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ABSTRACTS

This study focuses on a comparative analysis of groundwater recharge over Africa using
atmospheric data from the reanalysis dataset originating from GSWP3 project and projections
dataset originating from the CORDEX covering the common period from 2006 to 2014. The
aim is to understand the reasons for the discrepancies between the recharge estimates obtained
from these two types of datasets based on the output of the CLMS5 and examine their
implications for water resource assessment. The first step in the analysis was to estimate
groundwater recharge using reanalysis data and projected data separately. This comparison
revealed significant differences between the two sources. In order to better understand the origin
of these differences, a study of the components of the water balance was conducted. This
showed that precipitation and evapotranspiration are the main determinants of groundwater
recharge. The differences observed between the results are therefore largely due to differences
in these two hydrological components between the datasets considered. The variability in
precipitation can be explained by the intrinsic nature of the data, as it was directly incorporated
into the recharge calculation without first being used by CLMS5. This characteristic contributes
to accentuating the differences between reanalyses and projections. Furthermore, examination
of the meteorological variables used as model inputs revealed significant differences between
the data from reanalyses and those from climate projections. These discrepancies raise
questions about the reliability of reanalysis data and highlight the high degree of uncertainty
associated with them. A further analysis of the characteristics of the two datasets also showed
that they differ in terms of spatial and temporal resolution. As the model was run without
harmonising these resolutions, this methodological difference is likely to be an additional factor
explaining the extent of the discrepancies observed. From this study, further recommendations
are observed. Firstly, a detailed verification process and validation of the weather atmospheric
dataset, to further continue the investigation related to meteorological variables influencing the
evapotranspiration, and secondly, to analyse the impact of using the same resolution datasets

for the input of the CLMS.

Keywords: Groundwater recharge Estimation; Projected dataset; Reanalysis dataset;

Uncertainties;
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RESUME

Cette ¢tude porte sur I’analyse comparative de la recharge en eau souterraine sur I’ Afrique a
partir de données atmosphériques issues de données réanalysées originaire du projet GSWP3 et
de données de projections climatiques originaire du CORDEX, couvrant la période commune
de 2006 a 2014. L’objectif est de comprendre les raisons des divergences constatées entre les
estimations obtenues a partir de ces deux types de données basées sur les variables de sortie du
CLMS et d’en examiner les implications pour I’évaluation des ressources en eau. La premicre
¢étape de I’analyse a consisté a estimer la recharge en eau souterraine en utilisant séparément les
données de réanalyse et les données projetées. Cette comparaison a permis de mettre en
évidence des écarts notables entre les deux sources. Afin de mieux cerner ’origine de ces
différences, une étude des composantes du bilan hydrique a ét¢ menée. Celle-ci a montré que
les précipitations et 1’évapotranspiration sont les principaux déterminants de la recharge en eau
souterraine. Les écarts observés entre les résultats proviennent ainsi, en grande partie, des
différences existant dans ces deux composantes hydrologiques entre les jeux de données
considérés. La variation observée au niveau des précipitations peut étre expliquée par la nature
inhérente des données, vu que celles-ci ont été insérées directement dans le processus de calcul
de la recharge en eau souterraine sans é&tre préalablement utilisées par CLMS. Cette
caractéristique contribue a I’accentuation des différences entre données issues des réanalyses et
celles projetées. De plus, ’analyse des variables météorologiques utilisés comme entrée du
model réveles d’important différence entre les deux jeux de données. Ces divergences soulévent
des questions quant a la fiabilité des données de réanalyse et mettent en évidence le degré éleveé
d’incertitude qui leur est associ¢. Une analyse plus approfondie des caractéristiques des deux
jeux de données a également montré qu’ils différent en termes de résolution spatiale et
temporelle. Comme le modele a été exécuté sans harmonisation préalable de ces résolutions,
cette différence méthodologique constitue probablement un facteur supplémentaire expliquant
I’ampleur des écarts observés. De cette ¢tude, plusieurs recommandations peuvent étre
formulées. Premic¢rement, la mise en place d’un processus rigoureux de vérification et de
validation des données atmosphériques utilisées, pour mieux continuer l’investigation
concernant les variables météorologiques influencant 1’évapotranspiration, et deuxiemement,
d’analyser I’impact de 1’utilisation des mémes résolutions des jeux de données d’entrée du

CLMs5.

Mots-clés : Estimation de la recharge en eau souterraine ; Jeux de données projetés ; Jeux de

données réanalysés, Incertitudes.
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Comparative Analysis of Groundwater Recharge Simulated Using Historical Observed and Projected
Atmospheric Forcing Data

GENERAL INTRODUCTION

Climate change is regarded as one of the significant challenges of the 21st century (
Wright, 2008). The International Panel on Climate Change (IPCC) defined it as a change in the
state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean
and/or the variability of its properties and that persists for an extended period, typically decades
or longer (IPCC, 2007). Climate change may result from natural internal processes or external
forcing such as solar cycle variations, volcanic eruptions, and long-term shifts in land use or
atmospheric composition. According to the United Nations Framework Convention on Climate
Change (UNFCCC), it specifically refers to changes in the climate that are directly or indirectly
caused by human activities altering the global atmosphere, beyond natural climate variability
observed over comparable periods (UNFCC,2015). This places significant emphasis on the
notion of human responsibility in regard to the alteration of the Earth's climate system.
Scientists working under the [IPCC have shown that the rise in global warming is mainly driven
by the increase in greenhouse gas (GHG) emissions (IPCC, 2021). These include carbon
dioxide (CO2), methane (CHa4), nitrous oxide (N20), chlorofluorocarbons, and water vapour
(H20) as well. Such emissions come from human activities like the burning of fossil fuels (coal,
oil, etc.), agriculture, deforestation, and industrial processes. Once released into the atmosphere,
they form a barrier that traps the heat emitted by the Earth, preventing it from escaping into
space. This mechanism reduces the loss of heat and leads to a gradual increase in the planet’s
temperature. The impacts of this warming are already visible through indicators such as rising
sea levels, more frequent extreme weather events, growing water scarcity, and loss of
biodiversity (IPCC, 2021). Climate change is therefore a serious threat to human health, food
security, and ecosystems worldwide. Its effects are not limited to the present but also
compromise future generations' lives. To face these challenges, the international community
has taken action through major conferences and agreements. One key milestone was the Paris
Agreement, adopted by 196 countries during the UN Climate Change Conference under the
Conference of the Parties 21 (COP21) in Paris on 12 December 2015. This treaty aims to keep
the rise in global average temperature “well below 2°C above pre-industrial levels” and to
continue efforts to limit it to 1.5°C (Barston, 2019), as recommended by the IPCC. Since 2020,
Nationally Determined Contributions, known as NDCs, have been submitted by countries to
assess their national efforts and long-term decarbonization strategies (UNFCCC, 2015). A key

element of the mitigation strategies is the transition from fossil fuels to renewable energy
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sources, such as solar, wind, and clean hydrogen (IRENA, 2022). In this regard, regional
initiatives have been undertaken. For instance, the project Ho ATLAS constitutes the initial
phase of a joint initiative by the German Federal Ministry of Education and Research (BMBF)
and African partners in the Sub-Saharan region (SADC and ECOWAS countries). The project
is led by the West African Science Service Centre on Climate Change and Adapted Land Use
(WASCAL), the Southern African Science Service Centre for Climate Change and Adaptive
Land Management (SASCAL), and the Forschungszentrum Julich Center based in Germany.
The objective of the project is to explore the potential of green hydrogen production from the
substantial renewable energy sources within the sub-regions. The project’s findings are
presented in the form of an interactive atlas map, which serves as a decision-support tool for

policymakers, investors, researchers, and all stakeholders in both Germany and Africa

(https://www.h2atlas.de/en/).

