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ABSTRACT 

The expanding hydrogen economy relies on efficient and durable electrochemical devices, such 

as Solid Oxide Electrolysis Cells (SOECs) and Proton Exchange Membrane Water 

Electrolyzers (PEMWEs). The performance and lifetime of these devices are closely linked to 

their microstructural properties. Despite the development of advanced microstructural 

characterization techniques, like Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) 

for quantitative analysis, data processing remains challenging due to the complexity of the data, 

the large volume generated and the limited access to advanced computational tools.  

This study proposes an automated, modular pipeline that combines traditional image processing 

and Random Forest-based supervised learning to segment the electrode-catalyst part composed 

of four layers in SOECs (Layer 1 to Layer 4 ) and to quantitatively evaluate key microstructural 

parameters such as porosity and thickness. The pipeline is intentionally designed to require 

minimal computational resources and remain accessible even to non-expert users. 

The training on a representative annotated dataset of FIB-SEM images (10 training images out 

of a total of 200) achieved a layer segmentation accuracy of  68% on the test dataset. Even 

though this indicates the need for additional improvement, it was enough to identify meaningful 

structural variations. The utilization of the pipeline across multiple experimental FIB-SEM 

datasets enables the extraction of statistically consistent trends in porosity and thickness under 

different operational conditions: pristine, 100-hour and 200-hour run cells. layer 4 exhibits a 

distinct rise in porosity, whereas layer 2 displayed a noticeable change in thickness.  

These findings show that a lightweight machine learning approach combined with traditional 

image processing can provide meaningful insights into microstructural parameters. it also 

emphasizes the potential for developing a user-friendly and automated pipeline to assess the 

complex FIB-SEM datasets of these electrochemical devices quantitatively in a record time. 

Potential enhancement could look closer to the annotation protocol, feature engineering and 

combined machine learning approaches. 

 Keywords: FIB-SEM, microstructural analysis, Random Forest, image processing, electrolysis. 

 

 



 

 

 

RESUME 

La croissance de l'économie hydrogène repose sur le bon fonctionnement et la durabilité de 

dispositifs électrochimiques, tels que les cellules d'électrolyse à oxyde solide (SOEC) et les 

électrolyseurs à membrane échangeuse de protons (PEMWE). Leur performance et leur durée 

de vie sont en grande partie fonction de leurs propriétés microstructurelles. Malgré l'évolution 

des techniques avancées de caractérisation microstructurale telle que la microscopie 

électronique à balayage à faisceau d'ions focalisés (FIB-SEM) pour l’analyse quantitative, le 

traitement des données reste difficile en raison de leur complexité, du volume important 

d’images généré et de l'accès restreint aux outils informatiques avancés.  

Cette étude présente un pipeline automatisé et modulaire qui combine les méthodes classiques 

de traitement d'image et l'apprentissage supervisé basé sur les forêts aléatoires pour segmenter 

la structure multicouche à 4 niveaux de la partie électrode-catalyseur des SOEC, et permettant 

d’évaluer quantitativement des paramètres microstructuraux importants comme la porosité et 

l'épaisseur. Le pipeline est conçu pour nécessiter un minimum de ressources informatiques et 

reste accessible même aux utilisateurs non spécialistes. 

L’entraînement sur un jeu de données annotées représentatives des images FIB-SEM (10 images 

d'entraînement sur un total de 200) a permis d’atteindre une précision de segmentation de 68% 

sur l’ensemble données de test. Bien que cela indique la nécessité d'une amélioration 

supplémentaire, cela a été suffisant pour identifier des variations structurelles significatives. 

L’utilisation du pipeline sur plusieurs ensembles de données expérimentales FIB-SEM permet 

d'extraire des tendances statistiquement cohérentes en matière de porosité et d'épaisseur dans 

différentes conditions opérationnelles: cellules vierges (434 images), 100 heures (653 images) 

et 200 heures (484 images). La couche 4 a présenté une augmentation distincte de la porosité, 

tandis que la couche 2 affiche un changement remarquable en termes d'épaisseur.  

Ces résultats montrent qu' une approche simplifiée d'apprentissage automatique combinée à un 

une approache traditionnelle de traitement d'image  peut fournir des informations significatives 

sur les paramètres microstructuraux. Ils soulignent également le potentiel de développement 

d'un pipeline accessible et automatisé permettant d’évaluer quantitativement de larges jeux de 

données FIB-SEM de ces dispositifs électrochimiques en un temps record. Cependant, des 

améliorations potentielles pourraient également se porter sur le protocole d'annotation, 

l'ingénierie des caractéristiques et les approches combinées d'apprentissage automatique. 

Mots-clés: FIB-SEM, analyse microstructurale, Random Forest, traitement d'images, électrolyse. 
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GENERAL INTRODUCTION 

Climate change is recognized as one of the greatest challenges for the 21st century, contributing 

to global warming and an increase in extreme weather events [1]. According to the 

Intergovernmental Panel on Climate Change (IPCC), global temperature could rise by 2 to 4°C 

by the end of the century if current trends persist [2]. 

One of the main drivers of this warming is the emission of greenhouse gases (GHGs), primarily 

from the combustion of fossil fuels. The anthropogenic emissions account for approximately 

75% of the global GHGs, according to the International Energy Agency (IEA), raising major 

concerns about the sustainability of our energy systems [3]. In response, the international 

community has adopted landmark policies such as the Paris Agreement (2015), which aims to 

limit global warming to well below 2°C, ideally to 1.5°C [2] . In Europe, the European Green 

Deal sets an ambitious objective of carbon neutrality by 2050 through large-scale 

transformation of the energy, transport and industry sectors [4]. 

In this transition, hydrogen has emerged as a strategic energy vector. Its versatility allows for 

the decarbonization of hard-to-electrify sectors such as heavy industry, heavy transport and 

long-haul transport. The Global demand for hydrogen has reached a record of 95Mt in 2022 

[4], and it is expected to exceed 100 Mt in 2025 according to the latest data from the 

International Energy Agency [5]. Yet, more than 95% of hydrogen is still produced from fossil 

fuels, mainly via steam reforming, generating substantial CO2 emissions [6]. Green hydrogen 

produced through electrolysis of water using renewable electricity offers a low-carbon 

alternative. This method not only enables energy storage and grid flexibility but also paves the 

way for deep decarbonisation [7]. However, its large-scale deployment remains limited by high 

production costs, limited efficiency of electrolyzers and reliance on critical raw materials [8][9]. 

Among electrolyzer technologies, Proton Exchange Membrane Water electrolyzers (PEMWEs) 

and Solid Oxide Electrolysis Cells (SOECs) stand out. PEMWE systems operate at low 

temperatures, ranging from 50-80°C and offer a fast dynamic response. This makes them 

suitable for coupling with intermittent renewable energy sources [10]. Their drawback remains 

the use of expensive materials like platinum and iridium. In contrast, SOECs operate at high 

temperatures and achieve great energy efficiency up to 80% by exploiting thermal input. Their 

weakness lies in durability issues under real operating conditions, leading to performance 

degradation [11]. 



General Introduction 

 

3 

 

At the core of these performance and degradation phenomena lies the microstructure of the 

electrodes and electrolyte layers. Parameters such as porosity, tortuosity, and grain size directly 

influence layer properties, kinetic reaction and long-term stability [12]. Recent advances in 

high-resolution imaging techniques, particularly Focused Ion Beam-Scanning Electron 

Microscopy (FIB-SEM), now make it possible to visualize and reconstruct the complete 3D 

architecture of these materials at nanometer scales [13]. 

Yet, exploiting such images remains a challenge due to the structural complexity of the 

materials and the large volume of data generated. While advanced image analysis methods, 

including deep learning, can offer accurate results, they often require significant computational 

resources, expert knowledge and extensive annotated datasets [14][15]. This presents a major 

obstacle, particularly for non-experts or researchers without access to high-performance 

computing infrastructure. 

To overcome this, the present work proposes the development of a simple, automated, and 

modular image processing pipeline that combines traditional processing methods with 

supervised machine learning. This approach is then applied to FIB-SEM images of SOEC 

electrodes to extract key descriptors such as porosity and thickness, enabling the evaluation of 

their evolution over operating time. 

This thesis is structured in three chapters. Chapter 1 presents a critical review of the current 

state of hydrogen technologies, particularly SOEC and PEMWE, the challenges related to their 

materials, the importance of microstructural analysis and the theoretical framework for image 

processing. Chapter 2 describes the imaging protocol followed in this study. Chapter 3 discusses 

the results obtained from the processing pipeline and highlights the relevance of the approach 

for quantifying the key microstructural parameters. 
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CHAPTER 1: LITERATURE REVIEW 

In this chapter, we examine the existing literature related to the microstructural analysis and 

degradation mechanisms of SOECs and PEMWEs. We focus on the advancements in high-

resolution imaging techniques, particularly FIB/SEM and their role in investigating the 

evolution of SOEC and PEMWE materials under operating conditions. Furthermore, we 

explore the developed quantification methods for microstructural parameters, ranging from the 

traditional approach to recent automated deep learning-based techniques. 

1.1. Hydrogen Technologies 

1.1.1.  Solid Oxide Electrolysis Cells  

 History 

SOEC is an essential electrochemical technology for producing fuels such as carbon monoxide 

(CO) and dihydrogen (H2), including syngas, from steam (H2O) and/or carbon dioxide (CO2) 

using electrical energy [16]. 

The history of SOEC  began in 1899, with Nernst's discovery of the improved high-temperature 

ionic conductivity of doped oxides, specifically calcium-stabilized zirconia 

((ZrO₂)₀.₈₅(CaO)₀.₁₅), which led to the "Nernst mass" [17] . This material was later used in 1962 

to build the Solid Oxide Fuel Cell (SOFC), the inverse of the electrolyzer [17]. One of their 

experimental designs is shown in Fig.1.1, where a calcium-stabilized zirconia electrolyte tube 

and platinum electrodes were used in a high-temperature setup for fuel-water conversion. This 

early architecture laid foundational principles for modern SOFC and SOEC configurations. The 

first SOEC modeling studies, which took into account ohmic and concentration losses, were 

carried out in the late 1960s by H. Spacil and C. Tedmon in 1969 [18]. As of 1967, NASA 

(National Aeronautics and Space Administration)  has also explored the use of these electrolytes 

for oxygen production and CO2 utilization on space missions, and research, which is still 

ongoing [16]. In the 1980s, the German “Hot Elly” project marked a significant research and 

development effort, although it was halted in the 1990s due to low oil prices [19]. These 

developments represented milestones in the evolution of SOECs, paving the way for ongoing 

research focused on improving their efficiency, durability, and integration into modern energy 

systems. 

