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ABSTRACT

The expanding hydrogen economy relies on efficient and durable electrochemical devices, such
as Solid Oxide Electrolysis Cells (SOECs) and Proton Exchange Membrane Water
Electrolyzers (PEMWESs). The performance and lifetime of these devices are closely linked to
their microstructural properties. Despite the development of advanced microstructural
characterization techniques, like Focused lon Beam-Scanning Electron Microscopy (FIB-SEM)
for quantitative analysis, data processing remains challenging due to the complexity of the data,

the large volume generated and the limited access to advanced computational tools.

This study proposes an automated, modular pipeline that combines traditional image processing
and Random Forest-based supervised learning to segment the electrode-catalyst part composed
of four layers in SOECs (Layer 1 to Layer 4 ) and to quantitatively evaluate key microstructural
parameters such as porosity and thickness. The pipeline is intentionally designed to require

minimal computational resources and remain accessible even to non-expert users.

The training on a representative annotated dataset of FIB-SEM images (10 training images out
of a total of 200) achieved a layer segmentation accuracy of 68% on the test dataset. Even
though this indicates the need for additional improvement, it was enough to identify meaningful
structural variations. The utilization of the pipeline across multiple experimental FIB-SEM
datasets enables the extraction of statistically consistent trends in porosity and thickness under
different operational conditions: pristine, 100-hour and 200-hour run cells. layer 4 exhibits a

distinct rise in porosity, whereas layer 2 displayed a noticeable change in thickness.

These findings show that a lightweight machine learning approach combined with traditional
image processing can provide meaningful insights into microstructural parameters. it also
emphasizes the potential for developing a user-friendly and automated pipeline to assess the
complex FIB-SEM datasets of these electrochemical devices quantitatively in a record time.
Potential enhancement could look closer to the annotation protocol, feature engineering and

combined machine learning approaches.

Keywords: FIB-SEM, microstructural analysis, Random Forest, image processing, electrolysis.



RESUME

La croissance de 1'économie hydrogeéne repose sur le bon fonctionnement et la durabilité de
dispositifs électrochimiques, tels que les cellules d'¢lectrolyse a oxyde solide (SOEC) et les
¢lectrolyseurs @ membrane échangeuse de protons (PEMWE). Leur performance et leur durée
de vie sont en grande partie fonction de leurs propriétés microstructurelles. Malgré 1'évolution
des techniques avancées de caractérisation microstructurale telle que la microscopie
¢lectronique a balayage a faisceau d'ions focalisés (FIB-SEM) pour I’analyse quantitative, le
traitement des données reste difficile en raison de leur complexité, du volume important

d’images généré et de l'acces restreint aux outils informatiques avancés.

Cette ¢tude présente un pipeline automatisé et modulaire qui combine les méthodes classiques
de traitement d'image et l'apprentissage supervisé basé sur les foréts aléatoires pour segmenter
la structure multicouche a 4 niveaux de la partie électrode-catalyseur des SOEC, et permettant
d’évaluer quantitativement des paramétres microstructuraux importants comme la porosité et
I'épaisseur. Le pipeline est congu pour nécessiter un minimum de ressources informatiques et

reste accessible méme aux utilisateurs non spécialistes.

L’entrainement sur un jeu de données annotées représentatives des images FIB-SEM (10 images
d'entrainement sur un total de 200) a permis d’atteindre une précision de segmentation de 68%
sur I’ensemble données de test. Bien que cela indique la nécessité d'une amélioration
supplémentaire, cela a été suffisant pour identifier des variations structurelles significatives.
L’utilisation du pipeline sur plusieurs ensembles de données expérimentales FIB-SEM permet
d'extraire des tendances statistiquement cohérentes en matiére de porosité et d'épaisseur dans
différentes conditions opérationnelles: cellules vierges (434 images), 100 heures (653 images)
et 200 heures (484 images). La couche 4 a présenté une augmentation distincte de la porositg,

tandis que la couche 2 affiche un changement remarquable en termes d'épaisseur.

Ces résultats montrent qu' une approche simplifiée d'apprentissage automatique combinée a un
une approache traditionnelle de traitement d'image peut fournir des informations significatives
sur les parametres microstructuraux. Ils soulignent également le potentiel de développement
d'un pipeline accessible et automatisé permettant d’évaluer quantitativement de larges jeux de
données FIB-SEM de ces dispositifs ¢électrochimiques en un temps record. Cependant, des
améliorations potentielles pourraient également se porter sur le protocole d'annotation,

lI'ingénierie des caractéristiques et les approches combinées d'apprentissage automatique.

Mots-clés: FIB-SEM, analyse microstructurale, Random Forest, traitement d'images, électrolyse.
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GENERAL INTRODUCTION

Climate change is recognized as one of the greatest challenges for the 21% century, contributing
to global warming and an increase in extreme weather events [1]. According to the
Intergovernmental Panel on Climate Change (IPCC), global temperature could rise by 2 to 4°C
by the end of the century if current trends persist [2].

One of the main drivers of this warming is the emission of greenhouse gases (GHGs), primarily
from the combustion of fossil fuels. The anthropogenic emissions account for approximately
75% of the global GHGs, according to the International Energy Agency (IEA), raising major
concerns about the sustainability of our energy systems [3]. In response, the international
community has adopted landmark policies such as the Paris Agreement (2015), which aims to
limit global warming to well below 2°C, ideally to 1.5°C [2] . In Europe, the European Green
Deal sets an ambitious objective of carbon neutrality by 2050 through large-scale

transformation of the energy, transport and industry sectors [4].

In this transition, hydrogen has emerged as a strategic energy vector. Its versatility allows for
the decarbonization of hard-to-electrify sectors such as heavy industry, heavy transport and
long-haul transport. The Global demand for hydrogen has reached a record of 95Mt in 2022
[4], and it is expected to exceed 100 Mt in 2025 according to the latest data from the
International Energy Agency [5]. Yet, more than 95% of hydrogen is still produced from fossil
fuels, mainly via steam reforming, generating substantial CO2 emissions [6]. Green hydrogen
produced through electrolysis of water using renewable electricity offers a low-carbon
alternative. This method not only enables energy storage and grid flexibility but also paves the
way for deep decarbonisation [7]. However, its large-scale deployment remains limited by high

production costs, limited efficiency of electrolyzers and reliance on critical raw materials [8][9].

Among electrolyzer technologies, Proton Exchange Membrane Water electrolyzers (PEMWEs)
and Solid Oxide Electrolysis Cells (SOECs) stand out. PEMWE systems operate at low
temperatures, ranging from 50-80°C and offer a fast dynamic response. This makes them
suitable for coupling with intermittent renewable energy sources [10]. Their drawback remains
the use of expensive materials like platinum and iridium. In contrast, SOECs operate at high
temperatures and achieve great energy efficiency up to 80% by exploiting thermal input. Their
weakness lies in durability issues under real operating conditions, leading to performance

degradation [11].
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At the core of these performance and degradation phenomena lies the microstructure of the
electrodes and electrolyte layers. Parameters such as porosity, tortuosity, and grain size directly
influence layer properties, kinetic reaction and long-term stability [12]. Recent advances in
high-resolution imaging techniques, particularly Focused Ion Beam-Scanning Electron
Microscopy (FIB-SEM), now make it possible to visualize and reconstruct the complete 3D

architecture of these materials at nanometer scales [13].

Yet, exploiting such images remains a challenge due to the structural complexity of the
materials and the large volume of data generated. While advanced image analysis methods,
including deep learning, can offer accurate results, they often require significant computational
resources, expert knowledge and extensive annotated datasets [14][15]. This presents a major
obstacle, particularly for non-experts or researchers without access to high-performance

computing infrastructure.

To overcome this, the present work proposes the development of a simple, automated, and
modular image processing pipeline that combines traditional processing methods with
supervised machine learning. This approach is then applied to FIB-SEM images of SOEC
electrodes to extract key descriptors such as porosity and thickness, enabling the evaluation of

their evolution over operating time.

This thesis is structured in three chapters. Chapter 1 presents a critical review of the current
state of hydrogen technologies, particularly SOEC and PEMWE, the challenges related to their
materials, the importance of microstructural analysis and the theoretical framework for image
processing. Chapter 2 describes the imaging protocol followed in this study. Chapter 3 discusses
the results obtained from the processing pipeline and highlights the relevance of the approach

for quantifying the key microstructural parameters.
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CHAPTER 1: LITERATURE REVIEW

In this chapter, we examine the existing literature related to the microstructural analysis and
degradation mechanisms of SOECs and PEMWEs. We focus on the advancements in high-
resolution imaging techniques, particularly FIB/SEM and their role in investigating the
evolution of SOEC and PEMWE materials under operating conditions. Furthermore, we
explore the developed quantification methods for microstructural parameters, ranging from the

traditional approach to recent automated deep learning-based techniques.
1.1. Hydrogen Technologies

1.1.1. Solid Oxide Electrolysis Cells

e History

SOEC is an essential electrochemical technology for producing fuels such as carbon monoxide
(CO) and dihydrogen (Hy), including syngas, from steam (H>O) and/or carbon dioxide (CO»)

using electrical energy [16].

