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ABSTRACT 

It is well known that extreme rainfall events that usually devastate the socio-economic 

activities in West Africa are inadequately simulated by many conventional uniform-grid 

global climate models, but little is known about how well they are simulated by the 

emerging variable-resolution global climate models. The present study examines the 

performance and sensitivity of the Model for Prediction Across Scales-Atmosphere 

(MPAS-A or simply ‘MPAS’) in simulating extreme rainfall characteristics over West 

Africa. Eight indices were used to characterise extreme events. Firstly, the uniform grid 

version of MPAS (60km resolution) was applied to simulate global climate for the 

period 1981–2010, and the capability of the model was quantified to capture the 

characteristics of extreme rainfall events over that period. Secondly, a series of 

simulations were performed with the variable-grid version of the model to study the 

sensitivity of the simulated extreme rainfall events to local enhancements in model 

resolution (i.e., 15km, 10km, and 3km) over West Africa, using two cases of extreme 

rainfall over the Oti River basin. The results show that MPAS gives a realistic simulation 

of the spatial distribution of most of the eight extreme rainfall indices with a high pattern 

correlation coefficient (r>0.8). However, the model overestimates the magnitude of 

some indices (e.g., the annual number of wet days and the maximum number of 

consecutive wet days) over the Guinea highlands and along the Guinea coast and 

Cameroon Mountain and underestimates others over the entire region. The local 

refinement of model resolution improves its performance in simulating extreme rainfall 

events over the river basin. The results of the study have applications in improving and 

implementing MPAS for extreme rainfall predictions over West Africa. 

Floods are among the most destructive natural disasters with associated adverse impacts 

on society and the environment, and the present study also assesses the capability of 
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HEC-RAS model version 6.1 in simulating flood events in Mango along the Oti River 

in Togo. Actual flood events in October 2020 were initially simulated as a model 

verification, and hypothetic modeling scenarios were simulated to explore the effects of 

fluvial and combined fluvial and pluvial floods over selected areas A and B. The results 

indicate that HEC-RAS gives a realistic simulation of the flood extent, which agrees 

with the local topography. However, while the model underestimates the expanse in 

some parts of the simulation area, it overestimates it in others, especially in areas A and 

B. In addition, the combined fluvial and pluvial floods aggravate the impacts of the 

events over the two areas, as the flood extent and depths are more significant than the 

ones produced by a single type of flooding. The results of the study have applications 

in improving and implementing HEC-RAS for flood events predictions over West 

Africa.  

Keywords: Extreme rainfall event, Global climate model, MPAS-A, Oti River basin, 

Flood Event, Hydraulic model, HEC-RAS 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

The climate of West Africa is influenced by two main air masses. The first is a 

warm, moist, tropical maritime air mass that carries moisture inland from the Atlantic 

Ocean and is responsible for most of the rainfall in the region. This air mass reaches its 

northernmost extent between 18 and 21 °N in July or August (FAO, 1985). The second 

air mass is a hot, dusty, dry continental air mass that originates from the Sahara high-

pressure system and blows from the northeast over the area (FAO, 1985; Nicholson 

2008, 2009). This air mass creates hot and arid conditions over land and moves 

southwards, reaching its southernmost position over the Guinea zone in January 

between 5 and 7 degrees north. Both air masses contribute significantly to the 

temperature and rainfall variability in West Africa. The meeting point of the two air 

masses is called the Inter-Tropical Convergence Zone (ITCZ) over the ocean and the 

Intertropical Discontinuity (ITD) over land (Abiodun et al., 2008; Nicholson 2008, 

2009). The ITD reaches its southernmost position at about 7 degrees north in January 

over the Guinea zone and around 22 degrees north in August over the Sahel (Peter and 

Tetzlaff, 1988). The above discussed systems, constitute the monsoon circulation which 

is the prevailing rainfall-producing system in West Africa and provides about 75% to 

90% of the total rainfall in the region (Hagos and Cook, 2007a). However, multiple 

dynamical atmospheric rainfall-producing features such as monsoon flow, African 

Easterly Jet (AEJ), Tropical Easterly Jet (TEJ), African Easterly Waves (AEW), and 

Mesoscale Convective Systems (MCS) modulate the rain-producing systems over West 
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Africa (Fortune 1980; Gaye et al., 2005) and may even lead to extreme rainfall in the 

region (Laurent et al., 1998; Fink et al., 2006).  

Extreme rainfall is one of the most devastating weather events that threatens 

human life and property. In West Africa, extreme rainfall often induces floods that cause 

severe damage, loss of property and death (Engel et al., 2017b; Balogun et al., 2019; 

Balogun et al., 2021). For example, on 1 September 2009, an extreme rainfall event in 

Ouagadougou (Burkina Faso) produced more than 263 mm of rainfall within ten hours, 

induced floods that destroyed property, damaged roads, displaced 150,000 people and 

killed nine people. In 2007 alone, extreme rainfall-induced floods displaced more than 

one million people and killed 500 in Burkina Faso, Togo, Mali and Niger (Di 

Baldassarre et al., 2010). Over the period 1981–2014, extreme rainfall events affected 

more than 2.3 million people, rendered nearly half a million people homeless and killed 

more than 3,000 (Engel et al., 2017a; Guha-Sapir et al., 2016; EMDAT, 2015). 

Meanwhile, several studies have indicated that global warming may increase the 

frequency and intensity of extreme rainfall over West Africa in the future (Akinsanola 

and Zhou, 2019; Diedhiou et al., 2018). For example, Sylla et al. (2016) projected a 

future increase of about 40% in extreme rainfall intensity in most countries in West 

Africa, while other countries are projected to experience a lower increase of about 20%. 

Similarly, Vizy and Cook (2012) projected an increase in the number of extreme rainfall 

days of 10–30% between April and October over West Africa. Accurate weather 

forecasts from global climate models (GCMs) and regional climate models (RCMs) can 

help reduce the devastating impacts of extreme rainfall events by providing reliable 

early warning information to foster better decision-making and preparation against these 

events. However, there remains a large degree of uncertainty regarding the reliability of 

the current climate models in simulating extreme rainfall over West Africa. For instance, 
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many Global Climate Models (GCMs) have low horizontal resolutions that cannot 

effectively capture the regional or local atmospheric processes responsible for extreme 

rainfall, making it necessary to utilise Regional Climate Models (RCMs) for more 

precise local predictions (Sylla et al., 2016; Køltzow et al., 2011; Salathé et al., 2010; 

Abiodun et al., 2017). Though the extensive usage of RCMs has improved the 

simulation of extreme rainfall over the region (Akinsanola and Zhou, 2019), there are 

still some limitations related, for example, to the lateral boundary condition problems, 

which compromise the quality of the simulated regional or local scale features.  

An alternative approach to address the issues concerning GCMs and RCMs 

raised previously is by using variable-resolution or stretch-grid GCMs (hereafter 

VGCMs), for regional climate research (Fox-Rabinovitz et al., 2008; Fox-Rabinovitz et 

al., 2001; Abiodun et al., 2011; Maoyi et al., 2021). According to Maoyi et al. (2021) 

and Abiodun et al. (2011) the use of VGCM illustrates the benefits over contemporary 

GCMs in modeling various climatic characteristics over the Southwest Indian Ocean 

and over West Africa respectively. Nevertheless, as the development and application of 

VGCMs for regional research are still relatively recent, further research is required to 

assess their reliability in modeling extreme rainfall events over West Africa.  

Though, skillful VGCMs may help improve the forecast of the extreme rainfall 

events, it is important to assess how these events could affect the West African 

communities in terms of flood, which is crucial for flood early warning system in West 

Africa. Indeed, flood is a natural process that occurred when the water rises to overflow 

land that is not normally submerged (Ward, 1978). Those lands are sometimes referred 

as floodplain. Floods are one of the most disastrous hazards that threaten socioeconomic 

activities worldwide. In the last 20 years, it accounted for 43% of all disasters and has 

impacted the world's highest population (EM-DAT, 20015; CRED, 2015). The socio-
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economic impacts of floods are usually more devastating in developing countries, 

especially in West Africa, where poor communities are more vulnerable. In West Africa, 

floods often cause colossal damage by demolishing infrastructures, damaging 

agricultural products, and killing people (Tschakert et al., 2010; Komi et al., 2017; 

Wagner et al., 2021). For example, in 2007, West Africa recorded the worst flooding it 

had ever faced in 30 years. In Togo, the event affected more than 125000 people, 

displaced 13700, and killed 23 people. The same event also affected 93000 people, 

displaced 28000, and killed 46 in Burkina Faso (Tschakert et al., 2010). In 2010, flood 

events greatly impacted the West African community, affecting 1.6 million people and 

killing 307, and in Togo alone, they caused damages and losses worth over $38 million 

(Ntajal et al., 2016). In October 2020, flood events badly affected the Oti River basin in 

Togo, rendering 57 thousand people and killing 11 (EM-DAT, 2020; ECHO, 2020; 

Copernicus-EMS, 2020). Although flood events affecting West Africa result from 

multiple factors, rainfall events are the most important and remain the trigger. Recent 

studies (Sylla et al., 2016; Mukherjee et al., 2018) highlight that global warming may 

increase the frequency and intensity of heavy rainfall, and the loss of lives and economic 

damages may escalate. However, skillful forecasts of heavy rain and associated flood 

events may reduce the socioeconomic impacts of these events. While most flood early 

warning systems in WA countries usually rely on rainfall forecasts, there is not much 

effort put in place to translate those heavy rain forecasts into flood hazards forecasts, 

especially in National Meteorological and Hydrological Services (NMHS), which may 

help society, policymakers, and humanitarian agencies make effective emergency 

response plans. Hence, there is a need to extend rainfall forecasts to flood hazard and 

risk forecasts. 
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1.2 STATEMENT OF PROBLEM 

The application of climate models is useful for studying extreme events at global 

and regional scales and, more importantly, extreme rainfall events and their associated 

features over West Africa. Despite significant advancements in climate modeling, there 

is still a considerable level of uncertainty surrounding the accuracy of current climate 

models in simulating extreme rainfall events across West Africa. These uncertainties 

could influence the accuracy of the model outputs and, thus, hinder using findings 

derived from model results to make and implement sound economic plans and policies. 

In addition, studies have shown that many GCMs often have low horizontal resolutions, 

which can lead to inadequate representation of the regional and local atmospheric 

processes that drive extreme rainfall events. Other sources of errors from RCMs are 

related to the lateral boundary condition problems. All these factors limit the accuracy 

of representing the atmospheric phenomenon of interest and, thus, influence the 

simulation of extreme rainfall events for reliable information in extreme rainfall-

induced flood events. For these reasons, studies have introduced and applied Global 

Climate Models (GCMs) with variable-resolution or stretch-grid capabilities. Despite 

the promising advancements and emerging applications of Variable-Grid Climate 

Models (VGCMs) in regional climate studies, further research is required to assess their 

efficacy and accuracy in predicting extreme rainfall occurrences across West Africa. On 

the other hand, for reliable early flood warning information, it is essential to translate 

the forecast of extreme rainfall into flood hazards and risk forecasts. Hydraulic modeling 

has emerged as a viable method for predicting and mitigating flood hazards and risks in 

recent times. Most studies on inland flood hazards in Africa are based on either fluvial 

or pluvial floods. Other studies showed that extreme rainfall often generates both pluvial 

and fluvial floods and that considering the individual flood type may underestimate the 
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potential damages. Therefore, assessing flood events by considering the combined 

fluvial and pluvial flood is more relevant for flood hazards and risk forecasts.  

1.3 AIM AND OBJECTIVES  

1.3.1 Aim 

The aim of this study is to evaluate the capability of the MPAS model in simulating 

extreme rainfall, as well as evaluate the performance of the HEC-RAS model in 

simulating flood events in West Africa.  

1.3.2 Objectives 

The Specific objectives of the research are to: 

(i) evaluate the performance of the Model for Prediction Across Scale 

(MPAS) in simulating the extreme rainfall characteristics over West 

Africa; 

 

(ii) assess the sensitivity of the MPAS model in simulating two extreme 

rainfall events over the Oti River Basin (ORB) in Togo, West Africa;  

 

(iii) examine the performance of the Hydrologic Engineering Center and 

River Analysis System model (HECRAS) in simulating actual flood 

events over the Oti River Basin (ORB); and   

 

(iv) assess the composite of pluvial and fluvial flood risk over the ORB 

using the HECRAS model. 

1.4 JUSTIFICATION 

The rationale behind this research is to identify a global climate model with 

stretched-grid capability and a hydraulic model whose output can be used as an integral 

input to provide sound climate information that will guide policy formulation and 

decision-making in climate-related sectors of the economy at the national and regional 
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scale. Model evaluation, application, and development are the most vital areas explored 

in past and present-day research, particularly in a data-sparse region like Africa. It is, 

therefore, critical to constantly evaluate the available models, which are subjected to 

modifications and regular updates. More so, there has been more demand for reliable 

simulation of extreme rainfall and flood events because of the recurrent flood hazards 

and their projected increase in frequency and intensity (Sylla et al., 2016; Mukherjee et 

al., 2018). In recent years, few studies have provided important information on variable-

resolution or stretched-grid GCMs (VGCMs), which enable smooth resolution 

transitions and achieve high resolution in specific regions of interest (Kramer et al., 

2018; Skamarock et al., 2010; Du et al., 1999; Ringler et al., 2008; nevertheless, none 

studies tested the capability of VGCMs in simulating extreme rainfall over West Africa. 

Also, it is crucial to extend the severe rainfall forecast to the flood hazard and risk 

forecasts, which is essential for flood early warning information in West Africa. Hence, 

there is a need for the current study to consolidate previous work by providing a 

comprehensive evaluation of VGCMs and hydraulic models on extreme rainfall and 

flood events simulation. 

