected future changes in streamflow in the VRB for Near (2021-2050), Mid (2051-2080) and Far term (2081-2100) under
SSPs 1-2.6, 2-4.5 and 5-8.5 scenarios

Change in Streamflow Amount in the Future in m3/s (percentage change)

NF

MF FF
Station
SSP1-2.6 SSP245  SSP5-8.5 SSP1-2.6 SSP2 4.5 SSP5-8.5 SSP1-2.6 SSP2 4.5 SSP5-8.5
Nawuni 3969.43 3616.83 3263.76 3818.26 4895.78 3917.95 2970.24 5469.12 3048.94
(117.4) (106.9) (96.5) (112.9) (144.8) (115.8) (87.8) (161.7) (90.1)
Saboba 1514.21 1305.31 1020.83 1158.05 1815.63 1086.69 834.59 2264.73 805.25
(37.5) (32.3) (25.3) (28.7) (45) (26.9) (20.7) (56.1) (19.9)
Sabari 1870.86 1585.02 1316.64 1516.54 2207.43 1355.77 1191.32 2706.52 1053.97
(43.4) (36.7) (30.5) (35.1) (51.2) (31.4) (27.6) (62.7) (24.4)
Bamboi 6295.78 5113.71 4907.95 6698.61 7854.61 5895.71 5860.26 8912.46 4191.06
(109.7) (89.1) (85.5) (116.7) (136.9) (102.7) (102.1) (155.3) (73)

NF refers to Near term, MF means Mid term and FF means Far term. The values in the bracket represent the percentage of the future from the observed.
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Table 4.8: Average projected amounts of some hydro-climatological parameters in the VRB under SSP1-2.6, SSP2-4.5 and SSP5-8.5
scenarios

Future pr surface lateral wateryld perc et sw_ave pet pr-pet o:Wﬁ@m

Period (mm)  runoff (mm) Flow (mm) (mm) (mm) (mm) (mm) (mm) (mm) (%)
SSP1-26

Historical 967.37 56.84 46.89 103.78 75.96 781.9 336.33 1328.67 -361.3

NF 11124 170.57 69.89 240.27 104.83 751.7 435.27 1352.67 -240.27 14.99

MF 1090.3 181.5 72.89 254.37 107.66 714.47 448.37 1381.67 -291.37 1271

FF 1063.85 1734 71.02 244.5 104.79 700.35 441.8 1382.5 -318.65  9.97
SSP2-4.5

NF 1091.17 150.91 69.08 219.97 105.57 752.67 431.53 1350.33 -259.16 12.80

MF 1129.77 201.3 76.34 277.73 113 725.43 461.67 1382.33 -252.56 16.79

FF 1163 221.55 78.49 299.85 114.5 734 466.15 1401.5 -238.5 20.22
SSP5-8.5

NF 1057.77 149.48 68.61 218.27 104.64 722.23 433.3 1358.67 -300.9 9.34

MF 1080.63 163.83 72.63 236.43 110.43 722.63 450.27 1407.33 -326.7 1171

FF 1074.9 148.25 68.33 216.6 105.11 742.65 434 1482.5 -407.6 11.12

pr = precipitation, wateryld = water yield, perc = percolation into vadose zone, et = actual evapotranspiration from the soil, sw_ave =
average soil moisture content and pet = potential evapotranspiration.
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4.7.2 Climate change impact on hydrological drought occurrence

4.7.2.1 Historical and future patterns of hydrological drought

The observed Standardized Streamflow Index (SSFI) for Nawuni, Saboba, Sabari and
Bamboi are shown in Figure 4.39. SSFI generally identifies hydrological drought in the
1970s, 1980s, 1990s and 2000s in all the gauging stations. The hydrological drought that
occurred during the 1980s was the longest duration and the highest intensity in all the
stations evaluated. The highest drought intensity was observed in the Bamboi station’s SSFI
drought indices on the Black Volta during the 1980s. These results correspond to the
reported low inflow rates of Volta Lake which affected the hydropower generation in the
Akosombo Dam (Bekoe and Logah, 2013). Bekoe and Logah (2013) reported that Volta
Lake recorded the lowest intake volumes in the years 1983-1984, 1997-98, 2003 and 2006-
2007 but found that hydrological drought accounted for low intake volume in 1983-1984,
1997 and 2006-2007. Figure 4.39 indicates that hydrological drought persisted longer than
in 1983-1984 in all stations analysed. Also, 1997 was not a drought year but 2003 was rather
a drought year from the findings of this study. The dissimilarities of the results could be a
result of differences in the data utilised as well as the methodology employed since they
used the Probability of Exceedance (POE) method while this study applied the SSFI.
Gebrechorkos et al. (2022) identified that moderate drought severity was the highest during
the 1980s in all subbasins and moderate drought severity decreased in the 1990s and 2000s
in the Black Volta. The results of this study agree with their finding. For Instance, Bamboi
(Fig 4.42d) on the Black Volta reveals a decreasing moderate drought intensity and duration