The history of SOEC began in 1899, with Nernst's discovery of the improved high-temperature
ionic  conductivity of doped oxides, specifically calcium-stabilized zirconia
((ZrOz2)0.85(Ca0)o.15), which led to the "Nernst mass" [17] . This material was later used in 1962
to build the Solid Oxide Fuel Cell (SOFC), the inverse of the electrolyzer [17]. One of their
experimental designs is shown in Fig.1.1, where a calcium-stabilized zirconia electrolyte tube
and platinum electrodes were used in a high-temperature setup for fuel-water conversion. This
early architecture laid foundational principles for modern SOFC and SOEC configurations. The
first SOEC modeling studies, which took into account ohmic and concentration losses, were
carried out in the late 1960s by H. Spacil and C. Tedmon in 1969 [18]. As of 1967, NASA
(National Aeronautics and Space Administration) has also explored the use of these electrolytes
for oxygen production and CO, utilization on space missions, and research, which is still
ongoing [16]. In the 1980s, the German “Hot Elly” project marked a significant research and
development effort, although it was halted in the 1990s due to low oil prices [19]. These
developments represented milestones in the evolution of SOECs, paving the way for ongoing
research focused on improving their efficiency, durability, and integration into modern energy

systems.

Since the early 2000s, research on SOECs has progressed. New materials exhibiting improved

5
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stability as well as ionic and electric conductivity, such as Lanthanum Strontium Chromium
Manganese Oxide (LSCM), Lanthanum Strontium Manganite-Gadolinium-doped Ceria (LSM-
GDC ), have been investigated [19][20]. Research shifted toward reducing degradation and
improving long-term performance [22]. In the 2010s, major EU-funded initiatives such as

Horizon 2020 played a pivotal role in advancing SOEC technology. Projects like HELMETH,

GrInHy and REFLEX enabled the development and scale-up of high-temperature electrolysis
systems, laying the groundwork for industrial demonstrations and long-term performance
assessments [23]. Co-electrolysis of H.O and CO: also gained attention and a pilot project
validated the technology under real conditions [24][23]. Since 2020, efforts have been
increasingly concentrated on lowering operating temperatures, using metal-supported cells, and
improving electrode durability. SOECs are now tested for industrial integration in systems

coupling renewable energy and carbon capture systems [25].
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Figure 1.1. Schematic diagram of a galvanic cell with a solid oxide electrolyte [17]
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e Working principle

An SOEC consists of three main components: 1) a hydrogen electrode (also known as the
cathode), 2) an air electrode (also known as the anode) and 3) an electrolyte (a dense ceramic
layer situated between two porous electrodes). However, unlike the SOFC, which converts the
fuel to electricity, the electrochemical process in an SOEC operates in reverse mode to produce

hydrogen from water.

During operation, electrons are supplied by the external power source at the hydrogen
electrodes, where water vapor is also introduced. The water breaks down into dihydrogen (H-)
and oxide ions (O*). The oxide ions migrate through the dense electrolyte and reach the air
electrode, where they are oxidized to form molecular oxygen, releasing electrons into the
external circuit, thereby completing the electrochemical loop [26][27]. Fig.1.2 illustrates the

structure in operation mode.

The overall electrochemical reaction equation is as follows:

Cathode Reaction: H,0g) +2e” = 0% + Hyy (1)
Anode Reaction: 0%~ = 1/20y(g) + 2e” ()
Overall equation: HyO@y = Hyg + 1/2 0y 3)
H,
2e’
\ R 4

Porous A’z«} 3

cathode ‘ H,0 + 2e" —> H, +0%

Electrolyte o

Figure 1.2. Fundamental working principles of SOEC [26]
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e Materials and Architecture of SOEC Components

The development of SOECs relies heavily on the selection and optimization of functional
materials for each cell component. These materials must meet several essential requirements.
They should exhibit adequate porosity to ensure effective gas penetration and high conductivity
(both ionic and electrical) to enable charge transfer [28][12]. In addition, chemical compatibility
is essential to avoid undesirable reactions with other cell components [29]. Lastly, the thermal
expansion coefficient must be compatible with the rest of the cell to prevent mechanical stress

during temperature variations [30].

This section takes a closer look at the primary materials currently used and under investigation

for electrodes and electrolytes, as well as their challenges and potential.
a) Hydrogen Electrode (Cathode)

The hydrogen electrode, serves as the reactive site where the water splitting reaction takes place.
It plays a critical role in SOEC operation, notably by facilitating the adsorption of water vapor,
its activation on catalytic sites, and the efficient evacuation of the hydrogen produced. Nickel
(Ni) is the most commonly used material due to its excellent electronic conductivity and
satisfactory catalytic activity [31]. However, pure nickel has a high thermal expansion
coefficient (16.9 x 107¢/°C at full density), which leads to poor mechanical compatibility with
the electrolyte, especially when it is yttrium-stabilized zirconium oxide (YSZ). To address this
issue, Ni-YSZ cermet is used, where the ceramic matrix helps to match the thermal behavior of
the electrolyte, thereby reducing the stress and risk of failure [32]-[34]. An alternative to Ni-
YSZ is the nickel-based gadolinium-doped ceria (Ni-GDC), which shows improved chemical
stability at lower temperatures. However, it suffers from phase interaction that degrades
performance over time. More advanced materials like (Lao.sSt0.4Cro.2Mno.sO3, LSCM ), which
are mixed ionic and electronic conductors (MIECs), have demonstrated better thermal stability
and resistance to oxidation [12]. Today, techniques like nanoparticle infiltration boost catalytic
activity and the triple-phase boundary (TPB) density. However, keeping these properties stable
at high temperatures and long operation is difficult [35].

b) Air Electrode ( Anode)

The air electrode is the site of the oxygen evolution reaction (OER). It plays an important role
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in the electrochemical reaction process by facilitating oxide ion access to catalytic sites and by-

product removal via its porous structure.

At the state of the art, materials such as lanthanum strontium manganite-yttria stabilized
zirconia composites (LSM-YSZ), as well as MIECs materials such as lanthanum strontium
cobalt ferrite (Lai-Sr«Coi-Fe,0:-6, LSCF) or other perovskite-based materials, are
predominantly used for the anode [36]. Research is currently focused on exploring different
types of materials to improve the performance of anode electrodes. Among the most studied
materials are double perovskites and Ruddlesden-Popper (RP) materials, which offer a good
compromise between electrical conductivity, chemical stability and compatibility with other

cell components. The structure is shown in Fig.1.3 [12].

(a) gf
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A-site 5
} rock-salt
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L perovskite
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rock-salt
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Oxide ion

¥ | perovskite
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Figure 1.3. Illustration of the crystal structures of: a) perovskite, b) double perovskite, and c)
Ruddlesden-Popper (RP) perovskite [37]

¢) The Electrolyte

The main function of the electrolyte is to transport oxide ions (O*) between the anode and
cathode, enabling the electrochemical reaction required for high-temperature hydrogen

production.

The performance of an electrolyzer depends on its capacity to facilitate rapid oxide ion
conduction while preventing electron transfer to guarantee an efficient electrochemical
reaction. Among the electrolyte materials used in SOECs, two prominent families are
commonly studied: yttria-doped zirconia (YSZ) and scandia-doped zirconia (ScSZ). YSZ is the

9
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more traditional material, due to its thermal stability. It offers good oxide ion conductivity,
especially between 700-900°C, although its performance tends to decline below 700°C, which
may limit its efficiency for intermediate temperature operation. In contrast, ScSZ offers superior
conductivity and operates at slightly lower temperatures, especially around 600°C, which is

advantageous for reducing power consumption and extending cell life [24][38].

Ceria-based electrolytes, such as gadolinium-doped ceria (GDC), are also considered promising
for intermediate-temperature applications. The material exhibits higher ionic conductivity than
YSZ between 550-700°C, but suffers from a critical drawback in a reducing environment, as
Ce** tends to be reduced to Ce*" including unwanted electronic conductivity and possible
mechanical instability [39] [40]. Finally, other materials like lanthanum gallate (LaGaOs) have
also attracted attention thanks to their excellent ionic conduction, but their chemical stability
has yet to be confirmed in specific environments [12]. While some materials perform well, there

is still a need for new materials to enable large-scale use.

1.1.2. Proton Exchange Membrane Electrolyzer

e History

PEMWE originated from research into PEM fuel cells in the 1960s, notably as part of NASA's
Gemini space program. At that time, Grubb and Niedrach at General Electric developed the
first cells to use a polymer membrane to conduct protons, laying the foundations for today's

PEM electrolysis concept [41].

A decisive turning point came in 1968 with the commercial introduction of Nafion™
(Poly(tetrafluoroethylene-co-perfluoro-3,6-dioxa-4-methyl-7-octene  sulfonic  acid)), a
perfluorosulfonic polymer developed by DuPont. This material offered excellent proton
conductivity, high chemical resistance, and thermal stability, enabling the realization of
prototype electrolyzers operating at moderate temperatures, 60-80°C, with high purity of the
gas produced [42].

In 1973, J.H. Russell published the first detailed study of a PEM electrolyzer, demonstrating
promising performance with current densities of the order of 1 A/cm? at 1.88 V [43]. These

results confirmed the advantage of this technology over traditional alkaline electrolyzers [43].

