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ABSTRACT

It is well known that extreme rainfall events that usually devastate the socio-economic
activities in West Africa are inadequately simulated by many conventional uniform-grid
global climate models, but little is known about how well they are simulated by the
emerging variable-resolution global climate models. The present study examines the
performance and sensitivity of the Model for Prediction Across Scales-Atmosphere
(MPAS-A or simply ‘MPAS”) in simulating extreme rainfall characteristics over West
Africa. Eight indices were used to characterise extreme events. Firstly, the uniform grid
version of MPAS (60km resolution) was applied to simulate global climate for the
period 1981-2010, and the capability of the model was quantified to capture the
characteristics of extreme rainfall events over that period. Secondly, a series of
simulations were performed with the variable-grid version of the model to study the
sensitivity of the simulated extreme rainfall events to local enhancements in model
resolution (i.e., 15km, 10km, and 3km) over West Africa, using two cases of extreme
rainfall over the Oti River basin. The results show that MPAS gives a realistic simulation
of the spatial distribution of most of the eight extreme rainfall indices with a high pattern
correlation coefficient (r>0.8). However, the model overestimates the magnitude of
some indices (e.g., the annual number of wet days and the maximum number of
consecutive wet days) over the Guinea highlands and along the Guinea coast and
Cameroon Mountain and underestimates others over the entire region. The local
refinement of model resolution improves its performance in simulating extreme rainfall
events over the river basin. The results of the study have applications in improving and

implementing MPAS for extreme rainfall predictions over West Africa.

Floods are among the most destructive natural disasters with associated adverse impacts

on society and the environment, and the present study also assesses the capability of



HEC-RAS model version 6.1 in simulating flood events in Mango along the Oti River
in Togo. Actual flood events in October 2020 were initially simulated as a model
verification, and hypothetic modeling scenarios were simulated to explore the effects of
fluvial and combined fluvial and pluvial floods over selected areas A and B. The results
indicate that HEC-RAS gives a realistic simulation of the flood extent, which agrees
with the local topography. However, while the model underestimates the expanse in
some parts of the simulation area, it overestimates it in others, especially in areas A and
B. In addition, the combined fluvial and pluvial floods aggravate the impacts of the
events over the two areas, as the flood extent and depths are more significant than the
ones produced by a single type of flooding. The results of the study have applications
in improving and implementing HEC-RAS for flood events predictions over West

Africa.

Keywords: Extreme rainfall event, Global climate model, MPAS-A, Oti River basin,

Flood Event, Hydraulic model, HEC-RAS
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CHAPTER ONE

1.0 INTRODUCTION
1.1 BACKGROUND OF THE STUDY

The climate of West Africa is influenced by two main air masses. The first is a
warm, moist, tropical maritime air mass that carries moisture inland from the Atlantic
Ocean and is responsible for most of the rainfall in the region. This air mass reaches its
northernmost extent between 18 and 21 °N in July or August (FAO, 1985). The second
air mass is a hot, dusty, dry continental air mass that originates from the Sahara high-
pressure system and blows from the northeast over the area (FAO, 1985; Nicholson
2008, 2009). This air mass creates hot and arid conditions over land and moves
southwards, reaching its southernmost position over the Guinea zone in January
between 5 and 7 degrees north. Both air masses contribute significantly to the
temperature and rainfall variability in West Africa. The meeting point of the two air
masses is called the Inter-Tropical Convergence Zone (ITCZ) over the ocean and the
Intertropical Discontinuity (ITD) over land (Abiodun et al., 2008; Nicholson 2008,
2009). The ITD reaches its southernmost position at about 7 degrees north in January
over the Guinea zone and around 22 degrees north in August over the Sahel (Peter and
Tetzlaff, 1988). The above discussed systems, constitute the monsoon circulation which
is the prevailing rainfall-producing system in West Africa and provides about 75% to
90% of the total rainfall in the region (Hagos and Cook, 2007a). However, multiple
dynamical atmospheric rainfall-producing features such as monsoon flow, African
Easterly Jet (AEJ), Tropical Easterly Jet (TEJ), African Easterly Waves (AEW), and

Mesoscale Convective Systems (MCS) modulate the rain-producing systems over West



Africa (Fortune 1980; Gaye et al., 2005) and may even lead to extreme rainfall in the
region (Laurent et al., 1998; Fink et al., 2006).

Extreme rainfall is one of the most devastating weather events that threatens
human life and property. In West Africa, extreme rainfall often induces floods that cause
severe damage, loss of property and death (Engel et al., 2017b; Balogun et al., 2019;
Balogun et al., 2021). For example, on 1 September 2009, an extreme rainfall event in
Ouagadougou (Burkina Faso) produced more than 263 mm of rainfall within ten hours,
induced floods that destroyed property, damaged roads, displaced 150,000 people and
killed nine people. In 2007 alone, extreme rainfall-induced floods displaced more than
one million people and killed 500 in Burkina Faso, Togo, Mali and Niger (Di
Baldassarre et al., 2010). Over the period 1981-2014, extreme rainfall events affected
more than 2.3 million people, rendered nearly half a million people homeless and killed
more than 3,000 (Engel et al., 2017a; Guha-Sapir et al., 2016; EMDAT, 2015).
Meanwhile, several studies have indicated that global warming may increase the
frequency and intensity of extreme rainfall over West Africa in the future (Akinsanola
and Zhou, 2019; Diedhiou et al., 2018). For example, Sylla et al. (2016) projected a
future increase of about 40% in extreme rainfall intensity in most countries in West
Africa, while other countries are projected to experience a lower increase of about 20%.
Similarly, Vizy and Cook (2012) projected an increase in the number of extreme rainfall
days of 10-30% between April and October over West Africa. Accurate weather
forecasts from global climate models (GCMs) and regional climate models (RCMSs) can
help reduce the devastating impacts of extreme rainfall events by providing reliable
early warning information to foster better decision-making and preparation against these
events. However, there remains a large degree of uncertainty regarding the reliability of

the current climate models in simulating extreme rainfall over West Africa. For instance,



many Global Climate Models (GCMs) have low horizontal resolutions that cannot
effectively capture the regional or local atmospheric processes responsible for extreme
rainfall, making it necessary to utilise Regional Climate Models (RCMs) for more
precise local predictions (Sylla et al., 2016; Kgltzow et al., 2011; Salathé et al., 2010;
Abiodun et al.,, 2017). Though the extensive usage of RCMs has improved the
simulation of extreme rainfall over the region (Akinsanola and Zhou, 2019), there are
still some limitations related, for example, to the lateral boundary condition problems,
which compromise the quality of the simulated regional or local scale features.

An alternative approach to address the issues concerning GCMs and RCMs
raised previously is by using variable-resolution or stretch-grid GCMs (hereafter
VGCMs), for regional climate research (Fox-Rabinovitz et al., 2008; Fox-Rabinovitz et
al., 2001; Abiodun et al., 2011; Maoyi et al., 2021). According to Maoyi et al. (2021)
and Abiodun et al. (2011) the use of VGCM illustrates the benefits over contemporary
GCMs in modeling various climatic characteristics over the Southwest Indian Ocean
and over West Africa respectively. Nevertheless, as the development and application of
VGCMs for regional research are still relatively recent, further research is required to
assess their reliability in modeling extreme rainfall events over West Africa.

Though, skillful VGCMs may help improve the forecast of the extreme rainfall
events, it is important to assess how these events could affect the West African
communities in terms of flood, which is crucial for flood early warning system in West
Africa. Indeed, flood is a natural process that occurred when the water rises to overflow
land that is not normally submerged (Ward, 1978). Those lands are sometimes referred
as floodplain. Floods are one of the most disastrous hazards that threaten socioeconomic
activities worldwide. In the last 20 years, it accounted for 43% of all disasters and has

impacted the world's highest population (EM-DAT, 20015; CRED, 2015). The socio-



economic impacts of floods are usually more devastating in developing countries,
especially in West Africa, where poor communities are more vulnerable. In West Africa,
floods often cause colossal damage by demolishing infrastructures, damaging
agricultural products, and killing people (Tschakert et al., 2010; Komi et al., 2017;
Wagner et al., 2021). For example, in 2007, West Africa recorded the worst flooding it
had ever faced in 30 years. In Togo, the event affected more than 125000 people,
displaced 13700, and killed 23 people. The same event also affected 93000 people,
displaced 28000, and killed 46 in Burkina Faso (Tschakert et al., 2010). In 2010, flood
events greatly impacted the West African community, affecting 1.6 million people and
killing 307, and in Togo alone, they caused damages and losses worth over $38 million
(Ntajal et al., 2016). In October 2020, flood events badly affected the Oti River basin in
Togo, rendering 57 thousand people and killing 11 (EM-DAT, 2020; ECHO, 2020;
Copernicus-EMS, 2020). Although flood events affecting West Africa result from
multiple factors, rainfall events are the most important and remain the trigger. Recent
studies (Sylla et al., 2016; Mukherjee et al., 2018) highlight that global warming may
increase the frequency and intensity of heavy rainfall, and the loss of lives and economic
damages may escalate. However, skillful forecasts of heavy rain and associated flood
events may reduce the socioeconomic impacts of these events. While most flood early
warning systems in WA countries usually rely on rainfall forecasts, there is not much
effort put in place to translate those heavy rain forecasts into flood hazards forecasts,
especially in National Meteorological and Hydrological Services (NMHS), which may
help society, policymakers, and humanitarian agencies make effective emergency
response plans. Hence, there is a need to extend rainfall forecasts to flood hazard and

risk forecasts.



1.2 STATEMENT OF PROBLEM

The application of climate models is useful for studying extreme events at global
and regional scales and, more importantly, extreme rainfall events and their associated
features over West Africa. Despite significant advancements in climate modeling, there
is still a considerable level of uncertainty surrounding the accuracy of current climate
models in simulating extreme rainfall events across West Africa. These uncertainties
could influence the accuracy of the model outputs and, thus, hinder using findings
derived from model results to make and implement sound economic plans and policies.
In addition, studies have shown that many GCMs often have low horizontal resolutions,
which can lead to inadequate representation of the regional and local atmospheric
processes that drive extreme rainfall events. Other sources of errors from RCMs are
related to the lateral boundary condition problems. All these factors limit the accuracy
of representing the atmospheric phenomenon of interest and, thus, influence the
simulation of extreme rainfall events for reliable information in extreme rainfall-
induced flood events. For these reasons, studies have introduced and applied Global
Climate Models (GCMs) with variable-resolution or stretch-grid capabilities. Despite
the promising advancements and emerging applications of Variable-Grid Climate
Models (VGCMs) in regional climate studies, further research is required to assess their
efficacy and accuracy in predicting extreme rainfall occurrences across West Africa. On
the other hand, for reliable early flood warning information, it is essential to translate
the forecast of extreme rainfall into flood hazards and risk forecasts. Hydraulic modeling
has emerged as a viable method for predicting and mitigating flood hazards and risks in
recent times. Most studies on inland flood hazards in Africa are based on either fluvial
or pluvial floods. Other studies showed that extreme rainfall often generates both pluvial

and fluvial floods and that considering the individual flood type may underestimate the



potential damages. Therefore, assessing flood events by considering the combined

fluvial and pluvial flood is more relevant for flood hazards and risk forecasts.

1.3 AIM AND OBJECTIVES

131 Aim
The aim of this study is to evaluate the capability of the MPAS model in simulating
extreme rainfall, as well as evaluate the performance of the HEC-RAS model in

simulating flood events in West Africa.

1.3.2 Objectives
The Specific objectives of the research are to:

(i) evaluate the performance of the Model for Prediction Across Scale
(MPAS) in simulating the extreme rainfall characteristics over West
Africa;

(ii) assess the sensitivity of the MPAS model in simulating two extreme
rainfall events over the Oti River Basin (ORB) in Togo, West Africa;

(iii) examine the performance of the Hydrologic Engineering Center and
River Analysis System model (HECRAS) in simulating actual flood
events over the Oti River Basin (ORB); and

(iv) assess the composite of pluvial and fluvial flood risk over the ORB
using the HECRAS model.

1.4 JUSTIFICATION

The rationale behind this research is to identify a global climate model with
stretched-grid capability and a hydraulic model whose output can be used as an integral
input to provide sound climate information that will guide policy formulation and

decision-making in climate-related sectors of the economy at the national and regional



scale. Model evaluation, application, and development are the most vital areas explored
in past and present-day research, particularly in a data-sparse region like Africa. It is,
therefore, critical to constantly evaluate the available models, which are subjected to
modifications and regular updates. More so, there has been more demand for reliable
simulation of extreme rainfall and flood events because of the recurrent flood hazards
and their projected increase in frequency and intensity (Sylla et al., 2016; Mukherjee et
al., 2018). In recent years, few studies have provided important information on variable-
resolution or stretched-grid GCMs (VGCMs), which enable smooth resolution
transitions and achieve high resolution in specific regions of interest (Kramer et al.,
2018; Skamarock et al., 2010; Du et al., 1999; Ringler et al., 2008; nevertheless, none
studies tested the capability of VGCMs in simulating extreme rainfall over West Africa.
Also, it is crucial to extend the severe rainfall forecast to the flood hazard and risk
forecasts, which is essential for flood early warning information in West Africa. Hence,
there is a need for the current study to consolidate previous work by providing a
comprehensive evaluation of VGCMs and hydraulic models on extreme rainfall and

flood events simulation.

1.5 THE CONTRIBUTION OF THE RESEARCH TO KNOWLEDGE

The outcome of this research will be helpful for the model development
community in pinpointing the specific areas of model structures that require
modification for enhancing model outputs. Also, to close the gaps in our scientific
understanding of how the variable-resolution GCMs simulate extreme regional rainfall
and how the hydraulic model can be applied to flood hazard and risk forecasts. Using
this information, policymakers can make informed decisions and develop robust policies

to improve sustainable economic planning and promote climate-resilient development.