from the 1980s to the 1990s and 2000s.
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Figure 4.40 illustrates the result of the simulated Standardized Streamflow Index (SSFI) for
Nawuni, Saboba, Sabari and Bamboi under scenarios SSP1-2.6, 2-4.5 and 5-8.5. From the
results, the hydrological condition of the Volta River Basin during the historical period
(1963 to 2014) alternated between dry and wet conditions. In all stations, drought conditions
occurred during 1972 to 1975, 1982 to 1989, 1996 to 1997, 2002 to 2004 and 2006-2007 to
2008. The result partially agrees with Bekoe and Logah (2013), who stipulated that
hydrological drought occurred only during 1983-1984, 1997 and 2006-2007. This affirms
the ability of the bias-corrected and statistically downscaled ACCESS-CM2 model output
to capture the historical hydrological drought in the VRB. The projection of hydrological
drought in the VRB shows a shift from alternating dry and wet conditions to permanently
wet conditions in the future. The trajectory of wet conditions indicates the presence of
extreme wet indices from moderately, severe and extreme wet conditions in the VRB under
all the scenarios at all the gauging stations utilised in the study. Jin et al. (2018) also found
that streamflow would increase in the future from the 2050s while drought conditions
persist before that period under RCP8.5. The departure of this study from their results is
that extreme wet conditions occurred much earlier in the 2020s. Table 4.9 and 4.10 shows
the number of wet and drought events in the historical and future (Near, Mid and Far term)
periods. From the result, moderate drought was predominantly present in all the stations
during the historical periods (Table 4.10). In the future, no drought events were projected
under all the scenarios and all the stations. Generally, wetter events were projected under
SSP2-4.5 more than all the scenarios at all the stations except for Bamboi where wetter
events were greater in SSP5-8.5 (Table 4.9). Severe and extreme wet conditions would
become a normal feature in all future terms in all the locations and under all the scenarios.

In Nawuni, more extreme wet events would occur under SSP2-4.5 with the most extreme
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events observed in the Far term and severe wet events in the Mid term. More wet events are
projected under SSP5-8.5 than under SSP1-2.6 but they mostly consist of moderately wet
conditions. In Saboba and Sabari in the Oti Basin, more wet events were simulated under
SSP2-4.5 and also had the highest extreme wet events than all other scenarios. The number
of severe wet events was greater under SSP1-2.6 in Saboba and under SSP2-4.5 in Sabari.
More extreme wet events were projected at Bamboi under SSP1-2.6 and 2-4.5 with the
highest number of events under SSP2-4.5 being slightly larger than events in SSP1-2.6.
Even though more wet events were projected under SSP5-8.5 at Bamboi, they were mostly
dominated by severe and extreme conditions, where the severe events were higher in all the
scenarios but the number of extreme wet events was considerably lower than values
observed under SSP1-2.6.

The Volta River Basin will be more flood-prone than drought-prone in the future. The
projections of increases in wet events in the VRB can have both positive and negative
effects on the inhabitants and their socioeconomic outlook. For instance, excess amount of
rainfall can enhance agricultural activities and improve household income in the VRB
(Dotse et al., 2023). Alternatively, the number and magnitude of wet events projected in
the VRB could directly lead to frequent occurrence floods which can impact food security,
infrastructure (i.e. housing, bridges, roads and many more), health and also claim lives.
Balgah et al. (2023) found that flooding impacts food security through the destruction of
crops, stored seeds, loss of livestock and farm infrastructure. The major economic activity
of the inhabitants of the VRB is agriculture and therefore the occurrence of flooding may
have dire consequences on their livelihood and income (Lawanson et al., 2023). Flooding
could also affect human capital by affecting their health through communicable and non-

communicable water-borne diseases and vector-borne diseases (Saulnier et al., 2018).
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Figure 4.39: Historical Standardised Streamflow Index (SSFI) for Nawuni (a), Saboba (b),