In the 2000s, interest in PEMWESs was revived by advances in membrane durability, catalyst
10
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stability, and overall performance. Research intensified in reducing the quantity of noble metals
(iridium, platinum), developing alternative membranes such as Sulfonated Polyether ether

ketone (SPEEK), and optimizing electrode architectures [44][10].

Today, PEMWEs are considered a key technology for producing green hydrogen, especially in
Power-to-Gas systems and in the integration of renewable energy. Their low-temperature
operation, compactness, and rapid response capability make them a suitable solution for
decentralized applications. However, challenges remain, notably related to material durability,

catalyst cost, and large-scale industrialization [45]-[47].
e Operating Principle

The main purpose of the PEMWE is to convert electrical energy into chemical energy,
specifically hydrogen. Before exploring the individual components of the cell, it is useful to

understand how the cell works.

In this electrochemical process, clean water is provided to the anode side. When a voltage is
applied to the electrodes, the water undergoes oxidation in a process known as the Oxygen
Evolution Reaction (OER), generating protons (H*), dioxygen (O.), and electrons. The
generated protons migrate through the proton exchange membrane electrolyte toward the
cathode side, where they are reduced (Hydrogen Evolution Reaction, HER) by combining with
electrons to form hydrogen (H») [48], as shown in Fig.1.4. The overall electrochemical reaction

equation is as follows:

Anodic reaction: H>O — 2H'+ 1202+ 2¢ (1)
Cathodic reaction: 2H" +2¢ — H:2 (2)
Overall reaction: H>O - H2 + 1202 3)

11
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Figure 1.4. Schematic illustration of PEMWE, adapted from [49]

Although this process may seem straightforward, in the background, the microstructure
properties of the materials involved highly affect the efficiency and durability of the system
[50]. Therefore, a detailed examination of the cell’s structural components is essential for a

deep understanding of how the material properties influence overall performance.
e Structure and Layer Architecture

A standard PEMWE comprises several key components, including the bipolar plates (BPP),
the current collectors, and the membrane electrode assembly (MEA). Fig.1.5 gives a general

overview of the system.
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Figure 1.5. Schematic view of PEMWE cell architecture [51]
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o Bipolar Plates (BPPs)

Bipolar Plates are flat components located between neighboring cells in the stack, forming the
structural backbone of the electrolysis cell. Generally made of titanium, their primary roles
involve the transport of water within the cell, facilitating gas removal, regulating heat exchange
and closing the external electrical circuit [52]. Titanium is widely used as a material due to its
excellent thermal conductivity, mechanical strength, and corrosion resistance. Nonetheless, in
the highly oxidative anodic environment, titanium is prone to corrosion, leading to cell
deterioration. Despite the investigation of different coatings and alloys to tackle this problem,

their high cost makes them unsuitable for large-scale applications [49].
o Current collectors

The current collector is a porous conductive layer located between the electrode’s catalyst layer
and the bipolar plate. To effectively perform, it needs to provide excellent electrical
conductivity and resistance to corrosion, especially on the anode side. Its microstructure
requires careful refinement and should be designed to strike a balance between high porosity to
eliminate gases, but excessive porosity can reduce the electronic conduction and limit water
supply to catalytic sites. This remains one of the key challenges in enhancing the overall

efficiency of the cell [52].

o Membrane Electrode Assembly (MEA)

The MEA is the primary functional unit of PEMWE, where essential electrochemical reactions
occur, transforming electrical energy into chemical energy. It comprises three closely bonded

parts: 1) the anode, 2) the cathode, and 3) the Proton Exchange Membrane (PEM).

1) The anode

The porous structure of the anode usually includes iridium-based catalysts such as Iridium (Ir),
iridium oxide (IrOx), or iridium ruthenium oxide (IrRuOx) combined with an ionomer, a
proton-conducting polymer often derived from Nafion and interconnected. These structural
elements are essential for mass transport and ion conduction but can also cause conversion
losses, mainly due to limited reagent access and uneven catalyst utilization. The porous design
directs the movement of reactants and products and determines how well the catalyst can be

accessed. The anode affects overall efficiency and can help decrease the amount of costly
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catalyst needed if its structure is optimized.

A critical parameter is the triple-phase boundary (TPB), where electrons, ions, and gaseous
molecules interact. Maximizing the interface area while minimizing ohmic and mass transfer
resistances can significantly improve performance. Strategies such as graded porosity,
controlled ionomer distribution, or nanostructuring are being actively explored to increase
catalytic efficiency and reduce the amount of iridium used, as this metal is expensive and scarce

[53][54].
2) Cathode

On the cathode side, the HER is kinetically more favorable. A platinum-based catalyst
supported on carbon is generally used for this reason. This setup provides good electrical
conductivity and fast reaction rates. However, long-term stability remains a challenge, mainly
due to the corrosion of the carbon support in acidic and humid environments. Research is

ongoing to replace carbon with other materials or to develop more resistant platinum alloys[55].
3) Pronton Exchange Membrane (PEM)

The proton exchange membrane (PEM) serves two main functions: it conducts protons (H")
from the anode to the cathode and acts as a gas barrier, preventing hydrogen and oxygen from
mixing. Nafion, is the most commonly used material because of its high ionic conductivity,

chemical resistance, thermal stability, and mechanical strength [56], as shown in Fig.1.6.

Despite its excellent properties, Nafion has certain limitations, notably high current density
drying and high cost. As a result, alternatives are being investigated, such as hydrocarbon-based
membranes, for example, Sulfonated Polyether ether ketone (SPEEK) or composite membranes
incorporating inorganic fillers. These materials aim to improve moisture retention, durability,

and reduce costs, while maintaining good conductivity [57][58].

Membrane thickness and hydration state have a strong influence on ionic resistance. Thinner
membranes reduce ohmic losses, but increase the risk of gas cross-permeation. It is therefore

crucial to strike a balance between electrochemical performance and safety [59].
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Figure 1.6. Molecular structure of Nafion [52]

1.2. Challenges and Degradation Mechanisms Affecting SOEC and PEMWE

Performance

Although material selection is critical to SOEC and PEMWE performance, it is equally
important to understand how these materials degrade under real operating conditions. Chemical
degradation mechanisms such as electrode corrosion and unwanted phase formation have been
extensively investigated. Increasing attention is also being given to physical degradation
processes, including thermal cycling, mechanical stress, and microstructural evolution [55][60].
Both forms of degradation, often interconnected, significantly affect the long-term stability and

efficiency of the cells. This section examines some key structural degradation mechanisms.

1.2.1. Particle coarsening

Ananyev et al.[61] investigated the evolution of particle coalescence in LSM-YSZ cathodes
over time. The physical degradation mechanisms in these cathodes were analyzed to quantify
the impact of particle coalescence on the material's microstructure under high-temperature
operating conditions. Microstructure images were obtained by scanning electron microscopy
(SEM). These images were then analyzed using a semi-automated pipeline based on grayscale
histogram segmentation, enabling the evolution of porous and solid phases to be tracked over

time.

The results shown in Fig.1.7 reveal an exponential growth in the degraded zone, marked by
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particle coalescence and decreased porosity. This morphological change causes a decline in
electrochemical performance due to increased tortuosity and a reduction in the active specific
surface area. Although research on electrode particle growth has primarily focused on solid
oxide fuel cells (SOFCs), these mechanisms also occur in SOECs, since both systems operate
at similar temperatures and involve comparable sintering and particle coalescence processes.
However, it is important to note that some phenomena related to polarization and element

displacement might vary depending on the operating mode.

Degraded Zone, um

-

0 1000 2000 3000
Time, hours

Figure 1.7. Evolution of the degradation zone thickness over time [61]

1.2.2. Porosity changes during redox cycling

To evaluate the impact of porosity evolution on the degradation process, a study was conducted
by De Angelis ef al [62]. Researchers used nanotomographic X-ray ptychography to examine
the microstructural evolution of Ni-YSZ electrodes subjected to a complete redox cycle. They
aimed to understand how the fragmentation of nickel particles and the formation of internal
voids influence the porous microstructure. They were particularly interested in pore volume
and connectivity, which are essential for cell performance at high temperatures. High-resolution
3D reconstruction enabled precise visualization of pore morphology, Ni particles and NiO

phases. These observations were made before, during and after redox cycling.

The results show a significant decrease in the average pore radius, which drops from around

350 nm to 100 nm. This indicates considerable fragmentation of the pore network. On the other
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hand, pore connectivity increases from 90% to 99% demonstrating the formation of new porous
pathways, caused by the fragmentation of nickel particles. These microstructural changes lead
to a deterioration in electrochemical performance, which can also increase mechanical
deterioration. Thus, particle fragmentation and pore migration illustrate how the redox cycle

degrades microstructures and affects cell lifespan.

1.3. Microstructural Characterization Techniques
1.3.1. Overview of microstructural characterization techniques

Techniques for microstructural characterization are important for analyzing catalytic materials

and electrodes, providing spatial detail regarding the internal structure [63] .

Two-dimensional (2D) techniques, such as scanning electron microscopy (SEM), transmission
electron microscopy (TEM), and electron backscatter diffraction (EBSD), often used as a
detector in SEM, allow detailed analysis of the local morphology, nano-to-microscale phase
distribution and crystallographic orientation [64][15]. However, their main limitation is their
inability to provide complete volumetric and topological information. To estimate three-
dimensional (3D) microstructural parameters, researchers traditionally used geometrical
models such as the general effective medium (GEM), the concept of contiguity (CC), the
random network model (RNM) and the random packing sphere model (RPSM). These models
rely on strong assumptions, for example, the random mixture of sphere particles, meaning the
material is approximated as randomly packed spheres. This assumption may bias the

interpretation of microstructure-related properties [65].