Since the early 2000s, research on SOECs has progressed. New materials exhibiting improved 
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stability as well as ionic and electric conductivity, such as Lanthanum Strontium Chromium 

Manganese Oxide (LSCM), Lanthanum Strontium Manganite-Gadolinium-doped Ceria (LSM-

GDC ), have been investigated [19][20]. Research shifted toward reducing degradation and 

improving long-term performance [22]. In the 2010s, major EU-funded initiatives such as 

Horizon 2020 played a pivotal role in advancing SOEC technology. Projects like HELMETH, 

GrInHy and REFLEX enabled the development and scale-up of high-temperature electrolysis 

systems, laying the groundwork for industrial demonstrations and long-term performance 

assessments [23]. Co-electrolysis of H₂O and CO₂ also gained attention and a pilot project 

validated the technology under real conditions [24][23]. Since 2020, efforts have been 

increasingly concentrated on lowering operating temperatures, using metal-supported cells, and 

improving electrode durability. SOECs are now tested for industrial integration in systems 

coupling renewable energy and carbon capture systems [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic diagram of a galvanic cell with a solid oxide electrolyte [17] 
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 Working principle 

An SOEC consists of three main components:  1) a hydrogen electrode (also known as the 

cathode), 2) an air electrode (also known as the anode)  and 3) an electrolyte (a dense ceramic 

layer situated between two porous electrodes). However, unlike the SOFC, which converts the 

fuel to electricity, the electrochemical process in an SOEC operates in reverse mode to produce 

hydrogen from water. 

During operation, electrons are supplied by the external power source at the hydrogen 

electrodes, where water vapor is also introduced. The water breaks down into dihydrogen (H₂) 

and oxide ions (O²-). The oxide ions migrate through the dense electrolyte and reach the air 

electrode, where they are oxidized to form molecular oxygen, releasing electrons into the 

external circuit, thereby completing the electrochemical loop [26][27]. Fig.1.2 illustrates the 

structure in operation mode. 

The overall electrochemical reaction equation is as follows: 

 

Cathode Reaction: HଶO(୥) + 2eି  →   Oଶି + Hଶ(୥) (1) 

Anode Reaction: Oଶି              →    1 2⁄ Oଶ(୥) + 2eି (2) 

Overall equation: HଶO(୥)       → Hଶ(୥) +  1 2 Oଶ(୥)⁄  (3) 

 

 

Figure 1.2. Fundamental working principles of SOEC [26] 
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 Materials and Architecture of  SOEC Components 

The development of SOECs relies heavily on the selection and optimization of functional 

materials for each cell component. These materials must meet several essential requirements. 

They should exhibit adequate porosity to ensure effective gas penetration and high conductivity 

(both ionic and electrical) to enable charge transfer [28][12]. In addition, chemical compatibility 

is essential to avoid undesirable reactions with other cell components [29]. Lastly, the thermal 

expansion coefficient must be compatible with the rest of the cell to prevent mechanical stress 

during temperature variations [30]. 

This section takes a closer look at the primary materials currently used and under investigation 

for electrodes and electrolytes, as well as their challenges and potential. 

       a)  Hydrogen Electrode (Cathode) 

The hydrogen electrode, serves as the reactive site where the water splitting reaction takes place. 

It plays a critical role in SOEC operation, notably by facilitating the adsorption of water vapor, 

its activation on catalytic sites, and the efficient evacuation of the hydrogen produced. Nickel 

(Ni) is the most commonly used material due to its excellent electronic conductivity and 

satisfactory catalytic activity [31]. However, pure nickel has a high thermal expansion 

coefficient (16.9 × 10⁻⁶/°C at full density), which leads to poor mechanical compatibility with 

the electrolyte, especially when it is yttrium-stabilized zirconium oxide (YSZ). To address this 

issue, Ni-YSZ cermet is used, where the ceramic matrix helps to match the thermal behavior of 

the electrolyte, thereby reducing the stress and risk of failure [32]–[34]. An alternative to Ni-

YSZ is the nickel-based gadolinium-doped ceria (Ni-GDC), which shows improved chemical 

stability at lower temperatures. However, it suffers from phase interaction that degrades 

performance over time. More advanced materials like (La₀.₆Sr₀.₄Cr₀.₂Mn₀.₈O₃, LSCM ), which 

are mixed ionic and electronic conductors (MIECs), have demonstrated better thermal stability 

and resistance to oxidation [12]. Today, techniques like nanoparticle infiltration boost catalytic 

activity and the triple-phase boundary (TPB) density. However, keeping these properties stable 

at high temperatures and long operation is difficult [35]. 

       b)  Air Electrode ( Anode) 

The air electrode is the site of the oxygen evolution reaction (OER). It plays an important role 



Literature review 

 

9 

 

in the electrochemical reaction process by facilitating oxide ion access to catalytic sites and by-

product removal via its porous structure. 

At the state of the art, materials such as lanthanum strontium manganite-yttria stabilized 

zirconia composites (LSM-YSZ), as well as MIECs materials such as lanthanum strontium 

cobalt ferrite (La₁-ₓSrₓCo₁-ᵧFeᵧO₃-δ, LSCF) or other perovskite-based materials, are 

predominantly used for the anode [36]. Research is currently focused on exploring different 

types of materials to improve the performance of anode electrodes. Among the most studied 

materials are double perovskites and Ruddlesden-Popper (RP) materials, which offer a good 

compromise between electrical conductivity, chemical stability and compatibility with other 

cell components. The structure is shown in Fig.1.3 [12]. 

Figure 1.3. Illustration of the crystal structures of: a) perovskite, b) double perovskite, and c) 

Ruddlesden-Popper (RP) perovskite [37] 

       c)  The Electrolyte 

The main function of the electrolyte is to transport oxide ions (O²-) between the anode and 

cathode, enabling the electrochemical reaction required for high-temperature hydrogen 

production. 

The performance of an electrolyzer depends on its capacity to facilitate rapid oxide ion 

conduction while preventing electron transfer to guarantee an efficient electrochemical 

reaction. Among the electrolyte materials used in SOECs, two prominent families are 

commonly studied: yttria-doped zirconia (YSZ) and scandia-doped zirconia (ScSZ). YSZ is the 
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more traditional material, due to its thermal stability. It offers good oxide ion conductivity, 

especially between 700-900°C, although its performance tends to decline below 700°C, which 

may limit its efficiency for intermediate temperature operation. In contrast, ScSZ offers superior 

conductivity and operates at slightly lower temperatures, especially around 600°C, which is 

advantageous for reducing power consumption and extending cell life [24][38]. 

Ceria-based electrolytes, such as gadolinium-doped ceria (GDC), are also considered promising 

for intermediate-temperature applications. The material exhibits higher ionic conductivity than 

YSZ between 550-700°C, but suffers from a critical drawback in a reducing environment, as 

Ce4+ tends to be reduced to Ce3+, including unwanted electronic conductivity and possible 

mechanical instability [39] [40]. Finally, other materials like lanthanum gallate (LaGaO₃) have 

also attracted attention thanks to their excellent ionic conduction, but their chemical stability 

has yet to be confirmed in specific environments [12]. While some materials perform well, there 

is still a need for new materials to enable large-scale use. 

1.1.2. Proton Exchange Membrane  Electrolyzer  

 History 

PEMWE originated from research into PEM fuel cells in the 1960s, notably as part of NASA's 

Gemini space program. At that time, Grubb and Niedrach at General Electric developed the 

first cells to use a polymer membrane to conduct protons, laying the foundations for today's 

PEM electrolysis concept [41]. 

A decisive turning point came in 1968 with the commercial introduction of Nafion™ 

(Poly(tetrafluoroethylene-co-perfluoro-3,6-dioxa-4-methyl-7-octene sulfonic acid)), a 

perfluorosulfonic polymer developed by DuPont. This material offered excellent proton 

conductivity, high chemical resistance, and thermal stability, enabling the realization of 

prototype electrolyzers operating at moderate temperatures, 60-80°C, with high purity of the 

gas produced [42]. 

In 1973, J.H. Russell published the first detailed study of a PEM electrolyzer, demonstrating 

promising performance with current densities of the order of 1 A/cm² at 1.88 V [43]. These 

results confirmed the advantage of this technology over traditional alkaline electrolyzers [43]. 

In the 2000s, interest in PEMWEs was revived by advances in membrane durability, catalyst 
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stability, and overall performance. Research intensified in reducing the quantity of noble metals 

(iridium, platinum), developing alternative membranes such as Sulfonated Polyether ether 

ketone (SPEEK), and optimizing electrode architectures [44][10]. 

Today, PEMWEs are considered a key technology for producing green hydrogen, especially in  

Power-to-Gas systems and in the integration of renewable energy. Their low-temperature 

operation, compactness, and rapid response capability make them a suitable solution for 

decentralized applications. However, challenges remain, notably related to material durability, 

catalyst cost, and large-scale industrialization [45]–[47]. 

 Operating Principle 

The main purpose of the PEMWE is to convert electrical energy into chemical energy, 

specifically hydrogen. Before exploring the individual components of the cell, it is useful to 

understand how the cell works. 