1.5 THE CONTRIBUTION OF THE RESEARCH TO KNOWLEDGE  

The outcome of this research will be helpful for the model development 

community in pinpointing the specific areas of model structures that require 

modification for enhancing model outputs. Also, to close the gaps in our scientific 

understanding of how the variable-resolution GCMs simulate extreme regional rainfall 

and how the hydraulic model can be applied to flood hazard and risk forecasts. Using 

this information, policymakers can make informed decisions and develop robust policies 

to improve sustainable economic planning and promote climate-resilient development. 
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Additionally, these measures will mitigate risks and challenges faced by crucial sectors 

of the economy, including agriculture, water resources, public health, energy, and other 

weather-sensitive industries. 
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2 CHAPTER TWO  

2.0 LITERATURE REVIEW 

This chapter comprehensively reviews the modeling of extreme rainfall and flood 

events studies. It starts by reviewing the three main methods used to identify and define 

extreme rainfall in the literature and summarizes the findings of previous studies on the 

capability of climate models (Global and Regional Climate models) to simulate extreme 

rainfall. It also summarises the findings of previous studies on the capability of 

hydraulic models to simulate flood events over Western Africa. 

2.1 SIMULATION OF EXTREME RAINFALL EVENTS USING CLIMATE 

MODELS 

2.1.1 Identification of Extreme Rainfall Events  

There is no unique definition for extreme rainfall events, as previous studies have 

adopted different methods to define extreme rainfall events (e.g., Tarhule, 2005; 

Barnston and Mason, 2011). These methods use the characteristics of extreme rainfall 

events to identify or use the impacts of extreme rainfall events to detect the events. For 

instance, Groisman et al. (2001) and Klein Tank and Zwiers (2009) defined and 

identified extreme rainfall events based on the characteristics of the events (i.e., 

frequency, persistence, intensity, and amplitude). In contrast, Tarhule (2005) and 

Barnston and Mason (2011) defined and identified extreme rainfall events based on the 

devastating and destructive impacts of the event on society. Though this study has used 

two methods in determining extreme rainfall (threshold values and percentiles), the 

review in this section discusses the three main methods as identified by Groisman et al. 

(2001). These methods are return periods, threshold values, and percentiles.  
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2.1.2 The Return-Period Method  

Several studies have given different attributes for return-period methods (e.g., 

Sanderson, 2010; Chu et al., 2009). For instance, Sanderson (2010) indicated that the 

return period is the frequency of an event, while the magnitude of the associated rainfall 

event is called the return value. Chu et al. (2009) and Vezzoli et al. (2012) referred to 

the return period, also known as the recurrence interval, as the average gap (in years) 

between rainfall events of a given magnitude or more significant. This method, common 

among building engineers and hydrologists, has been used to describe the characteristics 

of extreme events in different parts of the world. With this method, Sanderson (2010) 

used 46 years to calculate the return value of daily rainfall events over 40 towns and 

cities in the United Kingdom. Melice and Reason (2007) applied the method over a 65-

year data series to estimate the frequency of the occurrence of destructive rainfall in 

George (South Africa). Over West Africa, Panthou et al. (2012) estimated the frequency 

of extreme rainfall events with a 100-year return value in the Central Sahel Zone using 

the return period. The main shortcoming of this method is that it requires a long rainfall 

time series. Sanderson (2010) shows that applying the return period method on a short-

time rainfall series may lead to high return value uncertainty.   

2.1.3  Identifying Extreme Rainfall Events Using Threshold Values  

The threshold values for identifying extreme rainfall are widely used, and the 

method is well established in the literature (e.g., Groisman et al., 2001; Dyson et al., 

2009; Zhang et al., 2011). This method identifies an extreme event over an area using a 

rainfall threshold value suitable for the area. Any rainfall amounts equal to or greater 

than the threshold value is considered an extreme event. Because of its simplicity 

(compared to the return period), this method is widely used and preferred to the return-
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period approach. For example, Panthou et al. (2014) used threshold values of 30.0- and 

60.0-mm day-1 to identify and study the characteristics of extreme rainfall events in the 

north and south of the Central Sahel, respectively. Hountondji et al. (2011) applied a 

threshold value of 79.6 mm day-1 to obtain extreme rainfall events over 21 stations in 

Benin for the period 1960-2000. Groisman et al. (2001) studied the spatial distribution 

of heavy rain events over the United States using 100 mm day-1 at a 1° x 1° grid 

resolution. However, some studies (i.e., Dyson et al., 2009; Zhang et al., 2011; Abba 

Omar, 2014) have pointed out that this method has a significant weakness. The 

weakness is that, as various regions of the world receive different amounts of rainfall 

and require different threshold values, it is challenging to compare extreme rainfall 

events over the areas. Moreover, Klein Tank and Zwiers (2009) and Zhang et al. (2011) 

showed that the threshold value method is inappropriate for the spatial comparison of 

extreme rainfall distribution over an area or a region.  

2.1.4 Percentile Values  

To overcome the shortcomings of the threshold-values method, some studies 

have used the percentile-values method in identifying an extreme rainfall event (i.e., 

Grimm and Tedeschi, 2009; Abiodun et al., 2013; Ly et al., 2013). For example, Ly et 

al. (2013) defined an event as extreme rainfall if it is equal to or above the 99th percentile 

of daily precipitation in the Sahel zone of West Africa. Likewise, Abiodun et al. (2013) 

described the spatial distribution of extreme rainfall events using the 99.5th percentile 

of daily rainfall over Nigeria. Moreover, other studies employ a different approach to 

applying this method. For example, Grimm and Tedeschi (2009) defined extreme 

rainfall using the mean of three consecutive rainfall days above the 90th percentile 

distribution. Moreover, Yabi and Afouda (2012) identified any year with a 20% increase 
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in annual total rainfall above the yearly mean rainfall as an extreme rainfall year over 

Benin. However, the percentile value method is more valuable than the return period or 

threshold values. This is because there is an even distribution of the days equal to or 

greater than the set percentile. Furthermore, unlike the return period method, this 

method does not need a long-term dataset and applies to all regions (Klein Tank & 

Zwiers, 2009; Zhang et al., 2011; Abba Omar, 2014). Moreover, this method is suitable 

for evaluating the changes in event characteristics, intensity, and frequency and allows 

the spatial comparison of complex topography over a region such as West Africa (Zhang 

et al., 2011). Therefore, of these three methods described above, the percentile-threshold 

method is the most appropriate for the present study. Thus, following Crétat et al. 

(2014), the present study used the 95th percentile of daily rainfall to define an extreme 

rainfall event over West Africa. The implementation of the method for this study is 

detailed in Chapter Three.  

2.1.5 Favorable Atmospheric Conditions for Extreme Rainfall Events in West 

Africa  

Several studies have identified different processes that favor extreme rainfall in 

West Africa (Reed et al., 1977; Fortune, 1980; Lavaysse et al., 2006, Pathe et al., 2009). 

For instance, Pathe et al., 2009 attribute heavy rainfall over West Africa to warm SST 

conditions over the Tropical Atlantic Ocean and El Nino conditions over the Pacific 

Ocean. On the other hand, Reed et al. (1977), Fortune (1980), and Lavaysse et al. (2006) 

attribute the phenomenon to the complex interaction and variability in rainfall-

producing features in the WAM systems (i.e., MCSs, AEJ, TEJ, and AEWs). While 

Nicholson (2008 and 2009) found that an increase in the strength of TEJ usually leads 

to an increase in extreme rainfall in the West African Sahel, Laurent et al. (1998) and 
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Fink et al. (2006) found that more MCSs lead to more extreme rainfall in the Sahel. 

Furthermore, Ruti and Dell' Aquila (2010), Abatan (2011), and Crétat et al. (2014) have 

reported a strong link between extreme rainfall and AEWs in West Africa. Their 

findings revealed that extreme rainfall strongly depends on the wave pattern of the 

AEWs. Crétat et al. (2014), in particular, found a link between extreme rainfall and the 

two AEWs types (3-5 days and 6-9 days wave periods) over West Africa. Furthermore, 

the study showed that the 3-5 days AEWs mainly account for extreme rainfall over West 

Africa (especially south of latitude 15°N). Also, some studies argued that most of the 

heavy rainfall in West Africa comes from MCSs and that these MCSs are usually 

embedded in the AEWs (Fink and Reiner, 2003; Fink et al., 2006; Crétat et al., 2014). 

Hence, understanding the thermodynamic conditions associated with these atmospheric 

circulations is crucial to understanding the characteristics of extreme rainfall over West 

Africa. Therefore, the emphasis of the present study will be on understanding the link 

between the thermodynamic conditions and extreme rainfall in West Africa.  

2.1.6 Simulating Extreme Rainfall Events using Global Climate Models (GCMs) 

Global climate models (GCMs) are a complex mathematical representation of 

the major climate system components (atmosphere, land surface, ocean, and sea ice) and 

their interactions. They are accredited tools for climate simulation. Some studies have 

discussed the performance of Global Climate Models (GCMs) in simulating the 

characteristics of extreme rainfall events over West Africa (Faye and Akinsanola, 2022; 

Klutse et al., 2021; Kamiguchi et al., 2006; IPCC, 2007; Vigaud et al., 2009; Crétat et 

al., 2013; Niang et al. 2014). For example, Sow et al. (2020) showed that most CMIP5 

global models capture relatively well the annual cycle of the fraction of precipitation 

accounted by the very wet days R95ptot, while Klutse et al. (2021) showed that in some 
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cases, CMIP6 global models capture the frequency of heavy rainfall in the region. Also, 

Faye and Akinsanola (2022) found that the CMIP6 global models reasonably reproduce 

the patterns of extreme rainfall indices over the WA region. Furthermore, Crétat et al. 

(2013) found that three out of the four GCMs in their study simulated a realistic 

magnitude of intense rainfall over Africa. However, while GCMs may be skillful in 

rainfall at the global or continental scale, they cannot resolve the regional circulation 

patterns that lead to extreme hydrological events like extreme rainfall events at the 

regional scale due to their coarse horizontal resolution (Christensen and Christensen, 

2003). Giorgi et al. (2001), Wang et al. (2004), and Rummukainen (2010) pointed out 

that GCMs’ low and coarse horizontal resolution results in their inability to simulate the 

finer scale regional and local forcings (e.g., complex terrain and topography, land-ocean 

contrasts) that controls the regional climate. Giorgi et al. (2009) argued that the low 

resolution of the GCMs hinders them from simulating extreme events that are important 

to climate information users. Sylla et al. (2012) and Crétat et al. (2013) also found that 

GCMs failed to correctly reproduce key features of the local atmospheric circulation 

due to the low resolution of the models. These shortcomings are a significant source of 

uncertainty in simulating extreme rainfall characteristics, frequency, and intensity over 

West Africa (Cook and Vizy, 2006; Sylla et al., 2012; Crétat et al., 2013). For instance, 

Crétat et al. (2013) stated that GCMs simulations often overestimate extreme rainfall's 

frequency (and underestimate the intensity) over West Africa. In light of these 

shortcomings, downscaling, a method to improve outputs from GCM outputs, was 

initiated to meet the increasing demand for climate variability and projection at a 

regional scale (Endris et al., 2015). Downscaling, a means of acquiring small-grid scale 

information from fields with lower resolution, provides decision-makers with the 

needed information for impact assessment at a local scale in connection with 
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information from the GCMs (Benestad, 2008). Two approaches to downscaling are 

reported in the literature: Statistical and Dynamical downscaling. 

2.1.7 Statistical Downscaling  

Previous studies have used Statistical Downscaling (SD) to obtain regional 

climate information from GCMs (e.g., Hewitson and Crane, 1996; Di Vittorio and 

Miller, 2013). SD is used to establish a statistical correlation between global scale 

climate variables (surface pressure) and local climate variables such as rainfall of an 

area (Endris et al., 2015). The relationship is used to acquire regional climate 

information by mapping it to GCM data (Hewitson and Crane, 1996). According to Di 

Vittorio and Miller (2013), the SD method adopts the statistical relationships between 

low-resolution GCM or RCM data and the point measurement at an observation station. 

Statistical relationships are estimated for a calibration period, validated separately, and 

applied for another period assuming temporal stationarity (Di Vittorio and Miller, 2013). 

Furthermore, regional information can be obtained using the equations to downscale 

GCM outputs. This involves using the equations to investigate the differences between 

global and local or regional climates. Abiodun et al. (2013) statistically downscaled 

different GCMs simulations and found an increase in the frequency of extreme rainfall 

days across the ecological zones of Nigeria due to global warming. Goswani et al. (2006) 

revealed that significant spatial contradictions and the inability to account for the 

topographic effects on extreme rainfall events are some of the defects of the SD 

technique. Hence, discarding the geomorphology of the study area makes SD 

inappropriate for forecasting extreme rainfall events (Goswani et al., 2006).  
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2.1.8 Dynamical Downscaling  

Several studies have documented the dynamic downscaling (DD) techniques for 

providing regional information from GCMs (i.e., Wang et al., 2004; Seth et al., 2007; 

and Endris et al., 2015). Unlike SD, the DD method applies conservation laws to provide 

regional climate information over the chosen domain about climate variability and 

change projections via numerical models (Endris et al., 2015). In this technique, a GCM 

provides an initial condition and a continuous lateral boundary condition to an RCM’s 

integration, while the RCM provides the finer-scale regional information. Many studies 

have used the DD technique to provide regional climate information for different 

purposes, including climate predictability studies (Lawal et al., 2015), seasonal climate 

prediction (Wang et al., 2004), climate change projection (Giorgi and Mearns, 1991 and 

Giorgi, 2006), and the impact of land-cover change on projected future climate 

(Abiodun et al., 2012; Naik and Abiodun, 2016). The technique has also been 

successfully used in West Africa for climate-change studies (Vigaud et al., 2009; Diallo 

et al., 2012). For example, Diallo et al. (2012) employed the DD approach to project 

future changes in precipitation and temperature over West Africa for the early twenty-

first century, using four RCMs (RegCM3, RCA, REMO, and HadRM3P) to downscale 

two GCM (ECHAM5 and HadCM3) outputs. Some of the advantages of the DD method 

are that it captures atmospheric processes like rainfall induced by topography and uses 

coarse resolution GCMs output to provide higher-resolution information up to 10-50 km 

(Giorgi et al., 2009), as well as the fact that it responds to different external forcings and 

does not assume temporal stationarity in the SD method (Endris et al., 2015).  
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2.1.9 Simulating Extreme Rainfall Events using Regional Climate Models 

(RCMs) 

Studies have shown that using RCMs has improved our knowledge about the 

different interactions among the atmospheric features that induce extreme rainfall at 

regional or local scales (Jenkins et al., 2005; Moufouma-Okia and Rowell, 2010; Sylla 

et al., 2011; Browne and Sylla, 2012). For instance, Crétat et al. (2013) showed that the 

nesting of RCM (WRF 3.5) reproduces spatial and temporal characteristics of extreme 

rainfall events as the observed datasets over Africa. Also, Sylla et al. (2012) and 

Haensler et al. (2013) successfully applied RCM to reveal how topography can induce 

extreme rainfall in West Africa, showing RCMs’ ability to capture and resolve complex 

topography. Akinsanola and Zhou (2018) showed that RCA4 and COSMO-CLM RCMs 

represent observed extreme rainfall patterns over the WA region and add significant 

value to the driven GCMs. But RCM downscaling usually involves lateral boundary 

condition problems and prevents the two-way interactions between larger scales and 

regional scale features, as a result, compromising the quality of the simulated regional 

or local scale features (Michaelis et al., 2019; Small et al., 2014; Marbaix et al., 2003). 