To achieve this, 3D techniques such as FIB-SEM, nano to micro-CT X-ray tomography, and
electron tomography provide detailed visualization of the porous network, interfaces, and

internal topology at nanometric and micrometric scales [66].

These volumetric approaches foster a thorough understanding of porous connectivity and
transport pathways, which are essential for optimizing the performance of catalysts and
electrode materials. Fig.1.8 illustrates the increasing interest in 3D characterization techniques,

comparing their capabilities in terms of spatial resolution and sample volume analyzed:

However, the FIB-SEM tomography technique has recently attracted growing interest within

the scientific community. This is primarily due to its unique ability to provide high-resolution,
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three-dimensional visualization of complex structures, as well as to accurately quantify porous
topologies, interfaces, and the connectivity of catalytic materials and electrodes. These features

make it an essential tool for in-depth analysis of structure-performance relationships [67].
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Figure 1.8. Tomographic imaging methods by resolution and volume range [64]

1.3.2. Focused Ion Beam - Scanning Electron Microscope (FIB-SEM)

The technique combines the use of FIB and SEM. The FIB targets the sample surface and
performs controlled ablation by slicing the material into a series of nano-sized layers, revealing
new cross-sections. Simultaneously, SEM captures high-resolution images of each newly
exposed surface, enabling precise three-dimensional reconstruction of the sample's

microstructure [67]. See the illustration in Fig.1.9.

Figure 1.9. Illustration of the steps and principles of the FIB-SEM tomography process
applied to a porous material: a) Porous structure, b) Embedded in resin to prevent artefacts

during the imaging process, ¢) FIB-SEM slice and image process on trimmed surface [64]
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After acquiring three-dimensional microstructural images, a pre-processing and segmentation
process is performed to accurately distinguish the different microstructural phases. More than

just a technical tool, it serves as a bridge between raw visual data and scientific interpretation.
1.4. Image processing and quantification approaches: from traditional methods to deep
learning-based quantification

Image processing involves a set of techniques used to analyze and extract useful information
from visual data. As shown in Fig.1.10, it includes tasks such as segmentation, image generation

and object detection [68].

These techniques generally fall into two categories: traditional methods based on conventional
algorithms [69] and modern approaches based on artificial intelligence (Al), particularly
Machine Learning (ML) and Deep Learning (DL). The latter provides enhanced accuracy and

new opportunities for complex image analysis tasks [70][71].
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Figure 1.10. Different types of image processing [68]

1.4.1. Traditional Approaches: Case Study

In the microstructural analysis of the catalyst layer, precise phase segmentation is critical for
reliably quantifying key parameters such as porosity and grain size. Historically, deterministic
rule-based methods relying on thresholding have been widely used. For example, Ananyev et
al [61] implemented the classical Otsu-based approach, combined with Gaussian curve
approximation, achieving improved phase separation compared to employing each technique

separately, as summarized in Fig.1.11 and Fig.1.12.
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Figure 1.12. Comparison of image processing steps for microstructure segmentation: a)

Original image, b) Smooth image, c¢) Otsu method, d) Gaussian approach, €) Analysis of the

segmented area, f) Combination of Otsu and Gaussian methods [61]

1.4.2. Deep Learning-Based Segmentation: Case Study

Advanced deep learning (DL) techniques, such as semantic segmentation networks, U-Net, and

DeepLabV3, are increasingly adopted for microstructure quantification. Hwang et al [72]

demonstrate the efficacy of the DeepLabV3, a CNN-based architecture, for segmenting

microstructural images of fuel cell electrodes. This model enables precise delineation of

different phases, such as Ni and YSZ. Validation results, Fig.1.13, confirmed reliable

segmentation accuracy, which is highly dependent on the quantity of annotated training data.

Thus, good quality labeled data is key for precise deep learning results.
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(a)

(d)

Figure 1.13. Comparison of ground truth and Deep Learning segmentation results: a) original
image, b) ground truth image, c) Deep learning prediction on improperly prepared ground
truth, d) DL prediction on properly prepared ground truth [72]

1.4.3. Quantitative Microstructure Analysis Approach

Quantitative microstructure analysis represents an important step for characterizing
electrochemical materials. Traditionally, manual or semi-automatic stereological methods, such
as linear intercept, have been used. For instance, Bae et al, [73] employed this approach to
measure the volume fractions of pores, LSM, and GDC in a composite cathode by overlaying
intersection lines on micrographs and counting phase intersections as illustrated in Fig.1.14. To
convert measured lengths into volume estimates, the assumption of isotropy of the
microstructure is often made; in other words, properties are assumed to be the same in all
directions. This assumption makes it possible to relate 2D measurements to 3D characteristics.
However, this assumption is not always valid, particularly in the case of anisotropic materials,
which can introduce interpretation bias. In addition, these methods often suffer from poor
reproducibility, time-consuming manual processing, and difficulty in estimating parameters

such as tortuosity, which refers to the complexity of the path inside the porous structure [73].

These limitations drove the development of more advanced methods based on digital image
processing and programming tools shuch as Python. These modern approaches offer automated,

reproducible analysis of key features.
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Figure 1.14. Schematic illustration for the linear intercept method for pore structure

quantification [73]

1.5. Theoretical foundation of Image processing

The following section presents the theoretical foundations of image processing, offering an
overview of essential techniques that encompass both traditional methods and modern

approaches introduced earlier.
1.5.1. Fundamentals of Traditional Image Segmentation Approaches

Traditional image segmentation typically follows a sequence of stages designed to enhance

image quality, identify relevant structures and accurately delineate regions of interest.

Table 1.1 below summarizes the main phases and components commonly found in these

processes. It provides a concise framework for the detailed overview.
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Table 1. 1. Concise summary of image processing stages

Phase Component Task Reference

Align the images by

I istrati i i
mage registration correcting shifts

[74]

) ) Reduce noise without
Pre-pr in N t . ;
e-processing oise reduction losing important details [75]

Improve visibility of

Contrast enhancement structures of interest [76]

Thresholding-based Separate regions based
. o . [77]

segmentation on pixel intensity levels

Segmentation
Group homogeneous
Region-based segmentation  and spatially connected [78]
zones
. . . Refine and correct

Post-processing Morphological operation [79]

segmented masks

A: Image pre-processing

Image pre-processing aims to prepare raw images for analysis by enhancing their quality. Steps
like noise reduction, artifact correction help ensure that all following measurements and
segmentations are based on clear and reliable data.

Al: Image registration

Image registration is a preliminary step aimed at spatially aligning multiple images of the same
scene. Particularly in FIB-SEM, during acquisition, small shifts in X and Y directions may
occur due to differences in alignment or perspective. To address these issues, image registration
methods detect characteristic points and apply geometric transformations. This enables an

accurate overlay of images for consistent analysis [80][74].
A2: Noise reduction

This stage aims to minimize the random noise and irregularities introduced during image

23



Literature review

acquisition without affecting key structures. It provides a more reliable foundation for later
analysis. Specific filters are used to reduce these imperfections [75]. Among them, the Gaussian

filter and the Median filter are commonly used for this purpose.

Gaussian filter: This method is designed to remove diffuse noise, resulting in a smoother

image. It works by applying a convolution with a Gaussian kernel, where the sigma parameter
controls the level of blurring, see Fig.1.15. A small sigma retains more detail, while a larger
value produces smoother results by reducing local intensity variations based on pixel proximity
[81].

The following equation defines the two-dimensional Gaussian kernel used for this operation
[82]:

1 x% + y?
G(x) = oy exp (— S > 1

Where sigma (o) determines the degree of smoothing.

The variables x and y represent the coordinates that show how far a point is from the center of

the Gaussian curve, used to calculate the smoothing effect.

Figure 1.15. Illustration of an image with Gaussian noise (a) and its denoised version (b)[83]

Median filter: The median filter is particularly effective against impulsive noise, also known
as "salt and pepper" noise, which appears as randomly distributed very dark or very bright
pixels. This filter reduces noise while preserving structural details, such as edges (see Fig.1.16),
unlike the Gaussian filter, which tends to smooth fine details. It involves replacing each pixel
with the median value of neighboring pixels within a local window, also known as a kernel

[84].
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Mathematically, for a given pixel at position (mm, n) in the image, the median filtered value
P,(m, n) using a window of size s X s defined as [85]:

P, (m,n) = mediang|p(i,j)] 2
Where i and j are the indices of the neighboring pixels in the kernel window around the pixel

(m,n).

This means that the new value of the pixel (m,n) is the median of all pixel intensities p(i, j)

within a square neighborhood of size s X s centered at (m,n)

Figure 1.16. Comparative illustration of the effects of noise on an image and its filtering: a )

Original image, b) Image polluted by salt and pepper noise, ¢ ) Image after median filtering
with a window size of 3X 3 [86]

A3: Contrast enhancement

Visual perception and subsequent segmentation are greatly enhanced by this step, making
structures that are difficult to see in the initial image more noticeable [76]. Some of the classic
methods used include: Contrast Limited Adaptive Histogram Equalization (CLAHE) and
Unsharp Mask.