In this electrochemical process, clean water is provided to the anode side. When a voltage is 

applied to the electrodes, the water undergoes oxidation in a process known as the Oxygen 

Evolution Reaction (OER), generating protons (H+), dioxygen (O2), and electrons. The 

generated protons migrate through the proton exchange membrane electrolyte toward the 

cathode side, where they are reduced (Hydrogen Evolution Reaction, HER) by combining with 

electrons to form hydrogen (H2) [48], as shown in Fig.1.4. The overall electrochemical reaction 

equation is as follows: 

Anodic reaction: H2O             →   2H+ +  1/2 O2 +  2e- (1) 

Cathodic reaction: 2H+  + 2e-    →    H2 (2) 

Overall reaction: H2O            →    H2    +    1/2 O2 (3) 
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Figure 1.4. Schematic illustration of PEMWE, adapted from [49] 

Although this process may seem straightforward, in the background, the microstructure 

properties of the materials involved highly affect the efficiency and durability of the system 

[50]. Therefore, a detailed examination of the cell’s structural components is essential for a 

deep understanding of how the material properties influence overall performance. 

 Structure and Layer Architecture 

A standard PEMWE  comprises several key components, including the bipolar plates (BPP), 

the current collectors, and the membrane electrode assembly (MEA). Fig.1.5 gives a general 

overview of the system. 

 

 

 

 

 

 

 

 

Figure 1.5. Schematic view of PEMWE cell architecture [51] 
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o Bipolar Plates (BPPs) 

Bipolar Plates are flat components located between neighboring cells in the stack, forming the 

structural backbone of the electrolysis cell. Generally made of titanium, their primary roles 

involve the transport of water within the cell, facilitating gas removal, regulating heat exchange 

and closing the external electrical circuit [52]. Titanium is widely used as a material due to its 

excellent thermal conductivity, mechanical strength, and corrosion resistance. Nonetheless, in 

the highly oxidative anodic environment, titanium is prone to corrosion, leading to cell 

deterioration. Despite the investigation of different coatings and alloys to tackle this problem, 

their high cost makes them unsuitable for large-scale applications [49]. 

o Current collectors 

The current collector is a porous conductive layer located between the electrode’s catalyst layer 

and the bipolar plate. To effectively perform, it needs to provide excellent electrical 

conductivity and resistance to corrosion, especially on the anode side. Its microstructure 

requires careful refinement and should be designed to strike a balance between high porosity to 

eliminate gases, but excessive porosity can reduce the electronic conduction and limit water 

supply to catalytic sites. This remains one of the key challenges in enhancing the overall 

efficiency of the cell [52]. 

o Membrane  Electrode Assembly (MEA) 

The MEA is the primary functional unit of PEMWE, where essential electrochemical reactions 

occur, transforming electrical energy into chemical energy. It comprises three closely bonded 

parts: 1) the anode, 2) the cathode, and 3) the Proton Exchange Membrane (PEM). 

      1) The anode  

The porous structure of the anode usually includes iridium-based catalysts such as Iridium (Ir), 

iridium oxide (IrOx), or iridium ruthenium oxide (IrRuOx) combined with an ionomer, a 

proton-conducting polymer often derived from Nafion and interconnected. These structural 

elements are essential for mass transport and ion conduction but can also cause conversion 

losses, mainly due to limited reagent access and uneven catalyst utilization. The porous design 

directs the movement of reactants and products and determines how well the catalyst can be 

accessed. The anode affects overall efficiency and can help decrease the amount of costly 
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catalyst needed if its structure is optimized. 

A critical parameter is the triple-phase boundary (TPB), where electrons, ions, and gaseous 

molecules interact. Maximizing the interface area while minimizing ohmic and mass transfer 

resistances can significantly improve performance. Strategies such as graded porosity, 

controlled ionomer distribution, or nanostructuring are being actively explored to increase 

catalytic efficiency and reduce the amount of iridium used, as this metal is expensive and scarce 

[53][54]. 

      2) Cathode 

On the cathode side, the HER is kinetically more favorable. A platinum-based catalyst 

supported on carbon is generally used for this reason. This setup provides good electrical 

conductivity and fast reaction rates. However, long-term stability remains a challenge, mainly 

due to the corrosion of the carbon support in acidic and humid environments. Research is 

ongoing to replace carbon with other materials or to develop more resistant platinum alloys[55]. 

      3) Pronton Exchange Membrane (PEM) 

The proton exchange membrane (PEM) serves two main functions: it conducts protons (H⁺) 

from the anode to the cathode and acts as a gas barrier, preventing hydrogen and oxygen from 

mixing. Nafion, is the most commonly used material because of its high ionic conductivity, 

chemical resistance, thermal stability, and mechanical strength [56], as shown in Fig.1.6. 

Despite its excellent properties, Nafion has certain limitations, notably high current density 

drying and high cost. As a result, alternatives are being investigated, such as hydrocarbon-based 

membranes, for example, Sulfonated Polyether ether ketone (SPEEK) or composite membranes 

incorporating inorganic fillers. These materials aim to improve moisture retention, durability, 

and reduce costs, while maintaining good conductivity [57][58]. 

Membrane thickness and hydration state have a strong influence on ionic resistance. Thinner 

membranes reduce ohmic losses, but increase the risk of gas cross-permeation. It is therefore 

crucial to strike a balance between electrochemical performance and safety [59]. 
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 Figure 1.6. Molecular structure of  Nafion [52] 

 

1.2. Challenges and Degradation Mechanisms Affecting SOEC and PEMWE 

Performance 

Although material selection is critical to SOEC and PEMWE performance, it is equally 

important to understand how these materials degrade under real operating conditions. Chemical 

degradation mechanisms such as electrode corrosion and unwanted phase formation have been 

extensively investigated. Increasing attention is also being given to physical degradation 

processes, including thermal cycling, mechanical stress, and microstructural evolution [55][60]. 

Both forms of degradation, often interconnected, significantly affect the long-term stability and 

efficiency of the cells. This section examines some key structural degradation mechanisms. 

1.2.1.  Particle coarsening 

Ananyev et al.[61] investigated the evolution of particle coalescence in LSM-YSZ cathodes 

over time. The physical degradation mechanisms in these cathodes were analyzed to quantify 

the impact of particle coalescence on the material's microstructure under high-temperature 

operating conditions. Microstructure images were obtained by scanning electron microscopy 

(SEM). These images were then analyzed using a semi-automated pipeline based on grayscale 

histogram segmentation, enabling the evolution of porous and solid phases to be tracked over 

time. 

The results shown in Fig.1.7 reveal an exponential growth in the degraded zone, marked by 
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particle coalescence and decreased porosity. This morphological change causes a decline in 

electrochemical performance due to increased tortuosity and a reduction in the active specific 

surface area. Although research on electrode particle growth has primarily focused on solid 

oxide fuel cells (SOFCs), these mechanisms also occur in SOECs, since both systems operate 

at similar temperatures and involve comparable sintering and particle coalescence processes. 

However, it is important to note that some phenomena related to polarization and element 

displacement might vary depending on the operating mode. 

 

 

 

 

 

 

 

 

Figure 1.7. Evolution of the degradation zone thickness over time [61] 

 

1.2.2.  Porosity changes during redox cycling 

To evaluate the impact of porosity evolution on the degradation process, a study was conducted 

by De Angelis et al [62]. Researchers used nanotomographic X-ray ptychography to examine 

the microstructural evolution of Ni-YSZ electrodes subjected to a complete redox cycle. They 

aimed to understand how the fragmentation of nickel particles and the formation of internal 

voids influence the porous microstructure. They were particularly interested in pore volume 

and connectivity, which are essential for cell performance at high temperatures. High-resolution 

3D reconstruction enabled precise visualization of pore morphology, Ni particles and NiO 

phases. These observations were made before, during and after redox cycling. 

The results show a significant decrease in the average pore radius, which drops from around 

350 nm to 100 nm. This indicates considerable fragmentation of the pore network. On the other 
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hand, pore connectivity increases from 90% to 99% demonstrating the formation of new porous 

pathways, caused by the fragmentation of nickel particles. These microstructural changes lead 

to a deterioration in electrochemical performance, which can also increase mechanical 

deterioration. Thus, particle fragmentation and pore migration illustrate how the redox cycle 

degrades microstructures and affects cell lifespan. 

1.3.  Microstructural Characterization Techniques 

1.3.1.  Overview of microstructural characterization techniques 

Techniques for microstructural characterization are important for analyzing catalytic materials 

and electrodes, providing spatial detail regarding the internal structure [63] . 

Two-dimensional (2D) techniques, such as scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), and electron backscatter diffraction (EBSD), often used as a 

detector in SEM, allow detailed analysis of the local morphology, nano-to-microscale phase 

distribution and crystallographic orientation [64][15]. However, their main limitation is their 

inability to provide complete volumetric and topological information. To estimate three-

dimensional (3D) microstructural parameters, researchers traditionally used geometrical 

models such as the general effective medium (GEM), the concept of contiguity (CC), the 

random network model (RNM) and the random packing sphere model (RPSM). These models 

rely on strong assumptions, for example, the random mixture of sphere particles, meaning the 

material is approximated as randomly packed spheres. This assumption may bias the 

interpretation of microstructure-related properties [65]. 

To achieve this, 3D techniques such as FIB-SEM, nano to micro-CT X-ray tomography, and 

electron tomography provide detailed visualization of the porous network, interfaces, and 

internal topology at nanometric and micrometric scales [66]. 

These volumetric approaches foster a thorough understanding of porous connectivity and 

transport pathways, which are essential for optimizing the performance of catalysts and 

electrode materials. Fig.1.8 illustrates the increasing interest in 3D characterization techniques, 

comparing their capabilities in terms of spatial resolution and sample volume analyzed: 

However, the FIB-SEM tomography technique has recently attracted growing interest within 

the scientific community. This is primarily due to its unique ability to provide high-resolution, 
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three-dimensional visualization of complex structures, as well as to accurately quantify porous 

topologies, interfaces, and the connectivity of catalytic materials and electrodes. These features 

make it an essential tool for in-depth analysis of structure-performance relationships [67]. 

 

 

 

 

 

 

 

 

Figure 1.8. Tomographic imaging methods by resolution and volume range [64] 

1.3.2.   Focused Ion Beam - Scanning Electron Microscope (FIB-SEM) 

The technique combines the use of FIB and SEM. The FIB targets the sample surface and 

performs controlled ablation by slicing the material into a series of nano-sized layers, revealing 

new cross-sections. Simultaneously, SEM captures high-resolution images of each newly 

exposed surface, enabling precise three-dimensional reconstruction of the sample's 

microstructure [67]. See the illustration in Fig.1.9. 