The need to address this problem has led to the introduction and application of 

variable-resolution or stretch-grid GCMs (hereafter VGCMs) for regional climate 

studies (M. Fox-Rabinovitz et al., 2008; M. Fox-Rabinovitz et al., 2001; Abiodun et al., 

2011; Maoyi et al., 2018). For example, Maoyi et al. (2018) applied VGCM (called 

CAM-EULAG) to give a realistic climate simulation over the Southwest Indian Ocean, 

and Abiodun et al. (2011) demonstrated the advantages of VGCM over the 

contemporary GCMs in simulating various atmospheric features in West Africa. 

Nevertheless, given that the developments and applications of VGCMs for regional 



                                                                         18 

 

studies are still relatively new, there is a need for more studies on their reliability in 

simulating extreme rainfall events over West Africa.  

2.1.10 Example of Stretched-Grid Global Climate Models (VGCMs) 

2.1.10.1  Finite-Volume on a Cubed-Sphere Model (GFDL FV3) 

  In 2016, NOAA built one of the world’s best global weather models, a priority 

for the agency and the nation. In addition, NOAA announced the selection of a new 

dynamic core, the engine of a numerical weather prediction model, and has begun 

developing a state-of-the-art global weather forecasting model to replace the U.S. 

Global Forecast System (GFS). The latest global model is also called the GFS. As with 

the current GFS, the latest GFS developed one run in the background of NOAA’s suite 

of weather and climate models improving skill across all NOAA's forecast mission 

areas.  

The new dynamic core, Finite-Volume on a Cubed-Sphere (FV3), was 

developed by NOAA’s Geophysical Fluid Dynamics Laboratory in Princeton, New 

Jersey. The FV3 core has brought a new level of accuracy and numeric efficiency to the 

model’s representation of atmospheric processes, such as air motions. This makes 

possible simulations of clouds and storms at resolutions not yet used in a global 

operational model. In addition, FV3 improves the representation of small-scale weather 

features such as hurricanes while maintaining the quality of large-scale global 

circulation. The FV3 core enables the model to provide localized forecasts for several 

weather events simultaneously, all while generating a global forecast every six hours. 

Looking ten years ahead, the GFS model with the FV3 core can run in higher resolution 

and zoom in (Figure 2.1) on smaller and smaller storm systems to provide forecasters 

with better pictures of how storms will evolve. 

http://www.gfdl.noaa.gov/fv3


                                                                         19 

 

 

 

 

 

 

 

Figure 2.1: An example of FV3's capability to zoom in on critical weather events. The 

model resolution has been enhanced to represent better hurricanes threatening the 

Southeastern US. The reverse side is a coarser resolution because it is less concerned. 

Source: NOAA to develop new global weather model | National Oceanic and 

Atmospheric Administration  
  

 

  

  

https://www.noaa.gov/media-release/noaa-to-develop-new-global-weather-model
https://www.noaa.gov/media-release/noaa-to-develop-new-global-weather-model
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2.1.10.2 Models employing stretched spherical coordinates  

The formulation of three global grid-point atmospheric models, GOES-SG, 

GEM, and LMDZ, is based on spherical coordinates. These models incorporate a 

stretching technique similar to the approach proposed by Staniforth and Mitchell (1978) 

for numerical weather prediction on a hemispheric polar stereographic grid. A fine-

resolution window, typically with a grid spacing of approximately 0.5°, is present in all 

three models. The resolution degrades to about 2° in the far field along each grid axis. 

The buffer region between the inner window and the far field is characterized by a 

constant rate of longitude and latitude degradation, up to 10% per grid point, until the 

desired coarse grid spacing is attained in the far field. As Caian and Geleyn (1997) 

suggested in their study of ARPEGE, more aggressive stretching factors may be utilized 

for short-term numerical weather prediction applications.  

Figure 2.2 presents a stretched spherical grid, which has a comparable number 

of points in its fine-resolution window, as an illustration. In this example, a far-field 

resolution of 2.715° is defined, and the buffer zone grid length increases at a rate of 4% 

per cell. The total number of grid points for this stretched spherical grid example is 

34,632. Notably, models utilizing stretched spherical grids often have approximately 

twice the number of grid points compared to a Schmidt-transformation model that 

encompasses a similar high-resolution region (typical values are reported by Fox-

Rabinovitz et al., 2006). Although this increases the computational cost, it may offer 

some benefits for the simulations due to the less coarse grid cells in the far-field region. 

Furthermore, the independent longitudinal and latitudinal grid-stretching may result in 

a lack of isotropy in the cells in the coarse region; however, no associated detrimental 

behavior has been reported.  
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Figure 2.2: Example of a stretched spherical grid having resolution of 0.56° over the central 

region increasing to 2.43° afar, plotting every second grid line. Source: John L. McGregor, 

2013. 
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2.1.10.3 Model for Prediction Across Scales-Atmosphere (MPAS-A) 

The MPAS atmospheric component utilizes an unstructured centroidal Voronoi 

mesh and C-grid staggering state variables for horizontal discretization in fluid flow 

solvers. The variable resolution meshes are capable of smoothly varying transitions, 

which is demonstrated in Figure 2.3. This feature is believed to address issues 

commonly associated with traditional mesh refinement strategies, such as abrupt 

transitions in one-way and two-way grid nesting. The flexible MPAS meshes allow 

researchers to pursue high-resolution numerical weather prediction NWP) and regional 

climate applications, in addition to global uniform-resolution NWP and climate 

applications. The MPAS atmospheric dynamical core addresses the fully compressible 

non-hydrostatic equations of motion. The horizontal Voronoi mesh, depicted to the 

right, uses a C-grid staggering of the state variables (Figure 2.4). The normal velocity 

on Voronoi cell faces defines the horizontal velocity u, while the remaining state 

variables are defined at the cell centers. The triangular mesh displayed in dashed lines 

in the figure represents the Voronoi mesh's dual. The variable resolution meshes are 

mostly hexagonal, although pentagons and heptagons are sometimes present. The C-

grid-staggered Voronoi mesh's significant advancements are detailed in Thuburn et al. 

(2009) and Ringler et al. (2010).  

The numerical schemes implemented in the MPAS atmospheric component 

closely resemble those utilized in the Advanced Research WRF model. However, there 

are notable distinctions between the two models. For example, the ARW model uses 

rectangular meshes and hydrostatic pressure (mass) vertical coordinates. In contrast, 

MPAS adopts a vector-invariant format for the horizontal momentum equation and a 

complete version of the WRF transport scheme detailed in Skamarock and Gassmann, 

(2011).   
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Figure 2.3: A variable resolution MPAS Voronoi mesh. Source: MPAS Home page 
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Figure 2.4: C-grid staggered variables on the horizontal Voronoi mesh.  Normal 

velocities are defined on the cell faces and all other scalar variables are defined at the 

cell centers.  Vertical vorticity is defined at the cell vertices. Source: MPAS Home page 
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2.1.11 Simulation of extreme rainfall characteristics using MPAS-A model 

Model for Prediction Across Scales (hereafter MPAS), which uses unstructured 

variable resolution meshes that allow for smooth resolutions transition towards the 

desired high resolution in the region of interest (Kramer et al., 2018; Skamarock et al., 

2010; Du et al., 1999; Ringler et al., 2008), is an example of the new VGCMs. Studies 

have employed the MPAS model to simulate and study different atmospheric features 

that produce extreme precipitation over various regions of the world (Michaelis et al., 

2019; Zhao et al., 2019; Kramer et al., 2018). For instance, Davis et al. (2016) used two 

configurations of the MPAS model (15 km uniform and 60-15 km variable meshes) to 

simulate the characteristics of a tropical cyclone in the eastern North Pacific. Huang et 

al. (2017) applied the model at 15 km resolution to study the track of typhoon Morakot 

and the associated extreme rainfall over Taiwan. Zhao et al. (2019) also used it to 

simulate the characteristics of extreme rainfall events over East China. While Kramer et 

al. (2020) used it to simulate three severe weather events in Europe, Schwartz (2014) 

used it to assess the characteristics of diurnal precipitation over the United States. 

Despite the wide usage of the MPAS model across the world, only one study (Heinzeller 

et al., 2016) has tested the reliability of MPAS simulation over West Africa, and the 

focus of the study was not on extreme rainfall events. Hence, to harness the potential 

MPAS model for early warning systems over West Africa, there is a need for 

information on how well the model simulates the characteristics of extreme rainfall over 

the sub-continent. 
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2.2 SIMULATION OF FLOOD EVENTS USING HYDRAULIC MODELS 

2.2.1 Overview on Flood  

Floods occur naturally when the water rises and overflows onto land that is not 

usually submerged, also known as floodplains (Ward, 1978). They are one of the most 

destructive natural threats to life on Earth, and sometimes they are human-made (Ohl et 

al., 2000). Inundations, which are submerged lands from overflowing rivers and lakes, 

occur when water overflows or breaks levees. Floods can also arise from the sea due to 

high tides and in otherwise dry areas due to the accumulation of heavy rainfall. Different 

types of floods can be categorized based on their source and the processes involved. 

Examples include river floods, flash floods, dam-break floods, ice-jam floods, glacial-

lake floods, urban floods, coastal floods, and hurricane-related floods. Climate, 

precipitation, temperature, and landscape are the main drivers and modulators of most 

types of floods (Shroder et al., 2015). 

2.2.2 Hydrologic Modeling  

Hydrological simulation has been in use since the 1850s, and it has undergone 

rapid development in modeling because of the easy accessibility of powerful software 

(Singh, 2018). Flood modeling simplifies actual events by simulating natural flood 

occurrences using input data, hydraulic properties, and boundary conditions of a specific 

area. For example, a flood model can be created for a particular river basin based on 

different boundary conditions or input information, which may affect the model's 

performance. In addition, flood risk activity and hydraulic properties can be estimated 

and calculated over a specific period by simulation. Hodges (2009) defines 

Hydrodynamic modeling as "the art and science of applying conservation equations for 
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momentum, continuity, and transport to represent evolving velocity, density, and scalar 

fields." This modeling offers insights into spatial and temporal changes in physical 

processes that may be observed but are less apparent in field data (Hodges, 2014). 

Hydrodynamic models are a valuable tool for creating flood hazard maps, and 

researchers can use numerical, physical, or historical data mapping methods to develop 

these maps. Numerical modeling is a popular choice among hydrologists due to its 

ability to simulate real-world events efficiently, even with limited data, and at a lower 

cost than physical modeling. Physical modeling can also be helpful in flood hazard 

mapping, especially in areas where significant social and economic damage is likely. 

Historical data mapping is useful for calibrating parameters in numerical models 

(Bellos, 2012). Hydrodynamic models are mathematical models that attempt to 

reproduce fluid movement by solving formulas based on physics rules. Simulations can 

be classified as 1D, 2D, or 3D depending on their spatial representation of floodplain 

streams (Teng et al., 2017). 

In recent years, hydraulic modeling has proved to be a practical approach for 

flood hazard and risk forecasts. It provides flood extent, depth, and velocity, which are 

essential for flood risk management (Pinos & Timbe, 2019; Rangari et al., 2019; Ongdas 

et al., 2020). Studies have used different hydraulic models to assess flood hazards in 

different regions of the world (e.g., Pinos and Timbe, 2019; Ntajal et al., 2016; Sharma 

& Regonda, 2021; Iroume et al., 2022; Komi et al., 2017). For example, Komi et al. 

(2017) used LISFLOOD-FP hydraulic model to assess flood extent along the Oti river 

in northern Togo, West Africa. Using the HEC-RAS model, Iroume et al. (2022) 

investigated the major urban flood in Douala (Cameroon). Pinos and Timbe (2019) used 

four different hydraulic models (HEC-RAS, Iber, Flood Modeller, and PCSWMM) to 

generate flood inundation maps for comparison in the Santa Barbara River in the 
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Ecuadorian Andes.  Rangari et al. (2019) also used HEC-RAS to generate the depth of 

urban flood inundation of Hyderabad in India. Nevertheless, studies have discussed the 

advantages of using 1D and 2D hydraulic models in simulating different flood events 

(Gharbi et al., 2016; Mangukiya and Yadav, 2022; Manfreda et al., 2015). While the 1D 

hydraulic models accurately represent the channel processes, the 2D hydraulic models 

are well designed to assess the flood wave dynamics in the floodplain when the channel 

capacity has exceeded, and the flow is spread across a large area in the downstream 

terrain (Ongdas et al., 2020; Mihu-pintilie et al., 2019; Shustikova et al., 2019). Other 

studies have argued that 2D hydraulic models are mainly used for flood extent mapping 

and flood risk estimation because they provide more detailed and reliable results in 

complex flow simulations(Teng et al., 2017; Lea et al., 2019). In addition, Lea et al. 