Sabari (c) and Bamboi (d) hydrological gauging stations
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Figure 4.40: Simulated drought indices (Standardised Streamflow Index) for stations
Nawuni (a, b & ¢), Bamboi (j, k & ), Sabari (g, h, & i) and Saboba (d, e & ) under SSP1-

2.6, 2-4.5 and 5-8.5 scenarios

174



Dotse et al. (2023) suggest that the increments in rainfall amount directly leading to an
increase in streamflow will increase hydropower generation in the VRB. Even though this
assessment is valid, flooding could lead to soil erosion and land degradation which will
ultimately increase the sediment load in the Volta River and may adversely affect the lake

volume and the dam structure.
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Table 4.9: Assessment of the occurrence of moderate, severe and extreme wet conditions in the Volta River Basin during the Near,

Mid and Far term under SSP1-2.6, 2-4.5 and 5-8.5

Number of Wet Events
Gauging Stations Nawuni Saboba Sabari Bamboi
Scenarios Time Period Moderate ~ Severe  Extreme Moderate ~ Severe  Extreme Moderate ~ Severe  Extreme Moderate ~ Severe  Extreme

>1 >2) (>3) >1 >2 (>3 1 >2 (>3) >1 >2 (>3)

Reference Period 41 1 1 55 5 0 55 5 0 57 12 0
SSP126 NF 97 134 57 56 127 86 55 120 97 42 64 227
MF 150 145 24 124 155 36 114 157 45 7 100 253
FF 113 72 12 98 75 23 99 73 31 12 99 129

Reference Period 41 12 1 55 5 0 55 5 0 57 12 0
SSP245 NF 147 117 31 157 117 60 143 122 61 79 117 147
MF 115 160 75 110 134 96 97 139 107 6 57 297
FF 59 103 78 53 99 88 47 104 89 0 21 219

Reference Period 41 12 1 55 5 0 55 5 0 57 12 0
SSP585 NF 155 98 22 99 91 65 104 95 67 67 148 135
MF 159 158 21 142 109 46 144 109 49 17 138 205

FF 131 65 5 102 66 25 100 67 27 43 134 63
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Table 4.10: Assessment of the occurrence of moderate, severe and extreme drought conditons in the Volta River Basin during the Near, Mid and Far term under
SSP1-2.6, 2-4.5 and 5-8.5

Number of Drought Events

Scenarios

Gauging Stations

Nawuni

Saboba

Sabari

Bamboi

Time Period

Moderate
(<-1)

Severe
(<-2)

Extreme
(<-3)

Moderate
(<-1)

Severe
(<-2)

Extreme
(<-3)

Moderate

(<-1)

Severe
(<-2)

Extreme
(<-3)

Moderate

(<-1)

Severe
(<-2)

Extreme
(<-3)

SSP126

SSP245

SSP585

Reference Period
NF
MF
FF

Reference Period
NF
MF
FF

Reference Period
NF
MF
FF

50

o o o

o O o o

o o o o

o O o o

o O o o

o o o o

o O o o

49

o o o

o O O -

o o o

o O O -

o O o o

o o o o

o O o o

45

o o o

o O O

o o o -

o O O

o O o o

o o o o

o O o o

72

o O o

72

oo o

72

o O o

o O O o

o o o o

o O o o

o O O o

o o o o

o O o o
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4.7.2.2 Relationship between Meteorological and Hydrological Drought

The relationship between meteorological and hydrological drought was assessed. Using
Oguntunde et al. (2017) as a reference, the 12-month SPEI was correlated with 12-month
SSFI indices to understand the propagation of meteorological to hydrological drought in all
four stations (Nawuni, Saboba, Sabari and Bamboi) in the VRB. Shukla and Wood (2008)
also found that there was a high correlation between 12-month accumulated SPEI and 12-
month SSFI indices. The cross-correlation between the SPEI and 12-month SSFI indices is
present in Figure 4.41 at different lag times. The lag series with the maximum correlation
was considered the propagation time. From the result, the maximum correlation was greater
than 0.5 and occurred at lag -1 in Nawuni, Saboba and Sabari. This suggests that the 12-
month meteorological drought lags the hydrological drought by one month. At Bamboi, the
highest correction value was less than 0.3 indicating a poor correlation between the SPEI
and SSFI indices. The maximum correlation occurred at lag -2 suggesting hydrological
drought leads meteorological drought by 2 months. This result is contrary to the findings of
Oguntunde et al. (2017) where meteorological drought leads hydrological drought by 2-3
months. Ho et al. (2021) found that other factors apart from precipitation could affect
hydrological drought leading to runoff and evapotranspiration deficits preceding that of

precipitation.