 

 

 

 

 

 

Figure 1.9. Illustration of the steps and principles of the FIB-SEM tomography process 

applied to a porous material: a) Porous structure, b) Embedded in resin to prevent artefacts 

during the imaging process, c) FIB-SEM slice and image process on trimmed surface [64] 
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After acquiring three-dimensional microstructural images, a pre-processing and segmentation 

process is performed to accurately distinguish the different microstructural phases. More than 

just a technical tool, it serves as a bridge between raw visual data and scientific interpretation. 

1.4.  Image processing and quantification approaches: from traditional methods to deep 

learning-based quantification 

Image processing involves a set of techniques used to analyze and extract useful information 

from visual data. As shown in Fig.1.10, it includes tasks such as segmentation, image generation 

and object detection [68]. 

These techniques generally fall into two categories: traditional methods based on conventional 

algorithms [69] and modern approaches based on artificial intelligence (AI), particularly 

Machine Learning (ML) and Deep Learning (DL). The latter provides enhanced accuracy and 

new opportunities for complex image analysis tasks [70][71]. 

 

 

 

 

 

 

 

               Figure 1.10. Different types of image processing [68] 

1.4.1. Traditional Approaches: Case Study 

In the microstructural analysis of the catalyst layer, precise phase segmentation is critical for 

reliably quantifying key parameters such as porosity and grain size. Historically, deterministic 

rule-based methods relying on thresholding have been widely used. For example, Ananyev et 

al [61] implemented the classical Otsu-based approach, combined with Gaussian curve 

approximation, achieving improved phase separation compared to employing each technique 

separately, as summarized in Fig.1.11 and Fig.1.12. 
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 Figure 1.11. Grey level histogram and Gaussian curve distribution [61] 

 

 

 

 

 

 

 

 

 

Figure 1.12. Comparison of image processing steps for microstructure segmentation: a)  

Original image, b) Smooth image, c) Otsu method, d) Gaussian approach, e) Analysis of the 

segmented area, f) Combination of Otsu and Gaussian methods [61] 

1.4.2.  Deep Learning-Based Segmentation: Case Study 

Advanced deep learning (DL) techniques, such as semantic segmentation networks, U-Net, and 

DeepLabV3, are increasingly adopted for microstructure quantification. Hwang et al [72] 

demonstrate the efficacy of the DeepLabV3, a CNN-based architecture, for segmenting 

microstructural images of fuel cell electrodes. This model enables precise delineation of 

different phases, such as Ni and YSZ. Validation results, Fig.1.13, confirmed reliable 

segmentation accuracy, which is highly dependent on the quantity of annotated training data. 

Thus, good quality labeled data is key for precise deep learning results. 

a b 

c d 

e 
f 
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Figure 1.13. Comparison of ground truth and Deep Learning segmentation results: a) original 

image, b) ground truth image, c) Deep learning prediction on improperly prepared ground 

truth,  d) DL prediction on properly prepared ground truth [72] 

 

1.4.3. Quantitative Microstructure Analysis Approach 

Quantitative microstructure analysis represents an important step for characterizing 

electrochemical materials. Traditionally, manual or semi-automatic stereological methods, such 

as linear intercept, have been used. For instance, Bae et al, [73]  employed this approach to 

measure the volume fractions of pores, LSM, and GDC in a composite cathode by overlaying 

intersection lines on micrographs and counting phase intersections as illustrated in Fig.1.14. To 

convert measured lengths into volume estimates, the assumption of isotropy of the 

microstructure is often made; in other words, properties are assumed to be the same in all 

directions. This assumption makes it possible to relate 2D measurements to 3D characteristics. 

However, this assumption is not always valid, particularly in the case of anisotropic materials, 

which can introduce interpretation bias. In addition, these methods often suffer from poor 

reproducibility, time-consuming manual processing, and difficulty in estimating parameters 

such as tortuosity, which refers to the complexity of the path inside the porous structure [73]. 

These limitations drove the development of more advanced methods based on digital image 

processing and programming tools shuch as Python. These modern approaches offer automated, 

reproducible analysis of key features. 
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Figure 1.14. Schematic illustration for the linear intercept method for pore structure 

quantification [73] 

1.5.   Theoretical foundation of Image processing 

The following section presents the theoretical foundations of image processing, offering an 

overview of essential techniques that encompass both traditional methods and modern 

approaches introduced earlier. 

1.5.1. Fundamentals of Traditional Image Segmentation Approaches 

Traditional image segmentation typically follows a sequence of stages designed to enhance 

image quality, identify relevant structures and accurately delineate regions of interest.  

Table 1.1 below summarizes the main phases and components commonly found in these 

processes. It provides a concise framework for the detailed overview. 
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Table 1. 1. Concise summary of image processing stages 

Phase Component Task Reference 

Pre-processing 

Image registration 
Align the images by 

correcting shifts 
[74] 

Noise reduction 
Reduce noise without 

losing important details 
[75] 

Contrast enhancement 
Improve visibility of 
structures of interest 

[76] 

Segmentation 

Thresholding-based 
segmentation 

Separate regions based 
on pixel intensity levels 

[77] 

Region-based segmentation 
Group homogeneous 

and spatially connected 
zones 

[78] 

Post-processing Morphological operation 
Refine and correct 
segmented masks 

[79] 

 

A: Image pre-processing   

Image pre-processing aims to prepare raw images for analysis by enhancing their quality. Steps 

like noise reduction, artifact correction help ensure that all following measurements and 

segmentations are based on clear and reliable data.  

        A1: Image registration  

Image registration is a preliminary step aimed at spatially aligning multiple images of the same 

scene. Particularly in FIB-SEM, during acquisition, small shifts in X and Y directions may 

occur due to differences in alignment or perspective. To address these issues, image registration 

methods detect characteristic points and apply geometric transformations. This enables an 

accurate overlay of images for consistent analysis [80][74].  

       A2: Noise reduction 

This stage aims to minimize the random noise and irregularities introduced during image 
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acquisition without affecting key structures. It provides a more reliable foundation for later 

analysis. Specific filters are used to reduce these imperfections [75]. Among them, the Gaussian 

filter and the Median filter are commonly used for this purpose. 

Gaussian filter: This method is designed to remove diffuse noise, resulting in a smoother 

image. It works by applying a convolution with a Gaussian kernel, where the sigma parameter 

controls the level of blurring, see Fig.1.15. A small sigma retains more detail, while a larger 

value produces smoother results by reducing local intensity variations based on pixel proximity 

[81]. 

The following equation defines the two-dimensional Gaussian kernel used for this operation 

[82]: 

𝑮(𝒙) =
𝟏

𝟐𝝅𝛔𝟐
𝐞𝐱𝐩 ቆ−

𝒙𝟐 + 𝒚𝟐

𝟐𝛔𝟐
ቇ 𝟏 

 

Where sigma (σ) determines the degree of smoothing. 

The variables x and y represent the coordinates that show how far a point is from the center of 

the Gaussian curve, used to calculate the smoothing effect. 

 

 

                                                   

 

 

          

Figure 1.15. Illustration of an image with Gaussian noise (a) and its denoised version (b)[83]  

Median filter: The median filter is particularly effective against impulsive noise, also known 

as "salt and pepper" noise, which appears as randomly distributed very dark or very bright 

pixels. This filter reduces noise while preserving structural details, such as edges (see Fig.1.16), 

unlike the Gaussian filter, which tends to smooth fine details. It involves replacing each pixel 

with the median value of neighboring pixels within a local window, also known as a kernel 

[84]. 

a b 
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Mathematically, for a given pixel at position (𝑚, 𝑛) in the image, the median filtered value                           

𝑃௦(𝑚, 𝑛) 𝑢sing a window of size 𝑠 × 𝑠 defined as [85]: 

𝑷𝒔 (𝒎, 𝒏) = 𝒎𝒆𝒅𝒊𝒂𝒏𝒔[𝒑(𝒊, 𝒋)] 𝟐 

Where 𝑖 𝑎𝑛𝑑 𝑗 are the indices of the neighboring pixels in the kernel window around the pixel 

(𝑚,𝑛). 

             𝒊 ∈ ൬𝒎 −
𝒔 − 𝟏

𝟐
, … , 𝒎 +

𝒔 − 𝟏

𝟐
൰  𝒂𝒏 𝒋 ∈ ൬𝒏 −

𝒔 − 𝟏

𝟐
, … , 𝒏 +

𝒔 − 𝟏

𝟐
൰ 𝟑 

       

This means that the new value of the pixel (𝑚, 𝑛) is the median of all pixel intensities 𝑝(𝑖, 𝑗) 

within a square neighborhood of size  𝑠 × 𝑠  centered at (𝑚, 𝑛) 

 

                      

Figure 1.16.  Comparative illustration of the effects of noise on an image and its filtering: a ) 

Original image, b) Image polluted by salt and pepper noise, c ) Image after median filtering  

with a window size of 3× 𝟑 [86] 

 

       A3: Contrast enhancement 

Visual perception and subsequent segmentation are greatly enhanced by this step, making 

structures that are difficult to see in the initial image more noticeable [76]. Some of the classic 

methods used include: Contrast Limited Adaptive Histogram Equalization (CLAHE) and 

Unsharp Mask.  

CLAHE: The CLAHE method improves the image contrast while preventing oversaturation in 

bright areas. The image is typically divided into small tiles, and histogram equalization is 

 a  b  c
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applied locally with a clip limit to control contrast amplification. Locally, the histograms are 

clipped according to the following rule [87]: 

𝐇𝐢(𝐠) = 𝐦𝐢 𝐧(𝐇(𝐠), 𝐂) 𝟒 

Where 𝐻(𝑔) is the original histogram for gray level 𝑔, 𝐶is the clip limit, and 𝐻௜(𝑔) is the 

clipped histogram 

Unsharp Mask: Unsharp mask improves contrast and sharpens the image by subtracting a 

blurred version from the original and then adding the difference back [88].  