Additionally, these measures will mitigate risks and challenges faced by crucial sectors
of the economy, including agriculture, water resources, public health, energy, and other

weather-sensitive industries.



CHAPTER TWO

20 LITERATURE REVIEW

This chapter comprehensively reviews the modeling of extreme rainfall and flood
events studies. It starts by reviewing the three main methods used to identify and define
extreme rainfall in the literature and summarizes the findings of previous studies on the
capability of climate models (Global and Regional Climate models) to simulate extreme
rainfall. It also summarises the findings of previous studies on the capability of

hydraulic models to simulate flood events over Western Africa.

2.1 SIMULATION OF EXTREME RAINFALL EVENTS USING CLIMATE
MODELS

2.1.1 Identification of Extreme Rainfall Events

There is no unique definition for extreme rainfall events, as previous studies have
adopted different methods to define extreme rainfall events (e.g., Tarhule, 2005;
Barnston and Mason, 2011). These methods use the characteristics of extreme rainfall
events to identify or use the impacts of extreme rainfall events to detect the events. For
instance, Groisman et al. (2001) and Klein Tank and Zwiers (2009) defined and
identified extreme rainfall events based on the characteristics of the events (i.e.,
frequency, persistence, intensity, and amplitude). In contrast, Tarhule (2005) and
Barnston and Mason (2011) defined and identified extreme rainfall events based on the
devastating and destructive impacts of the event on society. Though this study has used
two methods in determining extreme rainfall (threshold values and percentiles), the
review in this section discusses the three main methods as identified by Groisman et al.

(2001). These methods are return periods, threshold values, and percentiles.



2.1.2 The Return-Period Method

Several studies have given different attributes for return-period methods (e.g.,
Sanderson, 2010; Chu et al., 2009). For instance, Sanderson (2010) indicated that the
return period is the frequency of an event, while the magnitude of the associated rainfall
event is called the return value. Chu et al. (2009) and Vezzoli et al. (2012) referred to
the return period, also known as the recurrence interval, as the average gap (in years)
between rainfall events of a given magnitude or more significant. This method, common
among building engineers and hydrologists, has been used to describe the characteristics
of extreme events in different parts of the world. With this method, Sanderson (2010)
used 46 years to calculate the return value of daily rainfall events over 40 towns and
cities in the United Kingdom. Melice and Reason (2007) applied the method over a 65-
year data series to estimate the frequency of the occurrence of destructive rainfall in
George (South Africa). Over West Africa, Panthou et al. (2012) estimated the frequency
of extreme rainfall events with a 100-year return value in the Central Sahel Zone using
the return period. The main shortcoming of this method is that it requires a long rainfall
time series. Sanderson (2010) shows that applying the return period method on a short-

time rainfall series may lead to high return value uncertainty.

2.1.3 ldentifying Extreme Rainfall Events Using Threshold Values

The threshold values for identifying extreme rainfall are widely used, and the
method is well established in the literature (e.g., Groisman et al., 2001; Dyson et al.,
2009; Zhang et al., 2011). This method identifies an extreme event over an area using a
rainfall threshold value suitable for the area. Any rainfall amounts equal to or greater
than the threshold value is considered an extreme event. Because of its simplicity

(compared to the return period), this method is widely used and preferred to the return-

10



period approach. For example, Panthou et al. (2014) used threshold values of 30.0- and
60.0-mm day to identify and study the characteristics of extreme rainfall events in the
north and south of the Central Sahel, respectively. Hountondji et al. (2011) applied a
threshold value of 79.6 mm day-1 to obtain extreme rainfall events over 21 stations in
Benin for the period 1960-2000. Groisman et al. (2001) studied the spatial distribution
of heavy rain events over the United States using 100 mm day-1 at a 1° x 1° grid
resolution. However, some studies (i.e., Dyson et al., 2009; Zhang et al., 2011; Abba
Omar, 2014) have pointed out that this method has a significant weakness. The
weakness is that, as various regions of the world receive different amounts of rainfall
and require different threshold values, it is challenging to compare extreme rainfall
events over the areas. Moreover, Klein Tank and Zwiers (2009) and Zhang et al. (2011)
showed that the threshold value method is inappropriate for the spatial comparison of

extreme rainfall distribution over an area or a region.

2.1.4 Percentile Values

To overcome the shortcomings of the threshold-values method, some studies
have used the percentile-values method in identifying an extreme rainfall event (i.e.,
Grimm and Tedeschi, 2009; Abiodun et al., 2013; Ly et al., 2013). For example, Ly et
al. (2013) defined an event as extreme rainfall if it is equal to or above the 99th percentile
of daily precipitation in the Sahel zone of West Africa. Likewise, Abiodun et al. (2013)
described the spatial distribution of extreme rainfall events using the 99.5th percentile
of daily rainfall over Nigeria. Moreover, other studies employ a different approach to
applying this method. For example, Grimm and Tedeschi (2009) defined extreme
rainfall using the mean of three consecutive rainfall days above the 90th percentile

distribution. Moreover, Yabi and Afouda (2012) identified any year with a 20% increase
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in annual total rainfall above the yearly mean rainfall as an extreme rainfall year over
Benin. However, the percentile value method is more valuable than the return period or
threshold values. This is because there is an even distribution of the days equal to or
greater than the set percentile. Furthermore, unlike the return period method, this
method does not need a long-term dataset and applies to all regions (Klein Tank &
Zwiers, 2009; Zhang et al., 2011; Abba Omar, 2014). Moreover, this method is suitable
for evaluating the changes in event characteristics, intensity, and frequency and allows
the spatial comparison of complex topography over a region such as West Africa (Zhang
etal., 2011). Therefore, of these three methods described above, the percentile-threshold
method is the most appropriate for the present study. Thus, following Crétat et al.
(2014), the present study used the 95th percentile of daily rainfall to define an extreme
rainfall event over West Africa. The implementation of the method for this study is

detailed in Chapter Three.

2.1.5 Favorable Atmospheric Conditions for Extreme Rainfall Events in West

Africa

Several studies have identified different processes that favor extreme rainfall in
West Africa (Reed et al., 1977; Fortune, 1980; Lavaysse et al., 2006, Pathe et al., 2009).
For instance, Pathe et al., 2009 attribute heavy rainfall over West Africa to warm SST
conditions over the Tropical Atlantic Ocean and EI Nino conditions over the Pacific
Ocean. On the other hand, Reed et al. (1977), Fortune (1980), and Lavaysse et al. (2006)
attribute the phenomenon to the complex interaction and variability in rainfall-
producing features in the WAM systems (i.e., MCSs, AEJ, TEJ, and AEWSs). While
Nicholson (2008 and 2009) found that an increase in the strength of TEJ usually leads

to an increase in extreme rainfall in the West African Sahel, Laurent et al. (1998) and
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Fink et al. (2006) found that more MCSs lead to more extreme rainfall in the Sahel.
Furthermore, Ruti and Dell' Aquila (2010), Abatan (2011), and Crétat et al. (2014) have
reported a strong link between extreme rainfall and AEWSs in West Africa. Their
findings revealed that extreme rainfall strongly depends on the wave pattern of the
AEWs. Cretat et al. (2014), in particular, found a link between extreme rainfall and the
two AEWSs types (3-5 days and 6-9 days wave periods) over West Africa. Furthermore,
the study showed that the 3-5 days AEWSs mainly account for extreme rainfall over West
Africa (especially south of latitude 15°N). Also, some studies argued that most of the
heavy rainfall in West Africa comes from MCSs and that these MCSs are usually
embedded in the AEWs (Fink and Reiner, 2003; Fink et al., 2006; Crétat et al., 2014).
Hence, understanding the thermodynamic conditions associated with these atmospheric
circulations is crucial to understanding the characteristics of extreme rainfall over West
Africa. Therefore, the emphasis of the present study will be on understanding the link

between the thermodynamic conditions and extreme rainfall in West Africa.

2.1.6 Simulating Extreme Rainfall Events using Global Climate Models (GCMs)

Global climate models (GCMs) are a complex mathematical representation of
the major climate system components (atmosphere, land surface, ocean, and sea ice) and
their interactions. They are accredited tools for climate simulation. Some studies have
discussed the performance of Global Climate Models (GCMs) in simulating the
characteristics of extreme rainfall events over West Africa (Faye and Akinsanola, 2022;
Klutse et al., 2021; Kamiguchi et al., 2006; IPCC, 2007; Vigaud et al., 2009; Crétat et
al., 2013; Niang et al. 2014). For example, Sow et al. (2020) showed that most CMIP5
global models capture relatively well the annual cycle of the fraction of precipitation

accounted by the very wet days R95ptot, while Klutse et al. (2021) showed that in some
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cases, CMIP6 global models capture the frequency of heavy rainfall in the region. Also,
Faye and Akinsanola (2022) found that the CMIP6 global models reasonably reproduce
the patterns of extreme rainfall indices over the WA region. Furthermore, Crétat et al.
(2013) found that three out of the four GCMs in their study simulated a realistic
magnitude of intense rainfall over Africa. However, while GCMs may be skillful in
rainfall at the global or continental scale, they cannot resolve the regional circulation
patterns that lead to extreme hydrological events like extreme rainfall events at the
regional scale due to their coarse horizontal resolution (Christensen and Christensen,
2003). Giorgi et al. (2001), Wang et al. (2004), and Rummukainen (2010) pointed out
that GCMs’ low and coarse horizontal resolution results in their inability to simulate the
finer scale regional and local forcings (e.g., complex terrain and topography, land-ocean
contrasts) that controls the regional climate. Giorgi et al. (2009) argued that the low
resolution of the GCMs hinders them from simulating extreme events that are important
to climate information users. Sylla et al. (2012) and Crétat et al. (2013) also found that
GCMs failed to correctly reproduce key features of the local atmospheric circulation
due to the low resolution of the models. These shortcomings are a significant source of
uncertainty in simulating extreme rainfall characteristics, frequency, and intensity over
West Africa (Cook and Vizy, 2006; Sylla et al., 2012; Crétat et al., 2013). For instance,
Crétat et al. (2013) stated that GCMs simulations often overestimate extreme rainfall's
frequency (and underestimate the intensity) over West Africa. In light of these
shortcomings, downscaling, a method to improve outputs from GCM outputs, was
initiated to meet the increasing demand for climate variability and projection at a
regional scale (Endris et al., 2015). Downscaling, a means of acquiring small-grid scale
information from fields with lower resolution, provides decision-makers with the

needed information for impact assessment at a local scale in connection with
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information from the GCMs (Benestad, 2008). Two approaches to downscaling are

reported in the literature: Statistical and Dynamical downscaling.

2.1.7 Statistical Downscaling

Previous studies have used Statistical Downscaling (SD) to obtain regional
climate information from GCMs (e.g., Hewitson and Crane, 1996; Di Vittorio and
Miller, 2013). SD is used to establish a statistical correlation between global scale
climate variables (surface pressure) and local climate variables such as rainfall of an
area (Endris et al.,, 2015). The relationship is used to acquire regional climate
information by mapping it to GCM data (Hewitson and Crane, 1996). According to Di
Vittorio and Miller (2013), the SD method adopts the statistical relationships between
low-resolution GCM or RCM data and the point measurement at an observation station.
Statistical relationships are estimated for a calibration period, validated separately, and
applied for another period assuming temporal stationarity (Di Vittorio and Miller, 2013).
Furthermore, regional information can be obtained using the equations to downscale
GCM outputs. This involves using the equations to investigate the differences between
global and local or regional climates. Abiodun et al. (2013) statistically downscaled
different GCMs simulations and found an increase in the frequency of extreme rainfall
days across the ecological zones of Nigeria due to global warming. Goswani et al. (2006)
revealed that significant spatial contradictions and the inability to account for the
topographic effects on extreme rainfall events are some of the defects of the SD
technique. Hence, discarding the geomorphology of the study area makes SD

inappropriate for forecasting extreme rainfall events (Goswani et al., 2006).
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2.1.8 Dynamical Downscaling

Several studies have documented the dynamic downscaling (DD) techniques for
providing regional information from GCMs (i.e., Wang et al., 2004; Seth et al., 2007;
and Endris et al., 2015). Unlike SD, the DD method applies conservation laws to provide
regional climate information over the chosen domain about climate variability and
change projections via numerical models (Endris et al., 2015). In this technique, a GCM
provides an initial condition and a continuous lateral boundary condition to an RCM’s
integration, while the RCM provides the finer-scale regional information. Many studies
have used the DD technique to provide regional climate information for different
purposes, including climate predictability studies (Lawal et al., 2015), seasonal climate
prediction (Wang et al., 2004), climate change projection (Giorgi and Mearns, 1991 and
Giorgi, 2006), and the impact of land-cover change on projected future climate
(Abiodun et al., 2012; Naik and Abiodun, 2016). The technique has also been
successfully used in West Africa for climate-change studies (Vigaud et al., 2009; Diallo
et al., 2012). For example, Diallo et al. (2012) employed the DD approach to project
future changes in precipitation and temperature over West Africa for the early twenty-
first century, using four RCMs (RegCM3, RCA, REMO, and HadRM3P) to downscale
two GCM (ECHAMD5 and HadCM3) outputs. Some of the advantages of the DD method
are that it captures atmospheric processes like rainfall induced by topography and uses
coarse resolution GCMs output to provide higher-resolution information up to 10-50 km
(Giorgi et al., 2009), as well as the fact that it responds to different external forcings and

does not assume temporal stationarity in the SD method (Endris et al., 2015).