Green Hydrogen is produced through water electrolysis, whereby an electric current is
used to split water into hydrogen and oxygen. This process does not emit greenhouse gas,
provided the electricity used to power the process is entirely from renewables (Oliveira et al.,
2021). The use of green hydrogen is versatile, spanning various sectors. It can serve as a
chemical feedstock, be burned for heat, used as a reagent for fuel production, or converted back
to electricity through fuel cells (Oliveira et al., 2021). Green hydrogen's role extends to long-
term energy storage, with tanks or underground caverns serving as storage capacity. This makes
it a sustainable technology for energy storage across seasons (Oliveira et al., 2021). The reaction
stoichiometry indicates that the production of 1kg of Hydrogen (H2) requires approximately 9
liters of water (H20O) (Beswick et al., 2021). Ensuring a sustainable and reliable water supply
within the region is imperative for the sustainable green hydrogen production in Africa. It is
estimated that the underground water resources of Africa are 20 times larger than surface water
resources, including lakes, rivers, and reservoirs (Cuthbert, 2019). Due to its capacity to respond
more slowly to weather changes, groundwater serves as a natural reserve during extreme
conditions, such as droughts (Calow et al., 2010; MacDonald et al., 2012). Consequently,
groundwater commonly represents the only year-round freshwater source and is generally more
reliable than other types of water resources (Cuthbert, 2019). These characteristics make
groundwater an attractive and essential source for the sustainable production of green hydrogen

in Africa, as well as for other applications, including drinking water, irrigation, and industry.

Groundwater recharge is widely regarded as a pivotal indicator of groundwater

availability and renewability, both of which are deemed to be critical factors in supporting

2
Amidou TIEMTORE ,2024/2025


https://www.h2atlas.de/en/

Comparative Analysis of Groundwater Recharge Simulated Using Historical Observed and Projected
Atmospheric Forcing Data

sustainable green hydrogen production (Ferreira et al., 2024). It is defined as the replenishment
of an aquifer by the infiltration of water from precipitation, surface water bodies, or other
sources. However, the assessment of groundwater recharge remains a complex task, especially
in regions like Africa, where hydrological diversity is high. This complexity arises from limited
data availability, intricate subsurface dynamics, and the significant influence of localised factors
such as climate variability, land use, and soil composition (MacDonald et al., 2021). Climate
and hydrological models often produce widely varying recharge estimates, driven by
differences in spatial resolution, input data, and assumptions about surface—subsurface
interactions (Allen et al., 2010). Moreover, several methods can be used to determine the
groundwater recharge, and according to Wang et al. (2010a), groundwater can be quantified
using several methods such as direct measurement, water balance methods, Darcian
approaches, tracer techniques, and empirical methods (Wang et al., 2010a). This study will

focus on the water balance approach, which is based on the mass conservation law.

The use of land surface models, such as the Community Land Model version 5 (CLMS),
relies strongly on his input dataset which are the soil texture, the land cover and the availability
of atmospheric forcing data, which itself is influenced by climate change. In this context, Bayat
et al. (2023) conducted a study entitled “Implications for sustainable water consumption in
Africa by simulating five decades (1965-2014) of groundwater recharge”, where before
calculating the groundwater sustainable yield, they used the output of CLMS5 simulations, and
applied the water balance approach to estimate the long-term average (LTA) of groundwater
recharge across the African continent, based on the reanalysis atmospheric dataset covering the

period from 1965 to 2014.

Similarly, the Project H» ATLAS employed the water balance approach to estimate
future groundwater recharge for a prospective green hydrogen project or any associated project
utilising groundwater under an optimistic scenario (RCP 2.6) and a pessimistic scenario (RCP
8.5) from 2015 to 2100. These estimates are derived from atmospheric scenario forcing data
originating from the Coordinated Regional Downscaled Experiment (CORDEX) and serve as

inputs to the CLMS.

To date, no study has explored the difference between the two simulated recharge
origins from the two atmospheric forcings (i.e., reanalysis and projected). Therefore, to ensure
the long-term viability of green hydrogen production in Africa, as well as providing sustainable

irrigation for agriculture to secure food security, promoting a sustainable water supply for
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drinking, improving Africa's resilience to climate change and energy crisis; it is crucial to
compare the groundwater recharge during the overlapping periods (i.e. from 2006 to 2014)
between these two datasets, and then understand how projected recharge patterns can differ

from historical or reanalysis conditions and what would be the possible reasons for this are.

The main objective of our study is to understand how projected groundwater recharge
estimates differ from estimates driven by the reanalysis dataset, over a common period from
2006 to 2014, and find the possible reasons behind such discrepancies. The outcomes of this
work can enhance the comprehension of the influence of datasets on groundwater recharge
simulations, thereby improving the accuracy of the estimation process, which is essential for
water resources management, as well as future projects based on water availability, like green

hydrogen in Africa. This will contribute to Africa's resilience to Climate change.

The structure of this study is outlined as follows: Chapter 1 introduces the concept of
groundwater and previous research, which encompasses the various studies carried out. Chapter
2 describes the materials and methods employed. Chapter 3 presents and discusses the study's
results. Finally, we give some limitations, recommendations, and future work as a general

conclusion.
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CHAPTER 1: LITERATURE REVIEW
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CHAPTER 1: LITERATURE REVIEW

Introduction

The present chapter offers a comprehensive overview of the subject of groundwater
recharge, in conjunction with a survey of extant studies on the estimation of groundwater
recharge within the African domain, employing a range of recharge estimation methodologies,

whether as a standalone approach or in a mixed configuration.

1.1 Overview of Groundwater Recharge

This part provides a comprehensive overview of GWR, encompassing its definition to the

types of groundwater and their significance, and finally explores the current challenges it faces.

According to MacDonald et a/(2012), GWR can be understood as the process through which
underground aquifers are replenished, either naturally or artificially. Natural recharge occurs
when precipitation or surface water slowly infiltrates the soil and permeable rock layers until it
reaches the groundwater table. This process is often linked to rainfall or snowmelt gradually
filtering through the subsurface. In contrast, artificial recharge refers to the deliberate
introduction of surface water, treated wastewater, or rainwater into aquifers. This is achieved
through carefully designed civil and hydraulic infrastructures that guide and control the flow of
water underground, sustaining aquifer sustainability.

Groundwater is a vital resource for human societies, and human daily activities like
agriculture, industry, as well as the ecosystems, particularly in regions with limited rainfall.
Studies indicate that it provides at least part of the drinking water for nearly half of the world’s
population and contributes to about 43% of irrigation needs globally (Adhikari et al., 2022a;
Gebreslassie et al., 2025). Furthermore, around 2.5 billion people depend entirely on
groundwater to meet their daily water demands (Gebreslassie et al., 2025). Overall,
groundwater represents one of the most important freshwater reserves, accounting for
approximately 33% of global water withdrawals (Ochwo et al., 2025). It is essential not just for

practical uses, but also for maintaining environmental balance and helping societies adapt to
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changes in climate (Ochwo et al., 2025). As a key water resource in Africa, groundwater is a
strategic resource due to its stability under variable climate conditions and its relatively high

quality (Wang et al., 2010b).

However, the excessive extraction of water and the unsustainable exploitation of
aquifers to satisfy water demands, in conjunction with the repercussions of climate change, are
driving widespread declines in groundwater levels. This depletion leads to multiple
consequences, including falling water tables, reduced streamflow and lake levels, land
subsidence, rising extraction costs, deteriorating water quality, and ecological damage. The rate
of groundwater depletion is accelerating on a global scale, and its impacts are becoming
increasingly pronounced, underscoring the imperative need for impartial analysis and the
exploration of sustainable solutions. Consequently, groundwater depletion has emerged as a
matter of global concern (Gebreslassie et al., 2025). Moreover, groundwater is increasingly
threatened by pollution, climate change, and inadequate management. Over the past three
decades, global average temperatures have risen by approximately 1°C, with some regions
experiencing increases of up to 3°C in minimum temperatures. Concurrently, precipitation
patterns have become highly variable across both space and time. These climatic shifts exert
significant pressure on the hydrological cycle, with direct implications for groundwater

availability and sustainability (Ochwo et al., 2025).