(2019) showed that the 2D models that solve full shallow water equations can accurately 

simulate the timing and duration of inundation. Despite the wide usage of hydraulic 

models to assess flood hazards, few studies have conducted hydraulic modeling in 

assessing flood hazards in Togo, especially along the Oti river (e.g., Komi et al., 2017), 

and the focus was on 1D modeling. Hence, to improve the accuracy of flood mapping 

and the early warning systems in this region of WA, there is a need for more flood 

hazard assessment using 2D hydraulic modeling.  

Most studies on inland flood hazards in Africa are based on either pluvial or 

fluvial floods (Ntanganedzeni & Nobert, 2021; Komi et al., 2017). For example, 

simulating the stream flow data, Ntanganedzeni and Nobert (2021) assessed flood risk 

hazards along the Luvuvhu river in Limpopo province in South Africa.  Considering 

fluvial floods, Komi et al. (2017) assessed the flood hazard extent over the Oti river 

basin in Togo, West Africa. However, Tiepolo et al. (2021) argued that flood hazard 

assessments often fail to meet disaster risk reduction needs locally because they usually 
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consider only one type of hazard (pluvial or fluvial floods). For instance, Chen et al. 

(2010) showed that extreme rainfall often generates both pluvial and fluvial floods and 

that considering the individual flood type may considerably underestimate the potential 

damages. To improve flood hazard assessment and meet disaster risk reduction needs, 

studies suggested and assessed inland compound floods hazards, that is, the combination 

of pluvial and fluvial floods, in different parts of the world (Chen et al., 2010; Apel et 

al., 2016; Patra et al., 2016). For instance, applying the coupled hydraulic models, Chen 

et al. (2010) and Apel et al. (2016) simulated the combined pluvial and fluvial flood 

events in urban areas at Bradford (UK) and Can Tho city, respectively. Láng-Ritter et 

al. (2022) investigated the impact of the inland compound floods (fluvial and flash 

floods) in southeast Spain to enhance decision support. Also, Patra et al. (2016) modeled 

the combined flow in the drain and rainfall-induced catchment flooding to develop a 

flood inundation map in northern India. Even though several studies have investigated 

inland compound floods and the fact that it is relevant for disaster risk reduction, none 

have been done over the Oti river basin in Togo. Even though, Komi et al., 2017 

conducted  flood modeling study in the Oti river basin in Togo, the study focused only 

on the fluvial flood. Hence, there is a need of a combined fluvial and pluvial floods 

study along Oti river in Mango. 

2.2.3 Overview on HEC-RAS model 

In the early 1990s, the Hydrologic Engineering Center developed a suite of Windows-

based software applications called HEC-RAS, the first computer program. As HEC's 

flagship software, it replaced HEC-2 and could perform water surface profile 

computations. HEC-RAS's capabilities have expanded significantly over the years, with 

earlier versions only allowing for 1D steady-state analysis. In January 2001, Version 3.0 
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was released, which added 1D unsteady flow computations (Dewberry, 2016). The most 

recent version of HEC-RAS, Version 5.0, was released in 2016 and allowed for two-

dimensional unsteady flow calculations. 

2.2.3.1 One-Dimensional Steady and Unsteady Modeling 

In its early versions, HEC-RAS could compute water surface profiles for channels 

with the steady-state gradually varied flow. A Steady-state refers to a situation where 

the channel's discharge remains constant over time. Gradually varied flow conditions 

indicate that the water surface elevations do not change significantly over distance. To 

determine water surface profiles in 1D steady-state, the program applies the 

Conservation of Energy from one cross-section to the next along the channel's length, 

using the Standard Step Method.  

In natural channels, it is uncommon for the flow to be steady or constant. Instead, 

the flow rate varies over time, which is referred to as unsteady flow. Unsteady flow 

routing is the process of determining depths and flows at different locations within the 

channel at different times. This implies that velocity, discharge, and depths depend on 

both location (distance along the stream channel) and time. Figure 2.5 depicts this 

scenario, where at time t, Cross-Section A has a specific discharge and depth, while at 

time t+∆t, the same location may have a different discharge and depth. With unsteady 

flow routing, it is possible to determine the depth and discharge at numerous locations 

at different points in time. 

The Saint-Venant equations, also known as the shallow water equations, were 

formulated by Barre de Saint-Venant in the late 1800s to solve 1D unsteady flow routing 

problems. These equations are derived from applying the principles of Conservation of 
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Mass (Equation 2.1) and Conservation of Momentum (Equation 2.2) to a small control 

volume of fluid, as explained by Brunner (2016). 

𝑑𝐴𝑇

𝑑𝑡
+  

𝑑𝑄

𝑑𝑥
− 𝑞 = 0                                           Equation 2.1 

𝑑𝑄

𝑑𝑡
+  

𝑑𝑄𝑉

𝑑𝑥
+ 𝑔𝐴 (

𝑑𝑍

𝑑𝑥
+  𝑆𝑓) = 0                       Equation 2.2 

Where A is the area of cross-section, 𝑡 is a time, Q is the flow, X is the distance along 

the channel, q is a source or sink term, V is a velocity of flow, g is the gravity 

acceleration, Sf is the friction slope and 𝑑𝑧/𝑑𝑥 is the water surface slope. 
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Figure 2.5: An Unsteady Flow Routing Concept (Chase, 2016) 
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2.2.3.2 Two-Dimensional Unsteady Modeling  

In 2D modeling, the river and adjacent floodplain areas are divided into individual 

cells called grid cells, 2D flow cells, or computational grid cells. This process involves 

discretizing the area into a collection of cells with elevation and roughness data to 

represent the ground surface and friction effects. HEC-RAS uses the sub-grid 

bathymetry approach, which involves multiple GIS cells within each grid cell, as 

illustrated in Figure 2.6. Each GIS cell has a unique elevation, and the collection of grid 

cells makes up the terrain model. The terrain model defines the continuous ground 

geometry necessary for analyzing floodplains with two-dimensional behavior.  

A cell face is an interface between two grid cells, consisting of ground elevations 

from the GIS cells. In hydraulic terms, a cell face is equivalent to a cross-section, as 

depicted in Figure 2.7. Since the ground geometry is available through the GIS cell 

information, hydraulic properties such as cross-sectional area, wetted perimeter, 

hydraulic radius, and conveyance can be calculated for any water surface elevation. 

Moreover, the topography within a grid cell allows for the development of a relationship 

between the storage volume in the cell and the water surface elevation, known as a stage 

storage curve. Therefore, the model computes a water surface elevation at each grid cell 

for each point in time, with the grid cells' size determining the model's resolution and 

results. 

In general, HEC-RAS 2D permits varying water surfaces along any transect, 

unlike its 1D counterpart which only accommodates a single surface per cross-section. 

Furthermore, the 2D mesh is significantly more intricate than the cross-sections 

integrated in the 1D version, thereby lending the 2D results a more sophisticated 

appearance. Hence, this study aims the use of HEC-RAS 2D in simulating flood event 

over the study area.  
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Figure 2.6: Grid Cells and GIS Cells
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Figure 2.7: Ground Geometry at Cell Face
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2.3 GAP IN LITERATURE  

West African communities face varying degrees of risk from extreme rainfall-

induced flood events. Therefore, high-quality scientific research is crucial to understand 

better the characteristics and impacts of these events on the region's environment and 

economy, and thus help reduce their consequences by providing reliable warning 

information. Long-term observations and measurements of weather and climate 

parameters such as temperature, rainfall, relative humidity, wind speed, direction, and 

their derivatives are key to understanding the region's climate. Unfortunately, 

observation networks in West Africa are sparse, making it challenging to comprehend 

the underlying drivers of climate. Reanalysis datasets and satellite products have 

emerged in recent decades, providing valuable insights into some atmospheric 

processes. While these products have contributed significantly to our understanding of 

extreme events, they cannot predict how the region's weather or climate system will 

respond to future changes, highlighting the need for climate models.  

Global Climate Models (GCMs) can simulate various atmospheric phenomena. 

For example, they can assess extreme rainfall-induced flood events at different spatial 

and temporal scales, historically or for future conditions (Sylla et al., 2013). However, 

studies have shown that the horizontal resolution of most Global Climate Models 

(GCMs) is inadequate in representing regional or local atmospheric processes 

responsible for extreme rainfall events. As a result, the use of Regional Climate Models 

(RCMs) is necessary to obtain more precise information at the local level. But RCMs 

also have limitations. One of their main issues is that they can be affected by lateral 

boundary condition problems, which can hinder two-way interactions between larger 

scales and regional-scale features. This can compromise the quality of the simulated 
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regional or local scale features, as noted by Michaelis et al. (2019), Small et al. (2014), 

and Marbaix et al. (2003). 

In response to this issue, variable resolution or stretch-grid GCMs (VGCMs) 

have been introduced and applied for regional climate studies. Studies have shown the 

ability of VGCMs to simulate the climate over the Southwest Indian Ocean realistically 

and demonstrated the benefits of their usage in simulating various atmospheric features 

in West Africa compared to contemporary GCMs. However, since the development and 

application of VGCMs for regional studies are still relatively new, more research is 

necessary to assess their reliability in simulating extreme rainfall events over West 

Africa. 

The Model for Prediction Across Scales-Atmosphere (MPAS) is a new type of 

Variable Grid Climate Model (VGCM) that uses unstructured variable resolution 

meshes to achieve high resolution in specific regions of interest and enable smooth 

resolution transitions. Numerous studies have employed the MPAS model to simulate 

and study different atmospheric features that lead to extreme precipitation over various 

world regions. For example, researchers have used the model to study tropical cyclones 

in the eastern North Pacific, track Typhoon Morakot and the associated extreme rainfall 

over Taiwan, and simulate the characteristics of extreme rainfall events over East China. 

While the model has been widely used worldwide, only one study has tested its 

reliability over West Africa, and that study did not focus on extreme rainfall events. 

Therefore, further research is necessary to explore the MPAS model's potential for 

providing early warning information over West Africa to examine how well the model 

simulates extreme rainfall characteristics in the subcontinent. Hence, there is a need to 

evaluate the performance of a VGCM called Model for Prediction Across Scale-
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Atmosphere (MPAS) to simulate extreme rainfall events, focusing on the widespread 

extreme rainfall events in West Africa and the associated atmospheric circulations. 

On the other hand, for a relevant early warning system related to extreme 

rainfall-induced flood events is vital to translate the extreme rainfall forecasts into flood 

forecasts which are essential for flood hazard mapping. Hydraulic modeling has 

emerged as a practical approach for flood hazard and risk forecasting in recent years. 

This method offers critical flood-related information, including flood extent, depth, and 

velocity, essential for effective flood risk management. Though several studies have 

used different hydraulic models to assess flood hazards in other regions, only a few have 

been done in Togo, especially along the Oti River (e.g., Komi et al., 2017), and the focus 

was on 1D modeling. In addition, the majority of studies on inland flood hazards in 

Africa focus on either pluvial or fluvial floods; and according to Tiepolo et al. (2021), 

flood hazard assessments frequently fail to address local disaster risk reduction needs as 

they tend to concentrate on a single type of flood hazard (pluvial or fluvial floods). Even 

though several studies have investigated the combined fluvial and pluvial floods in other 

regions, studies have yet to be done over the Oti River basin in Togo. Komi et al (2017) 

are the only study on flood hazards in the Oti River basin in Togo (Komi et al., 2017) 

and only the fluvial flood was considered. Hence, the present study uses the HEC-RAS 

2D hydraulic model to simulate different scenarios of inland compound flood events, 

focusing on the Oti river in Mango, Togo (West Africa).  
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3 CHAPTER THREE 

3.0 MATERIALS AND METHODS 

3.1 STUDY AREA 

3.1.1 Study area for climate model simulation 

The area selected for the climate model simulation in this study is the West 

Africa region (20°W–25°E; 0°–25°N) with a focus on the Oti River and Gambia River 

basins (Figure 3.1). While most of the Oti River basin is located in the Savanna climate 

zone, the Gambia River basin (GRB) is in the Sahel climate zone. These basins were 

selected because, as transboundary areas, they each play a crucial role in the socio-

economic activities of the region. 

The Oti River basin is a sub-basin of the Volta basin in West Africa, with an 

estimated area of about 72,000 km2. It is shared among four countries (Ghana, Burkina 

Faso, Benin and Togo) and lies between 7° and 12.3° latitude North and between 

longitude 0.5°W and 2.5°E (Kwawuvi et al., 2022; Amisigo et al., 2015). The movement 

of the Inter-tropical Discontinuity (ITD) related to the West African Monsoon controls 

the basin's climate. The period of April to October represents the rainy season in the 

basin, with the annual rainfall varying between 1,100mm and 1,400mm (Klassou and 

Komi 2021). In Togo, the Oti River basin covers several economic regions (the western 

part of Central, Plateaux, and the whole Kara and Savannah regions). It is known to play 

a vital role in the country’s economy through its contributions to the overall GDP 

(37.7% of the national GDP in 2006) (Yomo et al., 2019). 

The GRB covers Guinea (Conakry) and Senegal with a total surface area of 

8,262km2 at the gauging station of Mako (Bodian et al., 2018). It experiences a Sahelian 

climate, characterised by a long dry season (November to May) and a short-wet season 
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(June to October). Average temperatures in Gambia range from 18°C to 30°C during 

the dry season and 23°C to 33°C during the wet season. The mean annual rainfall is 

1,208mm in the basin at the gauging station of Mako (Bodian et al., 2018). In terms of 

economic significance and preoccupation of local populations, it is impossible to 

overestimate the role of agriculture (broadly defined) in the development of the basin. 