16



2.1.9 Simulating Extreme Rainfall Events using Regional Climate Models

(RCMs)

Studies have shown that using RCMs has improved our knowledge about the
different interactions among the atmospheric features that induce extreme rainfall at
regional or local scales (Jenkins et al., 2005; Moufouma-Okia and Rowell, 2010; Sylla
et al., 2011; Browne and Sylla, 2012). For instance, Crétat et al. (2013) showed that the
nesting of RCM (WRF 3.5) reproduces spatial and temporal characteristics of extreme
rainfall events as the observed datasets over Africa. Also, Sylla et al. (2012) and
Haensler et al. (2013) successfully applied RCM to reveal how topography can induce
extreme rainfall in West Africa, showing RCMs’ ability to capture and resolve complex
topography. Akinsanola and Zhou (2018) showed that RCA4 and COSMO-CLM RCMs
represent observed extreme rainfall patterns over the WA region and add significant
value to the driven GCMs. But RCM downscaling usually involves lateral boundary
condition problems and prevents the two-way interactions between larger scales and
regional scale features, as a result, compromising the quality of the simulated regional
or local scale features (Michaelis et al., 2019; Small et al., 2014; Marbaix et al., 2003).

The need to address this problem has led to the introduction and application of
variable-resolution or stretch-grid GCMs (hereafter VGCMs) for regional climate
studies (M. Fox-Rabinovitz et al., 2008; M. Fox-Rabinovitz et al., 2001; Abiodun et al.,
2011; Maoyi et al., 2018). For example, Maoyi et al. (2018) applied VGCM (called
CAM-EULAG) to give a realistic climate simulation over the Southwest Indian Ocean,
and Abiodun et al. (2011) demonstrated the advantages of VGCM over the
contemporary GCMs in simulating various atmospheric features in West Africa.

Nevertheless, given that the developments and applications of VGCMs for regional
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studies are still relatively new, there is a need for more studies on their reliability in

simulating extreme rainfall events over West Africa.

2.1.10 Example of Stretched-Grid Global Climate Models (VGCMs)

2.1.10.1 Finite-Volume on a Cubed-Sphere Model (GFDL FV3)

In 2016, NOAA built one of the world’s best global weather models, a priority
for the agency and the nation. In addition, NOAA announced the selection of a new
dynamic core, the engine of a numerical weather prediction model, and has begun
developing a state-of-the-art global weather forecasting model to replace the U.S.
Global Forecast System (GFS). The latest global model is also called the GFS. As with
the current GFS, the latest GFS developed one run in the background of NOAA’s suite
of weather and climate models improving skill across all NOAA's forecast mission
areas.

The new dynamic core, Finite-Volume on a Cubed-Sphere (FV3), was
developed by NOAA’s Geophysical Fluid Dynamics Laboratory in Princeton, New
Jersey. The FVV3 core has brought a new level of accuracy and numeric efficiency to the
model’s representation of atmospheric processes, such as air motions. This makes
possible simulations of clouds and storms at resolutions not yet used in a global
operational model. In addition, FV3 improves the representation of small-scale weather
features such as hurricanes while maintaining the quality of large-scale global
circulation. The FV3 core enables the model to provide localized forecasts for several
weather events simultaneously, all while generating a global forecast every six hours.
Looking ten years ahead, the GFS model with the F\V3 core can run in higher resolution
and zoom in (Figure 2.1) on smaller and smaller storm systems to provide forecasters

with better pictures of how storms will evolve.
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FV3 Stretched Grid Resolution (km)

Figure 2.1: An example of FVV3's capability to zoom in on critical weather events. The
model resolution has been enhanced to represent better hurricanes threatening the
Southeastern US. The reverse side is a coarser resolution because it is less concerned.
Source: NOAA to develop new global weather model | National Oceanic and

Atmospheric Administration
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2.1.10.2 Models employing stretched spherical coordinates

The formulation of three global grid-point atmospheric models, GOES-SG,
GEM, and LMDZ, is based on spherical coordinates. These models incorporate a
stretching technique similar to the approach proposed by Staniforth and Mitchell (1978)
for numerical weather prediction on a hemispheric polar stereographic grid. A fine-
resolution window, typically with a grid spacing of approximately 0.5°, is present in all
three models. The resolution degrades to about 2° in the far field along each grid axis.
The buffer region between the inner window and the far field is characterized by a
constant rate of longitude and latitude degradation, up to 10% per grid point, until the
desired coarse grid spacing is attained in the far field. As Caian and Geleyn (1997)
suggested in their study of ARPEGE, more aggressive stretching factors may be utilized
for short-term numerical weather prediction applications.

Figure 2.2 presents a stretched spherical grid, which has a comparable number
of points in its fine-resolution window, as an illustration. In this example, a far-field
resolution of 2.715° is defined, and the buffer zone grid length increases at a rate of 4%
per cell. The total number of grid points for this stretched spherical grid example is
34,632. Notably, models utilizing stretched spherical grids often have approximately
twice the number of grid points compared to a Schmidt-transformation model that
encompasses a similar high-resolution region (typical values are reported by Fox-
Rabinovitz et al., 2006). Although this increases the computational cost, it may offer
some benefits for the simulations due to the less coarse grid cells in the far-field region.
Furthermore, the independent longitudinal and latitudinal grid-stretching may result in
a lack of isotropy in the cells in the coarse region; however, no associated detrimental

behavior has been reported.
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Figure 2.2: Example of a stretched spherical grid having resolution of 0.56° over the central
region increasing to 2.43° afar, plotting every second grid line. Source: John L. McGregor,
2013.
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2.1.10.3 Model for Prediction Across Scales-Atmosphere (MPAS-A)

The MPAS atmospheric component utilizes an unstructured centroidal VVoronoi
mesh and C-grid staggering state variables for horizontal discretization in fluid flow
solvers. The variable resolution meshes are capable of smoothly varying transitions,
which is demonstrated in Figure 2.3. This feature is believed to address issues
commonly associated with traditional mesh refinement strategies, such as abrupt
transitions in one-way and two-way grid nesting. The flexible MPAS meshes allow
researchers to pursue high-resolution numerical weather prediction NWP) and regional
climate applications, in addition to global uniform-resolution NWP and climate
applications. The MPAS atmospheric dynamical core addresses the fully compressible
non-hydrostatic equations of motion. The horizontal Voronoi mesh, depicted to the
right, uses a C-grid staggering of the state variables (Figure 2.4). The normal velocity
on Voronoi cell faces defines the horizontal velocity u, while the remaining state
variables are defined at the cell centers. The triangular mesh displayed in dashed lines
in the figure represents the VVoronoi mesh's dual. The variable resolution meshes are
mostly hexagonal, although pentagons and heptagons are sometimes present. The C-
grid-staggered VVoronoi mesh's significant advancements are detailed in Thuburn et al.
(2009) and Ringler et al. (2010).

The numerical schemes implemented in the MPAS atmospheric component
closely resemble those utilized in the Advanced Research WRF model. However, there
are notable distinctions between the two models. For example, the ARW model uses
rectangular meshes and hydrostatic pressure (mass) vertical coordinates. In contrast,
MPAS adopts a vector-invariant format for the horizontal momentum equation and a
complete version of the WRF transport scheme detailed in Skamarock and Gassmann,

(2011).
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Figure 2.3: A variable resolution MPAS Voronoi mesh. Source: MPAS Home page
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Figure 2.4: C-grid staggered variables on the horizontal Voronoi mesh. Normal
velocities are defined on the cell faces and all other scalar variables are defined at the
cell centers. Vertical vorticity is defined at the cell vertices. Source: MPAS Home page
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2.1.11 Simulation of extreme rainfall characteristics using MPAS-A model

Model for Prediction Across Scales (hereafter MPAS), which uses unstructured
variable resolution meshes that allow for smooth resolutions transition towards the
desired high resolution in the region of interest (Kramer et al., 2018; Skamarock et al.,
2010; Du et al., 1999; Ringler et al., 2008), is an example of the new VGCMs. Studies
have employed the MPAS model to simulate and study different atmospheric features
that produce extreme precipitation over various regions of the world (Michaelis et al.,
2019; Zhao et al., 2019; Kramer et al., 2018). For instance, Davis et al. (2016) used two
configurations of the MPAS model (15 km uniform and 60-15 km variable meshes) to
simulate the characteristics of a tropical cyclone in the eastern North Pacific. Huang et
al. (2017) applied the model at 15 km resolution to study the track of typhoon Morakot
and the associated extreme rainfall over Taiwan. Zhao et al. (2019) also used it to
simulate the characteristics of extreme rainfall events over East China. While Kramer et
al. (2020) used it to simulate three severe weather events in Europe, Schwartz (2014)
used it to assess the characteristics of diurnal precipitation over the United States.
Despite the wide usage of the MPAS model across the world, only one study (Heinzeller
et al., 2016) has tested the reliability of MPAS simulation over West Africa, and the
focus of the study was not on extreme rainfall events. Hence, to harness the potential
MPAS model for early warning systems over West Africa, there is a need for
information on how well the model simulates the characteristics of extreme rainfall over

the sub-continent.
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2.2 SIMULATION OF FLOOD EVENTS USING HYDRAULIC MODELS

2.2.1 Overview on Flood

Floods occur naturally when the water rises and overflows onto land that is not
usually submerged, also known as floodplains (Ward, 1978). They are one of the most
destructive natural threats to life on Earth, and sometimes they are human-made (Ohl et
al., 2000). Inundations, which are submerged lands from overflowing rivers and lakes,
occur when water overflows or breaks levees. Floods can also arise from the sea due to
high tides and in otherwise dry areas due to the accumulation of heavy rainfall. Different
types of floods can be categorized based on their source and the processes involved.
Examples include river floods, flash floods, dam-break floods, ice-jam floods, glacial-
lake floods, urban floods, coastal floods, and hurricane-related floods. Climate,
precipitation, temperature, and landscape are the main drivers and modulators of most

types of floods (Shroder et al., 2015).

2.2.2 Hydrologic Modeling

Hydrological simulation has been in use since the 1850s, and it has undergone
rapid development in modeling because of the easy accessibility of powerful software
(Singh, 2018). Flood modeling simplifies actual events by simulating natural flood
occurrences using input data, hydraulic properties, and boundary conditions of a specific
area. For example, a flood model can be created for a particular river basin based on
different boundary conditions or input information, which may affect the model's
performance. In addition, flood risk activity and hydraulic properties can be estimated
and calculated over a specific period by simulation. Hodges (2009) defines

Hydrodynamic modeling as "the art and science of applying conservation equations for
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momentum, continuity, and transport to represent evolving velocity, density, and scalar
fields." This modeling offers insights into spatial and temporal changes in physical
processes that may be observed but are less apparent in field data (Hodges, 2014).

Hydrodynamic models are a valuable tool for creating flood hazard maps, and
researchers can use numerical, physical, or historical data mapping methods to develop
these maps. Numerical modeling is a popular choice among hydrologists due to its
ability to simulate real-world events efficiently, even with limited data, and at a lower
cost than physical modeling. Physical modeling can also be helpful in flood hazard
mapping, especially in areas where significant social and economic damage is likely.
Historical data mapping is useful for calibrating parameters in numerical models
(Bellos, 2012). Hydrodynamic models are mathematical models that attempt to
reproduce fluid movement by solving formulas based on physics rules. Simulations can
be classified as 1D, 2D, or 3D depending on their spatial representation of floodplain
streams (Teng et al., 2017).

In recent years, hydraulic modeling has proved to be a practical approach for
flood hazard and risk forecasts. It provides flood extent, depth, and velocity, which are
essential for flood risk management (Pinos & Timbe, 2019; Rangari et al., 2019; Ongdas
et al., 2020). Studies have used different hydraulic models to assess flood hazards in
different regions of the world (e.g., Pinos and Timbe, 2019; Ntajal et al., 2016; Sharma
& Regonda, 2021; Iroume et al., 2022; Komi et al., 2017). For example, Komi et al.
(2017) used LISFLOOD-FP hydraulic model to assess flood extent along the Oti river
in northern Togo, West Africa. Using the HEC-RAS model, Iroume et al. (2022)
investigated the major urban flood in Douala (Cameroon). Pinos and Timbe (2019) used
four different hydraulic models (HEC-RAS, Iber, Flood Modeller, and PCSWMM) to

generate flood inundation maps for comparison in the Santa Barbara River in the
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Ecuadorian Andes. Rangari et al. (2019) also used HEC-RAS to generate the depth of
urban flood inundation of Hyderabad in India. Nevertheless, studies have discussed the
advantages of using 1D and 2D hydraulic models in simulating different flood events
(Gharbi et al., 2016; Mangukiya and Yadav, 2022; Manfreda et al., 2015). While the 1D
hydraulic models accurately represent the channel processes, the 2D hydraulic models
are well designed to assess the flood wave dynamics in the floodplain when the channel
capacity has exceeded, and the flow is spread across a large area in the downstream
terrain (Ongdas et al., 2020; Mihu-pintilie et al., 2019; Shustikova et al., 2019). Other
studies have argued that 2D hydraulic models are mainly used for flood extent mapping
and flood risk estimation because they provide more detailed and reliable results in
complex flow simulations(Teng et al., 2017; Lea et al., 2019). In addition, Lea et al.
(2019) showed that the 2D models that solve full shallow water equations can accurately
simulate the timing and duration of inundation. Despite the wide usage of hydraulic
models to assess flood hazards, few studies have conducted hydraulic modeling in
assessing flood hazards in Togo, especially along the Oti river (e.g., Komi et al., 2017),
and the focus was on 1D modeling. Hence, to improve the accuracy of flood mapping
and the early warning systems in this region of WA, there is a need for more flood
hazard assessment using 2D hydraulic modeling.