In response to these growing challenges, it is imperative to develop a comprehensive
understanding and quantification of GWR to facilitate the formulation of sustainable
groundwater management strategies. Consequently, a plethora of methodologies have been
employed globally to estimate recharge rates under a wide range of climatic and geological
conditions.

GWR estimation refers to the process of measuring how much water seeps into
underground reservoirs from various origins, such as direct recharge from precipitation,
localised recharge from depressions (e.g. ponds) and rivulets, indirect recharge from rivers,
irrigation losses, and urban recharge (Bennett et al., 2024; Ferreira et al., 2024; Kumar et al.,
2021; Rath & Hinge, 2024). However, quantifying groundwater recharge at a larger scale
remains a significant challenge due to the scarcity of in situ observations, the complexity of
recharge processes, and the influence of climate variability and human activities on
groundwater dynamics (Belay et al., 2024; Ferreira et al., 2024). Despite these challenges, many

methods have been used over time to estimate it. A variety of methods used to estimate both
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natural and artificial recharge are documented in the literature (Gebreslassie et al., 2025; Wang
et al., 2010b). The selection of an appropriate method depends on several factors, including: (1)
data availability, (2) local geographic and topographic conditions, (3) spatial and temporal
scales required for the analysis, and (4) reliability of results for the specific context (Bennett et
al., 2024; Gebreslassie et al., 2025). A recent study published in 2025 reviewed 76 articles
selected among 166 articles to bring out the main methods used for groundwater recharge
estimation, in addition to those presented in the literature (Gebreslassie et al., 2025).
The following techniques are utilised in order to estimate GWR:

a) water table fluctuation (WTF),

b) water budget,

c) Darcy’s law,

d) empirical relationships,

e) tracer techniques, and

f) groundwater models.
In the subsequent section of the thesis, we will explore the recent studies conducted regarding

GWR worldwide, and especially in Africa.

1.2 Previous Studies on Groundwater Recharge (GWR) estimation.

GWR is an important and determining factor in sustainable water management, especially in
dry areas or areas with limited rainfall. However, its estimation raises significant challenges
due to hydro-climatic conditions and a lack of data. Despite those challenges, scientists across
the world have made important progress concerning the recharge estimation, encompassing
various spatial resolutions as well as various study areas, either catchment, countries or at the
continental scale. This was done by using numerous methodological approaches.

Kumar et al. (2021) review the widely used methods for recharge estimation, and then
highlight that recharge estimates are often subject to important uncertainties, which may come
from incorrect assumptions, measurement errors, unreliable or limited data, and challenges
linked to the parameterisation. Such uncertainties can strongly influence the results. They
emphasise that choosing an appropriate method depends on factors including temporal and

spatial resolution, its objectives, the hydrogeological characteristics of the area, and data
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availability and reliability. Then, they suggest the WTF and water balance methods as the
suitable choice regarding Indian conditions.

Rath and Hinge (2024) utilised the WetSpass model to assess the viability of Managed
Aquifer Recharge (MAR) in the semi-arid Dwarkeswar River basin of India, with the objective
of supporting groundwater sustainability. The analysis revealed substantial spatial variation in
runoff and recharge potential across the basin. Through the integration of hydrological
modelling with spatial decision-making tools, the study identified areas exhibiting varying
degrees of suitability for MAR, ranging from unsuitable to highly suitable zones. Key factors
influencing recharge potential included geological conditions, soil thickness, slope, and runoff
availability. The findings underscore the significance of employing integrated modelling
approaches to guide sustainable groundwater management, particularly in drought-prone
regions where water security is critical for achieving long-term development objectives.

Belay et al. (2024) work on evaluating remote sensing based on hydro-meteorological
data for estimating groundwater recharge in areas with limited data. They study compared
spatially distributed recharge estimates obtained from the WetSpass model with point-based
estimates derived from the WTF and Chloride Mass Balance (CMB) methods.The results
showed average annual recharge values of 420 mm/year using the WTF method, 308 mm/year
using the CMB method, and 365 mm/year using WetSpass. A strong correlation of 72% between
the WTF and WetSpass estimates highlighted the reliability of remote sensing data in capturing
groundwater recharge dynamics.

Similarly, Noori et al. (2023) evaluated groundwater recharge across Iran using a dataset
of groundwater abstractions collected between the period ranging from 2002 to 2017. With
more than 80 million people relying on aquifers sustained by recharge, Iran is experiencing
severe groundwater depletion. Their findings indicate a significant decline in recharge of
approximately 3.8 mm per year, primarily due to unsustainable water and environmental
resource management and the impacts of climate change. From the water balance analysis, the
average annual groundwater recharge, around 40 mm/year, exceeds the average annual surface
runoff of roughly 32 mm/year, underscoring the vital role of surface water in maintaining
groundwater levels.

Hepach et al. (2024) examine GWR in the Western Mountain Aquifer (WMA), which
is a vulnerable karst aquifer spanning Israel and the West Bank. Recharge was estimated using
three approaches: SWAT (Soil and Water Assessment Tool), PIM (Process-Based Infiltration
Model), and empirical regression models. The findings exhibit consistent results between 32 to

36% of annual precipitation. Simulations encompassed the period 1981-2001 as the baseline
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and 2051-2070 for future climate projections. Under climate change scenarios, SWAT predicted
a 23% decline in recharge, while PIM estimates a 9% decrease, reflecting key differences in
how infiltration and surface runoff are modelled. All recharge outputs were integrated into the
MODFLOW model to evaluate impacts on groundwater storage. The findings emphasise the
importance of ensemble modelling for reducing uncertainty and guiding sustainable
groundwater management in climate-sensitive karst environments.

Over numerous approaches to groundwater recharge estimation, some tools have been
developed to facilitate and support the water balance models. It is the case of the waterpyBal
based on Python and developed by Assanzadeh et al. (2024). This tool can be used for
groundwater recharge assessment, urban hydrology, and water resources planning.

With respect to the climate change impact affecting GWR, Adhikari et al.(2022b)
mainly focused on reviewing studies that focus both on qualitative and quantitative aspects of

groundwater, which allows for taking climate change into consideration.

After examining GWR studies at the global level, it is now essential to focus on the

African domain, a vulnerable continent, and the central focus of our study.

Larbi et al. (2020) used the SWAT model, along with daily climate data, soil data, as
well as land cover maps to assess the impact of land use change on water balance components
of a WASCAL key site located in Ghana. This was done under two scenarios: Afforestation and
Business as usual. They found out that the land cover is changing rapidly. Under the Business
As Usual (BAU) scenario, the mean annual water yield is projected to increase by 9.1%, while
evapotranspiration decreases and groundwater recharge rises. Conversely, the afforestation
scenario results in a 2.7% decrease in water yield, an increase in evapotranspiration, and a more
pronounced rise in groundwater recharge compared to BAU. These findings underscore the
substantial influence of land-use dynamics on water resource availability and highlight the
critical need to integrate land-use planning into sustainable catchment management strategies.

Hamma et al. (2024) work on the hydro-chemical characteristics and the quality of
underground water in the arid Ain Sefra region of southwest Algeria and used a multivariate
statistical technique, geochemical modelling, and water quality indices. Their study revealed
that a high proportion of the groundwater is suitable to meet human consumption; in fact,
97.68% of groundwater samples are suitable, while 2.32% are not. The groundwater was also
found to be appropriate for agricultural use, even though it emphasises about the salinity

control.
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Cook et al. (2022) employed high-resolution climate models combined with land
surface simulations to investigate the impacts of climate change and rising atmospheric CO:
concentrations under the RCP8.5 scenario on the West African monsoon, rainfall patterns,
evapotranspiration, and groundwater recharge. As a result, there is an enhanced summertime
Saharan heat low, leading to an overall increase in monsoon rainfall. The eastern Sahel
experiences a significant increase in precipitation (+12.2%), whereas the western Sahel
becomes drier (—13.5%). Evapotranspiration decreases across much of West Africa due to the
COs: fertilisation effect, which reduces plant transpiration. We retain from this work that
groundwater recharge increases, mainly driven by higher soil moisture resulting from increased
rainfall and reduced transpiration.