B: Image segmentation 

Segmentation refers to dividing an image into distinct regions or objects, making it easier to 

identify and study specific structures. By isolating relevant features, it provides a solid 

foundation for accurate measurement and meaningful comparisons. 

       B1: Thresholding segmentation 

Thresholding segmentation analyzes pixel intensity histograms to find one or more optimal 

thresholds that separate different pixel classes. These methods include binary, multi-level and 

adaptive thresholding. These are simple yet effective for segmenting objects from the 

background, especially when intensity differences are prominent.  

Global threshold (binary) assigns a pixel based on a single fixed or automatically determined 

threshold. A widely used algorithm for automatic global thresholding is Otsu’s method, see 

Fig.1.17, which automatically finds the optimal threshold by minimizing the intra-class 

variance, or equivalently, by maximizing the inter-class variance, based on the intensity 

histogram [89][90] the intra-class variance is defined as: 

𝝈𝒘
𝟐 (𝒕) = 𝝎𝟎(𝒕)𝝈𝟎

𝟐(𝒕) + 𝝎𝟏(𝒕)𝝈𝟏
𝟐(𝒕) 𝟓 

The inter-class variance is defined as: 

𝝈𝒃
𝟐(𝒕) = 𝝎𝟎(𝒕)𝝎𝟏(𝒕)൫𝝁𝟎(𝒕) − 𝝁𝟏(𝒕)൯

𝟐
𝟔 

Where ω0(t) and ω1(t) are the probabilities of the two classes of pixels, σ0(t) and σ1(t) are the 

variances of pixel intensities of each class, and μ₀(t) and μ₁(t) are the mean intensities of 

each class. The optimal threshold (t) is the value that maximizes σ_b²(t), ensuring the best 

possible separation between the two classes. 
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Figure 1.17. Segmentation using Otsu’s thresholding [91] 

 

Multi-threshold extends this approach to segment multiple classes by finding several optimal 

thresholds, as depicted in Fig.1.18. The multi-level version of Otsu’s method, known as Multi-

Otsu, can be used for such cases. 

 

Figure 1.18.  Image segmentation using Multi-Otsu thresholding [92] 

 

       B2: Region-based segmentation 

These steps group pixels into regions based on their local homogeneity and spatial connectivity 

by identifying areas in the image that share similar characteristics. They are handy for 

distinguishing between adjacent or overlapping objects, even when there is no sharp difference 

in intensity [15]. Among the existing methods, Watershed and  Region growing are well known. 

Watershed algorithm: This algorithm interprets the image as a 3D landscape and floods it 

from the lowest pixel intensity points to separate different objects. Before applying the 

algorithm, edge detection methods like Sobel or Canny can be used to better define boundaries 

and guide the separation [71] [93]. 



Literature review 

 

28 

 

Region Growing: It is a segmentation method that for regions by grouping neighboring pixels 

with similar characteristics, starting from selected seed points.  This approach is particularly 

useful for segmenting objects with gradual intensity variations [78]. 

C: Morphological post-processing 

 After the segmentation, morphological operations are utilized to refine the outcomes by closing 

small gaps, splitting or merging objects and eliminating any residual noise. Opening and closing 

are the most commonly employed operators in this context. 

Opening:  An erosion operation followed by a dilation process that effectively removes small, 

isolated noise objects while preserving the overall shape of the segmented regions [94]. 

Closing:   Consists of dilation followed by erosion, it is used to fill small gaps or spaces in 

segmented objects and bring close elements together to ensure continuity [15]. 

These traditional image processing methods are still important; they improve image quality and 

provide a solid foundation for advanced approaches. 
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1.5.2  Artificial Intelligence 

Artificial intelligence is a branch of computer science that develops systems capable of 

mimicking certain human cognitive functions, such as learning, reasoning, and decision-

making. It has a wide range of applications, including language processing, image analysis, and 

robotics. Today, AI is increasingly recognized as a powerful tool for automating tasks that are 

complex, repetitive, or prone to human bias. It improves the efficiency, consistency and 

reproducibility of analyses, especially when manual methods are time-consuming or unreliable. 

Machine learning (ML) is a key area within this field, focusing on algorithms that can learn 

from data to make decisions, see Fig.1.19. This area also includes a subfield known as Deep 

Learning, which is based on multi-layered neural networks capable of understanding complex 

representations from data. 

 

Figure 1.19. Relationship between Artificial Intelligence, Machine Learning, and Deep 

Learning [95] 

A: Machine Learning (ML) 

ML involves techniques that enable computers to learn from data without being explicitly 

programmed for each specific task. It helps systems recognize patterns, trends, or underlying 

structures in data. These patterns are then used to make predictions, classify information, or 

automate decision-making processes. 

The main machine learning approaches are typically divided into two broad categories: 

supervised learning and unsupervised learning as depicted in Fig.1.20 [96]. 
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   Figure 1.20. Main categories of machine learning: supervised and unsupervised learning 

[96] 

Unsupervised learning: This approach uses algorithms designed to uncover hidden structures, 

clusters, or patterns within data, without requiring prior labels or annotations. It is commonly 

applied in clustering tasks or for dimensionality reduction [62][90][91]. 

Supervised learning: Unlike unsupervised learning, this method relies on labeled datasets, 

where each example is associated with a known output or class. From these annotated examples, 

the algorithm learns how to make predictions or classify new unlabeled data, enabling efficient 

automation of decision-making processes [62][90][91]. 

Many ML algorithms used for regression and classification are based on statistical learning, 

while others, like decision trees and SVMs, use heuristic or geometric principles. All of them 

aim to find patterns in data to make reliable predictions [98]. 

In the context of image processing, specifically for segmentation, classification, and image 

analysis, the typical workflow of supervised learning includes several key steps: a) image 

annotation, b) feature extraction, c) model training, and prediction [99], as shown in Fig.1.21. 
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                        Figure 1.21.  Pipeline of supervised learning in image processing  

 

        a) Image annotation 

Supervised learning assumes that a system can learn generalization from a set of labeled 

examples. This method depends on a ground truth that is clearly defined and validated by 

humans, which guides the model's adjustments. However, the accuracy of the ground truth is 

crucial because it directly impacts the model’s ability to make accurate and unbiased predictions 

[100].  

       b) Feature extraction 

Feature extraction is an essential step in the workflow. It converts raw visual data into useful 

numerical representations. It highlights key aspects such as contrasts, textures, or gradients. 

These features are then used as input variables for machine learning models to help recognize 

or segment the structures of interest [101][68]. 

       c) Model training 

Conventional ML algorithms, such as decision trees, random forests, or support vector 

machines (SVMs), are trained on this labeled data. The model training goal is to learn the 

combinations of features that characterize each target structure [101]. 
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      d) Prediction and validation 

Applying the trained model to the labeled image marks the prediction stage. During this stage, 

each pixel or region is classified based on the visual features that have been learned. In image 

analysis, this step produces an automatic segmentation of the different phases. This ensures 

both improved reproducibility of results and increased objectivity compared to manual 

methods. For thorough validation, the model is then tested on images that were not used during 

training to evaluate its ability to generalize [68].  

B: Machine learning algorithms  

In image segmentation tasks, several classical supervised classification algorithms are 

commonly employed. This includes Random Forest, Support Vector Machine (SVM), and k-

Nearest Neighbors (k-NN). The choice of the algorithm often depends on factors such as dataset 

size, feature complexity, noise level and computational resources [102].  

       B1: Random Forest 

Random Forest is an ensemble learning method that combines the output of multiple decision 

trees to improve the classification accuracy and reduce the risk of overfitting. In image 

segmentation, this approach became popular due to its ability to capture complex patterns, 

handle high-dimensional data and remain relatively robust to noise [103]. 

Each tree is trained on a bootstrap sample of the training data, meaning that each tree is trained 

on a randomly sampled subset of the data drawn with replacement; some examples may appear 

multiple times, while others may be omitted. At each split in the tree (node), a random subset 

of features is tested, and the best split from this subset is chosen. This approach reduces 

correlation among trees. At prediction time, each tree gives its own classification and the final 

result is given by the majority vote [104], as depicted in Fig.1.22. 

Mathematically, the classification can be expressed as: 

𝒚(𝒙) = 𝒎𝒐𝒅𝒆{𝒉𝟏(𝒙), 𝒉𝟐(𝒙), … , 𝒉𝑩(𝒙)} 𝟕 

where ℎ௕(𝑥) stands as the prediction of b tree and 𝑦(𝑥) the final prediction of the 

preponderant predicted class among  B trees [105].  
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Figure 1.22. Illustration of the Random Forest ensemble learning process [106]  

 

       B2: Support Vector Machines (SVMs) 

SVM aims to find the optimal hyperplane in feature space that maximizes the margin between 

classes [107]. The margin is defined as the distance between the hyperplane and the closest 

training point, called a support vector. A larger margin generally indicates better generalization 

to new data[108]. This principle is illustrated in Fig.1.23. 

SVMs can effectively handle datasets containing many features and complex class boundaries 

by mapping the data into a higher-dimensional space using kernel functions.  However, training 

an SVM can be computationally expensive on large datasets as both memory requirements and 

processing time may increase significantly [109][96]. 
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Figure 1.23. SVM illustration:  the red line indicates the optimal separation between two 

classes; the dotted lines indicate the maximum margin and the closest points to the separation 

line are the support vectors [108] 

       B3: K-Nearest-Neighbor (k-NN) 

k-NN is a simple, non-parametric classifier that assigns a class to a new data point by looking 

at its k nearest neighbors in the training set [110][96].  The neighbors are identified using a 

chosen distance metric, such as  Euclidean or Manhattan distance [111]. 

The algorithm requires almost no training time, but classification can be shown on large datasets 

because the distance must be computed for all stored samples. Its accuracy is also sensitive to 

noise and irrelevant features [112]. Despite these limitations, k-NN can work well in multi-

class problems and is often used as a baseline method [110], see Fig.1.24. 