Agriculture is the backbone of the GRB economy (Cheikh, 2018) and the primary source 

of most individual or regional income, directly or indirectly. About 85% of the 

population earns its livelihood from crop farming, animal husbandry, or related rural 

activities; more than 2/3 of the region’s gross domestic product is also derived from 

these activities.  
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Figure 3.1: Study area showing its topography in meters. The red box (Oti basin) and 

the blue box (Gambia basin) are the areas over which the study investigates the rainfall 

intensity versus frequency and the widespread extreme rainfall events (WERE
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3.1.2 Study area for hydraulic simulation 

The study was conducted in Mango City, in northern Togo, along the Oti River, 

focusing on two selected areas (Figure 3.2).  Within the Oti River basin, a sub-basin of 

the Volta basin in West Africa, the study area is located in the Savanna climate zone. Its 

climate is controlled by the Inter-Tropical Discontinuity (ITD) movement, which is 

related to the West African Monsoon. As a result, the area experiences a single wet 

season from April to October (Batebana et al., 2015), with the annual rainfall varying 

between 1,100mm and 1,400mm (Klassou & Komi, 2021).   
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Figure 3.2: Study area showing the HEC-RAS simulation area and the two small areas 

named A and B used to examine the composite fluvial and pluvial floods
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3.2 DATASETS 

First, this study analysed observation, reanalysis, and climate model simulation 

datasets. Four observation datasets, which are from four different sources (Table 3.1), 

were used to evaluate the model simulation. The reanalysis datasets that were used come 

from the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis 

v5 (ERA5) and the Climate Forecast System Reanalysis (CFSR); the details of these 

reanalysis datasets are also given in Table 3.1. The climate model data is from the Model 

for Prediction Across Scale simulation (details in the method section). The main climate 

variables used were daily rainfall, specific humidity, air temperature, geopotential 

height, zonal and meridional wind and Convective Available Potential Energy (CAPE). 

Secondly, river discharge datasets recorded at daily timescales from 2015-2020 

along the Oti River in Mango were used in this study for the hydraulic modeling. The 

datasets were obtained from the National Hydrological Service of Togo. Also, digital 

elevation model (DEM) data derived from the Sentinel 2 imagery at 10 m resolution 

was used for the HEC-RAS model geometry configuration. The Land-Use was also the 

important dataset used in this study. It was obtained from Sentinel 2 Lan Use database. 

The Land Use data was used to assign Manning’s values which were then associated 

with the model geometry.   
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Table 3.1: Information on the four observations and two reanalysis datasets used in the 

study. The period 1981–2010 was analysed for all the datasets in the study 

Dataset Full name Type Resolution References 

AgMERRA Climate forcing 

datasets for agricultural 

modelling 

Reanalysis-based 

multiple-source 

0.25° Rienecker et al. 

(2011) 

AgCFSR Climate forcing dataset 

for agricultural 

modeling 

  

Reanalysis-based 

multiple-source 

0.25° Rienecker et al. 

(2011) 

CHIRPS Climate hazard group 

infrared precipitation 

with stations 

Satellite and 

ground-based 

data 

0.05° Funk et al. (2015) 

WFDEI-CRU Water and global 

change forcing data 

methodology applied to 

ERA-interim (Climate 

Research Unit) 

Reanalysis-based 

multiple-source 

0.5°  Weedon et al. 

(2014) 

ERA5 European Centre for 

Medium-Range 

Weather Forecasts 

Reanalysis 5  

Reanalysis 

dataset 

0.25°  Hersbach et al. 

(2020) 

CFSR Climate Forecast 

System      Reanalysis 

Reanalysis 

dataset 

0.5°  
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3.3 METHODS 

3.3.1 Performance of the MPAS Global Climate Model 

3.3.1.1 Characterising extreme and widespread extreme rainfall events   

The extreme rainfall events over West Africa were characterised using eight 

rainfall indices (Table 3.2). Following the definition of the Expert Team on Climate 

Change Detection and Indices (Tank et al., 2009), the indices were calculated at each 

grid point over the study area. At each grid point, the threshold for an extreme rainfall 

event was defined as the 95th percentile of the daily rainfall over the grid point. 

Accordingly, any daily rainfall equal to or greater than this threshold was considered an 

extreme rainfall event. A widespread extreme rainfall event (WERE) was said to occur 

over any of the two basins if there was a simultaneous occurrence of extreme rainfall 

events over at least 70% of the basin (Figure 3.3). To evaluate the performance of the 

MPAS model in reproducing extreme rainfall over Western Africa, we compared the 

simulated indices for the period 1981–2010 (long run) with the mean of the indices from 

the four observation datasets. To provide context for the model bias, the biases of the 

model were compared to the uncertainties of the observations. The model performance 

was also quantified with spatial correlation coefficient (r) between the simulated and the 

observed rainfall indices.  
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Table 3.2: Description of rainfall indices used in the study 

Rainfall 

indices 

Description 

WDAYS Wet days. Annual count of days with daily rainfall greater or equal to 

1mm (Tank et al., 2009).  

Rx5day  Maximum consecutive 5-day rainfall.  

R20mm  Annual count of days when daily rainfall ≥20mm (Tank et al., 2009).    

CWD  The maximum number of consecutive wet days (Tank et al., 2009). 

RTOT Annual total rainfall on wet days (Tank et al., 2009).  

SDII SDII is the intensity of normal rainfall, calculated as RTOT divided by 

WDAYS (Tank et al., 2009).  

R97.5p All-day percentile. The R97.5th percentile rainfall on all days. (Schär et 

al., 2016). Any daily rainfall above this threshold (R97.5p) is 

considered an extreme event. 

R97.5pTOT Annual total rainfall when daily rainfall is greater than or equal to 

R97.5p (Schär et al., 2016).  
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Figure 3.3: Variation in the number of WEREs (over the Oti and the Gambia river 

basins) with the WERE threshold criteria. The threshold criteria refer to the minimum 

percentage area of basins that simultaneously experience an extreme event as depicted 

by observation 
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3.3.1.2 MPAS model evaluation method for the long run simulation 

Different evaluation metrics are available to evaluate the performance of a 

model. Nevertheless, no single metric can capture all relevant aspects. Therefore, it is 

crucial to consider different metrics and comprehend the kind of insights they can offer. 

In this research, though two metrics (correlation and systematic errors) of the model 

outputs are calculated to evaluate the model’s performance, other metrics are also 

described. These metrics assess the correlation strength, systematic errors, and accuracy 

of the model compared to observations and are described below.  

One of the statistics used is correlation coefficient (r), a measure of the strength 

of the linear relationship between model and observations.  

𝑟 =  
1

(𝑛−1)
∑ (

𝑀𝑖− 𝑀

𝜎𝑀
) (

𝑂𝑖− 𝑂

𝜎𝑂
)𝑛

𝑖 =1                                     Equation 3.1      

where O represents Observation or Reanalysis, M model output, σ standard deviation, 

and n number of data points in the series. 

The Mean Bias (B) is another statistic that indicates the mean over or underestimate of 

predictions. It has the same units as the quantities being considered.  

𝐵 =  
1

𝑛
∑ (𝑀𝑖 −  𝑂𝑖)𝑛

𝑖 =1                                                 Equation 3.2                                                                     

Lastly, the Mean Absolute Error (MAE) statistics that determine the mean error between 

model and observation regardless of whether it is an over or underestimate. It also has 

the same units as the quantities being considered;  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑀𝑖 −  𝑂𝑖|𝑛

𝑖=1                                            Equation 3.3 
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3.3.1.3 Case study: extreme rainfall events over the Oti River basin  

The sensitivity of MPAS in simulating two selected extreme rainfall events over 

the Oti River basin were assessed. The selection of the events was based on their 

devastating and destructive impacts on society. For example, the rainy season of 2007 

caused widespread flooding from extreme rainfall events that affected 792,676 people 

in West Africa and caused 210 deaths (Samimi et al., 2012; OCHA, 2007). Togo was 

among the countries that was most affected, especially the city of Mango in the Oti 

River basin, with 127,880 people and 23 deaths. On 1 July 2007, Mango city 

experienced one of these heavy rainfall-induced flood events along the Oti River, with 

77.7mm of rain recorded at the local weather station. Ten years later, on 22 July 2017, 

the same region in the Oti River basin experienced heavy rainfall along the Oti River in 

Mango, where rainfall of 109.5 mm was recorded at Mango’s weather station.    

3.3.1.4 MPAS Model description and experimental set-up 

The current study used the atmospheric core of the MPAS model, developed by 

the National Center for Atmospheric Research (Skamarock et al., 2010; Donkin and 

Abiodun, 2022; Zhao et al., 2019). The fully compressible non-hydrostatic equations of 

motion solved in the MPAS atmosphere dynamical core is described in Skamarock et 

al. (2012). MPAS uses Voronoi tessellations to create irregular multigonal grid cells 

around grid points to create a global irregular grid (Kramer et al., 2020; Skamarock et 

al., 2012). As a result, it allows smooth transitions from coarse to fine resolution, in 

contrast to the nesting techniques of traditional regional models. MPAS thus overcomes 

issues commonly associated with local refinement, where the transitions are often abrupt 

(Donkin and Abiodun, 2022; Duda et al., 2019). In addition, MPAS model has the 

capability of selecting individual parameterization schemes for various physical 
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processes in the atmosphere (e.g., convection, microphysics, etc.) as well as the 

capacity to select a suite of parameterization schemes (mesoscale reference or 

convection-permitting) to facilitate and ensure a choice of compatible schemes (Duda 

et al., 2019). This study used the mesoscale reference suite, and its corresponding 

parameterization schemes are summarised in Table 3.3. 

MPAS was used to perform five experiments (Table 3.4). The goal of the first 

experiment was to assess how well the model reproduces the characteristics of West 

African extreme rainfall events over a long period, while the goal of the other 

experiments was to investigate the sensitivity of the simulated extreme event to the 

model boundary condition and local enhancement in the horizontal grid resolution over 

a short period. The first experiment consisted of only one simulation called 

MPAS_Clim, in which the model was applied at 60km uniform-grid resolution (Figure 

3.3a) to produce 30 years and 1 month of climate data. The simulation was initialised 

with CFSR reanalysis data (on 1 December 1980 at 00h00 UTC) and forced with 

observed sea surface temperature data from the CFSR reanalysis dataset. However, only 

the data of the last 30 years of simulation was analysed in this study, as the data of the 

first month was discarded as model spin-up.  

The second experiment was similar to the first experiment, except that it 

consisted of two simulations (called MPAS60_CFSR and MPAS60_ERA5) and the 

simulations only covered 7 days. While the MPAS60_CFSR simulation was initialised 

with CFSR, MPAS60_ERA5 was initialised with ERA5. The remaining three 

experiments were similar to the second experiment except that the simulations in these 

experiments used variable-resolution grid mesh with higher resolution (i.e., 15km, 

10km, and 3km, respectively) over West Africa and 60km resolution outside the domain 
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(Figure 3.3b-c-d). Across all the experiments, the MPAS simulation used 41 vertical 

levels up to about 44km height. 
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Table 3.3: Parameterization schemes included in the default MPAS physics suites used 

in this study 

Parameterization Mesoscale reference  

Microphysics  WSM-6  

Convection  New Tiedtke 

PBL  YSU   

GWDO YSU GWDO  

Longwave radiation RRTMG  

Shortwave radiation RRTMG  

Cloud  Fraction  

Surface layer  Monin Obukhov  

Land surface model  Noah  
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Table 3.4: MPAS experiments performed in the study. The indicated simulation periods 

exclude the simulation spin up-time 

Experiment

s 

Simulation Horizontal resolution Initial 

condition 

Duration 

1 MPAS_Clim 60 km uniform CFSR 30 years 

 

2 

MPAS60_CFSR 60 km uniform CFSR 7 days 

MPAS60_ERA5 60 km uniform ERA5 

 

3 

MPAS15_CFSR 60-15 km variable CFSR 7 days 

MPAS15_ERA5 60-15 km variable ERA5 

 

4 

MPAS10_CFSR 60-10 km variable CFSR 7 days  

MPAS10_ERA5 60-10 km variable ERA5 

 

5 

MPAS03_CFSR 60-03 km variable CFSR 7 days 

MPAS03_ERA5 60-03 km variable  ERA5  
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Figure 3.4: MPAS mesh resolution used in the simulations: (a) 60km uniform resolution 

for the long run (30 years simulation) and for the sensitivity simulations to initial 

condition dataset; b-c-d show the MPAS domain used in the resolution sensitivity 

simulation
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3.3.2 Performance of HEC-RAS Hydraulic Model 

3.3.2.1 Evaluation and application of the HEC-RAS model in simulating actual 

and hypothetic flood events 

Flooding is a prevalent disaster that can result in significant economic and 

property loss, as well as loss of human life. While it may not be possible to prevent such 

events, advancements in hydraulic modeling allow us to identify flood-prone areas, 

potential inundation depth, and extent, which can then be used to create flood risk maps 

for specific locations. These risk maps can help identify critical zones, disseminate early 

warnings to residents during a potential flood, and assist in making emergency 

decisions.  

In this study, we first evaluated the performance of HEC-RAS 2D model version 

6.1, in simulating the actual flood event, in terms of flood extent in Mango on 17 

October along the Oti River. Indeed, in October 2020, Togo was severely affected by 

the flooding of the Oti River and its tributaries. Almost 57,000 people were affected, 

with 11 fatalities (ECHO, 2020; Copernicus-EMSR470: Flood in Togo). In that regard, 

Togo authorities needed the situation of flood extent, especially in Mango, to assess the 

impacts on settlements, agricultural systems, and infrastructure damages. Unfortunately, 

though the event started on 5 October 2020, the flood extent was made available for the 

17 October situation by the Copernicus Emergency Management Service (EMS) after 

the Togolese authorities activated the case on 13 October. The flood situation on 17 

October 2020 is shown in Figure 3.5 (source: Copernicus), and table 3.5 shows the 

event’s consequences within the area of interest.  