CLAHE: The CLAHE method improves the image contrast while preventing oversaturation in

bright areas. The image is typically divided into small tiles, and histogram equalization is
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applied locally with a clip limit to control contrast amplification. Locally, the histograms are

clipped according to the following rule [87]:
H;(g) = min(H(g), ©) 4

Where H(g) is the original histogram for gray level g, Cis the clip limit, and H;(g) is the
clipped histogram

Unsharp Mask: Unsharp mask improves contrast and sharpens the image by subtracting a

blurred version from the original and then adding the difference back [88].
B: Image segmentation

Segmentation refers to dividing an image into distinct regions or objects, making it easier to
identify and study specific structures. By isolating relevant features, it provides a solid

foundation for accurate measurement and meaningful comparisons.
B1: Thresholding segmentation

Thresholding segmentation analyzes pixel intensity histograms to find one or more optimal
thresholds that separate different pixel classes. These methods include binary, multi-level and
adaptive thresholding. These are simple yet effective for segmenting objects from the

background, especially when intensity differences are prominent.

Global threshold (binary) assigns a pixel based on a single fixed or automatically determined
threshold. A widely used algorithm for automatic global thresholding is Otsu’s method, see
Fig.1.17, which automatically finds the optimal threshold by minimizing the intra-class
variance, or equivalently, by maximizing the inter-class variance, based on the intensity

histogram [89][90] the intra-class variance is defined as:
a5, (1) = wo (D)5 (D) + w1 (a1 (D) 5

The inter-class variance is defined as:

% (t) = wo(B)w1 () (1o (£) — 1 () 6

Where wo(t) and wi(t) are the probabilities of the two classes of pixels, co(t) and o1(t) are the
variances of pixel intensities of each class, and po(t) and i(t) are the mean intensities of

each class. The optimal threshold (t) is the value that maximizes ¢_b?*(t), ensuring the best

possible separation between the two classes.
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Figure 1.17. Segmentation using Otsu’s thresholding [91]

Multi-threshold extends this approach to segment multiple classes by finding several optimal

thresholds, as depicted in Fig.1.18. The multi-level version of Otsu’s method, known as Multi-

Otsu, can be used for such cases.
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Figure 1.18. Image segmentation using Multi-Otsu thresholding [92]

B2: Region-based segmentation

These steps group pixels into regions based on their local homogeneity and spatial connectivity

by identifying areas in the image that share similar characteristics. They are handy for

distinguishing between adjacent or overlapping objects, even when there is no sharp difference

in intensity [15]. Among the existing methods, Watershed and Region growing are well known.

Watershed algorithm: This algorithm interprets the image as a 3D landscape and floods it

from the lowest pixel intensity points to separate different objects. Before applying the

algorithm, edge detection methods like Sobel or Canny can be used to better define boundaries

and guide the separation [71] [93].
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Region Growing: It is a segmentation method that for regions by grouping neighboring pixels

with similar characteristics, starting from selected seed points. This approach is particularly

useful for segmenting objects with gradual intensity variations [78].
C: Morphological post-processing

After the segmentation, morphological operations are utilized to refine the outcomes by closing
small gaps, splitting or merging objects and eliminating any residual noise. Opening and closing

are the most commonly employed operators in this context.

Opening: An erosion operation followed by a dilation process that effectively removes small,

isolated noise objects while preserving the overall shape of the segmented regions [94].

Closing: Consists of dilation followed by erosion, it is used to fill small gaps or spaces in

segmented objects and bring close elements together to ensure continuity [15].

These traditional image processing methods are still important; they improve image quality and

provide a solid foundation for advanced approaches.
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1.5.2 Artificial Intelligence

Artificial intelligence is a branch of computer science that develops systems capable of
mimicking certain human cognitive functions, such as learning, reasoning, and decision-
making. It has a wide range of applications, including language processing, image analysis, and
robotics. Today, Al is increasingly recognized as a powerful tool for automating tasks that are
complex, repetitive, or prone to human bias. It improves the efficiency, consistency and
reproducibility of analyses, especially when manual methods are time-consuming or unreliable.
Machine learning (ML) is a key area within this field, focusing on algorithms that can learn
from data to make decisions, see Fig.1.19. This area also includes a subfield known as Deep
Learning, which is based on multi-layered neural networks capable of understanding complex

representations from data.

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

Figure 1.19. Relationship between Artificial Intelligence, Machine Learning, and Deep
Learning [95]

A: Machine Learning (ML)
ML involves techniques that enable computers to learn from data without being explicitly
programmed for each specific task. It helps systems recognize patterns, trends, or underlying

structures in data. These patterns are then used to make predictions, classify information, or

automate decision-making processes.

The main machine learning approaches are typically divided into two broad categories:

supervised learning and unsupervised learning as depicted in Fig.1.20 [96].
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Figure 1.20. Main categories of machine learning: supervised and unsupervised learning
[96]

Unsupervised learning: This approach uses algorithms designed to uncover hidden structures,

clusters, or patterns within data, without requiring prior labels or annotations. It is commonly

applied in clustering tasks or for dimensionality reduction [62][90][91].

Supervised learning: Unlike unsupervised learning, this method relies on labeled datasets,

where each example is associated with a known output or class. From these annotated examples,
the algorithm learns how to make predictions or classify new unlabeled data, enabling efficient

automation of decision-making processes [62][90][91].

Many ML algorithms used for regression and classification are based on statistical learning,
while others, like decision trees and SVMs, use heuristic or geometric principles. All of them

aim to find patterns in data to make reliable predictions [98].

In the context of image processing, specifically for segmentation, classification, and image
analysis, the typical workflow of supervised learning includes several key steps: a) image

annotation, b) feature extraction, ¢) model training, and prediction [99], as shown in Fig.1.21.
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Image annotation

[ J

v
[ Feature extraction ]
[ J

T

Model training

[ Prediction and validation J

Figure 1.21. Pipeline of supervised learning in image processing

a) Image annotation

Supervised learning assumes that a system can learn generalization from a set of labeled
examples. This method depends on a ground truth that is clearly defined and validated by
humans, which guides the model's adjustments. However, the accuracy of the ground truth is
crucial because it directly impacts the model’s ability to make accurate and unbiased predictions

[100].

b) Feature extraction

Feature extraction is an essential step in the workflow. It converts raw visual data into useful
numerical representations. It highlights key aspects such as contrasts, textures, or gradients.
These features are then used as input variables for machine learning models to help recognize

or segment the structures of interest [101][68].

¢) Model training

Conventional ML algorithms, such as decision trees, random forests, or support vector
machines (SVMs), are trained on this labeled data. The model training goal is to learn the

combinations of features that characterize each target structure [101].
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d) Prediction and validation

Applying the trained model to the labeled image marks the prediction stage. During this stage,
each pixel or region is classified based on the visual features that have been learned. In image
analysis, this step produces an automatic segmentation of the different phases. This ensures
both improved reproducibility of results and increased objectivity compared to manual
methods. For thorough validation, the model is then tested on images that were not used during

training to evaluate its ability to generalize [68].
B: Machine learning algorithms

In image segmentation tasks, several classical supervised classification algorithms are
commonly employed. This includes Random Forest, Support Vector Machine (SVM), and k-
Nearest Neighbors (k-NN). The choice of the algorithm often depends on factors such as dataset

size, feature complexity, noise level and computational resources [102].
B1: Random Forest

Random Forest is an ensemble learning method that combines the output of multiple decision
trees to improve the classification accuracy and reduce the risk of overfitting. In image
segmentation, this approach became popular due to its ability to capture complex patterns,

handle high-dimensional data and remain relatively robust to noise [103].

Each tree is trained on a bootstrap sample of the training data, meaning that each tree is trained
on a randomly sampled subset of the data drawn with replacement; some examples may appear
multiple times, while others may be omitted. At each split in the tree (node), a random subset
of features is tested, and the best split from this subset is chosen. This approach reduces
correlation among trees. At prediction time, each tree gives its own classification and the final
result is given by the majority vote [104], as depicted in Fig.1.22.

Mathematically, the classification can be expressed as:
y(x) = mOde{hl (X), hZ (X), Ly hB (x)} 7

where h;, (x) stands as the prediction of b tree and y(x) the final prediction of the

preponderant predicted class among B trees [105].
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Figure 1.22. Illustration of the Random Forest ensemble learning process [106]

B2: Support Vector Machines (SVMs)

SVM aims to find the optimal hyperplane in feature space that maximizes the margin between

classes [107]. The margin is defined as the distance between the hyperplane and the closest

training point, called a support vector. A larger margin generally indicates better generalization

to new data[108]. This principle is illustrated in Fig.1.23.

SVMs can effectively handle datasets containing many features and complex class boundaries

by mapping the data into a higher-dimensional space using kernel functions. However, training

an SVM can be computationally expensive on large datasets as both memory requirements and

processing time may increase significantly [109][96].
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Figure 1.23. SVM illustration: the red line indicates the optimal separation between two
classes; the dotted lines indicate the maximum margin and the closest points to the separation

line are the support vectors [108]

B3: K-Nearest-Neighbor (k-NN)

k-NN is a simple, non-parametric classifier that assigns a class to a new data point by looking
at its k nearest neighbors in the training set [110][96]. The neighbors are identified using a

chosen distance metric, such as Euclidean or Manhattan distance [111].