 

Figure 1.24. k-NN classification principle[113] 
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C: Deep learning: (CNNs)  

Deep Learning is a subset of machine learning that utilizes deep artificial neural networks 

capable of automatically learning complex representations from large amounts of data. In image 

processing, CNNs have received significant attention. They are designed to effectively capture 

spatial hierarchies in images through convolutional layers. These layers learn increasingly 

abstract features from raw input images and pass them through the network to generate the final 

output. 

For segmentation tasks, specialized CNN architectures such as encoder and decoder models 

have been developed. The encoder extracts meaningful features and the decoder upsamples 

these features to generate detailed pixel-wise segmentation [114]. 

A widely used model following this scheme is U-Net, which combines multi-scale feature 

extraction with precise localization to produce an accurate segmentation result [115][116]. U-

Net works by combining an encoder path for feature extraction and a decoder path for resolution 

reconstruction, connected by skip connections that help preserve fine spatial details. Simple, 

fast to train, and effective even with limited data, the U-Net has become a benchmark model 

for segmentation tasks [117][116]. The Fig 1.25 illustrates the architecture of the U-Net model. 

 

                          

Figure 1.25. U-Net architecture [117] 
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PARTIAL CONCLUSION 

This literature review explored key hydrogen production technologies, focusing on SOEC and 

PEMWE. Their structural design, operating principles and material requirements were 

presented together with their respective strengths and the challenges encountered during long-

term operation. 

 Microstructural degradation phenomena, such as particle coarsening and changes in porosity, 

were discussed as they represent factors that can significantly reduce electrochemical 

performance. In this context, advanced characterization tools like FIB-SEM tomography were 

identified as essential for 3D visualisation and analysis of electrode architectures. In the field 

of image processing, traditional methods remain widely used due to their simplicity and 

accessibility. However, recent advances in machine learning and deep learning have brought 

new levels of accuracy to microstructure segmentation, although they require greater 

computational resources. 

The insights from this review form the basis for the methodology developed in this thesis. 

The next chapter will delve into the materials investigated, the imaging protocols applied and 

the computational tools used to implement this methodology.
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CHAPTER 2: MATERIAL AND METHODS 

In this chapter, the tools and methods used to process the  FIB-SEM data are presented. The 

developed methodology facilitates the transformation of raw microscopy images into 

meaningful numerical and visual results for detailed microstructural analysis. 

2.1. Experimental part 

2.1.1. Data acquisition 

In this study, high-resolution FIB-SEM images (200 images) were obtained using a TESCAN 

AMBER X microscope (Model S8254X) at the Institute of Energy Technologies-Fundamental 

Electrochemistry (IET-1) of the Jülich Research Center (FZJ). Imaging occurred at around 

5450× magnification, with an accelerating voltage of 20 kV and a working distance of 6 mm. 

The images were captured using an Everhart-Thornley (E-T) detector in high-resolution scan 

mode. 

Each image has a spatial resolution of 50 nm per pixel in X and Y, and 100 nm in Z, a size of 

95 μm in width and 65 μm in height, enabling detailed microstructural analysis. The microscope 

depicts a cathode region of SOEC, consisting of a porous SFM10 electrode (Layer 1), a dense 

Sr/Fe/O-rich deposition layer (Layer 2), a porous GDC barrier layer (Layer 3), and a dense YSZ 

electrolyte (Layer 4). 

2.1.2.  Overview of the developed image processing workflow 

The automated image processing workflow for analyzing the FIB-SEM tomography datasets is 

organized into a series of systematic steps, as shown in Fig.2.1. This workflow combines 

advanced ML with traditional image processing methods. 
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Figure 2.1. Two-Stage Image Processing workflow for FIB-SEM Images Analysis 

 

2.1.3.   Tools and overview of the data processing and analysis 

The automated processing pipeline was implemented in Python 3.13.1, utilizing key libraries 

including OpenCV 4.11.0, Scikit-image 0.25.2, and Scikit-learn 1.7.0 for supervised machine 

learning with a Random Forest classifier. The approach for layer segmentation was inspired by 
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an example provided in Scikit-image documentation [118] (see Fig.2.2), which was adapted to 

the characteristics of our FIB-SEM image and the specific multi-layer structure of the SOEC 

electrode region. 

To evaluate and calibrate the workflow, a test dataset was first prepared. A total of 200 FIB-

SEM images were used. Pre-processing was first performed to correct curtaining artifacts using 

frequency domain filtering, then 10 representative images were manually annotated to generate 

training data for layer segmentation. The trained model was then used to predict the 

segmentation on the remaining images.  

To complete the pipeline, an additional noise reduction step was applied using a median filter. 

Previous studies on FIB-SEM images have estimated noise by selecting homogeneous patches 

from each layer to minimize the influence of texture. However, due to the complexity and strong 

texture in our dataset, homogeneous patches were rare and potentially unrepresentative. 

Therefore, we opted for direct median filtering. 

A traditional segmentation approach was then integrated to enable the feature extraction via 

multi-thresholding, allowing the quantification of morphometric parameters such as porosity 

and layer thickness.  

Once validated, the pipeline was applied to three experimental SOECs datasets: 434 images of 

a pristine cell, 653 and 484 images of cells operated for 100 hours and 200 hours, respectively.  

Data handling and numerical operations were supported by Numpy 2.2.6 and Pandas 2.2.3, 

while Matplotlib 3.10.1 and Seaborn 0.13.2 supported the visualization and statistical analysis.  

 

 

 

 

 

 

 

 

Figure 2.2. Training image: Annotated mask and predicted segmentation [118] 
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2.1.4. Quantitative evaluation metric 

To quantitatively assess the Random Forest performance for the layer segmentation, some 

metrics were computed. These include global accuracy and the Jaccard index (IoU). These 

indicators provide complementary insights supporting the visual assessment.  

 Accuracy  

The accuracy measures the proportion of correctly classified pixels (TP + TN) relative to the 

total number of pixels (TP + TN + FP + FN) across the entire image. 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
𝟖 

 

Where : TP = True Positives, TN = True Negatives, FP =  False Positives,  FN = False Negatives 

 Jaccard index 

The Jaccard index, also known as intersection over union (IoU), measures the overlap between 

predicted pixels and ground-truth pixels for each layer. It provides a spatially intuitive measure 

of segmentation quality. 

𝑱𝒂𝒄𝒄𝒂𝒓𝒅 𝒊𝒏𝒅𝒆𝒙 =  
|𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 ∩ 𝑮𝒓𝒐𝒖𝒏𝒅𝑻𝒓𝒖𝒕𝒉|

|𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 ∪ 𝑮𝒓𝒐𝒖𝒏𝒅𝑻𝒓𝒖𝒕𝒉|
𝟗 

The values of these metrics range from 0 to 1, where 1 indicates perfect agreement and values 

closer to 0 reflect poorer performance. 

 

PARTIAL CONCLUSION 

This chapter presented the experimental approach, where representative FIB-SEM images were 

carefully annotated to capture structural heterogeneity, providing a reliable basis for training 

the Random Forest classifier. Once trained, the model enables automated layer segmentation 

across both the test and the experimental datasets. Traditional image processing techniques 

were subsequently applied for noise reduction and feature segmentation. 
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CHAPTER 3: RESULTS AND DISCUSSION 

This chapter provides a detailed presentation of the developed pipeline and offers a 

comprehensive examination of the results achieved at each stage of the methodological 

approach.    

 3.1. Pipeline implementation on a single test image 

To illustrate the pipeline's functioning, we first applied it to a single FIB-SEM test image. The 

workflow begins with ML-based segmentation, which comprises a series of steps, including 

preprocessing.  

3.1.1  Machine Learning-based layer segmentation 

This section explains in (A) the pipeline used for the segmentation (see Fig.3.1) and in (B) the 

quantitative evaluation metric employed to assess its performance. 

A: Layer segmentation pipeline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. ML-based segmentation pipeline 



Results and Discussion 

 

 41

       a) Preprocessing: Curtaining artifact correction 

Curtaining artifacts in FIB-SEM imaging appear as vertical or horizontal streaks caused by 

uneven ion milling rates during sample preparation. These periodic intensity variations can 

obscure fine structural details and complicate the image segmentation. To mitigate this effect, 

a frequency domain correction was applied. A horizontal notch filter centered at the zero 

vertical frequency, followed by a Hann window, was applied in the Fast Fourier Transform 

(FFT) domain to reduce ringing effects. Fig. 3.2 shows an example of the artifact in layer 1 and 

the correction after filtering. This correction notably improves image quality, contributing to 

more reliable segmentation outcomes. 

     

                          

 

                                               

 

 

Figure 3.2. a) Unprocessed image with curtaining artifact and b) Corrected image 

       b) Data annotation and layer segmentation 

Precise annotation forms the foundation for robust supervised machine learning. In this study, 

10 representative images were manually annotated to capture the heterogeneity and challenges 

in layer discrimination, as depicted in Fig.3.3. The annotation was performed with attention to 

variations in texture, morphology, and intensity. This annotation assigns a corresponding 

structural class to each pixel. However, capturing the true boundary between layers 1 and 2 was 

challenging due to its poorly defined nature. 

 

 

 

 

 

 

Figure 3.3. a) original image and b) manual annotation 

a 

b 

a b 
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      c) Feature extraction and Random Forest training 

From the annotated image, a comprehensive set of pixel-wise features was extracted using the 

multiscale-basic-features function from the scikit-image library. This includes: local intensity 

and texture at multiple spatial classes. 

 A Random Forest classifier, using scikit-learn, was then trained on the combined feature set. 

The model learns to assign each pixel to its respective layer class across the diverse annotated 

dataset and then makes the prediction.  

The model captures approximately the overall macrostructural organisation. Especially for 

layer 2, the model struggles to find the right boundary. In addition, small patches of some layers 

appear embedded within others, likely due to overlapping intensity ranges and textural 

similarities. This challenge is mainly linked to the complexity of the images, see Fig.3.4. 