Most studies on inland flood hazards in Africa are based on either pluvial or
fluvial floods (Ntanganedzeni & Nobert, 2021; Komi et al., 2017). For example,
simulating the stream flow data, Ntanganedzeni and Nobert (2021) assessed flood risk
hazards along the Luvuvhu river in Limpopo province in South Africa. Considering
fluvial floods, Komi et al. (2017) assessed the flood hazard extent over the Oti river
basin in Togo, West Africa. However, Tiepolo et al. (2021) argued that flood hazard

assessments often fail to meet disaster risk reduction needs locally because they usually
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consider only one type of hazard (pluvial or fluvial floods). For instance, Chen et al.
(2010) showed that extreme rainfall often generates both pluvial and fluvial floods and
that considering the individual flood type may eensiderably underestimate the potential
damages. To improve flood hazard assessment and meet disaster risk reduction needs,
studies suggested and assessed inland compound floods hazards, that is, the combination
of pluvial and fluvial floods, in different parts of the world (Chen et al., 2010; Apel et
al., 2016; Patra et al., 2016). For instance, applying the coupled hydraulic models, Chen
et al. (2010) and Apel et al. (2016) simulated the combined pluvial and fluvial flood
events in urban areas at Bradford (UK) and Can Tho city, respectively. Lang-Ritter et
al. (2022) investigated the impact of the inland compound floods (fluvial and flash
floods) in southeast Spain to enhance decision support. Also, Patra et al. (2016) modeled
the combined flow in the drain and rainfall-induced catchment flooding to develop a
flood inundation map in northern India. Even though several studies have investigated
inland compound floods and the fact that it is relevant for disaster risk reduction, none
have been done over the Oti river basin in Togo. Even though, Komi et al., 2017
conducted flood modeling study in the Oti river basin in Togo, the study focused only
on the fluvial flood. Hence, there is a need of a combined fluvial and pluvial floods

study along Oti river in Mango.

2.2.3 Overview on HEC-RAS model

In the early 1990s, the Hydrologic Engineering Center developed a suite of Windows-
based software applications called HEC-RAS, the first computer program. As HEC's
flagship software, it replaced HEC-2 and could perform water surface profile
computations. HEC-RAS's capabilities have expanded significantly over the years, with

earlier versions only allowing for 1D steady-state analysis. In January 2001, Version 3.0
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was released, which added 1D unsteady flow computations (Dewberry, 2016). The most
recent version of HEC-RAS, Version 5.0, was released in 2016 and allowed for two-

dimensional unsteady flow calculations.

2.2.3.1 One-Dimensional Steady and Unsteady Modeling

In its early versions, HEC-RAS could compute water surface profiles for channels
with the steady-state gradually varied flow. A Steady-state refers to a situation where
the channel's discharge remains constant over time. Gradually varied flow conditions
indicate that the water surface elevations do not change significantly over distance. To
determine water surface profiles in 1D steady-state, the program applies the
Conservation of Energy from one cross-section to the next along the channel's length,
using the Standard Step Method.

In natural channels, it is uncommon for the flow to be steady or constant. Instead,
the flow rate varies over time, which is referred to as unsteady flow. Unsteady flow
routing is the process of determining depths and flows at different locations within the
channel at different times. This implies that velocity, discharge, and depths depend on
both location (distance along the stream channel) and time. Figure 2.5 depicts this
scenario, where at time t, Cross-Section A has a specific discharge and depth, while at
time t+At, the same location may have a different discharge and depth. With unsteady
flow routing, it is possible to determine the depth and discharge at numerous locations
at different points in time.

The Saint-Venant equations, also known as the shallow water equations, were
formulated by Barre de Saint-Venant in the late 1800s to solve 1D unsteady flow routing

problems. These equations are derived from applying the principles of Conservation of
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Mass (Equation 2.1) and Conservation of Momentum (Equation 2.2) to a small control

volume of fluid, as explained by Brunner (2016).

dAT aQ - _ .

_dt + — q= Equation 2.1
d

— + —QV + gA ( + Sf) =0 Equation 2.2

Where A is the area of cross-section, t is a time, Q is the flow, X is the distance along
the channel, q is a source or sink term, Iis a velocity of flow, g is the gravity

acceleration, St is the friction slope and dz/dx is the water surface slope.
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Cross-Section A

Figure 2.5: An Unsteady Flow Routing Concept (Chase, 2016)
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2.2.3.2 Two-Dimensional Unsteady Modeling

In 2D modeling, the river and adjacent floodplain areas are divided into individual
cells called grid cells, 2D flow cells, or computational grid cells. This process involves
discretizing the area into a collection of cells with elevation and roughness data to
represent the ground surface and friction effects. HEC-RAS uses the sub-grid
bathymetry approach, which involves multiple GIS cells within each grid cell, as
illustrated in Figure 2.6. Each GIS cell has a unique elevation, and the collection of grid
cells makes up the terrain model. The terrain model defines the continuous ground
geometry necessary for analyzing floodplains with two-dimensional behavior.

A cell face is an interface between two grid cells, consisting of ground elevations
from the GIS cells. In hydraulic terms, a cell face is equivalent to a cross-section, as
depicted in Figure 2.7. Since the ground geometry is available through the GIS cell
information, hydraulic properties such as cross-sectional area, wetted perimeter,
hydraulic radius, and conveyance can be calculated for any water surface elevation.
Moreover, the topography within a grid cell allows for the development of a relationship
between the storage volume in the cell and the water surface elevation, known as a stage
storage curve. Therefore, the model computes a water surface elevation at each grid cell
for each point in time, with the grid cells' size determining the model's resolution and
results.

In general, HEC-RAS 2D permits varying water surfaces along any transect,
unlike its 1D counterpart which only accommodates a single surface per cross-section.
Furthermore, the 2D mesh is significantly more intricate than the cross-sections
integrated in the 1D version, thereby lending the 2D results a more sophisticated
appearance. Hence, this study aims the use of HEC-RAS 2D in simulating flood event

over the study area.
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Figure 2.7: Ground Geometry at Cell Face
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2.3 GAPIN LITERATURE

West African communities face varying degrees of risk from extreme rainfall-
induced flood events. Therefore, high-quality scientific research is crucial to understand
better the characteristics and impacts of these events on the region's environment and
economy, and thus help reduce their consequences by providing reliable warning
information. Long-term observations and measurements of weather and climate
parameters such as temperature, rainfall, relative humidity, wind speed, direction, and
their derivatives are key to understanding the region's climate. Unfortunately,
observation networks in West Africa are sparse, making it challenging to comprehend
the underlying drivers of climate. Reanalysis datasets and satellite products have
emerged in recent decades, providing valuable insights into some atmospheric
processes. While these products have contributed significantly to our understanding of
extreme events, they cannot predict how the region's weather or climate system will
respond to future changes, highlighting the need for climate models.

Global Climate Models (GCMs) can simulate various atmospheric phenomena.
For example, they can assess extreme rainfall-induced flood events at different spatial
and temporal scales, historically or for future conditions (Sylla et al., 2013). However,
studies have shown that the horizontal resolution of most Global Climate Models
(GCMs) is inadequate in representing regional or local atmospheric processes
responsible for extreme rainfall events. As a result, the use of Regional Climate Models
(RCMs) is necessary to obtain more precise information at the local level. But RCMs
also have limitations. One of their main issues is that they can be affected by lateral
boundary condition problems, which can hinder two-way interactions between larger

scales and regional-scale features. This can compromise the quality of the simulated
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regional or local scale features, as noted by Michaelis et al. (2019), Small et al. (2014),
and Marbaix et al. (2003).

In response to this issue, variable resolution or stretch-grid GCMs (VGCMs)
have been introduced and applied for regional climate studies. Studies have shown the
ability of VGCMs to simulate the climate over the Southwest Indian Ocean realistically
and demonstrated the benefits of their usage in simulating various atmospheric features
in West Africa compared to contemporary GCMs. However, since the development and
application of VGCMs for regional studies are still relatively new, more research is
necessary to assess their reliability in simulating extreme rainfall events over West
Africa.

The Model for Prediction Across Scales-Atmosphere (MPAS) is a new type of
Variable Grid Climate Model (VGCM) that uses unstructured variable resolution
meshes to achieve high resolution in specific regions of interest and enable smooth
resolution transitions. Numerous studies have employed the MPAS model to simulate
and study different atmospheric features that lead to extreme precipitation over various
world regions. For example, researchers have used the model to study tropical cyclones
in the eastern North Pacific, track Typhoon Morakot and the associated extreme rainfall
over Taiwan, and simulate the characteristics of extreme rainfall events over East China.
While the model has been widely used worldwide, only one study has tested its
reliability over West Africa, and that study did not focus on extreme rainfall events.
Therefore, further research is necessary to explore the MPAS model's potential for
providing early warning information over West Africa to examine how well the model
simulates extreme rainfall characteristics in the subcontinent. Hence, there is a need to

evaluate the performance of a VGCM called Model for Prediction Across Scale-
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Atmosphere (MPAS) to simulate extreme rainfall events, focusing on the widespread
extreme rainfall events in West Africa and the associated atmospheric circulations.

On the other hand, for a relevant early warning system related to extreme
rainfall-induced flood events is vital to translate the extreme rainfall forecasts into flood
forecasts which are essential for flood hazard mapping. Hydraulic modeling has
emerged as a practical approach for flood hazard and risk forecasting in recent years.
This method offers critical flood-related information, including flood extent, depth, and
velocity, essential for effective flood risk management. Though several studies have
used different hydraulic models to assess flood hazards in other regions, only a few have
been done in Togo, especially along the Oti River (e.g., Komi etal., 2017), and the focus
was on 1D modeling. In addition, the majority of studies on inland flood hazards in
Africa focus on either pluvial or fluvial floods; and according to Tiepolo et al. (2021),
flood hazard assessments frequently fail to address local disaster risk reduction needs as
they tend to concentrate on a single type of flood hazard (pluvial or fluvial floods). Even
though several studies have investigated the combined fluvial and pluvial floods in other
regions, studies have yet to be done over the Oti River basin in Togo. Komi et al (2017)
are the only study on flood hazards in the Oti River basin in Togo (Komi et al., 2017)
and only the fluvial flood was considered. Hence, the present study uses the HEC-RAS
2D hydraulic model to simulate different scenarios of inland compound flood events,

focusing on the Oti river in Mango, Togo (West Africa).
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CHAPTER THREE

3.0 MATERIALS AND METHODS
3.1 STUDY AREA

3.1.1 Study area for climate model simulation

The area selected for the climate model simulation in this study is the West
Africa region (20°W-25°E; 0°-25°N) with a focus on the Oti River and Gambia River
basins (Figure 3.1). While most of the Oti River basin is located in the Savanna climate
zone, the Gambia River basin (GRB) is in the Sahel climate zone. These basins were
selected because, as transboundary areas, they each play a crucial role in the socio-
economic activities of the region.

The Oti River basin is a sub-basin of the Volta basin in West Africa, with an
estimated area of about 72,000 km2. It is shared among four countries (Ghana, Burkina
Faso, Benin and Togo) and lies between 7° and 12.3° latitude North and between
longitude 0.5°W and 2.5°E (Kwawuvi et al., 2022; Amisigo et al., 2015). The movement
of the Inter-tropical Discontinuity (ITD) related to the West African Monsoon controls
the basin's climate. The period of April to October represents the rainy season in the
basin, with the annual rainfall varying between 1,100mm and 1,400mm (Klassou and
Komi 2021). In Togo, the Oti River basin covers several economic regions (the western
part of Central, Plateaux, and the whole Kara and Savannah regions). It is known to play
a vital role in the country’s economy through its contributions to the overall GDP
(37.7% of the national GDP in 2006) (Yomo et al., 2019).

The GRB covers Guinea (Conakry) and Senegal with a total surface area of
8,262km?2 at the gauging station of Mako (Bodian et al., 2018). It experiences a Sahelian
climate, characterised by a long dry season (November to May) and a short-wet season
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(June to October). Average temperatures in Gambia range from 18°C to 30°C during
the dry season and 23°C to 33°C during the wet season. The mean annual rainfall is
1,208mm in the basin at the gauging station of Mako (Bodian et al., 2018). In terms of
economic significance and preoccupation of local populations, it is impossible to
overestimate the role of agriculture (broadly defined) in the development of the basin.
Agriculture is the backbone of the GRB economy (Cheikh, 2018) and the primary source
of most individual or regional income, directly or indirectly. About 85% of the
population earns its livelihood from crop farming, animal husbandry, or related rural
activities; more than 2/3 of the region’s gross domestic product is also derived from

these activities.
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Figure 3.1: Study area showing its topography in meters. The red box (Oti basin) and
the blue box (Gambia basin) are the areas over which the study investigates the rainfall
intensity versus frequency and the widespread extreme rainfall events (WERE
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3.1.2 Study area for hydraulic simulation

The study was conducted in Mango City, in northern Togo, along the Oti River,
focusing on two selected areas (Figure 3.2). Within the Oti River basin, a sub-basin of
the Volta basin in West Africa, the study area is located in the Savanna climate zone. Its
climate is controlled by the Inter-Tropical Discontinuity (ITD) movement, which is
related to the West African Monsoon. As a result, the area experiences a single wet
season from April to October (Batebana et al., 2015), with the annual rainfall varying

between 1,100mm and 1,400mm (Klassou & Komi, 2021).
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Figure 3.2: Study area showing the HEC-RAS simulation area and the two small areas
named A and B used to examine the composite fluvial and pluvial floods
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3.2 DATASETS

First, this study analysed observation, reanalysis, and climate model simulation
datasets. Four observation datasets, which are from four different sources (Table 3.1),
were used to evaluate the model simulation. The reanalysis datasets that were used come
from the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis
v5 (ERA5) and the Climate Forecast System Reanalysis (CFSR); the details of these
reanalysis datasets are also given in Table 3.1. The climate model data is from the Model
for Prediction Across Scale simulation (details in the method section). The main climate
variables used were daily rainfall, specific humidity, air temperature, geopotential
height, zonal and meridional wind and Convective Available Potential Energy (CAPE).