West et al. (2023) examined global-scale groundwater recharge compared to 100 field-
based estimates and revealed that there is a disagreement in recharge estimates among the
models across the majority of Africa. Models incorporating strong climatic controls tend to
perform better and align more closely with observed data, yet there remains considerable
variability in how well each model matches ground-based measurements.

MacDonald et al. (2012) present the first continent-wide quantitative maps of
groundwater storage and potential borehole yields across Africa. Groundwater storage was
estimated by combining the saturated thickness and effective porosity of aquifers throughout
the continent. The total volume of groundwater is estimated at 0.66 million km?® (range: 0.36—
1.75 million km?), which is more than 100 times the annual renewable freshwater resources and
approximately 20 times the volume of freshwater stored in African lakes. However,
groundwater is unevenly distributed across the continent. The largest reserves are concentrated
in the sedimentary aquifers of North Africa, particularly in Libya, Algeria, Egypt, and Sudan.
(MacDonald et al., 2012)

MacDonald et al. (2021) also present the first ground-based, continent-wide map of LTA
groundwater recharge rates across Africa for the period 1970-2019, derived from 134 field-
based estimates and statistical upscaling. The analysis includes natural diffuse and local focused
recharge, while excluding recharge from large rivers, lakes, and irrigation leakage. The results
show that measurable recharge occurs across most African environments:

* In arid regions, average decadal recharge is approximately 60 mm/decade
(range: 30—140 mm)
* In semi-arid regions, it is around 200 mm (range: 90-430 mm)
The average decadal recharge across Africa is estimated at 15,000 km? (range: 4,900—45,000

km?), which accounts for about 2% of the continent’s total estimated groundwater storage. A
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linear mixed model indicates that, at the continental scale, LTA rainfall is the only significant
predictor of recharge. The inclusion of other climatic or terrestrial variables does not improve
the model. However, kriging analysis reveals spatial dependency up to 900 km, suggesting that
large-scale factors influence recharge patterns. The study highlights a stark contrast between:

» High-storage, low-recharge sedimentary aquifers in North Africa

» Low-storage, high-recharge weathered crystalline aquifers in tropical Africa
This complementary distribution enhances water security across the continent, as countries with
low recharge often possess large groundwater reserves, while those with limited storage benefit
from frequent and regular recharge.

Bennett et al. (2024) used two methods to estimate the groundwater recharge over the
northern and southern slopes of Mount Meru, in Tanzania. with WTF, he finds that the GWR
estimate is 544mm/year, representing 53% of the annual rainfall over the southern part and 90
mm/year for northern slope, accounting for 13 % of the annual rainfall; with the Baseflow
separation technique, it shows that GWR is 88mm/year and 54 mm/year, representing
respectively 12% and 7% of the annual rainfall. Overall, the WTF suggests a higher recharge
rate compared to the baseflow approach, particularly in the southern slope.

Kisiki et al. (2023) conducted a study in the Makupuku catchment, Tanzania, and
applied the WetSpass model to estimate GWR. Results revealed that annual recharge ranged
from 0 to 120.88 mm/year, with a mean of 24.88 mm/year, accounting for 3.6% of total annual
precipitation. The basin receives approximately 1041.4 million m?® of rainfall annually, of which
650.85 million m? is lost to evapotranspiration, 353.25 million m? becomes surface runoff, and
only 37.3 million m? contributes to groundwater recharge. Seasonal variation was pronounced:
during the wet season (November—April), recharge averaged 24.65 mm/year, while the dry
season yielded a negligible 0.24 mm/year. These findings underscore the limited recharge
potential in semi-arid regions and highlight the importance of seasonal dynamics in water

resource planning.

In the hydrological field, the Water Balance Methods represent one of the widely used methods
to estimate recharge, especially in areas with a lack of direct data measurement, such as Africa.
Many studies have applied this method for various hydroclimatic conditions zones.

Andualem et al. (2021) estimated the annual groundwater recharge in the Gumara and
Ribb watersheds of Ethiopia to be about 253.70 mm/year. Their analysis was carried out using
streamflow data provided by the Ministry of Water, Irrigation, and Electricity of Ethiopia, along

with rainfall records from the Amhara National Meteorology Agency. To assess recharge, the
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authors combined empirical methods, including the water balance approach and several
baseflow separation techniques. One of the significant findings of the study is that the recharge
coefficient, which is derived from rainfall data, was 0.18. This value highlights the groundwater
potential of the region and underlines its link to future groundwater development initiatives in
the area.

Maswanganye et al. (2022) investigate the dynamics of surface water pools along the
non-perennial Touws River in the Klein Karoo region of South Africa. By applying a water
balance approach that integrates both in-situ and satellite-derived data, the research aims to
quantify the water fluxes influencing pool behaviour and enhance the understanding of their
hydrological functioning. The findings reveal that evaporation is the dominant mechanism of
water loss, and that groundwater interactions vary with water levels, initially resulting in
subsurface losses before transitioning to gains. The Wolverfontein 2 pool, when full, can retain
water for up to 258 days without surface inflow. A water balance model developed for the study
showed strong agreement with observed water levels, particularly in upstream pools, though
performance declined in downstream areas. While remote sensing data provided useful baseline
information, its lower resolution introduced uncertainties, reducing model accuracy. Overall,
the study underscores the importance of combining multisource data with water balance
modelling to support the effective management of non-perennial river systems.

Oloruntoba et al. (2025) evaluate how different sources and processing methods of soil
texture data, combined with three different atmospheric forcing inputs: CRUNCEPv7 (6-hourly
input resolution), GSWPv3 (3-hourly), and WFDES (hourly), impact land surface simulations
over Africa using CLMS5 at a 3 km resolution. One of the key points from the result is to
emphasize the need to use higher temporal resolutions for atmospheric forcing data to capture
more land surface heterogeneity, resulting in improving the accuracy of the results.

Land surface simulations using models like the CLMS5 are considerably dependent on
the quality and type of atmospheric forcing data, which is possibly affected by climate change.
Bayat et al. (2023) employed CLMS5 to simulate five decades (1965-2014) of groundwater
recharge across Africa using the water balance approach and historical atmospheric data,
generating LTA estimates. In parallel, the project H» ATLAS applied the same modelling and
methodological framework to project future groundwater recharge between 2015 and 2100,
targeting potential applications such as green hydrogen production, under two climate
scenarios: RCP 2.6 (optimistic) and RCP 8.5 (pessimistic), using atmospheric inputs from the

CORDEX downscaled dataset. Oloruntoba et al. (2025), as part of their study, compare different
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temporal resolutions of atmospheric forcing data from historical data originating from different
sources.

Despite these valuable efforts, no study has yet compared groundwater recharge
estimates derived from a historical-based reanalysis dataset and the projected past scenarios-
based atmospheric forcing. This study, therefore, represents a key opportunity to better
understand how projections diverge from observed patterns and to find the potential drivers of
these differences. then, this research seeks to analyse the discrepancies between historical and
projected groundwater recharge estimates over Africa during the overlapping period of 2006 to
2014. By identifying the underlying reasons behind variations in recharge simulations, the study
will enhance comprehension of how atmospheric forcing datasets influence groundwater

recharge estimation over Africa.

Partial Conclusion

Chapter one has provided the background to this research and reviewed existing
studies on groundwater recharge. Globally and within Africa, recharge has been investigated
using a wide range of approaches, whether applied independently or in combination,
including field observations, modelling techniques, and remote sensing. These efforts have
advanced understanding of recharge processes but also underline persistent uncertainties,
particularly under changing climatic conditions. Building on this foundation, the present study
aims to extend these insights by focusing on the specific challenges of comparing reanalysis

and projected datasets in the assessment of groundwater recharge.
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CHAPTER 2: MATERIALS AND
METHODS
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CHAPTER 2: MATERIALS AND METHODS.

Introduction

This chapter describes the study area and its regional partitioning and outlines the
materials, datasets, and tools employed in the research. It also introduces the fundamental

equation that underpins the analysis and explains the methodological approach adopted.