Secondly, we simulated fourteen hypothetical hydrographs scenarios (Figure 

3.6) to assess the effect of the maximum flow over the selected areas named A and B, 

shown in Figure 3.2. In addition to the hypothetical hydrograph, rainfall scenarios were 
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designed to evaluate the effects of the combined fluvial and pluvial floods over areas A 

and B. Both fluvial and combined fluvial and pluvial were then compared.  
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Figure 3.5: Situation of observed flood event on 17 October 2020 in Mango city showing 

its various impacts (Source: Copernicus EMSR470)
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Figure 3.6: The fourteen hypothetical hydrographs scenarios to investigate the impacts 

of the maximum flow as well as the effects of the combined fluvial and pluvial flood 

over areas A and B.
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Consequences within the Area Of Interest (AOI) 

  Unit of measurement  Destroyed Damaged 

Possibly 

damaged 

Total 

affected 

Total    

in 

AOI 

Flooded area  ha   363.3 

Flood trace  ha   47.6 

Estimated 

population 

Number of inhabitants   

91243 

Settlements Residential Buildings No. 0 83 37 120 120 

Transportation  Local Road km 0.0 7.4 0.5 8.0 50.4 

  Cart Track km 0.0 1.1 0.1 1.1 4.6 

Table 3.5: Summary of the flood impacts in Mango in October 2020 (Source: 

Copernicus-EMSR470) 
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3.3.2.2 HEC-RAS model description and Experiment 

The HEC-RAS 2D model, version 6.1, provides three equation sets that can be 

utilized to compute the flow of water over the computational mesh. These include the 

Diffusion Wave equations (DWE; Equation 3.4) and the Shallow Water equations 

(SWE; Equation 3.5), which employ either the Eulerian-Lagrangian method or the 

Eulerian method, which is more momentum conservative.  

{
𝑔

𝜕𝐻

𝜕𝑥
+ 𝐶𝑓𝑢 = 0

𝑔
𝜕𝐻

𝜕𝑦
+ 𝐶𝑓𝑣 = 0

                                                                  Equation 3.4 

{

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 =  −𝑔

𝜕𝐻

𝜕𝑥
+ 𝑣𝑡𝛻𝑢

2 − 𝐶𝑓𝑢 + 
𝜏𝑠𝑥

𝜌ℎ

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢 =  −𝑔

𝜕𝐻

𝜕𝑦
+  𝑣𝑡𝛻𝑣

2 − 𝐶𝑓𝑣 +  
𝜏𝑠𝑦

𝜌ℎ

                           Equation 3.5 

The time step of the model is determined based on the Courant-Friedrichs-Lewy 

condition in order to maintain numerical stability (Equation 3.6). 

    ∁ =  
𝑉∆𝑇

∆𝑥
 ≤ 1.0   (𝑤𝑖𝑡ℎ ∁𝑚𝑎𝑥 = 3.0)                                  Equation 3.6 

where C is the Courant number, V is the velocity (m s−1), ∆T is the time step (s), and ∆x 

is the grid cell size (m).  

The model geometry was built in Ras Mapper and HEC-RAS editor using the 

DEM (Figure 3.5b) to represent the ground surface. In addition, Manning’s values 

associated with each zone were defined according to land use and land cover classes 

(Figure3.5a). Ras Mapper was used to build a computational mesh at 10 m spatial 

resolution on the entire study area—the final mesh contained over 138000 cells 

comprising three to eight faces. While one external boundary condition was set to flow 

hydrograph upstream of the Oti River, the second external boundary condition was set 
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to normal depth. Also, the friction slope was estimated near the outlet of the simulation 

domain. The model was run between 01 September 2020 00:00 and 31 September 2020 

00:00 with a computational interval of 5 s using HEC-RAS version 6.1, set up on 

Windows 11 (64-bits), and run on High-Performance Computing environment (HPC). 

The Model outputs interval was set to 1 day for model performance. A diffusion Wave 

Equation was used in this simulation, and all other HEC-RAS unsteady computation 

options and tolerances were set to default. 
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Figure 3.7. The Digital Elevation Model (a) and the Land Use (b) used to set up the 

model geometry and the associated Manning’s values for HEC-RAS simulations. 
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4 CHAPTER FOUR 

4.0 RESULTS AND DISCUSSIONS  
 

4.1 SIMULATION OF EXTREME RAINFALL USING MPAS MODEL 

4.1.1 Performance of MPAS model 

This section assesses the performance of the MPAS model in simulating the 

characteristics of extreme rainfall over West Africa. The study uses four observation 

datasets (AgCFSR, AgMERRA, CHIRPS and WFDEI-CRU) to evaluate the model 

simulation. To put the model performance in the proper perspective, the study first 

discusses the uncertainties in these observed datasets, then compares the model biases 

with the uncertainties. In addition, two reanalysis datasets are used to serve as an 

interface between the MPAS model data and the observation datasets.   

4.1.1.1  Spatial pattern of rainfall indices over West Africa 

Figures 4.1 and 4.2 show notable uncertainties in observed datasets for all 

rainfall indices, as indicated by the standard deviation (STD) among the observations. 

For most indices (e.g., R20mm, R97.5p, R97.5pTOT, CWD, RTOT), the uncertainty 

level increases with the magnitude of the rainfall indices. For example, in the R20mm, 

the highest uncertainties (STD ≥ 40 days year-1) occur over the mountain regions where 

the highest R20mm are observed (≥ 72 days year-1) and the lowest uncertainties (STD 

≤ 5 days year-1) occur over the areas above the latitude 15°N where the lowest R20mm 

are observed (≤ 24 days year-1). This high level of uncertainty over the mountain regions 

may be due to the low resolution of some observed rainfall datasets. Several studies 

have reported similar uncertainties in the observed rainfall datasets over Africa in 

general (e.g., Klutse et al., 2021; Abiodun et al., 2019; Sylla et al., 2015). They also 
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attributed the uncertainty to the differences in the resolutions of datasets. However, 

lowering the uncertainty in the observation dataset over Africa is essential for model 

development and evaluation.  

The MPAS simulation gives credible representations of the spatial patterns of 

rainfall indices over Western Africa (Figures 4.1 and 4.2, fourth column). For most 

indices (e.g., R97.5p, R97.5PTOT, RTOT, WDAYS, CWD and Rx5day), MPAS 

reproduces the observed spatial patterns with a high correlation (r > 0.8). However, the 

model overestimates some indices (e.g., WDAYS and CWD) over the Guinea highlands 

and along the Guinea coast and Cameroon Mountain (Figure 4.3), and underestimates 

others (e.g., RTOT, SDII, R97.5p, R97.5PTOT, Rx5day, R20mm, and Rx5day) almost 

over the entire region (Figures 4.3 and 4.4). Even though the model overestimates 

WDAYS (by more than 18 days) and CWD (by more than 20 days) over these regions 

(Figure 4.3h-p), the model biases of both indices are still within the observation 

uncertainties (±30 days). Although MPAS overestimates the WDAYS, it underestimates 

the RTOT (by 500mm year-1, Figure 4.3d), possibly because the model underestimates 

the SDII (by more than 3.6mm day-1, Figure 4.3l) over these regions. Moreover, the 

MPAS simulation underestimates the indices related to extreme rainfall (R97.5p, 

R97.5pTOT, and R20mm) (Figure 4.4d-h) over West Africa, suggesting that the physics 

suite used in the simulation may underestimate the convective available potential energy 

or the moisture convergence flux over the region. This underestimation could also be 

because the CFSR data used to initialise the model underestimates the R97.5p and 

overestimates the R97.5pTOT, with biases out of the observation uncertainty (Figure 

4.4c-g). Several other studies show a similar bias over West Africa (Faye and 

Akinsanola, 2022; Klutse et al., 2021). For example, Faye and Akinsanola (2022) found 

that most GCMs from the CMIP6 (EC-Earth3 HadGEM3-GC31-LL, UKESM1-LL, 
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MRI-ESM2-0 and EC-Earth3-Veg) also underestimate Rx5day and R95pTOT over the 

entire region of West Africa. Klutse et al. (2021) also reported an overestimation of 

CWD over the Guinea highlands and along the Guinea coast and Cameroon Mountain 

in most CMIP6 global models.  
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Figure 4.1: The spatial pattern of rainfall indices (RTOT, WDAYS, SDII, and CWD) 

over western Africa. The first column is for the mean of observation datasets (AgCFSR, 

AgMERRA, CHIRPS, WFDEI-CRU), the second for ERA5, the third for CFSR data, 

and the fourth column for the MPAS model. In the first column, the contours represent 

the standard deviation among the observation data; r indicates the spatial correlation 

between the datasets and the observed mean. 
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Figure 4.2: Spatial pattern of rainfall indices (R97.5p, R97.5pTOT, Rx5day, and 

R20mm) over western Africa. The first column is for the mean of the observation 

datasets (AgCFSR, AgMERRA, CHIRPS, WFDEI-CRU), the second for ERA5, the 

third for CFSR data, and the fourth column for the MPAS model. In the first column, 

the contours represent the standard deviation among the observation data; r indicates the 

spatial correlation between the datasets and the observed mean. 
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Figure 4.3: The spatial pattern of biases in rainfall indices (RTOT, WDAYS, SDII, and 

CWD) over western Africa as shown in ERA5, CFSR, and MPAS model datasets to the 

observation mean. 
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Figure 4.4: The spatial pattern of biases in rainfall indices (R97.5p, R97.5TOT, Rx5day, 

and R20mm) over western Africa as shown in ERA5, CFSR, and MPAS model datasets 

to the observation mean. 
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4.1.1.2 Rainfall characteristics over the selected basins in West Africa 

Figure 4.5c-d shows that MPAS captures the rainfall intensity-frequency curves 

(rainfall frequency decreases with an increase in intensity) over the two river basins. 

However, MPAS also shows substantial discrepancy when compared to observation 

datasets (Figure 4.5a-b). For instance, in both basins, the curve of the MPAS simulation 

is out of the range of the observation spread. It lies at the lower end of the observed 

spread (Figure 4.5c-d), meaning that the model underestimates the frequency of heavy 

rainfall over these areas. While MPAS reports the highest intensity of rain to be 50mm 

day-1 over the Oti basin, it is about 100mm day-1 over the Gambia basin. Over the Oti 

basin, the curve of reanalysis data (CFSR) falls within the observed spread until the 

rainfall intensity reaches 80mm day-1, after which it lies at the upper end of the spread. 

The highest intensity rainfall of CFSR and ERA5 datasets reaches 150mm day-1 and 

120mm day-1, respectively, whereas the one of MPAS reaches only 50mm day-1. Again, 

CSFR and ERA5 exhibit the highest intense rainfall over the Gambia basin, with 180mm 

day-1 and 160mm day-1, respectively, compared to MPAS simulation with 100mm day-

1. Overall, the performance of MPAS in simulating the rainfall intensity-frequency is 

similar to those of CMIP6 reported by Klutse et al. (2021). Klutse et al. (2021) showed 

that some CMIP6 models (MIROC6 and GFDL-ESM4) underestimate the frequency of 

heavy rainfall over West Africa. Furthermore, Crétat et al. (2014) argued that the limited 

skill of most GCMs in simulating the frequency of intense rainfall is because of the too 

frequent triggering of convection independent of their horizontal resolution. 
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Figure 4.5: The rainfall intensity–frequency curves over Oti and Gambia basins in West 

Africa as depicted by observation datasets (first row), MPAS model, and reanalysis 

datasets (ERA5, CFSR) in the second row. The grey area shows the observation spread. 
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4.1.1.3 Temporal variation of widespread extreme rainfall events in JJAS season 

Figure 4.6 presents the monthly variation of widespread extreme rainfall events 

(WEREs) over the Oti River and the Gambia River basins during the June to September 

wet season (JJAS). It shows that MPAS simulates the highest number of WEREs in 

September. While the MPAS model reports 33 WEREs in September (the highest), the 

observed mean reports its highest number of WEREs in August (21 events). Notably, 

MPAS reports a higher number of WEREs in August (23 events) than the observed 

mean reports, even if MPAS does not report August to be the month featuring most 

WEREs overall, as stated above. While the MPAS model shows fewer WEREs 

compared to the observation mean in June and July over the basin, CFSR does not report 

any WEREs at all. On the other hand, MPAS shows a discrepancy in comparison with 

the peculiar observation datasets. In most months, WFDEI reports more WEREs over 

the basin. For example, in July and August, while WFDEI reports a more significant 

number of WEREs (40 in July and 55 in August) than MPAS (4 in July and 23 in 

August) over the Oti basins, AgCFSR and AgMERRA report fewer than the MPAS 

model, meaning that the model bias is within the observed spread. Meanwhile, the 

occurrence of WEREs can be attributed to several factors. For example, Roxy et al. 

(2017) showed that, in general, WEREs could result from nearly stationary and 

accumulating humidity levels over the region before the events. In addition, the south-

westerly strengthening transport of moisture from the Atlantic Ocean towards the area 

could engender intensified precipitation over the subcontinent. 
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Figure 4.6: Monthly variation of widespread extreme rainfall events over Oti and the 

Gambia basins (1981–2010) as shown by observed datasets (AgMERA, AgCFSR, 

CHIRPS, and WFDEI-CRU), the mean observation datasets, the simulated (MPAS) and 

the reanalysis (ERA5 and CFSR) datasets. 
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4.1.2 Sensitivity of the simulated extreme rainfall events over Oti River basin   

In this section, the sensitivity of MPAS to initial conditions is discussed, along 

with its model resolution in simulating two extreme rainfall events over the Oti River 

basin in Togo. These events occurred on 1 July 2007 (Case Study 1) and 22 July 2017 

(Case Study 2).  

4.1.2.1 Sensitivity to initial condition datasets 

Figure 4.7 shows that regardless of the initial conditions, MPAS60 gives a 

credible representation of the three observed (CHIRPS, Figure 4.7a) rainfall regimes 

(over the Guinea highland, Oti River basin, and along Cameroon Mountain) in Case 

Study 1 (Figure 4.7a-e-f). However, it underestimates the spatial rainfall intensity over 

the Oti River basin, as shown in Figure 4.7d. While MPAS60_CFSR simulation shifts 

the peak of the temporal evolution of rainfall over the Oti River basin one day before 

the event, MPAS60_ERA5 simulates almost a constant rainfall before, during and after 

the event (Figure 4.7d). Why MPAS60_CFSR shifts this peak of rainfall a day earlier 

could be because the model triggers earlier convective activities. In addition, the two 

simulations (MPAS60_CFSR and MPAS60_ERA5) present the same pattern of 

moisture flux from the Atlantic Ocean, which diverges over the area. This could explain 

the underestimation of the rainfall peak and the spatial distribution of the rainfall 

intensity depicted in the model. Concerning the datasets used to initialise the model, the 

ERA5 data (Figure 4.7c) replicates the three rainfall regimes shown in the observation 

field (CHIRPS) and, more importantly, over the Oti River basin. In contrast, the CFSR 

data (Figure 4.7b) replicates only two rainfall regimes (over the Guinea highland and 

along Cameroon Mountain). As a consequence, the ERA5 data shows the peak of the 

temporal evolution of the rainfall over the Oti River basin as in the observation data 
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(Figure 4.7d). By contrast, the CFSR data shifts the peak to a day after the event. This 

could be explained by the convergence of the moisture flux at 850hPa from the ocean 

over the area in the case of the ERA5 dataset and its divergence in the case of CFSR 

(Figure 4.7b-c; vectors). 