Secondly, river discharge datasets recorded at daily timescales from 2015-2020
along the Oti River in Mango were used in this study for the hydraulic modeling. The
datasets were obtained from the National Hydrological Service of Togo. Also, digital
elevation model (DEM) data derived from the Sentinel 2 imagery at 10 m resolution
was used for the HEC-RAS model geometry configuration. The Land-Use was also the
important dataset used in this study. It was obtained from Sentinel 2 Lan Use database.
The Land Use data was used to assign Manning’s values which were then associated

with the model geometry.
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Table 3.1: Information on the four observations and two reanalysis datasets used in the
study. The period 1981-2010 was analysed for all the datasets in the study

Dataset Full name Type Resolution References

AgMERRA Climate forcing Reanalysis-based 0.25° Rienecker et al.
datasets for agricultural multiple-source (2011)
modelling

AgCFSR Climate forcing dataset  Reanalysis-based 0.25° Rienecker et al.
for agricultural multiple-source (2011)
modeling

CHIRPS Climate hazard group Satellite and 0.05° Funk et al. (2015)
infrared precipitation ground-based
with stations data

WFDEI-CRU  Water and global Reanalysis-based 0.5° Weedon et al.
change forcing data multiple-source (2014)
methodology applied to
ERA-interim (Climate
Research Unit)

ERAS European Centre for Reanalysis 0.25° Hersbach et al.
Medium-Range dataset (2020)
Weather Forecasts
Reanalysis 5

CFSR Climate Forecast Reanalysis 0.5°
System  Reanalysis  dataset
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3.3 METHODS

3.3.1 Performance of the MPAS Global Climate Model

3.3.1.1 Characterising extreme and widespread extreme rainfall events

The extreme rainfall events over West Africa were characterised using eight
rainfall indices (Table 3.2). Following the definition of the Expert Team on Climate
Change Detection and Indices (Tank et al., 2009), the indices were calculated at each
grid point over the study area. At each grid point, the threshold for an extreme rainfall
event was defined as the 95" percentile of the daily rainfall over the grid point.
Accordingly, any daily rainfall equal to or greater than this threshold was considered an
extreme rainfall event. A widespread extreme rainfall event (WERE) was said to occur
over any of the two basins if there was a simultaneous occurrence of extreme rainfall
events over at least 70% of the basin (Figure 3.3). To evaluate the performance of the
MPAS model in reproducing extreme rainfall over Western Africa, we compared the
simulated indices for the period 1981-2010 (long run) with the mean of the indices from
the four observation datasets. To provide context for the model bias, the biases of the
model were compared to the uncertainties of the observations. The model performance
was also quantified with spatial correlation coefficient (r) between the simulated and the

observed rainfall indices.
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Table 3.2: Description of rainfall indices used in the study

Rainfall Description
indices
WDAYS Wet days. Annual count of days with daily rainfall greater or equal to

1mm (Tank et al., 2009).

Rx5day Maximum consecutive 5-day rainfall.

R20mm Annual count of days when daily rainfall >20mm (Tank et al., 2009).
CwWD The maximum number of consecutive wet days (Tank et al., 2009).
RTOT Annual total rainfall on wet days (Tank et al., 2009).

SDIl SDII is the intensity of normal rainfall, calculated as RTOT divided by

WDAYS (Tank et al., 2009).

R97.5p All-day percentile. The R97.5th percentile rainfall on all days. (Schér et
al., 2016). Any daily rainfall above this threshold (R97.5p) is

considered an extreme event.

R97.5pTOT Annual total rainfall when daily rainfall is greater than or equal to
R97.5p (Schar et al., 2016).
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Figure 3.3: Variation in the number of WEREs (over the Oti and the Gambia river
basins) with the WERE threshold criteria. The threshold criteria refer to the minimum
percentage area of basins that simultaneously experience an extreme event as depicted
by observation
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3.3.1.2 MPAS model evaluation method for the long run simulation

Different evaluation metrics are available to evaluate the performance of a
model. Nevertheless, no single metric can capture all relevant aspects. Therefore, it is
crucial to consider different metrics and comprehend the kind of insights they can offer.
In this research, though two metrics (correlation and systematic errors) of the model
outputs are calculated to evaluate the model’s performance, other metrics are also
described. These metrics assess the correlation strength, systematic errors, and accuracy
of the model compared to observations and are described below.

One of the statistics used is correlation coefficient (r), a measure of the strength

of the linear relationship between model and observations.

, o= 1 n (Mi—M) (Oi—O) Equation 3.1
T (-1 “LEIN oM a0 quation =.

where O represents Observation or Reanalysis, M model output, ¢ standard deviation,

and n number of data points in the series.

The Mean Bias (B) is another statistic that indicates the mean over or underestimate of

predictions. It has the same units as the quantities being considered.

1

B ~ (M — 0p) Equation 3.2

Lastly, the Mean Absolute Error (MAE) statistics that determine the mean error between
model and observation regardless of whether it is an over or underestimate. It also has

the same units as the quantities being considered;

MAE = %2?=1|Mi — 0 Equation 3.3
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3.3.1.3 Case study: extreme rainfall events over the Oti River basin

The sensitivity of MPAS in simulating two selected extreme rainfall events over
the Oti River basin were assessed. The selection of the events was based on their
devastating and destructive impacts on society. For example, the rainy season of 2007
caused widespread flooding from extreme rainfall events that affected 792,676 people
in West Africa and caused 210 deaths (Samimi et al., 2012; OCHA, 2007). Togo was
among the countries that was most affected, especially the city of Mango in the Oti
River basin, with 127,880 people and 23 deaths. On 1 July 2007, Mango city
experienced one of these heavy rainfall-induced flood events along the Oti River, with
77.7mm of rain recorded at the local weather station. Ten years later, on 22 July 2017,
the same region in the Oti River basin experienced heavy rainfall along the Oti River in

Mango, where rainfall of 109.5 mm was recorded at Mango’s weather station.

3.3.1.4 MPAS Model description and experimental set-up

The current study used the atmospheric core of the MPAS model, developed by
the National Center for Atmospheric Research (Skamarock et al., 2010; Donkin and
Abiodun, 2022; Zhao et al., 2019). The fully compressible non-hydrostatic equations of
motion solved in the MPAS atmosphere dynamical core is described in Skamarock et
al. (2012). MPAS uses Voronoi tessellations to create irregular multigonal grid cells
around grid points to create a global irregular grid (Kramer et al., 2020; Skamarock et
al., 2012). As a result, it allows smooth transitions from coarse to fine resolution, in
contrast to the nesting techniques of traditional regional models. MPAS thus overcomes
issues commonly associated with local refinement, where the transitions are often abrupt
(Donkin and Abiodun, 2022; Duda et al., 2019). In addition, MPAS model has the

capability of selecting individual parameterization schemes for various physical
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processes in the atmosphere (e.g., convection, microphysics, etc.) as well as the
capacity to select a suite of parameterization schemes (mesoscale reference or
convection-permitting) to facilitate and ensure a choice of compatible schemes (Duda
et al., 2019). This study used the mesoscale reference suite, and its corresponding
parameterization schemes are summarised in Table 3.3.

MPAS was used to perform five experiments (Table 3.4). The goal of the first
experiment was to assess how well the model reproduces the characteristics of West
African extreme rainfall events over a long period, while the goal of the other
experiments was to investigate the sensitivity of the simulated extreme event to the
model boundary condition and local enhancement in the horizontal grid resolution over
a short period. The first experiment consisted of only one simulation called
MPAS_Clim, in which the model was applied at 60km uniform-grid resolution (Figure
3.3a) to produce 30 years and 1 month of climate data. The simulation was initialised
with CFSR reanalysis data (on 1 December 1980 at 00h00 UTC) and forced with
observed sea surface temperature data from the CFSR reanalysis dataset. However, only
the data of the last 30 years of simulation was analysed in this study, as the data of the
first month was discarded as model spin-up.

The second experiment was similar to the first experiment, except that it
consisted of two simulations (called MPAS60_CFSR and MPAS60 _ERAS) and the
simulations only covered 7 days. While the MPAS60_CFSR simulation was initialised
with CFSR, MPAS60 ERA5 was initialised with ERA5. The remaining three
experiments were similar to the second experiment except that the simulations in these
experiments used variable-resolution grid mesh with higher resolution (i.e., 15km,

10km, and 3km, respectively) over West Africa and 60km resolution outside the domain
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(Figure 3.3b-c-d). Across all the experiments, the MPAS simulation used 41 vertical

levels up to about 44km height.
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Table 3.3: Parameterization schemes included in the default MPAS physics suites used
in this study

Parameterization Mesoscale reference
Microphysics WSM-6

Convection New Tiedtke

PBL YSU

GWDO YSU GWDO
Longwave radiation RRTMG

Shortwave radiation RRTMG

Cloud Fraction

Surface layer Monin Obukhov
Land surface model Noah
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Table 3.4: MPAS experiments performed in the study. The indicated simulation periods
exclude the simulation spin up-time

Experiment Simulation Horizontal resolution Initial Duration
S condition
1 MPAS_Clim 60 km uniform CFSR 30 years

MPAS60_CFSR 60 km uniform CFSR 7 days
2 MPAS60_ERA5 60 km uniform ERA5

MPAS15_CFSR  60-15 km variable CFSR 7 days
3 MPAS15_ERA5  60-15 km variable ERA5

MPAS10_CFSR  60-10 km variable CFSR 7 days
4 MPAS10_ERA5  60-10 km variable ERA5

MPAS03_CFSR  60-03 km variable CFSR 7 days
5 MPASO03_ERA5  60-03 km variable ERA5
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Figure 3.4: MPAS mesh resolution used in the simulations: (a) 60km uniform resolution
for the long run (30 years simulation) and for the sensitivity simulations to initial
condition dataset; b-c-d show the MPAS domain used in the resolution sensitivity
simulation
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3.3.2 Performance of HEC-RAS Hydraulic Model

3.3.2.1 Evaluation and application of the HEC-RAS model in simulating actual
and hypothetic flood events

Flooding is a prevalent disaster that can result in significant economic and
property loss, as well as loss of human life. While it may not be possible to prevent such
events, advancements in hydraulic modeling allow us to identify flood-prone areas,
potential inundation depth, and extent, which can then be used to create flood risk maps
for specific locations. These risk maps can help identify critical zones, disseminate early
warnings to residents during a potential flood, and assist in making emergency
decisions.

In this study, we first evaluated the performance of HEC-RAS 2D model version
6.1, in simulating the actual flood event, in terms of flood extent in Mango on 17
October along the Oti River. Indeed, in October 2020, Togo was severely affected by
the flooding of the Oti River and its tributaries. Almost 57,000 people were affected,
with 11 fatalities (ECHO, 2020; Copernicus-EMSR470: Flood in Togo). In that regard,
Togo authorities needed the situation of flood extent, especially in Mango, to assess the
impacts on settlements, agricultural systems, and infrastructure damages. Unfortunately,
though the event started on 5 October 2020, the flood extent was made available for the
17 October situation by the Copernicus Emergency Management Service (EMS) after
the Togolese authorities activated the case on 13 October. The flood situation on 17
October 2020 is shown in Figure 3.5 (source: Copernicus), and table 3.5 shows the
event’s consequences within the area of interest.

Secondly, we simulated fourteen hypothetical hydrographs scenarios (Figure
3.6) to assess the effect of the maximum flow over the selected areas named A and B,

shown in Figure 3.2. In addition to the hypothetical hydrograph, rainfall scenarios were
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designed to evaluate the effects of the combined fluvial and pluvial floods over areas A

and B. Both fluvial and combined fluvial and pluvial were then compared.
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Figure 3.5: Situation of observed flood event on 17 October 2020 in Mango city showing
its various impacts (Source: Copernicus EMSR470)
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Table 3.5: Summary of the flood impacts in Mango in October 2020 (Source:

Copernicus-EMSR470)

Consequences within the Area Of Interest (AOI)

Possibly | Total
Unit of measurement Destroyed | Damaged Total
damaged | affected | IN
AOI
Flooded area | ha 363.3
Flood trace ha 47.6
Estimated
Number of inhabitants
population 91243
Settlements Residential Buildings No. |0 83 37 120 120
Transportation | Local Road km {0.0 7.4 0.5 8.0 50.4
Cart Track km |0.0 1.1 0.1 11 4.6
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3.3.2.2 HEC-RAS model description and Experiment

The HEC-RAS 2D model, version 6.1, provides three equation sets that can be
utilized to compute the flow of water over the computational mesh. These include the
Diffusion Wave equations (DWE; Equation 3.4) and the Shallow Water equations
(SWE; Equation 3.5), which employ either the Eulerian-Lagrangian method or the

Eulerian method, which is more momentum conservative.

p
9=+ Cu=0

o Equation 3.4

—+ Cv=0

Iay T

(Du oOH T

——fv=—g -+ vl - Gu+ ﬁ

1 D oH X Toy Equation 3.5
\E+fu =95, % v Vy — Cv+ m

The time step of the model is determined based on the Courant-Friedrichs-Lewy

condition in order to maintain numerical stability (Equation 3.6).