2.1 Study Area

The study focuses on Africa, and Africa's hydrogeology varies greatly across the
continent, characterized by its diverse climate and long geological history. Aquifer systems of
Africa range from limited-capacity crystalline rocks to expansive sedimentary deposits with
high yields, influencing both the quantity and accessibility of groundwater resources.

(MacDonald et al., 2012)

Aquifer productivity

- Very High: >20 I/s
B ien:s-201s
- Moderate: 1-5 I/s

Low-Moderate: 0.5-1 I/s

Low: 0.1-0.5 /s

Z] Very Low: <0.11/s

British Geological Survey © NERC 2011, Al rights reserved.
Boundaries of suricial geology of Africa, courtesy of the US. Geological Survey.
Country boundaries sourced from ArcWorld © 1995-2011 ESRI. All rights Reserved

Figure 1: Africa Aquifer Productivity
Source: (MacDonald et al., 2012)
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For this study, the partitioning is based on the updated IPCC climate reference regions
defined by Iturbide et al. (2020). These regions were revised to capture coherent climatic
regimes and physiographic settings at the subcontinental scale, while maintaining an
appropriate size for climate model representation. Climatic homogeneity within the regions is
characterized by the mean temperature and precipitation, as classified by the Koppen—Geiger

system, as well as by the annual precipitation cycle (Iturbide et al., 2020)

In accordance with the approach adopted by Oloruntoba et al. (2025), we adopted a
modified version of the approach by Iturbide et al. (2020), which combines south-eastern Africa
and Madagascar into a single region. This results in a total of eight areas: the Mediterranean
(MED), the Sahara (SAH), West Africa (WAF), North-East Africa (NEA), Central Africa
(CAF), Central-East Africa (CEAF), South-West Africa (SWAF), and South-East Africa
(SEAF).

NEAF

CEAF

P
SWAF SEAF

Figure 2: Africa partitioned into 8 regions.

Source: Oloruntoba et al. (2025)
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2.2 Materials and Tools
2.2.1 Material

» The Community Land Model 5 (CLM5)

The Community Land Model (CLM), developed by the National Center for Atmospheric
Research (NCAR), is a comprehensive land surface model. This study employs version 5.0 of
the model, which is the latest version published in 2019 (Lawrence et al., 2019). CLM
represents major biophysical and biogeochemical processes, including interactions between
incoming solar radiation and both the canopy and soil, as well as the exchange of sensible heat,
latent heat, and carbon between the land surface and the atmosphere. It also models key
hydrological and physiological processes, including snow dynamics, water movement within
soil layers, such as infiltration, surface runoff, deep percolation, and plant physiology related
to stomatal function or regulations and photosynthesis (Bayat et al., 2023; Oleson et al., 2008).
These capabilities enable the detailed estimation of evapotranspiration, irrigation, and surface
runoff, which are critical variables in determining groundwater recharge and are therefore
essential to this study. Moreover, CLM incorporates spatial variability through a structured

subgrid hierarchy, enabling finer-scale representation of heterogeneous land surface features

(Bayat et al., 2023; Oloruntoba et al., 2025a)

» Atmospheric forcings: Input of the CLMS model

The CLM model relies on a comprehensive set of atmospheric forcing inputs to function
effectively. These include precipitation, surface air temperature, incoming shortwave and
longwave radiation, relative humidity, surface pressure, and wind velocity. Each variable plays
a critical role in driving the land-atmosphere exchange processes modelled within CLM (Bayat
et al., 2023). For this study, we used three (3) sets of data as weather input to the model: the
historical forcing data, the projected atmospheric forcing data under optimistic and pessimistic

scenarios, respectively, RCP 2.6 and 8.5.
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% Historical Atmospheric Forcing Data

The historical atmospheric forcing data used in this study are derived from the Global Soil
Wetness Project version 3 (GSWP3), a 3-hourly dataset at 0.5° horizontal resolution, available
from 1900 to 2014. GSWP3 is originally based on the 20th Century Reanalysis Project by the
National Centers for Environmental Prediction (NCEP) land atmosphere model, which
originally provided data at a coarser 2° resolution. This original dataset has then been
downscaled to 0.5° using a spectral-nudging technique, incorporating the Global Spectral
Model (GSM) and data assimilation methods. To derive the GSWP3 dataset from 20CR, a bias
correction has been performed on 4 out of 7 parameters, namely precipitation (using the Global
Precipitation Climatology Centre GPCC v6 dataset), temperature (using Climate Research Unit
CRU TS v3.21 dataset), longwave and shortwave incoming radiation (using Surface Radiation
Budget SRB dataset). The GSWP3 dataset also serves as the default atmospheric forcing input
for CLMS5, and since it was pre-processed for compatibility with the model, no additional data
manipulation was required (Bayat et al., 2023; Oloruntoba et al., 2025c). Moreover, for this

study, we only use the data from our time period, which is from 2006 to 2014.

0,

¢ Projected Atmospheric Forcing Data

The projected atmospheric forcing data used in this study are derived from the Coordinated
Regional Climate Downscaling Experiment (CORDEX), which is an international initiative
supported and coordinated by the World Climate Research Programme (WCRP). CORDEX
aims to collaborate with global partners to provide a high-resolution climate data tailored to the
local and regional levels, by downscaling Global climate models (GCM), supporting risk
assessments, and policy decisions for adaptations and mitigations. The CMIP5-based
simulations were widely used in the IPCC ARG6 report, and there is ongoing work on the CMIP6
which is supposed to support the Assessment Report 7 (AR7) (Diez-Sierr et al., 2022; Lake &
Bukovsky, 2024). Our data are based on the CMIPS5, which is the latest available to date.

In fact, climate projections are generated using global climate models (GCMs), based on
numerical hyper-computation to simulate how the Earth's climate responds to external
influences, especially greenhouse gas emissions scenarios. The Coupled Model

Intercomparison Project (CMIP) provides coordinated sets of long-term climate simulations
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from multiple GCMs at a coarse resolution ranging from 100 to 200 km. However, the coarse
resolution does not adequately capture local-scale variability; therefore, regional climate
models (RCMs) are used to overcome these challenges (Rampal et al., 2024), justifying the use
of CORDEX data in our study.

In addition, the GCMs and RCMs are run based on different climate scenarios, which are
hypothetical assumptions of how the future might look like for the years to come. It can be
defined as the projected concentrations of greenhouse gases, aerosols, and other climate-
sensitive pollutants released from both natural and anthropogenic sources, including

assumptions also on change in land use and land cover (Jalota et al., 2018).

Over the years, a variety of approaches to emissions have been used in climate research, starting
from SA90 in 1990, passing through 1S92, SRES in 2000, and ending with RCP scenarios. The
currently widely used are the Special Report on Emissions Scenarios (SRES) and the
Representative Concentrations Pathways (RCPs). For this study, the focus will be on the most
recent Representative Concentration Pathways (RCPs), which offer a good projection of
radiative forcing (defined as the shift in the balance between incoming solar radiation and
outgoing infrared radiation due to changes in atmospheric composition). These scenarios are
essential inputs for climate modelling and are measured in watts per square meter (W/m?),
representing the additional heat retained in the lower atmosphere as a result of greenhouse gases
and aerosols. Of the four pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5), the analysis will focus
on the two extremes: RCP2.6 (low emissions) and RCP8.5 (high emissions), representing

respectively optimistic and pessimistic scenarios.

For this study, we utilize three RCMs: RegCM4 (Regional Climate Model version 4, developed
by the International Centre for Theoretical Physics, ICTP), REMO2015 (Regional Model 2015,
maintained by the Climate Service Center Germany; GERICS), and CCLM5 (Climate version
5 of the Local Model, also known as COSMO-CLM, developed by the CLM Community); each
driven by two GCMs: MPI-ESM-LR (Max Planck Institute Earth System Model) and
NorESM1-M (Norwegian Earth System Model version). This results in a total of six GCM—
RCM combinations, all simulated under the RCP 2.6 and 8.5. The data are from the CORDEX
Africa domain (AFR-22), which has a horizontal resolution of 0.22° (~25 km). The variables
used are the same as those used as historical forcing data, ensuring comparability and reliability

in comparing the two datasets or their results from CLMS5.
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In the count of projected atmospheric forcing data, there are two datasets which serve as

projected atmospheric forcing data:

e Projected atmospheric forcing data under RCP2.6
e Projected atmospheric forcing data under RCP8.5

» Output of CLM5

For this study, we used key water balance variables derived from CLMS5 using the three datasets
mentioned as atmospheric forcing used as input to the CLMS5. These variables include Surface
runoff (Runoff), and evapotranspiration (ET); all of which are fundamental components of

the water balance.