178



Bamboi

il

||. MH """ T HH% """ | '|| """"""""""""""
-------------------- JHHHH
w*,”m“vmm
.IHH """ T IHH ]

Figure 4.41: Cross-correlation between Standardised Precipitation-Evapotranspiration

Index (SPEI) and Standardised Streamflow Index (SSFI) at a 12-month accumulation

period
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5.0

5.1

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

Conclusion

5.1.1 Potential impact of climate change on spatiotemporal characteristics of

meteorological drought and the performance of model outputs

The following conclusions are derived from this research on the potential impact of climate

change, spatiotemporal drought characteristics as well as performance of CMIP6 and NEX-

GDDP models.

Evaluation of GMFD precipitation reveals that it performs well comparable to CRU
when assessed against in-situ stations.

NEX-GDDP outperforms CMIP6 in capturing the spatial patterns and annual cycle
of climatic variables with higher pattern correlation and less spatial bias in the VRB.
Only CMIP6 model, NorESM2-MM reasonably captured the peak rainfall months
in the Guinea Coast zone.

There is little agreement between GCM models on the spatiotemporal
characteristics of precipitation and temperature change. Historical trends in
precipitation and temperature indicate a decreasing (-2.5 mm/year?) and increasing
(0.01 — 0.05 °Clyear) trends respectively. NEX-GDDP models generally simulated
increasing historical precipitation and temperature trend which was evident in the
ensemble mean except for GISS with decreasing trend in precipitation.

Majority of models projected more precipitation change under SSP5-8.5 in the NF

and FF while more precipitation is expected under SSP2-4.5 in the MF.
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e Four Drought modes (DMs) identified in the VRB explains 85 % and 87 % of the
variability of 12- and 24-month scale SPEI respectively. These DMs are associated
with different cycles ranging from 1 to 16 years that links to either predominantly
wet or dry periods in the basin.

e NEX-GDDP models such as ACCESS-CM2, ACCESS-ESM1, GISS and BCCC
performed slightly better in reproducing DMs than their CMIP6 versions.
Nevertheless, bias correction and statistical downscaling in NEX-GDDP models
does not improve their ability to reproduce all DMs.

e Ensemble mean of models projects potential decrease in meteorological drought
events and intensities in the future under SSP2-4.5 and 5-8.5 but rather plagued by

extreme wetter conditions. More normal conditions are observed under SSP1-2.6.

5.1.2 Performance of SWATplus model in simulating the water balance of the Volta
River Basin
e SWATplus model was calibrated, validated and found to reasonably simulate the

hydrology of the VRB.

5.1.3 Projections of climate change impact on streamflow and hydrological drought
in the Volta River Basin

e Simulation suggest significantly increase in the future streamflow due to a projected

increase in rainfall amount in the future. Consequently, hydrological drought events

and its characteristics are projected to decrease drastically in the future.
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Hydrological drought leads meteorological drought by one month in all stations.

The major issue that will pose a greater threat to the VRB is flooding.

5.2 Limitations of the Study

The research utilised the NEX-GDDP CMIP6 output to assess the impact of climate change
on meteorological and hydrological drought in the VRB. The models utilised showing a
good performance in capturing some aspects of the climate of the VRB, they remain
projections of the future and are characterised by large uncertainties which can affect the
result of this study. Another limitation relates to the acquisition of in-situ datasets. These
datasets can be plaques by systematic and random errors which can affect the accuracy of
the results of this study. Finally, the author’s inability to assess adequate information to
model reservoir operations and irrigation in this research could impact the results obtained

in this study.

5.3  Contribution to Knowledge

1. The research provided valuable insights into climate change impacts in the Volta
River Basin.

2. The extensive use of climate and hydrological models have added to the body of
knowledge on meteorological and hydrological droughts on the far and short term
basis in the Volta River Basin.

3. Valuable information for guided decision making and planning to safeguard the

Volta River Basin’s vital services and resources has been provided.
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54  Recommendations

The findings of this study provides valuable insights into the climate change impacts on the
VRB and provide information for informed decision-making and planning to safeguard the
basin's vital services and resources.