 

 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.4. Predicted image and isolation of each layer          

Prediction Annotation mask 

Layer 1 Layer 2 

Layer 3 Layer 4 
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B: Quantitative evaluation metrics 

The global accuracy and the Jaccard index (IoU) were computed. The quantitative assessment 

indicates an overall accuracy of 0.685, reflecting moderate effectiveness and some uncertainty 

in the prediction. At the layer level, layer 1 was well captured, while layer 2 continued to be the 

most challenging, showing a significantly lower value. Layers 3 and 4 yield intermediate results 

as summarized in Table 3.1.  

Table 3. 1. Accuracy and Jaccard Index per layer 

 

 

 

 

For further evaluation, the thickness of key layers was calculated column-wise by summing the 

pixels along the vertical axis and then averaging this value across the entire layer. Both annual 

measurements using GIMP, an image visualization software and automatic calculation in 

Python were performed. Table 3.2  summarizes the results obtained for layers 2 and 3. 

Table 3. 2. Quantitative comparison of manual and automatic layer thickness 

Thickness (pixels) Tool Layer 2 Layer 3 

Manual calculation GIMP (Measure tool) 38.2 77.58 

Automatic 
calcualtion 

Python (OpenCV 
script) 

52.8 73.36 

    
The automatic measurements are generally consistent with layer 3, but layer 2 shows higher 

values with automation. These gaps likely come from the limits of manual placement and 

segmentation boundaries.  

Despite these setbacks, enough structural specifics or technicalities are retained by the 

segmentation. With the automatic approach modelled for utilization on a large volume of 

images, statistically investigating the datasets alleviates defects and diminishes bias. 

3.1.2.  Traditional-based feature segmentation 

This section describes: (A) the preprocessing for noise reduction and (B) the feature 

segmentation using a multi-thresholding method, see Fig.3.5. 

Metric 
Global 
value 

Layer 1 Layer 2 Layer 3 Layer 4 

Accuracy 0.685         

Jaccard index   0.712 0.405 0.551 0.570 



Results and Discussion 

 

 44

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Traditional-based feature segmentation pipeline 

 

 A: Pre-processing: Noise reduction through filtering 

The application of median filtering proved effective in reducing noise. This effect can be 

observed by comparing the original and filtered images shown in Fig.3.6.  The choice of kernel 

size 3×3 enables control over the trade-off between noise suppression and detail preservation.  

               a                                                           b                                                        c 

  Figure 3.6. Noise reduction on 50×50 pixel patch using median filtering: a) 50×50 pixel 

image patch, b) Median-filtered patch using a 3×3  kernel, c) Median-filtered patch using a 

5×5  kernel. 

 

B: Multi-thresholding  

A multi-thresholding approach with four thresholds dividing the image into five classes was 

selected. The application of  Multi-Otsu thresholding effectively enhanced the separation of 

pores and materials, allowing clearer differentiation, as illustrated in Fig.3.8. Despite the 
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absence of distinct multiple bimodal peaks, this method addressed the gradual intensity 

heterogeneity present in the images. Fig.3.7 illustrates the basic histogram of pixel intensities 

and the same histogram with the threshold markers. 

 

 a                                                                      b 

Figure 3.7. a) pixel intensity distribution and in the first layer, b) same histogram with 

threshold  markers  

 

 

 

 

 

                                        a                                                                b 

 Figure 3.8. Representation of a small region from the original image and its corresponding 

segmentation: a) representative area, b) segmented image 

 

 3.2. Validation of the proposed workflow on the full test dataset and real datasets 

3.2.1. Validation on the full test dataset 

The developed pipeline was applied to over 200 images, enabling automatic quantification of 

porosity and thickness. The complete workflow, combining ML-based layer segmentation, 



Results and Discussion 

 

 46

traditional approach for porosity and thickness quantification, is summarized in Fig.3.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9.  Detail workflow for FIB-SEM image analysis 

For each segmented layer, the pore area was calculated as the percentage of pixels classified as 

pores relative to the total area of the layer.  

Fig.3.10 illustrates respectively the porosity distribution for layers and the thickness 

measurement for layers 2 and 3. 

Layer 1 shows the highest porosity (20%), which can be justified by the presence of more open 

areas compared with the other layers. Layer 2, initially a dense layer, reveals almost no 

detectable porosity, whereas layer 3 is moderately porous (14%). 

In terms of thickness, layer 2 averages around (45px) compared to layer 3, (70px). This is 

consistent with what can be visually observed in the original images. 
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       Figure 3.10. Porosity and thickness distribution across the test dataset 

3.2.2. Validation  on real datasets 

The same segmentation pipeline, from layer segmentation to feature segmentation, was reused 

for the three additional SOEC datasets: pristine cell, a 100-hour run cell,  and a 200-hour run 

cell. For each dataset, representative images were manually annotated and the model was 

trained and used for prediction following the same protocol, see Fig.3.11. 

 

    Figure 3.11. Pristine sample: a) original micrograph, b) ground truth mask and  

c) segmented image 

a)   Porosity  

The comparative analysis reveals that layer 4 exhibits a clear upward trend in porosity across 

the datasets. In contrast, the other layers display a similar trend but with more irregularities, as 

shown in Fig. 3.12. This inconsistency may be attributed to segmentation errors between certain 

layers. It may also be attributed to the fact that pores in these regions are relatively small 
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compared to the overall image resolution, leading to potential measurement errors. 

 

 

 

          Figure 3.12. Porosity distribution across layers under different cycle conditions  

   

         b)   Thickness 

Among the layers analyzed, layer 2 demonstrates more consistent and accurate segmentation 

across all datasets, providing a reliable basis for thickness comparison. For layer 2, the median 
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thickness is approximately 100 px in the pristine state, increases slightly to about 110 px after 

100 hours, then increases substantially to roughly 150 px after 200 hours, see Fig.3.13  

 

 

Figure 3.13. Thickness distribution across layer 2 and layer 3 under different cycle conditions 

 

The overall trend reveals a significant evolution in thickness over operational time, indicating 

the presence of material degradation or transformation processes in this layer. The layers that 

show a consistent trend can be considered as a reliable indicator of material changes due to 

aging. Conversely, layers with irregular trends highlight areas where segmentation accuracy 

may need improvement. 
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PARTIAL CONCLUSION 

The combined pipeline, using Random Forest for layer segmentation and thresholding for 

feature segmentation, was applied to multilayer FIB-SEM images. For layer partitioning, the 

model achieved a moderate accuracy of 0.68 with varying Jaccard indices across layers. Its 

application to pristine, 100-hour, and 200-hour SOEC-operated samples revealed consistent 

trends. Layer 4 showed a clear increase in porosity, whereas layers 1 and 3 exhibited similar 

but less regular porosity trends, likely due to segmentation challenges and small pore sizes 

relative to image resolution. Thickness analysis was focused on layer 2, which was well 

segmented across datasets. 
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GENERAL CONCLUSION AND PERSPECTIVES 

Image processing plays a central role in the quantitative analysis of microstructures. In the case 

of FIB-SEM images, the challenge lies in the high complexity of the data, requiring carefully 

designed methods to extract meaningful information. While deep learning methods have proved 

excellent in many cases, their computational cost and implementation complexity often limit 

their accessibility.  

This study shows the practical feasibility of automating the analysis of multilayer FIB-SEM 

images of the SOEC electrode catalyst part by utilizing traditional approaches and supervised 

machine learning. Based on computational efficiency, our workflow improves the accessibility 

of microstructural quantification in this research domain. 

The methodology involved labeling a representative dataset, training a Random Forest classifier 

to automatically identify the electrode layers and implementing a traditional segmentation 

approach to isolate porous regions. On the test set, the layer segmentation achieved an accuracy 

of 68%. Despite this moderate outcome,  the application of the entire developed pipeline on the 

large datasets allows us to identify meaningful trends in the microstructure. Its extension on 

real experimental datasets enabled monitoring the evolution of porosity and thickness with 

aging in some layers.  Specifically, layer 4 exhibited a clear increase in porosity during aging, 

while layer 2 was consistently well segmented across the datasets, from the pristine state to 

100h and 200h of operation. These observations are consistent with some expected physical 

degradation mechanisms. However, a deeper investigation by a material scientist would be 

required to fully interpret the underlying causes and the implications of these trends. In addition, 

the average processing time for examining 483 images was approximately 9 minutes. This 

emphasizes the pipeline’s practicality for regular utilization in research environments. 

Due to potential challenges in image resolution and segmentation errors, inconsistencies were 

identified in some layers across different datasets. Thus, improvements are needed. Future work 

should focus on refining the annotation protocol to enhance the reliability of labels. It should 

also explore advanced features to help the model better distinguish labels. Finally, methods 

combining machine learning and deep learning could be tested as long as computational 

efficiency and ease use are taken into account. 
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APPENDIX 

# Libraries 

import cv2 

import numpy as np 

import os 

from tqdm import tqdm 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from skimage.io import imread, imsave 

from skimage import feature, segmentation 

from skimage.future import predict_segmenter, fit_segmenter 

from sklearn.ensemble import RandomForestClassifier 

from functools import partial 

from skimage.filters import threshold_multiotsu 

from skimage.util import img_as_ubyte 

from skimage.color import gray2rgb, rgb2gray 

 

############################################################# 

 

# --- Mask creation --- 

 

def create_mask(image, layers): 

    """Create a mask for one image slice based on layer coordinates""" 

    mask = np.zeros_like(image, dtype=np.uint8) 

    for idx, (y_range, x_range) in enumerate(layers, start=1): 

        y_min, y_max = y_range 

        x_min, x_max = x_range 

        mask[y_min:y_max, x_min:x_max] = idx 

    return mask 

 

# --- Preprocessing --- 

def fft_filter(img, mask_h=2, mask_gap=5): 

    """Removes curtaining artifacts on FIB/SEM images using FFT filtering""" 

     

    img_h, img_w = img.shape 

    fft_img = np.fft.fftshift(np.fft.fft2(img)) 

    # Mask horizontal frequencies in the Fourier domain 
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    fft_img[int(img_h/2)-mask_h:int(img_h/2)+mask_h, 0:int(img_w/2-img_w*mask_gap/2/100)] = 0 

    fft_img[int(img_h/2)-mask_h:int(img_h/2)+mask_h, int(img_w/2+img_w*mask_gap/2/100):img_w] 

= 0 

    real_img = np.fft.ifftn(np.fft.ifftshift(fft_img)).real 

    real_img = real_img + np.abs(np.min(real_img)) 

    real_img = real_img / np.max(real_img) 

    real_img = img_as_ubyte(real_img) 

    return real_img 

 

# --- Feature extraction --- 

def extract_features(image, sigma_min=1, sigma_max=16): 

    """Extract multiscale features for machine learning-based segmentation""" 

 

    features_func = partial( 

        feature.multiscale_basic_features, 

        intensity=True, 

        edges=False, 

        texture=True, 

        sigma_min=sigma_min, 

        sigma_max=sigma_max, 

        channel_axis=None) 

    return features_func(image) 

 

# --- Model training --- 

def training_model(image, mask, sigma_min=1, sigma_max=16): 

    """Train Random Forest model on a single image and its mask""" 

     

    image_filt = fft_filter(image) 

    feats = extract_features(image_filt, sigma_min, sigma_max) 

    model = RandomForestClassifier(n_estimators=100, max_depth=100, max_samples=0.05, n_jobs=-

1) 

    model = fit_segmenter(mask, feats, model) 

    print("Model training complete.") 