Surface Runoff (Q): refers to the proportion of water, mainly precipitation, that flows over the

land surface and which is not infiltrating into the soil. It represents the water loss and is directly

affected by rainfall intensity, soil saturation, and land cover conditions. Evapotranspiration

(ET): represents the combined process of water loss to the atmosphere through evaporation
from soil and water surfaces, and transpiration from vegetation. It is a major component of
the water balance and varies with temperature, humidity, wind, and vegetation type

(https://www.usgs.gov/)

» European Reanalysis Dataset-Land (ERAS5-Land)

For our study, we make use of the ERA-5 Land as a reference dataset to compare with our
results. The ERAS land is developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF) within the Copernicus Climate Change Service (C3S), and provides data
at high spatial resolution, i.e. 9km for variables such as precipitation, soil moisture, and so on.
However, for this study, we only used the 3 water balance components and the recharge
estimate from ERAS land. The ERAS land is finer than the ERAS where it originates. It
captures the evolution of water and energy cycles over land consistently. While some
variables, such as snow depth, may have mixed performance depending on location, the
dataset overall offers a reliable benchmark for assessing land-surface simulations and

comparing modeled results with observations (Mufioz-Sabater et al., 2021)
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2.2.2 Tools or software

» CDO

We employed Climate Data Operators (CDO), a comprehensive suite of command-line tools
developed by the Max Planck Institute for Meteorology, in order to process, analyse, and
transform climate datasets, particularly those in netCDF format. CDO is widely used in climate
science for its efficiency, flexibility, and compatibility with large-scale numerical model
outputs, and also supports a wide range of data formats, including netCDF, GRIB, and HDFS5,
and offers over 600 operators for tasks such as statistical analysis, interpolation, data
transformation, spatial remapping, ensemble operations processing, and so on. Its flexibility
and efficiency make it particularly suitable for handling large climate datasets and performing

reproducible workflows in regional climate modelling. (Climate Data Operator (CDO), 2024)

Applying directly to this study, we use it for processing our dataset. We calculate the ensemble
mean, the merging of different datasets, annual year mean, the remapping, to extract general
information about the dataset, and so on, when needed. In general, the whole process of making

our dataset ready enough to be used in Python.

»> Python

In this study, we employed Python, an open and versatile open-source programming language,
for comprehensive climate data processing, analysis, and visualization. Python's adoption in
climate and Earth system sciences has expanded rapidly due to its robust scientific ecosystem
and support for large and multidimensional datasets, making it suitable for all engineers
(Millman & Aivazis, 2011). One of its key strengths is the use of the xarray library, which
enables efficient manipulation of labeled multi-dimensional arrays common in climate model
outputs, supporting essential operations for managing regional datasets such as those from
CORDEX (Hoyer & Hamman, 2017). Furthermore, the interactive Jupyter Notebook
environment enhances transparency and reproducibility by integrating code, results, and
documentation within a single workflow, facilitating open and replicable climate research

suitable for publication and direct use from its nice and friendly interface. (Kluyver et al., 2016)
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2.3 Methods

2.3.1 Water balance approach

The water balance method is a widely used and comprehensive approach in hydrological
modelling for estimating GWR. It is based on the principle of mass conservation, where the
difference between inputs (precipitation, or/and irrigation) and outputs (evapotranspiration,
runoff, and other losses) represents the portion of water available for infiltration and potential
recharge to groundwater. The water balance method has been extensively used in large-scale
and regional studies due to its relative simplicity and the fact that most of the parameters can
be measured or estimated. It is particularly useful for data-scarce regions like Africa, or parts
of Africa where direct groundwater measurements are limited (Gebreslassie et al., 2025; Islam

et al., 2016; Scanlon et al., 2002; K. A. Wright & Xu, 2000)

The general water balance equation only holds over long time periods, and it is expressed as

follows:

GWR = PT —ET—-Q (Equ.l)
Where:

GWR: Groundwater recharge (mm/year)
PT: Precipitation (mm/year)

ET: Evapotranspiration (mm/year)

Q: Surface runoff (mm/year)

For this study, groundwater recharge was estimated using the General Water Balance Equation
mentioned earlier (Equ.1), based on outputs from CLMS. Evapotranspiration and surface
Runoff (Q) come from the output of CLMS5, while the precipitation (PT) comes from the Input
Atmospheric dataset. The calculation of groundwater is the same process for the three different

cases: historical or reanalysis, projected under RCP2.6, and projected under RCP8.5.

In addition to groundwater recharge, each of the water balance components (PT, ET, Q) was
individually analysed across both the projected and reanalysis datasets. This was done to
explore the potential causes of variation in simulated recharge under our different cases.
Moreover, an investigation of the weather characteristic was also carried out to collect key

information, and finally the seven atmospheric input variables used as atmospheric forcing in
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CLMS5 were also examined, including: incoming shortwave radiation (SWR), incoming
longwave radiation (LWR), precipitation (PT), surface air temperature (tas), specific humidity
(huss), wind speed (Wind), and surface pressure (ps). The path of the investigation is illustrated
in Figure 3. The process of our investigation follows the reverse process of the water balance

methods, starting with the results obtained from the initial input of the model.

Weather Atmospheric
GWR WBC input Forcing

comparison investigation Characteristic dataset
comparison investigation

Figure 3: Process of investigation of the possible discrepancies.

ATMOSPHERIC FORCING
LAND COVER SOIL TEXTURE
DATA(HISTO,RCP2.6, RCP8.5)

|

=

[ PRECIPITATION ] [E\J’APDTRANSPIRATIGN] [ SURFACE RUNOFF }

GROUNDWATER
RECHARGE

Figure 4: Methodology adapted for GWR estimation.

24
Amidou TIEMTORE ,2024/2025



Comparative Analysis of Groundwater Recharge Simulated Using Historical Observed and Projected
Atmospheric Forcing Data

2.3.2 Statistical Analysis

To examine the temporal and spatial variability of groundwater recharge and its controlling
factors across the different cases of the study, a series of statistical analyses was performed,
including the computation of mean values, standard deviation, inter-model standard deviation,
percentage differences, spatial mean maps, and annual time series plots. Each of these metrics
is presented and discussed in detail in the following sections to provide a comprehensive

assessment of both spatial patterns and temporal trends:

> Mean

The global mean was calculated for each variable by averaging values across the entire study
area and over the full period from 2006 to 2014 (9 years). This spatio-temporal mean provides
an overall benchmark for comparing water balance components and assessing potential

changes.

> Global Standard Deviation

The global standard deviation for each variable was computed to quantify the degree of spatial
variability across the entire study area over the full period from 2006 to 2014. This measure
provides insight into the heterogeneity of water balance components within the region and

complements the global mean by highlighting the extent of variability across space.

> Percentage difference

The percentage difference was calculated for each variable to quantify the extent to which the
two projected datasets deviate from the historical baseline. This metric provides a normalized
measure of change, allowing differences to be expressed in relative rather than absolute terms,
which facilitates comparison across variables with different units and magnitudes. The

calculation was performed using the following formula:

X scenario—X historical

A (%) = X 100 (Equ.2)

Xhistorical

With A : Percentage difference.
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Note: Positive values indicate an increase relative to the historical period, while negative values

reflect a decrease

» Nine-year mean Map

Single maps were produced for each variable, representing the mean values over the entire
20062014 period. These provide a clear overview of the spatial distribution of long-term

conditions under the three different cases.