The algorithm requires almost no training time, but classification can be shown on large datasets
because the distance must be computed for all stored samples. Its accuracy is also sensitive to
noise and irrelevant features [112]. Despite these limitations, k-NN can work well in multi-

class problems and is often used as a baseline method [110], see Fig.1.24.

Figure 1.24. k-NN classification principle[113]
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C: Deep learning: (CNN5)

Deep Learning is a subset of machine learning that utilizes deep artificial neural networks
capable of automatically learning complex representations from large amounts of data. In image
processing, CNNs have received significant attention. They are designed to effectively capture
spatial hierarchies in images through convolutional layers. These layers learn increasingly
abstract features from raw input images and pass them through the network to generate the final

output.

For segmentation tasks, specialized CNN architectures such as encoder and decoder models
have been developed. The encoder extracts meaningful features and the decoder upsamples

these features to generate detailed pixel-wise segmentation [114].

A widely used model following this scheme is U-Net, which combines multi-scale feature
extraction with precise localization to produce an accurate segmentation result [115][116]. U-
Net works by combining an encoder path for feature extraction and a decoder path for resolution
reconstruction, connected by skip connections that help preserve fine spatial details. Simple,
fast to train, and effective even with limited data, the U-Net has become a benchmark model

for segmentation tasks [117][116]. The Fig 1.25 illustrates the architecture of the U-Net model.
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Figure 1.25. U-Net architecture [117]
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PARTIAL CONCLUSION

This literature review explored key hydrogen production technologies, focusing on SOEC and
PEMWE. Their structural design, operating principles and material requirements were
presented together with their respective strengths and the challenges encountered during long-

term operation.

Microstructural degradation phenomena, such as particle coarsening and changes in porosity,
were discussed as they represent factors that can significantly reduce electrochemical
performance. In this context, advanced characterization tools like FIB-SEM tomography were
identified as essential for 3D visualisation and analysis of electrode architectures. In the field
of image processing, traditional methods remain widely used due to their simplicity and
accessibility. However, recent advances in machine learning and deep learning have brought
new levels of accuracy to microstructure segmentation, although they require greater

computational resources.
The insights from this review form the basis for the methodology developed in this thesis.

The next chapter will delve into the materials investigated, the imaging protocols applied and

the computational tools used to implement this methodology.
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CHAPTER 2: MATERIAL AND METHODS

In this chapter, the tools and methods used to process the FIB-SEM data are presented. The
developed methodology facilitates the transformation of raw microscopy images into
meaningful numerical and visual results for detailed microstructural analysis.

2.1. Experimental part
2.1.1. Data acquisition

In this study, high-resolution FIB-SEM images (200 images) were obtained using a TESCAN
AMBER X microscope (Model S8254X) at the Institute of Energy Technologies-Fundamental
Electrochemistry (IET-1) of the Jiilich Research Center (FZJ). Imaging occurred at around
5450x% magnification, with an accelerating voltage of 20 kV and a working distance of 6 mm.
The images were captured using an Everhart-Thornley (E-T) detector in high-resolution scan

mode.

Each image has a spatial resolution of 50 nm per pixel in X and Y, and 100 nm in Z, a size of
95 um in width and 65 pm in height, enabling detailed microstructural analysis. The microscope
depicts a cathode region of SOEC, consisting of a porous SFM10 electrode (Layer 1), a dense
St/Fe/O-rich deposition layer (Layer 2), a porous GDC barrier layer (Layer 3), and a dense YSZ
electrolyte (Layer 4).

2.1.2. Overview of the developed image processing workflow

The automated image processing workflow for analyzing the FIB-SEM tomography datasets is
organized into a series of systematic steps, as shown in Fig.2.1. This workflow combines

advanced ML with traditional image processing methods.
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Figure 2.1. Two-Stage Image Processing workflow for FIB-SEM Images Analysis

2.1.3. Tools and overview of the data processing and analysis

The automated processing pipeline was implemented in Python 3.13.1, utilizing key libraries
including OpenCV 4.11.0, Scikit-image 0.25.2, and Scikit-learn 1.7.0 for supervised machine
learning with a Random Forest classifier. The approach for layer segmentation was inspired by
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an example provided in Scikit-image documentation [118] (see Fig.2.2), which was adapted to
the characteristics of our FIB-SEM image and the specific multi-layer structure of the SOEC

electrode region.

To evaluate and calibrate the workflow, a test dataset was first prepared. A total of 200 FIB-
SEM images were used. Pre-processing was first performed to correct curtaining artifacts using
frequency domain filtering, then 10 representative images were manually annotated to generate
training data for layer segmentation. The trained model was then used to predict the

segmentation on the remaining images.

To complete the pipeline, an additional noise reduction step was applied using a median filter.
Previous studies on FIB-SEM images have estimated noise by selecting homogeneous patches
from each layer to minimize the influence of texture. However, due to the complexity and strong
texture in our dataset, homogeneous patches were rare and potentially unrepresentative.

Therefore, we opted for direct median filtering.

A traditional segmentation approach was then integrated to enable the feature extraction via
multi-thresholding, allowing the quantification of morphometric parameters such as porosity

and layer thickness.

Once validated, the pipeline was applied to three experimental SOECs datasets: 434 images of
a pristine cell, 653 and 484 images of cells operated for 100 hours and 200 hours, respectively.

Data handling and numerical operations were supported by Numpy 2.2.6 and Pandas 2.2.3,
while Matplotlib 3.10.1 and Seaborn 0.13.2 supported the visualization and statistical analysis.

Segmentation

Image, mask and segmentation boundaries
0

100 A

200 4

300 H7E

500 4 ARSES
600 -
700 {5 <

800 Y22k =t

0 200 400 600 800

Figure 2.2. Training image: Annotated mask and predicted segmentation [118]
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2.1.4. Quantitative evaluation metric

To quantitatively assess the Random Forest performance for the layer segmentation, some
metrics were computed. These include global accuracy and the Jaccard index (IoU). These

indicators provide complementary insights supporting the visual assessment.

e Accuracy

The accuracy measures the proportion of correctly classified pixels (TP + TN) relative to the

total number of pixels (TP + TN + FP + FN) across the entire image.

TP+ TN

A = 8
cCeuracy = TP X TN+ FP+ FN

Where : TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives

e Jaccard index

The Jaccard index, also known as intersection over union (IoU), measures the overlap between
predicted pixels and ground-truth pixels for each layer. It provides a spatially intuitive measure

of segmentation quality.

d ind |Prediction N GroundTruth| 9
accard index =
J |Prediction U GroundTruth|

The values of these metrics range from 0 to 1, where 1 indicates perfect agreement and values

closer to 0 reflect poorer performance.

PARTIAL CONCLUSION

This chapter presented the experimental approach, where representative FIB-SEM images were
carefully annotated to capture structural heterogeneity, providing a reliable basis for training
the Random Forest classifier. Once trained, the model enables automated layer segmentation
across both the test and the experimental datasets. Traditional image processing techniques

were subsequently applied for noise reduction and feature segmentation.
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CHAPTER 3: RESULTS AND DISCUSSION

This chapter provides a detailed presentation of the developed pipeline and offers a
comprehensive examination of the results achieved at each stage of the methodological

approach.

3.1. Pipeline implementation on a single test image

To illustrate the pipeline's functioning, we first applied it to a single FIB-SEM test image. The
workflow begins with ML-based segmentation, which comprises a series of steps, including

preprocessing.
3.1.1 Machine Learning-based layer segmentation

This section explains in (A) the pipeline used for the segmentation (see Fig.3.1) and in (B) the

quantitative evaluation metric employed to assess its performance.

A: Layer segmentation pipeline

Input image
(test image)

v
Curtaining artifact
correction

v

Image annotation —

A 4
Feature extraction

'

Model training
(Random forest)

A 4

Prediction

Figure 3.1. ML-based segmentation pipeline
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a) Preprocessing: Curtaining artifact correction

Curtaining artifacts in FIB-SEM imaging appear as vertical or horizontal streaks caused by
uneven ion milling rates during sample preparation. These periodic intensity variations can
obscure fine structural details and complicate the image segmentation. To mitigate this effect,
a frequency domain correction was applied. A horizontal notch filter centered at the zero
vertical frequency, followed by a Hann window, was applied in the Fast Fourier Transform
(FFT) domain to reduce ringing effects. Fig. 3.2 shows an example of the artifact in layer 1 and
the correction after filtering. This correction notably improves image quality, contributing to

more reliable segmentation outcomes.

Figure 3.2. a) Unprocessed image with curtaining artifact and b) Corrected image

b) Data annotation and layer segmentation

Precise annotation forms the foundation for robust supervised machine learning. In this study,
10 representative images were manually annotated to capture the heterogeneity and challenges
in layer discrimination, as depicted in Fig.3.3. The annotation was performed with attention to
variations in texture, morphology, and intensity. This annotation assigns a corresponding
structural class to each pixel. However, capturing the true boundary between layers 1 and 2 was

challenging due to its poorly defined nature.

Figure 3.3. a) original image and b) manual annotation
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¢) Feature extraction and Random Forest training

From the annotated image, a comprehensive set of pixel-wise features was extracted using the
multiscale-basic-features function from the scikit-image library. This includes: local intensity

and texture at multiple spatial classes.