(=22 <10 (With Cpax = 3.0) Equation 3.6

where C is the Courant number, V is the velocity (m s™1), AT is the time step (s), and Ax

is the grid cell size (m).

The model geometry was built in Ras Mapper and HEC-RAS editor using the
DEM (Figure 3.5b) to represent the ground surface. In addition, Manning’s values
associated with each zone were defined according to land use and land cover classes
(Figure3.5a). Ras Mapper was used to build a computational mesh at 10 m spatial
resolution on the entire study area—the final mesh contained over 138000 cells
comprising three to eight faces. While one external boundary condition was set to flow

hydrograph upstream of the Oti River, the second external boundary condition was set
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to normal depth. Also, the friction slope was estimated near the outlet of the simulation
domain. The model was run between 01 September 2020 00:00 and 31 September 2020
00:00 with a computational interval of 5 s using HEC-RAS version 6.1, set up on
Windows 11 (64-bits), and run on High-Performance Computing environment (HPC).
The Model outputs interval was set to 1 day for model performance. A diffusion Wave
Equation was used in this simulation, and all other HEC-RAS unsteady computation

options and tolerances were set to default.
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CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 SIMULATION OF EXTREME RAINFALL USING MPAS MODEL
4.1.1 Performance of MPAS model

This section assesses the performance of the MPAS model in simulating the
characteristics of extreme rainfall over West Africa. The study uses four observation
datasets (AgCFSR, AGQMERRA, CHIRPS and WFDEI-CRU) to evaluate the model
simulation. To put the model performance in the proper perspective, the study first
discusses the uncertainties in these observed datasets, then compares the model biases
with the uncertainties. In addition, two reanalysis datasets are used to serve as an

interface between the MPAS model data and the observation datasets.

4.1.1.1 Spatial pattern of rainfall indices over West Africa

Figures 4.1 and 4.2 show notable uncertainties in observed datasets for all
rainfall indices, as indicated by the standard deviation (STD) among the observations.
For most indices (e.g., R20mm, R97.5p, R97.5pTOT, CWD, RTOT), the uncertainty
level increases with the magnitude of the rainfall indices. For example, in the R20mm,
the highest uncertainties (STD > 40 days year™) occur over the mountain regions where
the highest R20mm are observed (> 72 days year™) and the lowest uncertainties (STD
< 5 days year™) occur over the areas above the latitude 15°N where the lowest R20mm
are observed (< 24 days year?). This high level of uncertainty over the mountain regions
may be due to the low resolution of some observed rainfall datasets. Several studies
have reported similar uncertainties in the observed rainfall datasets over Africa in

general (e.g., Klutse et al., 2021; Abiodun et al., 2019; Sylla et al., 2015). They also
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attributed the uncertainty to the differences in the resolutions of datasets. However,
lowering the uncertainty in the observation dataset over Africa is essential for model
development and evaluation.

The MPAS simulation gives credible representations of the spatial patterns of
rainfall indices over Western Africa (Figures 4.1 and 4.2, fourth column). For most
indices (e.g., R97.5p, R97.5PTOT, RTOT, WDAYS, CWD and Rx5day), MPAS
reproduces the observed spatial patterns with a high correlation (r > 0.8). However, the
model overestimates some indices (e.g., WDAY'S and CWD) over the Guinea highlands
and along the Guinea coast and Cameroon Mountain (Figure 4.3), and underestimates
others (e.g., RTOT, SDII, R97.5p, R97.5PTOT, Rx5day, R20mm, and Rx5day) almost
over the entire region (Figures 4.3 and 4.4). Even though the model overestimates
WDAYS (by more than 18 days) and CWD (by more than 20 days) over these regions
(Figure 4.3h-p), the model biases of both indices are still within the observation
uncertainties (£30 days). Although MPAS overestimates the WDAYS, it underestimates
the RTOT (by 500mm year-1, Figure 4.3d), possibly because the model underestimates
the SDII (by more than 3.6mm day-1, Figure 4.31) over these regions. Moreover, the
MPAS simulation underestimates the indices related to extreme rainfall (R97.5p,
R97.5pTOT, and R20mm) (Figure 4.4d-h) over West Africa, suggesting that the physics
suite used in the simulation may underestimate the convective available potential energy
or the moisture convergence flux over the region. This underestimation could also be
because the CFSR data used to initialise the model underestimates the R97.5p and
overestimates the R97.5pTOT, with biases out of the observation uncertainty (Figure
4.4c-g). Several other studies show a similar bias over West Africa (Faye and
Akinsanola, 2022; Klutse et al., 2021). For example, Faye and Akinsanola (2022) found

that most GCMs from the CMIP6 (EC-Earth3 HadGEM3-GC31-LL, UKESM1-LL,
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MRI-ESM2-0 and EC-Earth3-Veg) also underestimate Rx5day and R95pTOT over the
entire region of West Africa. Klutse et al. (2021) also reported an overestimation of
CWD over the Guinea highlands and along the Guinea coast and Cameroon Mountain

in most CMIP6 global models.

66



Obs ERAS CFSR

20°N I I I N T N N | TN T I N I N N | TN TN TN N TR N |

day/year

mm/doy

doy/yeor

o° LIS B B B
20°w  10°w  0Q° 10°E 20°E 20°W  10°w  0Q° 10°E 20°E  20°W  10°W  ©Q° 10°E 20°E  20°wW  10°W  ©Q° 10°E 20°E

Figure 4.1: The spatial pattern of rainfall indices (RTOT, WDAYS, SDII, and CWD)
over western Africa. The first column is for the mean of observation datasets (AgCFSR,
AgMERRA, CHIRPS, WFDEI-CRU), the second for ERAS5, the third for CFSR data,
and the fourth column for the MPAS model. In the first column, the contours represent
the standard deviation among the observation data; r indicates the spatial correlation
between the datasets and the observed mean.
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Figure 4.2: Spatial pattern of rainfall indices (R97.5p, R97.5pTOT, Rx5day, and
R20mm) over western Africa. The first column is for the mean of the observation
datasets (AgCFSR, AQMERRA, CHIRPS, WFDEI-CRU), the second for ERAS5, the
third for CFSR data, and the fourth column for the MPAS model. In the first column,
the contours represent the standard deviation among the observation data; r indicates the
spatial correlation between the datasets and the observed mean.
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Figure 4.3: The spatial pattern of biases in rainfall indices (RTOT, WDAYS, SDII, and
CWD) over western Africa as shown in ERA5, CFSR, and MPAS model datasets to the
observation mean.
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Figure 4.4: The spatial pattern of biases in rainfall indices (R97.5p, R97.5TOT, Rx5day,
and R20mm) over western Africa as shown in ERA5, CFSR, and MPAS model datasets
to the observation mean.
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4.1.1.2 Rainfall characteristics over the selected basins in West Africa

Figure 4.5c-d shows that MPAS captures the rainfall intensity-frequency curves
(rainfall frequency decreases with an increase in intensity) over the two river basins.
However, MPAS also shows substantial discrepancy when compared to observation
datasets (Figure 4.5a-b). For instance, in both basins, the curve of the MPAS simulation
is out of the range of the observation spread. It lies at the lower end of the observed
spread (Figure 4.5¢-d), meaning that the model underestimates the frequency of heavy
rainfall over these areas. While MPAS reports the highest intensity of rain to be 50mm
day! over the Oti basin, it is about 100mm day* over the Gambia basin. Over the Oti
basin, the curve of reanalysis data (CFSR) falls within the observed spread until the
rainfall intensity reaches 80mm day*, after which it lies at the upper end of the spread.
The highest intensity rainfall of CFSR and ERA5 datasets reaches 150mm day™* and
120mm day?, respectively, whereas the one of MPAS reaches only 50mm day. Again,
CSFR and ERAS5 exhibit the highest intense rainfall over the Gambia basin, with 180mm
day* and 160mm day, respectively, compared to MPAS simulation with 1200mm day-
! Overall, the performance of MPAS in simulating the rainfall intensity-frequency is
similar to those of CMIP6 reported by Klutse et al. (2021). Klutse et al. (2021) showed
that some CMIP6 models (MIROC6 and GFDL-ESM4) underestimate the frequency of
heavy rainfall over West Africa. Furthermore, Crétat et al. (2014) argued that the limited
skill of most GCMs in simulating the frequency of intense rainfall is because of the too

frequent triggering of convection independent of their horizontal resolution.
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Figure 4.5: The rainfall intensity—frequency curves over Oti and Gambia basins in West
Africa as depicted by observation datasets (first row), MPAS model, and reanalysis
datasets (ERA5, CFSR) in the second row. The grey area shows the observation spread.
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4.1.1.3 Temporal variation of widespread extreme rainfall events in JJAS season

Figure 4.6 presents the monthly variation of widespread extreme rainfall events
(WERES) over the Oti River and the Gambia River basins during the June to September
wet season (JJAS). It shows that MPAS simulates the highest number of WERES in
September. While the MPAS model reports 33 WEREs in September (the highest), the
observed mean reports its highest number of WEREs in August (21 events). Notably,
MPAS reports a higher number of WEREs in August (23 events) than the observed
mean reports, even if MPAS does not report August to be the month featuring most
WEREs overall, as stated above. While the MPAS model shows fewer WEREs
compared to the observation mean in June and July over the basin, CFSR does not report
any WEREs at all. On the other hand, MPAS shows a discrepancy in comparison with
the peculiar observation datasets. In most months, WFDEI reports more WERES over
the basin. For example, in July and August, while WFDEI reports a more significant
number of WEREs (40 in July and 55 in August) than MPAS (4 in July and 23 in
August) over the Oti basins, AQCFSR and AgMERRA report fewer than the MPAS
model, meaning that the model bias is within the observed spread. Meanwhile, the
occurrence of WEREs can be attributed to several factors. For example, Roxy et al.
(2017) showed that, in general, WEREs could result from nearly stationary and
accumulating humidity levels over the region before the events. In addition, the south-
westerly strengthening transport of moisture from the Atlantic Ocean towards the area

could engender intensified precipitation over the subcontinent.
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Figure 4.6: Monthly variation of widespread extreme rainfall events over Oti and the
Gambia basins (1981-2010) as shown by observed datasets (AgMERA, AgCFSR,
CHIRPS, and WFDEI-CRU), the mean observation datasets, the simulated (MPAS) and
the reanalysis (ERA5 and CFSR) datasets.
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4.1.2 Sensitivity of the simulated extreme rainfall events over Oti River basin

In this section, the sensitivity of MPAS to initial conditions is discussed, along
with its model resolution in simulating two extreme rainfall events over the Oti River
basin in Togo. These events occurred on 1 July 2007 (Case Study 1) and 22 July 2017

(Case Study 2).

4.1.2.1 Sensitivity to initial condition datasets

Figure 4.7 shows that regardless of the initial conditions, MPAS60 gives a
credible representation of the three observed (CHIRPS, Figure 4.7a) rainfall regimes
(over the Guinea highland, Oti River basin, and along Cameroon Mountain) in Case
Study 1 (Figure 4.7a-e-f). However, it underestimates the spatial rainfall intensity over
the Oti River basin, as shown in Figure 4.7d. While MPAS60_CFSR simulation shifts
the peak of the temporal evolution of rainfall over the Oti River basin one day before
the event, MPAS60_ERADS simulates almost a constant rainfall before, during and after
the event (Figure 4.7d). Why MPAS60_CFSR shifts this peak of rainfall a day earlier
could be because the model triggers earlier convective activities. In addition, the two
simulations (MPAS60_CFSR and MPAS60_ERADS) present the same pattern of
moisture flux from the Atlantic Ocean, which diverges over the area. This could explain
the underestimation of the rainfall peak and the spatial distribution of the rainfall
intensity depicted in the model. Concerning the datasets used to initialise the model, the
ERAGS data (Figure 4.7¢) replicates the three rainfall regimes shown in the observation
field (CHIRPS) and, more importantly, over the Oti River basin. In contrast, the CFSR
data (Figure 4.7b) replicates only two rainfall regimes (over the Guinea highland and
along Cameroon Mountain). As a consequence, the ERA5 data shows the peak of the

temporal evolution of the rainfall over the Oti River basin as in the observation data
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(Figure 4.7d). By contrast, the CFSR data shifts the peak to a day after the event. This
could be explained by the convergence of the moisture flux at 850hPa from the ocean
over the area in the case of the ERAS dataset and its divergence in the case of CFSR
(Figure 4.7b-c; vectors).