» Annual Time series plot (2006-2014)

Time series plots showing the mean annual values of each variable across the study area from
2006 to 2014 were also generated. This visualization highlights interannual variability and

potential trends for different cases, essential for comparison.

Partial Conclusion

Chapter 2 provides an overview of the study area, describes the methodology, and
reviews the materials and tools used in the analysis. It also presents the statistical approaches
applied to compare groundwater recharge across different datasets and to identify the key
factors driving differences between projected and historical recharge. In doing so, it establishes

the necessary conditions and framework for conducting this study.
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CHAPTER 3: RESULTS AND
DISCUSSION
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CHAPTER 3: RESULTS AND DISCUSSIONS

Introduction

In this chapter, we present and discuss the results obtained from our study. We begin
with a comparison of groundwater recharge estimated using reanalysis as forcing and projected
atmospheric forcing under the optimistic scenario (RCP2.6) and the pessimistic scenario
(RCP8.5), over the same period range (2006-2014), to highlight the relevance of our
comparative approach. Next, we examine the water balance components for each of the three
cases to assess their influence on groundwater recharge. We then investigate the characteristics
of the weather input data used in the CLMS5 model, particularly their resolution and nature.
Furthermore, a detailed analysis of the datasets affecting these water balance components is
conducted to identify the fundamental reasons behind differences in recharge estimates across
Africa, as well as on the regional scale. Finally, a comparison with a reference dataset (ERA-5)
is performed, followed by recommendations and implications related to renewable energy

development, particularly green hydrogen.

3.1 Groundwater Recharge Comparison.

Figure 5 and Figure 6 present, respectively, the spatial and temporal distribution of
GWR across Africa during the overlapping period from 2006 to 2014. The average annual mean
GWR derived from the reanalysis dataset is 63.25 mm/yr, whereas the values using the past
projected dataset under RCP2.6 and RCP8.5 are 125.96 mm/yr and 125.89 mm/yr, respectively.
These represent an approximate 99% increase compared to the reanalysis estimate. Such a large
discrepancy between the datasets raises important questions and highlights the need for further
investigation into the possible causes. Understanding these differences is crucial for water
resource planning and the implementation of projects that rely on groundwater use, particularly
the development of green hydrogen, which is increasingly seen as a strategic opportunity for
Africa given its vast natural resource potential. In addition, Figure 5 reveals significant regional
variability, as indicated by the large spatial standard deviations, highlighting the importance of

regional-scale studies in capturing local realities more accurately. In addition, Figure 6 illustrates
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the annual mean evolution of groundwater recharge over the study period. It shows a relatively

similar trend from 2006 to 2014, but with a high magnitude difference. This difference in GWR

using the reanalysis dataset and the projected dataset formed the motivation of this research.

Therefore, our next step is to investigate the water balance components used in the calculation

of the GWR for different cases and explain the difference.

Comparative Spatial distribution of Groundwater recharge in Africa (2006-2014)
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3.2 Water Balance Components examination.

In order to identify the possible reasons for these differences, a comparative analysis of
the water balance components used in the calculation of GWR was conducted. this approach
allows us to determine which variables show the largest discrepancies and how they directly
influence the estimation of GWR. Accordingly, Figure 7 presents an overview of the water
balance components for the three cases, as well as the variation of the projected values

compared to the reanalysis dataset.

As demonstrated in Figure 7, it is evident that past projected precipitation values are
696.7 mm/yr (RCP2.6) and 688.9 mm/yr (RCP8.5), which are marginally higher than the
reanalysis mean of 658.1 mm/yr, representing approximately 40 mm/year differences. This
difference arises from the inherent characteristics of the data, since precipitation is not derived
from CLMS5 simulations nor subjected to any pre-processing within the model; it is taken
directly from the raw input datasets. This is corroborated by Wiebe et al. (2025), which
highlights that a large portion of the uncertainty in groundwater recharge estimates arises from

variability in rainfall.

For evapotranspiration and surface runoff, which are computed within CLMS5, different
trends are observed. Past projected ET values are 449.2 mm/yr (RCP2.6) and 444.2 mm/yr
(RCPS8.5), both lower than the reanalysis value of 487.4 mm/yr, representing approximately 40
mm/year differences; this in addition to the precipitation difference of 40 mm/years, lead then
to 80 mm/year more available GWR in projections, compared to the reanalysis. However,
projected runoff values are larger compared to the reanalysis estimate: 144.1 mm/yr (RCP2.6)
and 141.8 mm/yr (RCP8.5), against 125.3 mm/yr in the reanalysis data. this corresponds to
approximately 20 mm/yr differences, which is going to reduce the 80 mm/yr more available
groundwater recharge of 20 mm/year making an estimation of around 60 mm/yr in terms of

groundwater recharge differences. Exactly what is observed in the GWR map differences.

According to (Equ 1) for the calculation of GWR via the water balance approach, an
increase in precipitation leads to a higher water input into the system, thereby increasing
recharge. Similarly, a reduction in ET decreases water loss to the atmosphere, which also
enhances recharge. Conversely, an increase in runoff leads to greater water loss through surface
flow, thereby reducing recharge. These results from Figure 7 indicate that precipitation is the

most influential water balance component in determining GWR, followed by
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evapotranspiration, which also plays a significant role. Runoff, while less influential under
moderate variations, cannot be entirely neglected, particularly in cases of very large increases,

for instance, greater than 50%.

These points align closely with a wide range of research in hydrology, including studies
such as MacDonald et a/(2021) and Liu et a/(2022), which consistently show that precipitation
is the main factor driving groundwater recharge. By considering both the positive contribution
of rainfall and the limiting effect of evapotranspiration, these studies help paint a clearer picture
of the complex processes that control groundwater recharge, highlighting how climate and

environmental conditions together shape the availability of this vital resource.

We can therefore understand that the difference in GWR is mainly because the
projections simulate higher precipitation values compared to the reanalysis data, while at the
same time simulating lower ET values compared to the historical case. Since both precipitation
and ET are the most influential variables in the water balance, each contributes, at its level, to
the increase in recharge. By contrast, the effect of runoff does not significantly influence

recharge, but has an effect to reduce the recharge.

To further investigate the causes of these differences, a detailed examination of
precipitation and ET is recommended. The possible reasons behind the changes in precipitation
have already been discussed earlier. The next step, therefore, is to conduct an in-depth analysis
of the factors influencing ET, namely the input variables used in CLMS: shortwave radiation

(SWR), longwave radiation (LWR), temperature, wind speed, pressure, and specific humidity.
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Mean Annual Spatial Distribution (2006-2014)
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Figure 7: Comparative mean map of the water balance components using reanalysis and
projected data for precipitation, evapotranspiration, and runoff over Africa(2006-2014).

3.3 Comparison of the weather input characteristics dataset.

This part of the study aims to gather some useful information related to the two types of datasets
we are using, specifically their spatial and temporal resolution, the sources of the datasets, as
well as the CLMS5 settings. The reanalysis simulations are based on the Global Soil Wetness
Project version 3 (GSWP3), which is 3-hourly data at 0.5° spatial resolution and comes from
the 20" Century reanalysis project (20CR), with 25°, and the projected simulations originate
from the CORDEX. More explanation has been given in the chapter under the Material section.

A summary of key information is collected and presented.
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Dynamical downscaling involves using RCM to simulate regional climate processes
while being driven at the boundaries by GCM outputs, ensuring consistency with large-scale
climate features. It should be noted that these data, with the same spatial and temporal
resolutions, were used as inputs for the CLMS5 model, which subsequently enabled the
calculation of GWR. A summary of this information is presented in Table /; the observed
differences may be partly attributed to the inherent characteristics of the data generation
process. However, this alone does not fully account for the magnitude of the discrepancy. The
CLMS5 model configuration, particularly the differences in spatial and temporal resolution
between historical and projected datasets, may also contribute to the variations in GWR derived
from the model outputs. Therefore, a thorough investigation of the CLMS setup is

recommended for more detailed future studies.

Table 1: Table of the weather input characteristics of the different datasets used in this study.