The increase in flood events will pose a major risk to agriculture, infrastructure,
transportation and quality of human lives. Concerted effort and planning must be
undertaken in the VRB to improve adaptation and mitigation to climate change impact

specifically more importance must be placed on reducing the impacts of floods.

Areas for further studies

The findings of this research could be improved by simulating the impact of land use or
cover change impact on streamflow. This will help enrich our understanding of how
vegetation can play a key role in mitigating the effect of climate change in the VRB. In
addition, reservoir operations and irrigation could be included to enhance the robustness of
the results. Also, future studies can focus on climate change's impact on drought using

dynamically downscaled CMIP6 outputs under different global warming levels (GWL).
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APPENDICES

APPENDIX 1: Map of Volta River Basin indicating the main subbasins (Black Volta,

White Volta, Oti and Lower Volta Basins)
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Source: Williams et al. (2016)
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APPENDIX 2: Soil types and characteristics of the VVolta River Basin

Area
Hydrolo
Dominant No. Area Perce
Soil Name Sub_Type gical TEXTURE Area
Soil Group LAYERS (km”2)  ntage
Group
(%)
Acrisols Af18-1a-1024 Ferric 2 C SANDY_LOAM 333.89
Af2-1025 Ferric 2 C SANDY_CLAY_LOAM 1602.65
A010-1a-1048 Orthic 2 C SANDY_LOAM 200.33
Ao011-b-1051 Orthic 2 D LOAM 333.89
A013-1052 Orthic 2 D LOAM 66.78  7479.05 1.81
Aol-ab-1046 Orthic 2 D SANDY_CLAY_LOAM 1535.88
Ao046-a-1058 Orthic 2 C SANDY_CLAY_LOAM 1335.54
A059-a-1063 Orthic 2 C SANDY_CLAY_LOAM 1201.99
Ap22-2a-1074 Plinthic 2 C SANDY_CLAY_LOAM 868.1
Cambisols Bel-1081 Eutric 2 D LOAM 667.77
Be25-1083 Eutric 2 D CLAY_LOAM 6744.5
Be42-2-3b-
Eutric 2 D CLAY_LOAM 267.11
1093
Be7-1b-1096 Eutric 2 C SANDY_LOAM 400.66
12353.7
Bf5-2-3ab- 3
Ferralic 2 C CLAY_LOAM 333.89 8
1102
Bv2-1138 Vertic 2 D CLAY 1602.65
Bv2-3a-1140 Vertic 2 D CLAY 1068.44
Bv3-1141 Vertic 2 D CLAY 267.11
Bv6-1145 Vertic 2 D CLAY 1001.66
Gleysols G1-3a-1192 2 C CLAY 801.33
G4-a-1198 2 C LOAM 600.99
2604.31 0.63
G5-a-1199 2 D CLAY_LOAM 1001.66
G6-a-1200 2 C LOAM 200.33
Lithosols 1-60 2 C LOAM 1736.21
Orthic
1-Ao0-1227 2 D LOAM 4540.85 41268.3  10.01
Cambisols
1-b-1323 2 C LOAM 2203.65
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Area

Hydrolo
Dominant No. Area Perce
Soil Name Sub_Type gical TEXTURE Area
Soil Group LAYERS (km”2)  ntage
Group
(%0)
Eutric
1-Be-1230 2 D LOAM 267.11
Cambisols
Eutric
1-Be-a-1232 2 D LOAM 9081.7
Cambisols
1-G-1253 Gleysols 2 C LOAM 1535.88
Ferric
I-Lf-1255 2 C SANDY_CLAY_LOAM 1068.44
Luvisols
Ferric
I-Lf-c-1270 2 C SANDY_CLAY_LOAM 3272.08
Luvisols
Ferric
I-Lf-Lp-1257 2 D SANDY_CLAY_LOAM 801.33
Luvisols
Ferric
Luvisols-
|-Lf-Rd-1264 2 D LOAM  13088.33
Dystric
Regosols
Dystric
1-Rd-79 2 D LOAM 200.33
Regosols
Eutric
I-Re-b-1294 2 C LOAM 2604.31
Regosols
Solodic
1-Ws-1298 2 D LOAM 868.1
Planosols
Fluvisols J2-a-1327 2 C LOAM 5075.07
5676.06 1.38
Jel-1359 Eutric 2 C LOAM 600.99
Luvisols Lfl-1a-1423 Ferric 2 C LOAMY_SAND 347241
Lfl-1a-1424 Ferric 2 C LOAMY_SAND  11151.79
Lf12-1a-1427 Ferric 2 C SANDY_LOAM 734.55
Lf12-a-1429 Ferric 2 C SANDY_CLAY_LOAM 267.11
5742.84 1.39
Lf12-b-1431 Ferric 2 C SANDY_CLAY_LOAM 6744.5
Lf13-1432 Ferric 2 C SANDY_CLAY_LOAM 734.55
Lf18-1434 Ferric 2 C SANDY_CLAY_LOAM 3806.3
Lf20-1a-1436 Ferric 2 C SANDY_LOAM  13689.32
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Area