In Case Study 2, both MPAS60_CFSR and MPAS60_ERADS simulations exhibit
a similar rainfall pattern across West Africa (Figures 4.7k and 4.7l). For instance,
regardless of the initial conditions, MPASG0 simulates the highest rainfall intensity over
the Guinea highland, the northern part of Cote d’Ivoire, and the eastern part of West
Africa. However, the simulations fail to replicate the rainfall intensity over the Oti River
basin, as shown in the observation dataset (Figure 4.7g). This is consistent with the
simulated temporal evolution of rainfall over the Oti River basin, where the model
underestimates and shifts the peak as the observation data does (Figure 4.7j). The
simulated moisture flux at 850hPa could explain this result (Figure 4.7k-1). The two
simulations show a similar pattern of moisture flux over the area, where its sources are
mainly from the continent. In addition, the moisture flux divergence over the Oti River
basin cannot favour the upward motion during the event, producing less rainfall than the
observed field. Again, in Case Study 2, CFSR and ERAS datasets replicate the main
rainfall regime shown in the observation field (CHIRPS; Figure 4.7g)—the only major
difference is that the location of this rainfall pattern is shifted eastward in both CFRSR
and ERA5S datasets (Figure 4.7h-i). By comparison, the CFSR dataset replicates the
spatial pattern of the rainfall intensity over the Oti River basin and the peak of the
temporal evolution of the rainfall better than the ERA5 (Figure 4.7j). Overall, using
CFSR data as the initial condition, the model better represents the extreme rainfall event
in Case Study 1. However, using ERAS as the initial condition gives a better result in

Case Study 2.
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There needs to be more than moisture flux and its convergence to explain the
performance of the MPAS model at 60km resolution in simulating the extreme rainfall
events and how the reanalysis datasets (CFSR and ERADS) replicate the observed
extreme rainfall events as discussed previously. Thus, for further context, Figure 4.8
(Case Study 1, 1 July 2007) and Figure 4.9 (Case Study 2, 22 July 2017) show the
temporal evolution of the vertical profile of the Moist Static Energy (MSE), the specific
humidity, and the temporal evolution of Convective Available Potential Energy (CAPE)
before, during and after the events. In general, the vertical structure of the atmospheric
condition from the MPAS simulations is similar in both cases. For instance, in both
cases, MPAS simulations (MPAS60_CFSR and MPAS60_ERADS) feature a relatively
high MSE gradient (between the surface and the mid-level of the atmosphere) a day
before the events (Figures 4.8e-f and 4.9e-f). This relatively high MSE gradient is
associated with a higher value of CAPE (Figure 4.8g-h and 4.9g-h), meaning that the
atmosphere was more unstable that day, producing a stronger updraft. These
atmospheric conditions are consistent with the fact that the MPAS model
(MPAS60_CFSR and MPAS60_ERADS) simulates the peak of the temporal evolution of
rainfall a day before the events, as in the observation dataset (Figures 4.8g-h and 4.9g-
h). In addition, the reanalysis datasets that were used to initialise the model (CFSR and
ERADS) in the two cases present a similar vertical profile of the MSE and the CAPE
(Figures 4.8a-b and 4.9a-b). For example, the high MSE gradient is observed a day
before the extreme rainfall event day (30 June 2007 in Case Study 1 and 21 July 2017
in Case Study 2), and its associated CAPE is the highest (Figures 4.8c-d and 4.9c-d).
However, although this is a good atmospheric condition for relatively strong convection,
the corresponding amount of rainfall is not the peak in the temporal evolution of rainfall.

For instance, in Case Study 1, the timing of the peak CAPE and the peak rainfall is
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delayed by two days for the CFSR dataset and by one day for the ERA5 dataset. By
contrast, in Case Study 2, this timing is delayed by one day for the CFSR dataset and
two days for the ERAS dataset. These conditions could be attributed to the time

evolution of Convective Inhibition (CIN).
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Figure 4.7: Simulated extreme rainfall event (shaded, in mm/day) using CFSR and
ERAJS as initial conditions datasets: a-b-c-d-e-f for 1 July 2007 (Case Study 1) and g-h-
i-]-k-I for 22 July 2017 (Case Study 2). The vectors show the moisture flux at 850hPa
(units: 10% g kgtms™).
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Figure 4.8: The temporal evolution of the vertical profile of the Moist Static Energy
(MSE; shaded) and the specific humidity (contour) on 1 July 2007 (Case Study 1) is
shown in panels a-b-e-f for the CFSR dataset, ERA5, MPAS60_CFSR, and
MPAS60_ERADS) respectively. The temporal evolution of rainfall and the CAPE are
shown in panels c-d-g-h. The black bars represent the observed rainfall (CHIRPS), and
the red bars represent the CFSR rainfall, the blue bars represent the ERAS rainfall. The
green bars represent the MPAS60_CFSR rainfall, the purple bars represent the
MPAS60_ERAS5, and the black line represents the simulated CAPE for both initial
datasets. All the values are averaged over the Oti River basin.
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Figure 4.9: The temporal evolution of the vertical profile of the Moist Static Energy
(MSE; shaded) and the specific humidity (contour) on 22 July 2007 (Case Study 1) is
shown in panels a-b-e-f for the CFSR dataset, ERA5, MPAS60_CFSR, and
MPAS60_ERADS) respectively. The temporal evolution of rainfall and the CAPE are

shown in panels c-d-g-h. The black bars represe

nt the observed rainfall (CHIRPS), and

the red bars represent the CFSR rainfall, the blue bars represent the ERAS rainfall. The

green bars represent the MPAS60_CFSR ra

infall, the purple bars represent the

MPAS60_ERAS5, and the black line represents the simulated CAPE for both initial
datasets. All the values are averaged over the Oti River basin
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4.1.2.2 Sensitivity to model resolution

Figure 4.10 shows the sensitivity of MPAS in simulating the extreme rainfall
events to initial conditions and model resolution in Case Study 1. It shows that
regardless of the initial condition (CFSR and ERAS datasets), MPAS15, MPAS10 and
MPASO3 give similar rainfall regimes across West Africa. In the case of CFSR data
used as the initial condition, the model simulations (MPAS15, MPAS10 and MPASO03)
feature the highest rainfall intensity over the south-eastern part of Nigeria and along
Cameroon Mountain (Figure 4.10a-b-c). Though the simulation underestimated the
observed extreme rainfall intensity over the Oti River basin (Figure 4.7a), the MPAS
model at 60—03km variable resolution did improve the simulation of the extreme rainfall
events compared to the simulated events at 60-10km and 60-15km. The strong
convergence of moisture flux at 850hPa from the ocean over the Oti River basin (Figure
4.10c) may explain the improvement of the simulated rainfall intensity at 60—03km
resolution. In addition, the MPAS simulations replicated the peak of the temporal
evolution of rainfall over the Oti River basin as the observed dataset does, and the peak
increases as the model resolution increases (Figure 4.10g). Using ERADS to initialise the
model, the simulations (MPAS_15, MPAS_10 and MPASO03) also gave similar rainfall
regimes over West Africa, where the highest rainfall intensity features, extending from
Nigeria to the Central African Republic (Figure 4.10d-e-f). Furthermore, the model
improves the simulation of the extreme rainfall events over the Oti River basin as the
model resolution increases. However, the model underestimates the spatial pattern of
the observed rainfall intensity over the Oti River basin (Figure 4.7a) and shifts the peak
of the temporal evolution of the rainfall (Figure 4.10h). Overall, using CFSR to initialise
the model at 60—03km variable resolution improved the simulation of the extreme

rainfall events of the Oti River basin.
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In Case Study 2, the MPAS simulations (MPAS15, MPAS10 and MPASO3)
feature similar rainfall patterns over West Africa, independent of the data used as the
initial condition (Figure 4.11a-b-c-d-e-f). For example, all the simulations feature the
highest rainfall intensity over the Guinea highland, the north-western part of Cote
d’Ivoire, and the eastern part of West Africa. However, the simulations seem to shift the
rainfall pattern westward over the Oti River basin shown in the observation dataset
(Figure 4.79g). Nevertheless, regardless of the initial conditions (CFSR and ERADS), the
MPAS model at 60—03km improved the simulation of the extreme rainfall events over
the Oti River basin compared to the model at 60—15km and 60—10km. The moisture flux
field at 850hPa is not enough to explain this result since most of the moisture is from
the continent (Figure 4.11; vector). In addition, the temporal evolution of the rainfall
over the Oti River basin shows that the model simulates the peak a day before the event
using CFSR and ERADS as initial conditions (Figure 4.11g-a).

To understand the extreme rainfall events simulation over the Oti River basin at
different model resolutions using CFSR and ERA5S datasets as initial conditions, one
cannot rely only on the moisture flux. In Case Study 1, and considering the CFSR as the
initial condition dataset, the vertical structure of the MSE from the three MPAS
simulations (MPAS15, MPAS10 and MPASO03) is similar (Figures 4.12a, 4.13a and
4.14a). For example, the three simulations feature the highest MSE gradient and the
highest CAPE on 30 June 2007 (a day before the event), meaning a strong convective
activity that day. However, the simulated maximum precipitation occurred the following
day, as in the observation data (Figures 4.12c, 4.13c and 4.14c). This result is consistent
with the study by Lee et al. (2007) that used three general circulation models to examine
the relation between CAPE and rainfall at diurnal scales. The study found several hours

of time lag between maximum CAPE and maximum rainfall over the tropical region.
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Subrahmanyam et al. (2015) argued that the relationship between CAPE and rain is
crucial in developing convective parameterization schemes for numerical models.
Considering the ERAS dataset as the initial condition, the three MPAS simulations
(MPAS15, MPAS10 and MPASO03) also feature the highest MSE gradient (between the
surface and the middle altitude of the atmosphere) and the CAPE on 30 June 2007
(Figures 4.12b, 4.13b and 4.14b). Still, the simulated maximum rainfall timing is
significantly shifted with respect to the maximum CAPE by two days and with respect
to the observed maximum rainfall by one day (Figures 4.12d, 4.13d and 4.14d).

In Case Study 2, and considering the CFSR dataset as the initial condition, the
MSE gradient and the CAPE distributions are similar for the three simulations (Figures
4.12e, 4.13e and 4.14e). For instance, the MPAS simulations feature the highest MSE
gradient on 21 July 2017, while the corresponding CAPE is not the highest (Figures
4.12g, 4.13g and 4.14q). Though this CAPE value is not the highest in the simulations
(but > 1200 J/kg), the model simulates the maximum rainfall on 21 July 2017 (a day
before the event) for the three resolutions (60—15km, 60-10km, and 60—03km). This
could be because the CAPE values that day were high enough to trigger a relatively
strong convective activity. Similarly, with the ERA5S dataset as the initial condition, the
MPAS simulations (MPAS15, MPAS10 and MPAS03) show the same MSE gradient
pattern and CAPE’s temporal evolution (Figures 4.12f-h, 4.13f-h and 4.14f-h). For
example, the CAPE value decreases with a decreasing MSE gradient. However, the
highest simulated CAPE for the three resolutions does not match the simulated rainfall
peak. Instead, the simulated maximum rainfall timing is significantly shifted with
respect to the maximum CAPE by four days for the three resolutions. Overall, the

simulations show that using CFSR as the initial condition at 60-03km variable
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resolution improves the simulation of the extreme rainfall events over Oti River basin

in both cases.
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Figure 4.10: Simulated extreme rainfall events on 1 July 2007 (Case Study 1) (shaded,
in mm/day) at 60-15km, 60-10km, and 60-03km variable resolution using CFSR and
ERAS as initial conditions dataset. The vectors show the moisture flux at 850hPa (units:

10% g kgtms™).
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Figure 4.11: Simulated extreme rainfall events on 22 July 2017 (Case Study 2) (shaded,
in mm/day) at 60—15km, 60—10km, and 60—03km variable resolution using CFSR and
ERAS as initial condition datasets. The vectors show the moisture flux at 850hPa (units:

10% g kgtms™).

87



Cage Study 1

Case Study 2

Pressure Level

Rointoll (mm/day)

Pressure Level

Roinfor (mm/doy)

MPAS15_CFSR

004 A
500
700
14
900 r
1218 00 OF 12 16 O3 08 2 M8 00 06 12 18 €O 04 12 18 OO
JUN 2% JUN 30 JuL 1 JuL 2 aL 3
250 L 1 L " L L 1 L M
4 WPASI8_CFSR L
2004C — 3
d >—a—o CAPE (WPAS15_CFSR) |
150 4 o
10.0 4 -
5.0 H
0.0 4 -
2G JUN 30 JUN o 2 mn A ST

MPAS15_CFSR

500

500 4§
'2 18 00 08 12 %8 0O 04
JUL 20 JuL 21 JuL 22 JuL 23

40, + s : ! s 4

:

1218 00 06 12 18 00 08 12 '8 0O
JuL 24

¥ 5 B
I weas |

32. g e
s CAPL (MRS

5.CPSR

20 JuL 21 JuL 22 UL 23 WL

24 JuL

L]

i 20,0

1608

sz.og
80>

wof
0.0

Pressure Level

Roinfall (mm/cay)

Pressure Level

Roinfos (mm,/day)

MPAS15_ERAS

el
300
5 1
500 e
AL
700
AV
sac
12 16 00 4 12 '8 & 0 12 18 00 08 12 B 0004 2 MW
JUN 2§ JUN 20 JuL 1 WL 2 JuL 3
T R N R N N S T YOSy S ST Yo
) = R 0%
00dd Eisod
150 3 ;z.og
10.0 E 80>
50 4.o§
0.0 -.—é 0.0
26 N w NN 1. 2. R I}

MPAS15_ERAS

300
500
700
900 o1 ]
12 %0 00 06 12 '8 00 06 12 18 00 08 12 0 00 08 V2 M O
JUL 20 JUL 2% UL 22 JUL23 JuL 24
oo R S N ST S L B Y L. 200
h D WPAS1S_ERAS 2 2
|
= et s PRI S
24, I2.D_
i, 80>
8. ‘ 4.o§
o. r ¥ oo

20 UL 21 sUL 22 0UL 23 J0UL 24 JUL

Figure 4.12: Same as figures 8 and 9, but for variable resolution 60-15 km
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Figure 4.13: Same as figures 8 and 9, but for variable resolution at 60-10km.
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Figure 4.14: Same as figures 8 and 9, but for variable resolution at 60-03km.
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4.2 SIMULATION OF FLOOD EVENT USING HEC-RAS MODEL

4.2.1 Temporal evolution of rainfall and river flow

Figure 4.15 shows the seasonal variation of the Oti River flow and precipitation
datasets in Mango city over six years (2015-2020). It shows that the amount and timing
of precipitation significantly influence river flow. For instance, the flow is relatively
low during the driest months (e.g., 10.37 m3s? in February) and quite high during the
rainy season (e.g., 483.28 m3s! in September). However, while the precipitation peak is
recorded in July-August, the flow’s peak is recorded in September. This suggests that
the precipitation recorded at Mango is not the only contribution to the magnitude of
river flow in Mango. Other factors, such as the magnitude of antecedent catchment water
storage, including soil moisture, groundwater, the slope, and the topography of the
watershed (Ye et al., 2017); Malede et al., 2022; Cigizoglu et al., 2005), may contribute
to the observed time lag between the rainfall peak in August and the flow peak in
September. Along the Oti River, especially in Mango, flood events often occur between
July and October when the rainy season is well established. However, for certain
devastating events that can occur within a few days, flow data at a daily timescale is

needed to understand the flood's characteristics and thus prevent their impacts.
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Figure 4.15: Seasonal variation of rainfall and river flow at Mango hydrological and
meteorological stations over six years (2015-2020).
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Figure 4.16 shows the temporal evolution of river flow in Mango along the Oti
River at a daily timescale from 2015 to 2020. Generally, the maximum flow along the
Oti River at Mango station is recorded between the end of September and earlier in
October and ranged between 371.37 m3s™! on 19 October 2019 to 912.62 m®™ on 2 and
3 October 2020. For example, the maximum flows in 2015 (867.25 m®™) and 2018
(857.73 m3st) were observed on 28 September and 29 September, respectively, while
in 2016 (705 m3st) and 2020 (912.62 m3s?), they were observed on 01-02 October and
02-03 October, respectively. Furthermore, Figure 4.16 shows that the maximum flows
in 2015, 2016, 2018, and 2020 are higher than the maximum annual mean flow, while
the flows in 2017 and 2019 are lesser. Given the highest values of the maximum flows,
especially in 2020 along the Oti River in Mango, it is essential to investigate how these
flows could be translated into flood extent, which is crucial for flood risk preparedness.