A Random Forest classifier, using scikit-learn, was then trained on the combined feature set.
The model learns to assign each pixel to its respective layer class across the diverse annotated

dataset and then makes the prediction.

The model captures approximately the overall macrostructural organisation. Especially for
layer 2, the model struggles to find the right boundary. In addition, small patches of some layers
appear embedded within others, likely due to overlapping intensity ranges and textural

similarities. This challenge is mainly linked to the complexity of the images, see Fig.3.4.

Annotation mask Prediction

Layer 1 Layer 2

Figure 3.4. Predicted image and isolation of each layer
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B: Quantitative evaluation metrics

The global accuracy and the Jaccard index (IoU) were computed. The quantitative assessment
indicates an overall accuracy of 0.685, reflecting moderate effectiveness and some uncertainty
in the prediction. At the layer level, layer 1 was well captured, while layer 2 continued to be the
most challenging, showing a significantly lower value. Layers 3 and 4 yield intermediate results

as summarized in Table 3.1.

Table 3. 1. Accuracy and Jaccard Index per layer

. Global
Metric value Layer 1 | Layer 2 | Layer 3 | Layer 4
Accuracy 0.685
Jaccard index 0.712 | 0.405 0.551 0.570

For further evaluation, the thickness of key layers was calculated column-wise by summing the
pixels along the vertical axis and then averaging this value across the entire layer. Both annual
measurements using GIMP, an image visualization software and automatic calculation in

Python were performed. Table 3.2 summarizes the results obtained for layers 2 and 3.

Table 3. 2. Quantitative comparison of manual and automatic layer thickness

Thickness (pixels) Tool Layer2 | Layer3
Manual calculation | GIMP (Measure tool) 38.2 77.58
Autornapc Pyt‘hon (OpenCV 578 7336
calcualtion script)

The automatic measurements are generally consistent with layer 3, but layer 2 shows higher
values with automation. These gaps likely come from the limits of manual placement and

segmentation boundaries.

Despite these setbacks, enough structural specifics or technicalities are retained by the
segmentation. With the automatic approach modelled for utilization on a large volume of

images, statistically investigating the datasets alleviates defects and diminishes bias.
3.1.2. Traditional-based feature segmentation

This section describes: (A) the preprocessing for noise reduction and (B) the feature

segmentation using a multi-thresholding method, see Fig.3.5.
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Figure 3.5. Traditional-based feature segmentation pipeline

A: Pre-processing: Noise reduction through filtering

The application of median filtering proved effective in reducing noise. This effect can be
observed by comparing the original and filtered images shown in Fig.3.6. The choice of kernel
size 3x3 enables control over the trade-off between noise suppression and detail preservation.

=2 F

a b c

Figure 3.6. Noise reduction on 50x50 pixel patch using median filtering: a) 50x50 pixel
image patch, b) Median-filtered patch using a 3x3 kernel, ¢) Median-filtered patch using a
5%5 kernel.

B: Multi-thresholding

A multi-thresholding approach with four thresholds dividing the image into five classes was
selected. The application of Multi-Otsu thresholding effectively enhanced the separation of

pores and materials, allowing clearer differentiation, as illustrated in Fig.3.8. Despite the
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absence of distinct multiple bimodal peaks, this method addressed the gradual intensity
heterogeneity present in the images. Fig.3.7 illustrates the basic histogram of pixel intensities

and the same histogram with the threshold markers.
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Figure 3.7. a) pixel intensity distribution and in the first layer, b) same histogram with

threshold markers

Figure 3.8. Representation of a small region from the original image and its corresponding

segmentation: a) representative area, b) segmented image

3.2. Validation of the proposed workflow on the full test dataset and real datasets
3.2.1. Validation on the full test dataset

The developed pipeline was applied to over 200 images, enabling automatic quantification of

porosity and thickness. The complete workflow, combining ML-based layer segmentation,
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traditional approach for porosity and thickness quantification, is summarized in Fig.3.9.
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Figure 3.9. Detail workflow for FIB-SEM image analysis
For each segmented layer, the pore area was calculated as the percentage of pixels classified as

pores relative to the total area of the layer.

Fig.3.10 illustrates respectively the porosity distribution for layers and the thickness

measurement for layers 2 and 3.

Layer 1 shows the highest porosity (20%), which can be justified by the presence of more open
areas compared with the other layers. Layer 2, initially a dense layer, reveals almost no

detectable porosity, whereas layer 3 is moderately porous (14%).

In terms of thickness, layer 2 averages around (45px) compared to layer 3, (70px). This is

consistent with what can be visually observed in the original images.
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Figure 3.10. Porosity and thickness distribution across the test dataset
3.2.2. Validation on real datasets
The same segmentation pipeline, from layer segmentation to feature segmentation, was reused
for the three additional SOEC datasets: pristine cell, a 100-hour run cell, and a 200-hour run

cell. For each dataset, representative images were manually annotated and the model was

trained and used for prediction following the same protocol, see Fig.3.11.

a) Original b) Label mask c) Predicted

Figure 3.11. Pristine sample: a) original micrograph, b) ground truth mask and

¢) segmented image
a) Porosity

The comparative analysis reveals that layer 4 exhibits a clear upward trend in porosity across
the datasets. In contrast, the other layers display a similar trend but with more irregularities, as
shown in Fig. 3.12. This inconsistency may be attributed to segmentation errors between certain

layers. It may also be attributed to the fact that pores in these regions are relatively small
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compared to the overall image resolution, leading to potential measurement errors.
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Figure 3.12. Porosity distribution across layers under different cycle conditions

b) Thickness

Among the layers analyzed, layer 2 demonstrates more consistent and accurate segmentation

across all datasets, providing a reliable basis for thickness comparison. For layer 2, the median
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thickness is approximately 100 px in the pristine state, increases slightly to about 110 px after

100 hours, then increases substantially to roughly 150 px after 200 hours, see Fig.3.13
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Figure 3.13. Thickness distribution across layer 2 and layer 3 under different cycle conditions

The overall trend reveals a significant evolution in thickness over operational time, indicating

the presence of material degradation or transformation processes in this layer. The layers that

show a consistent trend can be considered as a reliable indicator of material changes due to

aging. Conversely, layers with irregular trends highlight areas where segmentation accuracy

may need improvement.
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PARTIAL CONCLUSION

The combined pipeline, using Random Forest for layer segmentation and thresholding for
feature segmentation, was applied to multilayer FIB-SEM images. For layer partitioning, the
model achieved a moderate accuracy of 0.68 with varying Jaccard indices across layers. Its
application to pristine, 100-hour, and 200-hour SOEC-operated samples revealed consistent
trends. Layer 4 showed a clear increase in porosity, whereas layers 1 and 3 exhibited similar
but less regular porosity trends, likely due to segmentation challenges and small pore sizes
relative to image resolution. Thickness analysis was focused on layer 2, which was well

segmented across datasets.
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GENERAL CONCLUSION AND PERSPECTIVES

Image processing plays a central role in the quantitative analysis of microstructures. In the case
of FIB-SEM images, the challenge lies in the high complexity of the data, requiring carefully
designed methods to extract meaningful information. While deep learning methods have proved
excellent in many cases, their computational cost and implementation complexity often limit

their accessibility.

This study shows the practical feasibility of automating the analysis of multilayer FIB-SEM
images of the SOEC electrode catalyst part by utilizing traditional approaches and supervised
machine learning. Based on computational efficiency, our workflow improves the accessibility

of microstructural quantification in this research domain.

The methodology involved labeling a representative dataset, training a Random Forest classifier
to automatically identify the electrode layers and implementing a traditional segmentation
approach to isolate porous regions. On the test set, the layer segmentation achieved an accuracy
of 68%. Despite this moderate outcome, the application of the entire developed pipeline on the
large datasets allows us to identify meaningful trends in the microstructure. Its extension on
real experimental datasets enabled monitoring the evolution of porosity and thickness with
aging in some layers. Specifically, layer 4 exhibited a clear increase in porosity during aging,
while layer 2 was consistently well segmented across the datasets, from the pristine state to
100h and 200h of operation. These observations are consistent with some expected physical
degradation mechanisms. However, a deeper investigation by a material scientist would be
required to fully interpret the underlying causes and the implications of these trends. In addition,
the average processing time for examining 483 images was approximately 9 minutes. This

emphasizes the pipeline’s practicality for regular utilization in research environments.