Hydrolo
Dominant No. Area Perce
Soil Name Sub_Type gical TEXTURE Area
Soil Group LAYERS (km”2)  ntage
Group
(%)

Lf25-1438 Ferric 2 C SANDY_CLAY_LOAM 1135.21
Lf26-a-1442 Ferric 2 C SANDY_CLAY_LOAM 333.89
Lf26-a-1443 Ferric 2 C  SANDY_CLAY_LOAM 200.33
Lf26-a-1444 Ferric 2 C SANDY_CLAY_LOAM  17362.07
Lf30-132 Ferric 2 C SANDY_CLAY_LOAM 1135.21
Lf30-1a-1450 Ferric 2 C SANDY_LOAM 3205.31
Lf31-a-1453 Ferric 2 C SANDY_CLAY_LOAM 28113.2
Lf32-1a-1457 Ferric 2 Cc SANDY_LOAM 600.99
Lf32-a-1458 Ferric 2 C SANDY_CLAY_LOAM 1535.88
Lf34-a-1459 Ferric 2 C SANDY_CLAY_LOAM 2270.42
Lf35-1460 Ferric 2 C SANDY_CLAY_LOAM 4006.63
Lf37-1463 Ferric 2 C SANDY_CLAY_LOAM 4340.52
Lf38-1464 Ferric 2 Cc SANDY_CLAY_LOAM 133.55
Lf41-2a-1469 Ferric 2 C SANDY_CLAY_LOAM 133.55
Lf7-a-1492 Ferric 2 C SANDY_CLAY_LOAM 9081.7
Lf8-a-1494 Ferric 2 C SANDY_CLAY_LOAM  12954.77
Lg10-1499 Gleyic 2 C  SANDY_CLAY_LOAM 66.78
Lg1-1495 Gleyic 2 C  SANDY_CLAY LOAM 113521
Lg12-1501 Gleyic 2 C SANDY_CLAY_LOAM 1402.32
Lg1-3a-1496 Gleyic 2 C CLAY 5475.73
Lg23-a-1508 Gleyic 2 C  SANDY_CLAY_LOAM 600.99
Lg28-1a-1513 Gleyic 2 Cc SANDY_LOAM 7479.05
Lg3-1a-785 Gleyic 2 C SANDY_LOAM  1602.65
Lg3-2a-786 Gleyic 2 C  SANDY_CLAY LOAM 434052
Lg5-2a-1515 Gleyic 2 Cc SANDY_CLAY_LOAM 7946.49
Lg5-3a-1516 Gleyic 2 c SANDY_CLAY  2270.42
Lg8-1520 Gleyic 2 C  SANDY_CLAY_LOAM 1201.99
Lg9-1522 Gleyic 2 Cc SANDY_CLAY_LOAM 2537.53
Lp10-1a-1527 Plinthic 2 C SANDY_LOAM 133.55
Lp2-1529 Plinthic 2 C  SANDY_CLAY_LOAM 2136.87
Lp2-a-1530 Plinthic 2 C SANDY_CLAY_LOAM  22771.02
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Area