In Case Study 2, both MPAS60_CFSR and MPAS60_ERA5 simulations exhibit 

a similar rainfall pattern across West Africa (Figures 4.7k and 4.7l). For instance, 

regardless of the initial conditions, MPAS60 simulates the highest rainfall intensity over 

the Guinea highland, the northern part of Cote d’Ivoire, and the eastern part of West 

Africa. However, the simulations fail to replicate the rainfall intensity over the Oti River 

basin, as shown in the observation dataset (Figure 4.7g). This is consistent with the 

simulated temporal evolution of rainfall over the Oti River basin, where the model 

underestimates and shifts the peak as the observation data does (Figure 4.7j). The 

simulated moisture flux at 850hPa could explain this result (Figure 4.7k-l). The two 

simulations show a similar pattern of moisture flux over the area, where its sources are 

mainly from the continent. In addition, the moisture flux divergence over the Oti River 

basin cannot favour the upward motion during the event, producing less rainfall than the 

observed field. Again, in Case Study 2, CFSR and ERA5 datasets replicate the main 

rainfall regime shown in the observation field (CHIRPS; Figure 4.7g)—the only major 

difference is that the location of this rainfall pattern is shifted eastward in both CFRSR 

and ERA5 datasets (Figure 4.7h-i). By comparison, the CFSR dataset replicates the 

spatial pattern of the rainfall intensity over the Oti River basin and the peak of the 

temporal evolution of the rainfall better than the ERA5 (Figure 4.7j). Overall, using 

CFSR data as the initial condition, the model better represents the extreme rainfall event 

in Case Study 1. However, using ERA5 as the initial condition gives a better result in 

Case Study 2. 
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There needs to be more than moisture flux and its convergence to explain the 

performance of the MPAS model at 60km resolution in simulating the extreme rainfall 

events and how the reanalysis datasets (CFSR and ERA5) replicate the observed 

extreme rainfall events as discussed previously. Thus, for further context, Figure 4.8 

(Case Study 1, 1 July 2007) and Figure 4.9 (Case Study 2, 22 July 2017) show the 

temporal evolution of the vertical profile of the Moist Static Energy (MSE), the specific 

humidity, and the temporal evolution of Convective Available Potential Energy (CAPE) 

before, during and after the events. In general, the vertical structure of the atmospheric 

condition from the MPAS simulations is similar in both cases. For instance, in both 

cases, MPAS simulations (MPAS60_CFSR and MPAS60_ERA5) feature a relatively 

high MSE gradient (between the surface and the mid-level of the atmosphere) a day 

before the events (Figures 4.8e-f and 4.9e-f). This relatively high MSE gradient is 

associated with a higher value of CAPE (Figure 4.8g-h and 4.9g-h), meaning that the 

atmosphere was more unstable that day, producing a stronger updraft. These 

atmospheric conditions are consistent with the fact that the MPAS model 

(MPAS60_CFSR and MPAS60_ERA5) simulates the peak of the temporal evolution of 

rainfall a day before the events, as in the observation dataset (Figures 4.8g-h and 4.9g-

h). In addition, the reanalysis datasets that were used to initialise the model (CFSR and 

ERA5) in the two cases present a similar vertical profile of the MSE and the CAPE 

(Figures 4.8a-b and 4.9a-b). For example, the high MSE gradient is observed a day 

before the extreme rainfall event day (30 June 2007 in Case Study 1 and 21 July 2017 

in Case Study 2), and its associated CAPE is the highest (Figures 4.8c-d and 4.9c-d). 

However, although this is a good atmospheric condition for relatively strong convection, 

the corresponding amount of rainfall is not the peak in the temporal evolution of rainfall. 

For instance, in Case Study  1, the timing of the peak CAPE and the peak rainfall is 
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delayed by two days for the CFSR dataset and by one day for the ERA5 dataset. By 

contrast, in Case Study 2, this timing is delayed by one day for the CFSR dataset and 

two days for the ERA5 dataset. These conditions could be attributed to the time 

evolution of Convective Inhibition (CIN). 
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Figure 4.7: Simulated extreme rainfall event (shaded, in mm/day) using CFSR and 

ERA5 as initial conditions datasets: a-b-c-d-e-f for 1 July 2007 (Case Study 1) and g-h-

i-j-k-l for 22 July 2017 (Case Study 2). The vectors show the moisture flux at 850hPa 

(units: 103 g kg-1ms-1). 
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Figure 4.8: The temporal evolution of the vertical profile of the Moist Static Energy 

(MSE; shaded) and the specific humidity (contour) on 1 July 2007 (Case Study 1) is 

shown in panels a-b-e-f for the CFSR dataset, ERA5, MPAS60_CFSR, and 

MPAS60_ERA5) respectively. The temporal evolution of rainfall and the CAPE are 

shown in panels c-d-g-h. The black bars represent the observed rainfall (CHIRPS), and 

the red bars represent the CFSR rainfall, the blue bars represent the ERA5 rainfall. The 

green bars represent the MPAS60_CFSR rainfall, the purple bars represent the 

MPAS60_ERA5, and the black line represents the simulated CAPE for both initial 

datasets. All the values are averaged over the Oti River basin.  
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Figure 4.9: The temporal evolution of the vertical profile of the Moist Static Energy 

(MSE; shaded) and the specific humidity (contour) on 22 July 2007 (Case Study 1) is 

shown in panels a-b-e-f for the CFSR dataset, ERA5, MPAS60_CFSR, and 

MPAS60_ERA5) respectively. The temporal evolution of rainfall and the CAPE are 

shown in panels c-d-g-h. The black bars represent the observed rainfall (CHIRPS), and 

the red bars represent the CFSR rainfall, the blue bars represent the ERA5 rainfall. The 

green bars represent the MPAS60_CFSR rainfall, the purple bars represent the 

MPAS60_ERA5, and the black line represents the simulated CAPE for both initial 

datasets. All the values are averaged over the Oti River basin  
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4.1.2.2 Sensitivity to model resolution 

Figure 4.10 shows the sensitivity of MPAS in simulating the extreme rainfall 

events to initial conditions and model resolution in Case Study 1. It shows that 

regardless of the initial condition (CFSR and ERA5 datasets), MPAS15, MPAS10 and 

MPAS03 give similar rainfall regimes across West Africa. In the case of CFSR data 

used as the initial condition, the model simulations (MPAS15, MPAS10 and MPAS03) 

feature the highest rainfall intensity over the south-eastern part of Nigeria and along 

Cameroon Mountain (Figure 4.10a-b-c). Though the simulation underestimated the 

observed extreme rainfall intensity over the Oti River basin (Figure 4.7a), the MPAS 

model at 60–03km variable resolution did improve the simulation of the extreme rainfall 

events compared to the simulated events at 60–10km and 60–15km. The strong 

convergence of moisture flux at 850hPa from the ocean over the Oti River basin (Figure 

4.10c) may explain the improvement of the simulated rainfall intensity at 60–03km 

resolution. In addition, the MPAS simulations replicated the peak of the temporal 

evolution of rainfall over the Oti River basin as the observed dataset does, and the peak 

increases as the model resolution increases (Figure 4.10g). Using ERA5 to initialise the 

model, the simulations (MPAS_15, MPAS_10 and MPAS03) also gave similar rainfall 

regimes over West Africa, where the highest rainfall intensity features, extending from 

Nigeria to the Central African Republic (Figure 4.10d-e-f). Furthermore, the model 

improves the simulation of the extreme rainfall events over the Oti River basin as the 

model resolution increases. However, the model underestimates the spatial pattern of 

the observed rainfall intensity over the Oti River basin (Figure 4.7a) and shifts the peak 

of the temporal evolution of the rainfall (Figure 4.10h). Overall, using CFSR to initialise 

the model at 60–03km variable resolution improved the simulation of the extreme 

rainfall events of the Oti River basin.   



                                                                         83 

 

In Case Study 2, the MPAS simulations (MPAS15, MPAS10 and MPAS03) 

feature similar rainfall patterns over West Africa, independent of the data used as the 

initial condition (Figure 4.11a-b-c-d-e-f). For example, all the simulations feature the 

highest rainfall intensity over the Guinea highland, the north-western part of Cote 

d’Ivoire, and the eastern part of West Africa. However, the simulations seem to shift the 

rainfall pattern westward over the Oti River basin shown in the observation dataset 

(Figure 4.7g). Nevertheless, regardless of the initial conditions (CFSR and ERA5), the 

MPAS model at 60–03km improved the simulation of the extreme rainfall events over 

the Oti River basin compared to the model at 60–15km and 60–10km. The moisture flux 

field at 850hPa is not enough to explain this result since most of the moisture is from 

the continent (Figure 4.11; vector). In addition, the temporal evolution of the rainfall 

over the Oti River basin shows that the model simulates the peak a day before the event 

using CFSR and ERA5 as initial conditions (Figure 4.11g-a). 

To understand the extreme rainfall events simulation over the Oti River basin at 

different model resolutions using CFSR and ERA5 datasets as initial conditions, one 

cannot rely only on the moisture flux. In Case Study 1, and considering the CFSR as the 

initial condition dataset, the vertical structure of the MSE from the three MPAS 

simulations (MPAS15, MPAS10 and MPAS03) is similar (Figures 4.12a, 4.13a and 

4.14a). For example, the three simulations feature the highest MSE gradient and the 

highest CAPE on 30 June 2007 (a day before the event), meaning a strong convective 

activity that day. However, the simulated maximum precipitation occurred the following 

day, as in the observation data (Figures 4.12c, 4.13c and 4.14c). This result is consistent 

with the study by Lee et al. (2007) that used three general circulation models to examine 

the relation between CAPE and rainfall at diurnal scales. The study found several hours 

of time lag between maximum CAPE and maximum rainfall over the tropical region. 
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Subrahmanyam et al. (2015) argued that the relationship between CAPE and rain is 

crucial in developing convective parameterization schemes for numerical models. 

Considering the ERA5 dataset as the initial condition, the three MPAS simulations 

(MPAS15, MPAS10 and MPAS03) also feature the highest MSE gradient (between the 

surface and the middle altitude of the atmosphere) and the CAPE on 30 June 2007 

(Figures 4.12b, 4.13b and 4.14b). Still, the simulated maximum rainfall timing is 

significantly shifted with respect to the maximum CAPE by two days and with respect 

to the observed maximum rainfall by one day (Figures 4.12d, 4.13d and 4.14d). 

In Case Study 2, and considering the CFSR dataset as the initial condition, the 

MSE gradient and the CAPE distributions are similar for the three simulations (Figures 

4.12e, 4.13e and 4.14e). For instance, the MPAS simulations feature the highest MSE 

gradient on 21 July 2017, while the corresponding CAPE is not the highest (Figures 

4.12g, 4.13g and 4.14g). Though this CAPE value is not the highest in the simulations 

(but > 1200 J/kg), the model simulates the maximum rainfall on 21 July 2017 (a day 

before the event) for the three resolutions (60–15km, 60–10km, and 60–03km). This 

could be because the CAPE values that day were high enough to trigger a relatively 

strong convective activity. Similarly, with the ERA5 dataset as the initial condition, the 

MPAS simulations (MPAS15, MPAS10 and MPAS03) show the same MSE gradient 

pattern and CAPE’s temporal evolution (Figures 4.12f-h, 4.13f-h and 4.14f-h). For 

example, the CAPE value decreases with a decreasing MSE gradient. However, the 

highest simulated CAPE for the three resolutions does not match the simulated rainfall 

peak. Instead, the simulated maximum rainfall timing is significantly shifted with 

respect to the maximum CAPE by four days for the three resolutions. Overall, the 

simulations show that using CFSR as the initial condition at 60–03km variable 
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resolution improves the simulation of the extreme rainfall events over Oti River basin 

in both cases. 
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Figure 4.10: Simulated extreme rainfall events on 1 July 2007 (Case Study 1) (shaded, 

in mm/day) at 60–15km, 60–10km, and 60–03km variable resolution using CFSR and 

ERA5 as initial conditions dataset. The vectors show the moisture flux at 850hPa (units: 

103 g kg-1ms-1). 
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Figure 4.11: Simulated extreme rainfall events on 22 July 2017 (Case Study 2) (shaded, 

in mm/day) at 60–15km, 60–10km, and 60–03km variable resolution using CFSR and 

ERA5 as initial condition datasets. The vectors show the moisture flux at 850hPa (units: 

103 g kg-1ms-1). 
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Figure 4.12: Same as figures 8 and 9, but for variable resolution 60-15 km 
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Figure 4.13: Same as figures 8 and 9, but for variable resolution at 60–10km. 
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Figure 4.14: Same as figures 8 and 9, but for variable resolution at 60–03km. 
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4.2 SIMULATION OF FLOOD EVENT USING HEC-RAS MODEL 

4.2.1 Temporal evolution of rainfall and river flow   

Figure 4.15 shows the seasonal variation of the Oti River flow and precipitation 

datasets in Mango city over six years (2015-2020). It shows that the amount and timing 

of precipitation significantly influence river flow. For instance, the flow is relatively 

low during the driest months (e.g., 10.37 m3s-1 in February) and quite high during the 

rainy season (e.g., 483.28 m3s-1 in September). However, while the precipitation peak is 

recorded in July-August, the flow’s peak is recorded in September. This suggests that 

the precipitation recorded at Mango is not the only contribution to the magnitude of 

river flow in Mango. Other factors, such as the magnitude of antecedent catchment water 

storage, including soil moisture, groundwater, the slope, and the topography of the 

watershed (Ye et al., 2017); Malede et al., 2022; Cigizoglu et al., 2005), may contribute 

to the observed time lag between the rainfall peak in August and the flow peak in 

September. Along the Oti River, especially in Mango, flood events often occur between 

July and October when the rainy season is well established. However, for certain 

devastating events that can occur within a few days, flow data at a daily timescale is 

needed to understand the flood's characteristics and thus prevent their impacts. 