So, in this study, we considered the year 2020 for further analysis.
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Figure 4.16: Daily variation of river flow at Mango hydrological station from 2015 to
2020.
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Figure 4.17 presents the diurnal variation of river flow and precipitation in 2020,
and it shows a lag time between the maximum rainfall and the maximum river flow. For
example, while the maximum rainfall was recorded on 8 September 2020, the maximum
river flow was observed almost one month later on 01 and 02 October 2020. In addition,
rainfall amounts at the Mango weather station on the days of the recorded maximum
flow are zero on 1 October and 1.3 mm on 02 October. This suggests that the observed
maximum river flow on 01 and 02 October 2020 could be due to the rainfall in the
previous month of September and other factors, as discussed previously. Besides the
temporal characteristics of rainfall and river flow we have discussed previously, we are
also motivated by understanding how the flow along the Oti River in Mango could be
translated into flood extent, which is crucial for flood risk preparedness. So, in the next

section, we considered the year 2020 for flood simulation.
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Figure 4.17: Daily variation of rainfall and river flow at Mango stations for the year
2020.
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4.2.2 Performance of HEC-RAS model in simulating a real flood event

The hydraulic model evaluation against observations is generally based on
quantifiable variables like flood extent and water velocity or depth. Therefore, a model
that performs well in capturing these characteristics may be used for flood hazard
assessment and thus indicate the vulnerability of built-up areas or farmlands to
hydrological events with possible destructive impacts. In this study, we evaluated the
performance of HEC-RAS 2D in simulating actual flood events considering the flood
extent. The flood velocity and the water depth were not considered because the only
available observed flood characteristic is the flood extent. So, figure 7 shows the
simulated and observed flood extent on 17 October 2020 in Mango along the Oti River.
Generally, the simulated flood extent agrees well with the observed one. It also agrees
with the local topography (Figures 6a for the observed and 6b for the simulated one).
However, while the model underestimates the expanse in some parts of the simulation
area, it overestimates it in others, especially in areas A and B. Regarding the maximum
inundation area, the HEC-RAS model gives an inundation area of 4.84 km2 (51.54% of
the simulation area), while the observed inundation area is 4.10 km2 (43.74% of the
simulation area). Besides the simulation of a actual flood event on 17 October 2020, we
designed hypothetic modeling scenarios to evaluate the effects of combined fluvial and
pluvial floods and the impact of various maximum flows (Figure 8) over two selected

areas (area A and area B) within the simulation area.

97



Il Oti river

W Flood extent
[ simulated area
[ Case study areas

&5 0 0.25 0.5km
—t+—

Figure 4.18: Flood extent at Mango on 17 October 2020 as shown by: (a) the observation
from Copernicus) and (b) the HEC-RAS simulation using hydrograph data.

=0 0.25 0.5 km
[ e——

98



4.2.3 Impacts of the simulated composite fluvial and pluvial floods

First, the hypothetic fluvial flood and, secondly, the combined hypothetic fluvial
and pluvial floods were simulated under 2D hydrodynamic unsteady flow conditions.
Then, the impacts of the floods, in terms of water depth and flood extent, were analysed
over the two small areas, A and B. Figures 4.19a and 4.20a show the evolution of the
inundation area and depth over area A as a function of the maximum flows of
hydrographs. It shows that the combined fluvial and pluvial conditions aggravate the
flooding impacts. As a result, the flood extent and depths are more significant than the
ones produced by a single type of flooding. For instance, the flood starts over area A
from a maximum flow of 60 m3s-1 (fluvial flood) and inundates 0.38 % (0.055 ha) of
the area. In contrast, it inundates 34.75 % (4.94 ha) of the area, considering the combined
fluvial and pluvial floods (Figure 9a). Similarly, at the beginning of the inundation (flow
of 60 m3st), considering the fluvial flood in area A, the recorded maximum flood depth
was 0.05 m, while it was 0.27 m for the combined fluvial and pluvial (Figure 10a).
Moreover, as the maximum flow of the hydrograph increases, the inundation area and
depth increase. However, the deviation between the impacts of the fluvial flood and
combined fluvial and pluvial floods remains constant when the flood extent is
considered. At the same time, the deviation between the impacts reduces and becomes
almost null when the inundation depth is considered. For example, when the maximum
flow reaches its highest value (900 m3s-1), 81.16 % and 84.56 % of area A is flooded,
considering the fluvial flood and the combined fluvial and pluvial foods, respectively.
In contrast, the flood depths for both flood types are almost the same (0.782 m for fluvial
flood and 0.784 m for combined fluvial and pluvial flood). This may be linked to soil

saturation at a particular time that does not allow the water to infiltrate.
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Inarea B, as in area A, the combined fluvial and pluvial floods enhance the flooding
impacts in terms of flood extent and depth. However, the fluvial flood in area B begins
from a maximum hydrograph flow of 100 m3s-1, unlike in area A, where the flood starts
from 60 m3s-1. While the flood covers 84.56 % of area A with the highest flow value,
it covers 70 % of area B with the same flow value. This result in area B may be
associated with the high elevation of the floodplain in area B compared to area A.
Overall, the flood impacts in area A are more significant compared to area B, and the

consequences increase in both cases when the combined flood is considered.
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Figure 4.19: The inundation area as function of the maximum river flow of the
hypothetical hydrographs, and the combined fluvial and pluvial floods as simulated
over: (a) for area A and (b) for area (B).
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Figure 4.20: The inundation depth as function of the maximum river flow of the

hypothetical hydrographs, and the combined fluvial and pluvial floods as simulated: (a)
over area A and (b) over area (B).
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CHAPTER FIVE

5.0 CONCLUSION AND RECOMMENDATIONS

51 CONCLUSION

As part of an effort to improve understanding of extreme rainfall and flood events
over West Africa and to enhance prediction, this study has examined the capability of
the climate model (MPAS) in simulating extreme rainfall characteristics over West
Africa and the ability of the hydraulic model (HEC-RAS) in simulating flood event over
the Oti river basin. For the climate study, daily precipitation data from four observation
datasets (WFDEI-CRU, AgMERRA, AgCFSR, and CHIRPS) and two reanalyses
(CFSR, ERADS) datasets were analysed. In contrast, daily hydrograph data of the Oti
river, the DEM, and LUC datasets were used for the hydraulic study. The climate model
simulations were mainly compared with the mean of the observation datasets, while the
reanalysis datasets were used as initial condition datasets for the model simulation and
the dynamic and thermodynamic analysis. First, the climate model evaluation for 30
years run (1981-2010) focused on how well the model reproduced the spatial patterns
of eight rainfall indices (WDAYS, Rx5day, R20mm, CWD, RTOT, SDII, R97.5p, and
R97.5pTOT) in West Africa. Then, several shorts run of climate simulations with the
stretched-grid version of the model to study the sensitivity of the simulated extreme
rainfall event to local enhancements in model resolution (i.e., 15 km, 10 km, 3 km) over
West Africa, using two cases of extreme rainfall events over the Oti River were
performed.

On the other hand, the hydraulic model (HEC-RAS) simulation was compared
with an actual flood event in Mango along the Oti river. The model was evaluated using

flood extent data from Copernicus-EMS. In addition, seventeen composite fluvial and
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pluvial flood scenarios were designed, and their impacts on two selected areas in the Oti

River basin were assessed. The impacts were determined by considering each scenario’s

flood extent and depths.

The results of the study can be summarised as follows:

e MPAS produces the observed spatial patterns of most rainfall indices (e.g., R97.5p,
R97.5PTOT, RTOT, WDAYS, CWD, and Rx5day) with a high pattern correlation
coefficient (r > 0.8), though with some biases. The model struggles to capture the
spatial pattern of SDII and R20mm indices over the region.

e MPAS captures the rainfall intensity-frequency curves over the two basins (ORB
and GRB). However, it shows substantial discrepancy compared to observation
datasets and underestimates the frequency of heavy rainfall in these areas. The
rainfall intensity-frequency curves of the reanalysis dataset are within the observed
spread, meaning that these data are within the observed uncertainties.

e While MPAS simulates the highest number of WERES in September over the two
basins, the observed mean data reports the highest number in August. Also, while
MPAS shows fewer WEREs than the observed mean in June and July over the
basins, the CFSR does not even report any WEREs. In addition, MPAS shows a
discrepancy compared with the peculiar observation datasets in reporting the
number of WEREs.

e In case study 1 and regardless of the initial conditions, MPASGE0 gives a credible
representation of the three observed rainfall regimes, especially over the ORB.
However, it underestimates the spatial rainfall intensity of the HRE over the ORB.
Regarding temporal evolution, MPAS60_CFSR captures the event's peak a day
before the observed HRE day, while MPAS60_ERAJS reproduces almost a constant

rainfall amount throughout the simulation duration.
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In case 2, MPAS60 CFSR and MPAS60 ERAS fail to replicate the event’s intensity
over the ORB, as shown in the observation dataset. This is consistent with the
simulated temporal evolution of rainfall over the ORB, where the model

underestimates and shifts the peak as the observation data does.

Regardless of the initial condition dataset, MPAS variable resolution (MPAS15,
MPAS10, and MPAS03) improves the simulation of the HRE over ORB in case
study 1. As the model resolution increases, the model improves the simulated HRE
over the basin. However, the model underestimates the observed rainfall intensity
over the ORB. While the model replicates the peak of the temporal evolution of
rainfall over the basin, as the observed dataset does in the case of CFSR as initial
condition data, it shifts the peak a day after the event in the case of ERA5 as initial
condition data.

Similarly, in case study 2, the model improves the simulated HRE over the ORB as
the model resolution increases with respect to CFSR and ERA5 data as initial
condition data. However, regardless of the initial condition dataset, the three
simulations (MPAS15, MPAS10, and MPASO03) reproduce the peak of the temporal
evolution of rainfall a day before the event.

HEC-RAS produces the observed flood extent, which agrees with the local
topography; however, the model underestimates the expanse in some parts of the
simulation area and overestimates it in others.

The combined fluvial and pluvial conditions aggravate the flooding impacts over the

two areas in terms of flood extent and depth.
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e Area A is more vulnerable than area B considering both fluvial floods and the
combined fluvial and pluvial floods. It gets flooded more rapidly in area A than in
area B.

e The inundation depth in the two areas is more sensitive to the fluvial flood than the

pluvial flood.

5.2 RECOMMENDATIONS

The findings of this study demonstrate the capability of MPAS in simulating
extreme rainfall over West Africa, but there are opportunities to improve the robustness
of the results further. For instance, simulating additional events with varying intensity
and geographic location would enable a more robust assessment of the model’s ability
to simulate extreme rainfall events. Furthermore, while this study utilised a single
default physics suite included in MPAS, the use of mesoscale reference, examining the
impact of individual parameterization schemes on the characteristics of simulated
extreme rainfall events would provide valuable insights into the sensitivity of MPAS.
Nevertheless, by applying variable-resolution meshes, this study was able to simulate
individual extreme rainfall events at high resolutions that would be computationally
impractical in a uniform global model and potentially compromised by lateral boundary
conditions in a regional model. Consequently, this study’s results provide valuable
insights into MPAS’s suitability and sensitivity in simulating extreme rainfall, with
practical applications for the refinement and implementation of MPAS to provide early
warning for extreme rainfall-induced floods across West Africa.

On the other hand, the results of this study demonstrate the capability of HEC-
RAS in simulating flood events in Mango, Togo. However, there are opportunities to

improve the robustness of the model results further. For example, simulating additional
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flood events in different locations would enable a more comprehensive assessment of
the model's ability to simulate floods. Additionally, investigating the impact of high-
resolution DEMs on the characteristics of simulated flood events would provide
valuable insights into the sensitivity of HEC-RAS. Furthermore, incorporating observed
flood characteristics like flood depth would benefit model evaluation. Despite these
limitations, this study was able to simulate the actual flood event using a 10m resolution
of DEM, which agrees with the observed flood extent. Therefore, the study provides
valuable insights into the practical application and implementation of HEC-RAS for

early warning of flood events across West Africa.
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