Hydrolo
Dominant No. Area Perce
Soil Name Sub_Type gical TEXTURE Area
Soil Group LAYERS (km”2)  ntage
Group
(%)
Lp3-a-1956 Plinthic 2 D SANDY_CLAY_LOAM 1068.44
Lp4-1532 Plinthic 2 D SANDY_CLAY_LOAM 3205.31
Lp4-1533 Plinthic 2 D  SANDY_CLAY_LOAM 9949.8
Lp5-1534 Plinthic 2 D SANDY_CLAY_LOAM 267.11
Lp5-1a-1536 Plinthic 2 C SANDY_LOAM  17495.62
Lp6-1a-1540 Plinthic 2 C SANDY_LOAM  13221.88
Lp7-1541 Plinthic 2 D SANDY_CLAY_LOAM 5141.84
Lp8-1542 Plinthic 2 D SANDY_CLAY_LOAM 5809.62
Lp9-1543 Plinthic 2 D SANDY_CLAY_LOAM 2537.53
Nitosols Nd1-1544 Dystric 2 Cc LOAM 1135.21
Nd3-1565 Dystric 2 C LOAM 133.55
Nd7-1570 Dystric 2 C LOAM 2203.65
5742.84 1.39
Nd9-1574 Dystric 2 Cc SANDY_CLAY_LOAM 200.33
Ne21-b-1589 Eutric 2 C LOAM 667.77
Ne6-2b-1592 Eutric 2 C LOAM 1402.32
Arenosols Qcl1-1598 Cambic 2 B SAND 2203.65
Ql1-1a-1614 Luvic 2 B SAND  10350.46
13756.1 3.34
QI3-1a-1630 Luvic 2 C SANDY_LOAM 801.33
QI7-1637 Luvic 2 B LOAMY_SAND 400.66
Regosols Rd1-1a-1647 Dystric 2 C LOAMY_SAND 133.55
Re24-1665 Eutric 2 C LOAM 1602.65
Re24-1667 Eutric 2 C LOAM 333.89
Re24-1a-1669 Eutric 2 C SANDY_LOAM 267.11
Re33-1673 Eutric 2 C SANDY_CLAY_LOAM 1469.1
Re33-1674 Eutric 2 Cc SANDY_CLAY_LOAM 6343.83  43739.0
Re33-1a-1676 Eutric 2 C SANDY_LOAM 600.99 6 1ot
Re33-1a-1677 Eutric 2 C SANDY_LOAM  17695.95
Re34-1a-1680 Eutric 2 Cc SANDY_LOAM 3873.08
Re35-1a-1684 Eutric 2 C LOAMY_SAND 2136.87
Re35-1a-1685 Eutric 2 C LOAMY_SAND 2604.31
Re36-1a-1687 Eutric 2 Cc SANDY_LOAM 6677.72
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Area

Hydrolo
Dominant No. Area Perce
Soil Name Sub_Type gical TEXTURE Area
Soil Group LAYERS (km”2)  ntage
Group
(%0)
Vertisols Vc10-1717 Chromic 2 D CLAY 1001.66
Vcl11-1718 Chromic 2 D CLAY 333.89
Vcl1-1715 Chromic 2 D CLAY 2403.98
Vc12-1719 Chromic 2 D CLAY 2671.09
15959.7
Vcl1-3a-1716 Chromic 2 D CLAY 868.1 3.87
5
Vcl1-3a-954 Chromic 2 D CLAY 1736.21
Vc4-1726 Chromic 2 D CLAY 267.11
Vc8-1729 Chromic 2 D CLAY 600.99
Vc9-1730 Chromic 2 D CLAY 6076.72
Water 11886.3
WATER-1972 1 D WATER  11886.34 2.88
4
Planosols Ws12-1a-
Solodic 2 C SANDY_LOAM 267.11
1751
Ws2-1752 Solodic 2 C LOAM 66.78
Ws2-1a-1754 Solodic 2 C SANDY_LOAM 2136.87
4874.73 1.18
Ws4-1757 Solodic 2 D LOAM 333.89
Ws4-1a-1758 Solodic 2 C SANDY_LOAM 267.11
Ws6-1760 Solodic 2 D CLAY_LOAM 934.88
Ws6-1a-1761 Solodic 2 D SANDY_CLAY_LOAM 868.1
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APPENDIX 3: Description of Ghana Meteorological Agency synoptic stations used in this

study
Longitude Latitude

Station

Accra -0.17 5.65
Ada Foah 0.61 5.79
Akatsi 0.80 6.12
Akim Oda -0.97 5.93
Akuse 0.12 6.10
Axim -2.24 4.87
Bole -2.48 9.03
Kete Krachi -0.17 7.80
Koforidua -0.25 6.08
Kumasi -1.62 6.68
Sunyani -2.30 7.33
Takoradi -1.77 4.88
Tamale -0.85 9.43
Tema 0.02 5.70
Wa -2.50 10.05
Wenchi -2.10 7.74
Yendi -0.02 9.45
Ho 0.48 6.61
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