                                                                         92 

 

 

Figure 4.15: Seasonal variation of rainfall and river flow at Mango hydrological and 

meteorological stations over six years (2015-2020). 
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Figure 4.16 shows the temporal evolution of river flow in Mango along the Oti 

River at a daily timescale from 2015 to 2020. Generally, the maximum flow along the 

Oti River at Mango station is recorded between the end of September and earlier in 

October and ranged between 371.37 m3s-1 on 19 October 2019 to 912.62 m3s-1 on 2 and 

3 October 2020. For example, the maximum flows in 2015 (867.25 m3s-1) and 2018 

(857.73 m3s-1) were observed on 28 September and 29 September, respectively, while 

in 2016 (705 m3s-1) and 2020 (912.62 m3s-1), they were observed on 01-02 October and 

02-03 October, respectively. Furthermore, Figure 4.16 shows that the maximum flows 

in 2015, 2016, 2018, and 2020 are higher than the maximum annual mean flow, while 

the flows in 2017 and 2019 are lesser. Given the highest values of the maximum flows, 

especially in 2020 along the Oti River in Mango, it is essential to investigate how these 

flows could be translated into flood extent, which is crucial for flood risk preparedness. 

So, in this study, we considered the year 2020 for further analysis.  
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Figure 4.16: Daily variation of river flow at Mango hydrological station from 2015 to 

2020. 
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Figure 4.17 presents the diurnal variation of river flow and precipitation in 2020, 

and it shows a lag time between the maximum rainfall and the maximum river flow. For 

example, while the maximum rainfall was recorded on 8 September 2020, the maximum 

river flow was observed almost one month later on 01 and 02 October 2020. In addition, 

rainfall amounts at the Mango weather station on the days of the recorded maximum 

flow are zero on 1 October and 1.3 mm on 02 October. This suggests that the observed 

maximum river flow on 01 and 02 October 2020 could be due to the rainfall in the 

previous month of September and other factors, as discussed previously. Besides the 

temporal characteristics of rainfall and river flow we have discussed previously, we are 

also motivated by understanding how the flow along the Oti River in Mango could be 

translated into flood extent, which is crucial for flood risk preparedness. So, in the next 

section, we considered the year 2020 for flood simulation.  
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Figure 4.17: Daily variation of rainfall and river flow at Mango stations for the year 

2020. 
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4.2.2 Performance of HEC-RAS model in simulating a real flood event 

The hydraulic model evaluation against observations is generally based on 

quantifiable variables like flood extent and water velocity or depth. Therefore, a model 

that performs well in capturing these characteristics may be used for flood hazard 

assessment and thus indicate the vulnerability of built-up areas or farmlands to 

hydrological events with possible destructive impacts. In this study, we evaluated the 

performance of HEC-RAS 2D in simulating actual flood events considering the flood 

extent. The flood velocity and the water depth were not considered because the only 

available observed flood characteristic is the flood extent. So, figure 7 shows the 

simulated and observed flood extent on 17 October 2020 in Mango along the Oti River. 

Generally, the simulated flood extent agrees well with the observed one. It also agrees 

with the local topography (Figures 6a for the observed and 6b for the simulated one). 

However, while the model underestimates the expanse in some parts of the simulation 

area, it overestimates it in others, especially in areas A and B. Regarding the maximum 

inundation area, the HEC-RAS model gives an inundation area of 4.84 km2 (51.54% of 

the simulation area), while the observed inundation area is 4.10 km2 (43.74% of the 

simulation area). Besides the simulation of a actual flood event on 17 October 2020, we 

designed hypothetic modeling scenarios to evaluate the effects of combined fluvial and 

pluvial floods and the impact of various maximum flows (Figure 8) over two selected 

areas (area A and area B) within the simulation area. 
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Figure 4.18: Flood extent at Mango on 17 October 2020 as shown by: (a) the observation 

from Copernicus) and (b) the HEC-RAS simulation using hydrograph data. 
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4.2.3 Impacts of the simulated composite fluvial and pluvial floods   

First, the hypothetic fluvial flood and, secondly, the combined hypothetic fluvial 

and pluvial floods were simulated under 2D hydrodynamic unsteady flow conditions. 

Then, the impacts of the floods, in terms of water depth and flood extent, were analysed 

over the two small areas, A and B. Figures 4.19a and 4.20a show the evolution of the 

inundation area and depth over area A as a function of the maximum flows of 

hydrographs. It shows that the combined fluvial and pluvial conditions aggravate the 

flooding impacts. As a result, the flood extent and depths are more significant than the 

ones produced by a single type of flooding. For instance, the flood starts over area A 

from a maximum flow of 60 m3s-1 (fluvial flood) and inundates 0.38 % (0.055 ha) of 

the area. In contrast, it inundates 34.75 % (4.94 ha) of the area, considering the combined 

fluvial and pluvial floods (Figure 9a). Similarly, at the beginning of the inundation (flow 

of 60 m3s-1), considering the fluvial flood in area A, the recorded maximum flood depth 

was 0.05 m, while it was 0.27 m for the combined fluvial and pluvial (Figure 10a). 

Moreover, as the maximum flow of the hydrograph increases, the inundation area and 

depth increase. However, the deviation between the impacts of the fluvial flood and 

combined fluvial and pluvial floods remains constant when the flood extent is 

considered. At the same time, the deviation between the impacts reduces and becomes 

almost null when the inundation depth is considered. For example, when the maximum 

flow reaches its highest value (900 m3s-1), 81.16 % and 84.56 % of area A is flooded, 

considering the fluvial flood and the combined fluvial and pluvial foods, respectively. 

In contrast, the flood depths for both flood types are almost the same (0.782 m for fluvial 

flood and 0.784 m for combined fluvial and pluvial flood). This may be linked to soil 

saturation at a particular time that does not allow the water to infiltrate. 
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In area B, as in area A, the combined fluvial and pluvial floods enhance the flooding 

impacts in terms of flood extent and depth. However, the fluvial flood in area B begins 

from a maximum hydrograph flow of 100 m3s-1, unlike in area A, where the flood starts 

from 60 m3s-1. While the flood covers 84.56 % of area A with the highest flow value, 

it covers 70 % of area B with the same flow value. This result in area B may be 

associated with the high elevation of the floodplain in area B compared to area A. 

Overall, the flood impacts in area A are more significant compared to area B, and the 

consequences increase in both cases when the combined flood is considered.  
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Figure 4.19: The inundation area as function of the maximum river flow of the 

hypothetical hydrographs, and the combined fluvial and pluvial floods as simulated 

over: (a) for area A and (b) for area (B). 
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Figure 4.20: The inundation depth as function of the maximum river flow of the 

hypothetical hydrographs, and the combined fluvial and pluvial floods as simulated: (a) 

over area A and (b) over area (B).  
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5 CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION  

As part of an effort to improve understanding of extreme rainfall and flood events 

over West Africa and to enhance prediction, this study has examined the capability of 

the climate model (MPAS) in simulating extreme rainfall characteristics over West 

Africa and the ability of the hydraulic model (HEC-RAS) in simulating flood event over 

the Oti river basin. For the climate study, daily precipitation data from four observation 

datasets (WFDEI-CRU, AgMERRA, AgCFSR, and CHIRPS) and two reanalyses 

(CFSR, ERA5) datasets were analysed. In contrast, daily hydrograph data of the Oti 

river, the DEM, and LUC datasets were used for the hydraulic study. The climate model 

simulations were mainly compared with the mean of the observation datasets, while the 

reanalysis datasets were used as initial condition datasets for the model simulation and 

the dynamic and thermodynamic analysis. First, the climate model evaluation for 30 

years run (1981-2010) focused on how well the model reproduced the spatial patterns 

of eight rainfall indices (WDAYS, Rx5day, R20mm, CWD, RTOT, SDII, R97.5p, and 

R97.5pTOT) in West Africa. Then, several shorts run of climate simulations with the 

stretched-grid version of the model to study the sensitivity of the simulated extreme 

rainfall event to local enhancements in model resolution (i.e., 15 km, 10 km, 3 km) over 

West Africa, using two cases of extreme rainfall events over the Oti River were 

performed. 

On the other hand, the hydraulic model (HEC-RAS) simulation was compared 

with an actual flood event in Mango along the Oti river. The model was evaluated using 

flood extent data from Copernicus-EMS. In addition, seventeen composite fluvial and 
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pluvial flood scenarios were designed, and their impacts on two selected areas in the Oti 

River basin were assessed. The impacts were determined by considering each scenario’s 

flood extent and depths.    

The results of the study can be summarised as follows: 

● MPAS produces the observed spatial patterns of most rainfall indices (e.g., R97.5p, 

R97.5PTOT, RTOT, WDAYS, CWD, and Rx5day) with a high pattern correlation 

coefficient (r > 0.8), though with some biases. The model struggles to capture the 

spatial pattern of SDII and R20mm indices over the region. 

● MPAS captures the rainfall intensity-frequency curves over the two basins (ORB 

and GRB). However, it shows substantial discrepancy compared to observation 

datasets and underestimates the frequency of heavy rainfall in these areas. The 

rainfall intensity-frequency curves of the reanalysis dataset are within the observed 

spread, meaning that these data are within the observed uncertainties. 

● While MPAS simulates the highest number of WEREs in September over the two 

basins, the observed mean data reports the highest number in August. Also, while 

MPAS shows fewer WEREs than the observed mean in June and July over the 

basins, the CFSR does not even report any WEREs. In addition, MPAS shows a 

discrepancy compared with the peculiar observation datasets in reporting the 

number of WEREs.  

● In case study 1 and regardless of the initial conditions, MPAS60 gives a credible 

representation of the three observed rainfall regimes, especially over the ORB. 

However, it underestimates the spatial rainfall intensity of the HRE over the ORB. 

Regarding temporal evolution, MPAS60_CFSR captures the event's peak a day 

before the observed HRE day, while MPAS60_ERA5 reproduces almost a constant 

rainfall amount throughout the simulation duration. 
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● In case 2, MPAS60_CFSR and MPAS60_ERA5 fail to replicate the event’s intensity 

over the ORB, as shown in the observation dataset. This is consistent with the 

simulated temporal evolution of rainfall over the ORB, where the model 

underestimates and shifts the peak as the observation data does. 

 

● Regardless of the initial condition dataset, MPAS variable resolution (MPAS15, 

MPAS10, and MPAS03) improves the simulation of the HRE over ORB in case 

study 1. As the model resolution increases, the model improves the simulated HRE 

over the basin. However, the model underestimates the observed rainfall intensity 

over the ORB. While the model replicates the peak of the temporal evolution of 

rainfall over the basin, as the observed dataset does in the case of CFSR as initial 

condition data, it shifts the peak a day after the event in the case of ERA5 as initial 

condition data.  

● Similarly, in case study 2, the model improves the simulated HRE over the ORB as 

the model resolution increases with respect to CFSR and ERA5 data as initial 

condition data. However, regardless of the initial condition dataset, the three 

simulations (MPAS15, MPAS10, and MPAS03) reproduce the peak of the temporal 

evolution of rainfall a day before the event. 

● HEC-RAS produces the observed flood extent, which agrees with the local 

topography; however, the model underestimates the expanse in some parts of the 

simulation area and overestimates it in others. 

● The combined fluvial and pluvial conditions aggravate the flooding impacts over the 

two areas in terms of flood extent and depth. 
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● Area A is more vulnerable than area B considering both fluvial floods and the 

combined fluvial and pluvial floods. It gets flooded more rapidly in area A than in 

area B. 

● The inundation depth in the two areas is more sensitive to the fluvial flood than the 

pluvial flood.  

5.2 RECOMMENDATIONS 

The findings of this study demonstrate the capability of MPAS in simulating 

extreme rainfall over West Africa, but there are opportunities to improve the robustness 

of the results further. For instance, simulating additional events with varying intensity 

and geographic location would enable a more robust assessment of the model’s ability 

to simulate extreme rainfall events. Furthermore, while this study utilised a single 

default physics suite included in MPAS, the use of mesoscale reference, examining the 

impact of individual parameterization schemes on the characteristics of simulated 

extreme rainfall events would provide valuable insights into the sensitivity of MPAS. 

Nevertheless, by applying variable-resolution meshes, this study was able to simulate 

individual extreme rainfall events at high resolutions that would be computationally 

impractical in a uniform global model and potentially compromised by lateral boundary 

conditions in a regional model. Consequently, this study’s results provide valuable 

insights into MPAS’s suitability and sensitivity in simulating extreme rainfall, with 

practical applications for the refinement and implementation of MPAS to provide early 

warning for extreme rainfall-induced floods across West Africa.   

On the other hand, the results of this study demonstrate the capability of HEC-

RAS in simulating flood events in Mango, Togo. However, there are opportunities to 

improve the robustness of the model results further. For example, simulating additional 
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flood events in different locations would enable a more comprehensive assessment of 

the model's ability to simulate floods. Additionally, investigating the impact of high-

resolution DEMs on the characteristics of simulated flood events would provide 

valuable insights into the sensitivity of HEC-RAS. Furthermore, incorporating observed 

flood characteristics like flood depth would benefit model evaluation. Despite these 

limitations, this study was able to simulate the actual flood event using a 10m resolution 

of DEM, which agrees with the observed flood extent. Therefore, the study provides 

valuable insights into the practical application and implementation of HEC-RAS for 

early warning of flood events across West Africa.  
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