 

# --- Visualization --- 

    fig, axes = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True) 

 

    axes[0].imshow(image_filt, cmap='gray') 

    axes[0].axis('off') 
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    axes[0].set_title('Original image') 

    axes[1].imshow(segmentation.mark_boundaries(image_filt, mask, mode='thick')) 

    axes[1].contour(mask) 

    axes[1].axis('off') 

    axes[1].set_title('Label mask') 

    axes[2].imshow(predict_segmenter(feats, model)) 

    axes[2].axis('off') 

    axes[2].set_title('Predicted result') 

 

    plt.tight_layout() 

    plt.show() 

 

    return model 

     

# --- prediction --- 

def predict_segmentation(image, model): 

    image = fft_filter(image) 

    features = extract_features(image) 

    predicted_mask = predict_segmenter(features, model) 

    return predicted_mask 

 

# --- Visualization --- 

def visualize_prediction(image, predicted_mask): 

    """Display original image with predicted segmentation""" 

    fig, axes = plt.subplots(1, 2, figsize=(12, 5), sharex=True, sharey=True) 

    axes[0].imshow(segmentation.mark_boundaries(image, predicted_mask, mode='thick')) 

    axes[0].set_title('Segmentation Boundaries') 

    axes[0].axis('off') 

    axes[1].imshow(predicted_mask, cmap='viridis') 

    axes[1].set_title('Predicted Segmentation') 

    axes[1].axis('off') 

 

    plt.tight_layout() 

    plt.show() 

 

 

 

### Porosity and thickness calculation functions 
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# --- Common function for Porosity calculation --- 

 

def process_layer(model, max_layer, fixed_thresholds, idx_range, 

                  save_csv_path="results.csv"): 

    porosity_list = [] 

    thickness_list = [] 

    y_indices = [] 

 

    for y in tqdm(idx_range): 

        #test_img = stack[:, y, :]     

        test_img = load_image(y)       

        result = predict_segmentation(test_img, model) 

 

        cur_porosity=[] 

        cur_thickness=[] 

 

        for label_layer in range(max_layer): 

            label_layer = label_layer+1 #label_layer = [1,2,3,...] 

            mask_layer = (result==label_layer) 

             

            # Isolate layer of interest (label_layer) 

            layer_img = test_img.copy() 

            layer_img[result != label_layer] = 255 

     

            # Median filter  

            median_filtered = cv2.medianBlur(layer_img, 5) 

             

            # Multi-otsu thresholding for segmentation 

            layer_binary = np.digitize(median_filtered, bins=fixed_thresholds) 

     

            # Binary mask (0 for "pore") 

            mask_binary = np.ones_like(layer_binary) * 255 

            mask_binary[layer_binary == 0] = 0 

     

            area_layer = np.sum(mask_layer) 

            area_pores = np.sum(mask_binary == 0) 

            porosity = round((area_pores / area_layer) * 100, 2) if area_layer > 0 else 0 

            cur_porosity.append(porosity)     
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            ################################################### 

             

            # Thickness per column (sum along vertical axis=0) 

             

            thickness_per_column = np.sum(mask_layer, axis=0) 

     

            # Mean thickness for the slice, rounded to 2 decimals 

            average_thickness = np.round(np.mean(thickness_per_column), 2) 

             

            cur_thickness.append(average_thickness) 

         

        porosity_list.append(cur_porosity) 

        thickness_list.append(cur_thickness) 

        y_indices.append(y) 

 

    # Save porosity 

    layer_num1 = [] 

    for i in range(max_layer): layer_num1.append('layer'+str(i+1)+' [%]') 

    df1 = pd.DataFrame(porosity_list, index=y_indices, columns=layer_num1) 

    

    df1.to_csv(save_csv_path[:-4]+'_porosity.csv', index=False) 

    print(f"Porosity saved") 

    print(df1.describe()) 

 

    #### save thickness 

    layer_num2 = [] 

    for j in range(max_layer): layer_num2.append('layer'+str(j+1)+' [px]') 

    df2 = pd.DataFrame(thickness_list, index=y_indices, columns=layer_num2) 

    

    df2.to_csv(save_csv_path[:-4]+'_thickness.csv', index=False) 

    print(f"thickness saved") 

    print(df2.describe()) 

     

    return df1, df2 

 

Plotting functions 

#### Porosity 

 

def plot_porosity_comparison(csv_paths, *layer_names, ylim=None): 
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    """ 

    Plot porosity distribution comparison for multiple layers from a single CSV file. 

    """ 

 

    all_data = [] 

    for path in csv_paths: 

        df = pd.read_csv(path) 

        for layer_name in layer_names: 

            if layer_name not in df.columns: 

                raise ValueError(f"'{layer_name}' not found in {path}") 

 

        # Melt data to long format for seaborn 

        df_melted = pd.melt(df[list(layer_names)]) 

         

        # Rename columns for seaborn 

        df_melted.columns = ['Layer', 'Porosity (%)'] 

 

        all_data.append(df_melted) 

 

    df_long = pd.concat(all_data, ignore_index=True) 

 

    # Remove '[%]' suffix for cleaner x-axis labels 

    df_long['Layer'] = df_long['Layer'].str.replace(r'\s*\[%\]', '', regex=True) 

 

    sns.set(style="whitegrid") 

    plt.figure(figsize=(6, 6)) 

 

    palette = ['#03fcc2', '#ff7f0e', '#033dfc']             

 

    ax = sns.boxplot( 

        x='Layer', 

        y='Porosity (%)', 

        data=df_long, 

        palette=palette, 

        width=0.5, 

        linewidth=1.5 

    ) 

 

    ax.set_xlabel("Layer", fontsize=12, fontweight='bold') 
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    ax.set_ylabel("Porosity [%]", fontsize=12, fontweight='bold') 

 

    ax.tick_params(axis='x', colors='black', width=0.8) 

    for label in ax.get_xticklabels(): 

        label.set_fontweight('normal') 

        label.set_color('black') 

        label.set_fontsize(10) 

 

    ax.tick_params(axis='y', colors='black', width=0.8) 

    for label in ax.get_yticklabels(): 

        label.set_color('black') 

        label.set_fontweight('normal') 

        label.set_fontsize(10) 

 

    if ylim: 

        ax.set_ylim(ylim) 

 

    ax.yaxis.grid(True, color='gray', linestyle='--', linewidth=0.7, alpha=0.6) 

    sns.despine(left=False, bottom=False) 

 

    ax.set_title("Porosity Distribution", fontsize=14, fontweight='bold') 

 

    # Remove legend if present 

    if ax.get_legend() is not None: 

        ax.get_legend().remove() 

 

    plt.tight_layout() 

    plt.show() 

 

 

 

 

 

 

 

 

 

 

   Code part 
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 #--- Loading --- 

stack_path = r"C:\Users\LENOVO\Desktop\MON DOSSIER MEMOIR H2\image_stack_1.tiff" 

stack = imread(stack_path)  

 

def load_image(cur_num): 

    img = stack[:, cur_num, :] 

    return img 

 

cur_num = 900 

cur_img = load_image(cur_num) 

print(cur_img.shape) 

plt.imshow(cur_img, cmap='gray') 

plt.axis('off') 

plt.show() 

 

 

 #--- image annotation --- 

layer_definitions = { 

    900: [((20, 260), (20, 1850)), 

          ((290, 330), (20, 1850)), 

          ((350, 420), (20, 1850)), 

          ((440, 465), (20, 1850))] 

} 

 

#--- Model training--- 

# Extract the single slice image from your stack  

y_index = 900 

image = stack[:, y_index, :] #load_image(y_index) 

 

# Create the mask for this slice 

mask = create_mask(image, layer_definitions[y_index]) 

 

# Train the model with the single image and mask 

trained_model = training_model(image, mask) 

 

 

#--- Porosity and thickness calculation--- 

result_path= r"C:\Users\LENOVO\SOFC Data set\SAVE_IMAGE" 

prefix = 'ttest_image_' 
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filename = prefix + "_results.csv" 

fixed_thresholds = threshold_multiotsu(load_image(900), classes=5) 

y_range = range(800,1001) 

 

prefix='test_image_' 

porosity, thickness = process_layer( 

    trained_model, max_layer=3, 

    fixed_thresholds=fixed_thresholds, 

    idx_range=y_range, 

    save_csv_path = os.path.join(result_path, filename) 

) 

 

#--- Plotting--- 

 

plot_porosity_comparison( 

    [r"C:\Users\LENOVO\SOFC Data set\SAVE_IMAGE\test_image__results_porosity.csv"], 

    "layer1 [%]", "layer2 [%]", "layer3 [%]", 

    ylim=(0, 40) 

) 

 

plot_thickness_comparison( 

    [r"C:\Users\LENOVO\SOFC Data set\SAVE_IMAGE\test_image__results_thickness.csv"], 

     "layer2 [px]", "layer3 [px]", 

    ylim=(0, 100) 

) 

 