Due to potential challenges in image resolution and segmentation errors, inconsistencies were
identified in some layers across different datasets. Thus, improvements are needed. Future work
should focus on refining the annotation protocol to enhance the reliability of labels. It should
also explore advanced features to help the model better distinguish labels. Finally, methods
combining machine learning and deep learning could be tested as long as computational

efficiency and ease use are taken into account.
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APPENDIX

# Libraries

import cv2

import numpy as np

import os

from tgdm import tgdm

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from skimage.io import imread, imsave

from skimage import feature, segmentation

from skimage.future import predict segmenter, fit segmenter
from sklearn.ensemble import RandomForestClassifier
from functools import partial

from skimage.filters import threshold multiotsu
from skimage.util import img as ubyte

from skimage.color import gray2rgb, rgb2gray
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# —--- Mask creation —---

def create mask(image, layers):
"""Create a mask for one image slice based on layer coordinates"""

mask

= np.zeros_like(image, dtype=np.uint8)
for idx, (y_range, x range) in enumerate (layers, start=1):

y min, y max = y range

X _min, X _max = X_range
mask[y min:y max, x min:x max] = idx

return mask

# --- Preprocessing ---
def fft filter(img, mask h=2, mask gap=5):

"""Removes curtaining artifacts on FIB/SEM images using FFT filtering"""

img _h, img w = img.shape
fft img = np.fft.fftshift(np.fft.£f£ft2(img))

# Mask horizontal frequencies in the Fourier domain
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fft img[int (img h/2)-mask h:int (img h/2)+mask _h, O0:int(img w/2-img w*mask gap/2/100)] = 0

fft img[int (img _h/2)-mask h:int (img h/2)+mask h, int(img w/2+img w*mask gap/2/100) :img w]

real img = np.fft.ifftn(np.fft.ifftshift(fft img)).real
real img = real img + np.abs(np.min(real img))

real img = real img / np.max(real img)

real img = img as_ubyte(real img)

return real img

# —--- Feature extraction ---
def extract features(image, sigma min=1, sigma max=16):

"""Extract multiscale features for machine learning-based segmentation"""

features func = partial(
feature.multiscale basic features,
intensity=True,
edges=False,
texture=True,
sigma min=sigma min,
sigma max=sigma max,
channel axis=None)

return features_func (image)

# --- Model training ---

def training model (image, mask, sigma min=1, sigma max=16):

"""Train Random Forest model on a single image and its mask"""

image filt = fft filter (image)

feats = extract features(image filt, sigma min, sigma max)

model = RandomForestClassifier(n_estimators=100, max depth=100, max samples=0.05, n_jobs=-
1)

model = fit segmenter (mask, feats, model)

print ("Model training complete.")
# --- Visualization ---

fig, axes = plt.subplots(l, 3, figsize=(15, 5), sharex=True, sharey=True)

axes[0].imshow(image filt, cmap='gray')

axes[0] .axis ('off")

II
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axes[0].set title('Original image')
axes[1l].imshow(segmentation.mark boundaries (image filt, mask, mode='thick'))
axes[1l].contour (mask)

axes[l].axis('off")

axes[1l].set title('Label mask')

axes[2] .imshow (predict segmenter (feats, model))

axes[2] .axis('off")

axes[2].set_title('Predicted result')

plt.tight layout ()

plt.show()

return model

# --- prediction ---
def predict segmentation(image, model) :
image = fft filter (image)
features = extract features (image)
predicted mask = predict segmenter (features, model)

return predicted mask

# --- Visualization ---
def visualize prediction(image, predicted mask) :
"""Display original image with predicted segmentation”""
fig, axes = plt.subplots(l, 2, figsize=(12, 5), sharex=True, sharey=True)
axes[0].imshow (segmentation.mark boundaries (image, predicted mask, mode='thick'))
axes[0].set title('Segmentation Boundaries')
axes[0] .axis('off")
axes[1l].imshow(predicted mask, cmap='viridis')
axes[l].set _title('Predicted Segmentation')

axes[1l].axis('off")

plt.tight layout ()

plt.show()

### Porosity and thickness calculation functions

II
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# --- Common function for Porosity calculation ---

def process layer (model, max layer, fixed thresholds, idx range,
save_csv_path="results.csv"):
porosity list = []
thickness list = []

y indices = []

for y in tgdm(idx_ range):
#test img = stack[:, y, :]
test _img = load image (y)

result = predict segmentation(test img, model)

cur porosity=[]

cur thickness=[]

for label layer in range(max layer):

label layer = label layer+l #label layer = [1,2,3,...

mask layer = (result==label layer)

# Isolate layer of interest (label layer)

layer img = test img.copy ()

layer img[result != label layer] = 255

# Median filter

median filtered = cv2.medianBlur (layer img, 5)

# Multi-otsu thresholding for segmentation

layer binary = np.digitize(median filtered, bins=fixed thresholds)

# Binary mask (0 for "pore")
mask binary = np.ones like(layer binary) * 255

mask binary[layer binary == 0] = 0

area layer = np.sum(mask layer)
area pores = np.sum(mask binary == 0)
porosity = round((area pores / area layer) * 100, 2)

cur porosity.append(porosity)

if area_layer > 0 else 0O

IV
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# Thickness per column (sum along vertical axis=0)

thickness per column = np.sum(mask layer, axis=0)

# Mean thickness for the slice, rounded to 2 decimals

average_ thickness = np.round(np.mean(thickness per column), 2)

cur_thickness.append(average thickness)

porosity list.append(cur porosity)
thickness list.append(cur thickness)

y_indices.append(y)

# Save porosity
layer numl = []
for 1 in range(max_layer): layer numl.append('layer'+str (i+1)+' [%]")

dfl = pd.DataFrame (porosity list, index=y indices, columns=layer numl)

dfl.to_csv(save_csv_path[:-4]+' porosity.csv', index=False)
print (f"Porosity saved")

print (dfl.describe())

#### save thickness
layer num2 = []
for j in range(max layer): layer num2.append('layer'+str (j+1)+' [px]"')

df2 = pd.DataFrame (thickness list, index=y indices, columns=layer num2)

df2.to_csv(save csv_path[:-4]+' thickness.csv', index=False)

print (f"thickness saved")

print (df2.describe())

return dfl, df2

Plotting functions

#### Porosity

def plot porosity comparison(csv_paths, *layer names, ylim=None):
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Plot porosity distribution comparison for multiple layers from a single CSV file.

all data = []
for path in csv_paths:
df = pd.read_csv (path)
for layer name in layer names:
if layer name not in df.columns:

raise ValueError (f"'{layer name}' not found in {path}")

# Melt data to long format for seaborn

df melted = pd.melt(df[list (layer names)])

# Rename columns for seaborn

df melted.columns = ['Layer', 'Porosity (%)"']

all data.append (df melted)

df long = pd.concat(all data, ignore_ index=True)

# Remove '[%]' suffix for cleaner x-axis labels
df long['Layer'] = df long['Layer'].str.replace(r'\s*\[%\]', '', regex=True)

sns.set (style="whitegrid")

plt.figure (figsize=(6, 6))

palette = ["#03fcc2', '"#£f£f7f0e', '#033dfc']

ax = sns.boxplot (
x="'Layer"',
y='Porosity (%)"',
data=df_ long,
palette=palette,
width=0.5,

linewidth=1.5

ax.set xlabel ("Layer", fontsize=12, fontweight='bold"')
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ax.set ylabel ("Porosity [%]", fontsize=12, fontweight='bold")

ax.tick params(axis='x"', colors='black', width=0.8)
for label in ax.get xticklabels():

label.set fontweight ('normal')

label.set color('black")

label.set fontsize (10)

ax.tick params(axis='y', colors='black', width=0.8)
for label in ax.get yticklabels():

label.set color('black")

label.set fontweight ('normal')

label.set fontsize (10)

if ylim:

ax.set ylim(ylim)

ax.yaxis.grid(True, color='gray', linestyle='--', linewidth=0.7, alpha=0.6)

sns.despine (left=False, bottom=False)

ax.set title("Porosity Distribution", fontsize=14, fontweight='bold")

# Remove legend if present

if ax.get legend() is not None:

ax.get legend() .remove ()

plt.tight layout ()

plt.show()

Code part
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#--- Loading ---

stack path = r"C:\Users\LENOVO\Desktop\MON DOSSIER MEMOIR H2\image stack 1.tiff"

stack = imread(stack path)

def load image (cur num) :
img = stack[:, cur_num, :]

return img

cur_num = 900

cur_img = load image (cur_num)
print (cur img.shape)
plt.imshow (cur img, cmap='gray')

plt.axis('off")

plt.show ()

#--- image annotation ---

layer definitions = {

900: [((20, 260), (20, 1850)),

((290, 330), (20, 1850)),
((350, 420), (20, 1850)),
((440, 465), (20, 1850))1]

}

#--- Model training---

# Extract the single slice image from your stack
y_index = 900

image = stack[:, y index, :] #load image (y index)

# Create the mask for this slice

mask = create mask(image, layer definitions[y index])

# Train the model with the single image and mask

trained model = training model (image, mask)

#--- Porosity and thickness calculation---
result_path= r"C:\Users\LENOVO\SOFC Data set\SAVE_ IMAGE"

prefix = 'ttest image '
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filename = prefix + " results.csv"
fixed thresholds = threshold multiotsu(load image (900), classes=5)

y _range = range (800,1001)

prefix="'test image '

porosity, thickness = process layer(
trained model, max layer=3,
fixed thresholds=fixed thresholds,
idx range=y_range,

save_csv_path = os.path.join(result path, filename)

#--- Plotting---

plot porosity comparison (
[r"C:\Users\LENOVO\SOFC Data set\SAVE IMAGE\test image results porosity.csv"],
"layerl [%]", "layer2 [%]", "layer3 [%]",

ylim=(0, 40)

plot thickness comparison (
[r"C:\Users\LENOVO\SOFC Data set\SAVE IMAGE\test image results thickness.csv"],
"layer2 [px]", "layer3 [px]",

ylim=(0, 100)
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