Reanalysis Dataset Projected Dataset

Temporal Resolution §EEiGIIL

Spatial Resolution

Sources and GSWP3, reanalysis CORDEX, Dynamical CORDEX, Dynamical
Methods Data, downscaled by = Downscaling Method = Downscaling Method
GSM, Bias corrected  using GCMs as using GCMs as
forcing forcing

3.5 Weather input dataset comparison.

In this section, we analyse the different variables by comparing the three scenarios for
each input parameter influencing ET in the CLM5 model. Figure 8 presents the annual
variations of each scenario for the respective variables. The results show that for temperature,
longwave radiation, wind speed, pressure, and specific humidity, the projected values are lower
than those of the historical dataset, which is consistent with the trend observed for ET. In

contrast, shortwave radiation exhibits the opposite behaviour, with projected values being
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higher than the reanalysis ones. However, a deep analysis reveals some large differences
between the different variables. In fact, the annual differences in temperature observed are
between 1K (in 2014) and 1.75K (in 2006), which is too large and unrealistic, for the period
2006-2014, knowing that RCPs represent around 1,5° differences in the projections to 2100 if
nothing is done to tackle climate change. In addition, there is an average difference of 43% in
specific humidity, and 72 hPa differences in pressure, which are also large for the short-period
study. There seem to be altitude standardization issues due to the values observed. These result
reveals, therefore, some high uncertainties in the reanalysis dataset used, reflecting a need to

double-check and validate the data used.
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Figure 8: Annual comparison of meteorological parameters used as input for CLMS5 and
influencing evapotranspiration over Africa from 2006 to 2014.

3.6 Regional Case Study:

After comparing the different input datasets used in the CLMS5 across Africa, we now turn to a
regional comparison of the eight subregions. This approach will help identify the key factors
driving regional differences and provide an understanding of the variations in groundwater

recharge between reanalysis and projection datasets.
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3.6.1 NORTH EAST AFRICA (NEAF)

As observed over Africa as a whole, GWR in Northeast Africa is higher using the
projected dataset compared to the historical or reanalysis dataset (see Figure 9). However, the
percentage variations are considerably larger in this region. Under RCP2.6, GWR reaches 109.0
mm/yr (102.04% increase), while under RCP8.5 it goes to 119.38 mm/yr (121.10% increase).
These differences are substantial, with increases exceeding 100%. Figure 10 shows the annual

trends over the overlapping period; different trends are observed with a large difference.

Spatial distribution of Groundwater recharge under differents Scenarios over North East Africa (2006-2014)
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Figure 9: Comparative spatial distribution of groundwater recharge over NEAF using historical and
projected data (2006-2014)
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Figure 10:Annual mean comparison of groundwater recharge over NEAF using historical and
projected data. (2006-2014)

We now examine the water balance components associated with recharge. Figure //
presents the mean map of precipitation, ET, and runoff. For all three variables, the projected

datasets reveal lower values compared to the reanalysis dataset. In fact, precipitation exhibits
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about 73 mm/year differences under RCP2.6 and about 56 mm/year differences under RCP8.5.
ET shows a much stronger difference, with 106 mm/year (RCP2.6) and 102 mm/year (RCP8.5).
Runoff differences are comparatively smaller, with about 10 mm/year (RCP2.6) and 5 mm/year
(RCP8.5). In terms of directions, the values of the projected are all lower than the reanalysis.
In fact, the ET difference of 106 mm/year and the runoff difference of 10 mm/year leads to a
high recharge difference of 116 mm/year, while the precipitation difference of around 70
mm/year leads to a reduction in the recharge. This is the result of what is seen in the GWR

differences.

According to the GWR equation, or water balance (Eq. 1), the increase in recharge over
Northeast Africa is mainly driven by the reduced ET values in the projections compared with
the reanalysis dataset. Both precipitation and ET are the most influential variables, but the
difference in ET is substantially larger than that of precipitation. Runoff, on the other hand,

plays a minor role, with a relatively small influence and difference across scenarios.

Mean Annual Spatial Distribution of water balance components(2006-2014)
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Figure 11: Comparative mean map of the water balance components using reanalysis and
projected data for precipitation, evapotranspiration, and runoff over NEAF(2006-2014)
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To investigate the reasons behind the decrease in ET, we apply the same approach used
for Africa as a whole by comparing the other input variables of CLMS5 over Northeast Africa.
Figure 12 shows trends consistent with those observed at the continental scale. The results
indicate that projected values for temperature, longwave radiation, wind speed, pressure, and
specific humidity are all lower than those using the historical or reanalysis dataset, which aligns
with the decline in ET. In contrast, shortwave radiation shows the opposite pattern, with
projected values exceeding those of the reanalysis case. However, a deep analysis reveals some
large differences between the different variables. In fact, the maximum annual differences in
temperature observed are around 1K (in 2006), which is slightly better than the one observed
over Africa. In addition, there is an average difference of 35% in specific humidity and 91 hPa
differences in pressure, which are also large for the short-period study. There seem to be altitude
standardization issues due to the values observed. These result reveals, therefore, some high

uncertainties in the reanalysis dataset used, reflecting a need to double-check and validate the

data used.
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Figure 12: Annual comparison of meteorological parameters used as input for CLM5 and
influencing evapotranspiration over NEAF from 2006 to 2014.
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3.6.2 WEST AFRICAN (WAF)

Over West Africa, GWR under the projection scenarios is higher than under the reanalysis
dataset. Similar to the continental-scale results, reanalysis GWR is 147.17 mm/year, while

projected GWR is 204.63 mm/year (39.04% higher) under RCP2.6 and 190.35 mm/year
(29.34% higher) under RCP8.5 (Figure 13)
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historical and projected data (2006-2014)
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Figure 14:annual mean comparison of groundwater recharge over WAF using historical and
projected data (2006-2014).

The next step is to compare the water balance components. Figure 15 presents the spatial

mean of precipitation, evapotranspiration (ET), and runoff for the three cases. The results show
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that, relative to the historical dataset, precipitation and runoff are higher in the projections,
whereas ET is lower. Specifically, under RCP2.6, precipitation differences of about 10
mm/year, ET differences of 70 mm/year, and runoff differences of about 30 mm/year. Under
RCP8.5, precipitation difference of 30 mm/year, ET difference of 85 mm/year, and runoff
increases by 12 mm/year. Since precipitation and ET are the most influential components in the
water balance approach, the higher GWR values in the projections can be explained by the
combined effect of high projected precipitation and low projected ET compared to the historical
case. Runoff, on the other hand, has only a minor contribution to recharge differences. In terms
of mm/year, there is a 9.7mm/yr addition in RCP2.6 precipitation, while a 34.3 mm/yr reduction
in precipitation under RCP8.5 compared to the reanalysis. Also 72.3 mm/yr reduction in
RCP2.6 and an 85.2mm/yr reduction in RCP8.5 for ET, finally, an addition of 28.3 mm/yr under
RCP2.6, and 12.7mm/yr under RCP8.5 for surface runoff.
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Figure 15: Comparative mean map of the water balance components using reanalysis and
projected data for precipitation, evapotranspiration, and runoff over WAF(2006-2014)
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Considering now the variables of the atmospheric dataset used as input to the CLMS5,
over the West African regions, the result ( Figure /6) shows that temperature, shortwave
radiation (SWR), longwave radiation (LWR), wind speed, pressure, humidity, and ET have
higher values in the historical dataset compared to the projections. However, a deep analysis
reveals some large differences between the different variables. In fact, the maximum annual
differences in temperature observed are around 1K (in 2006), which is slightly better than the
one observed over Africa. In addition, there is an average difference of 35% in specific humidity
and 36 hPa differences in pressure, which are also large for the short-period study. There seem
to be altitude standardization issues due to the values observed. These result reveals, therefore,
some high uncertainties in the reanalysis dataset used, reflecting a need to double-check and

validate the data used.
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Figure 16:Annual comparison of meteorological parameters used as input for CLMS and
influencing evapotranspiration over WAF from 2006 to 2014.
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3.6.3 SAHARA(SAH)

In the Sahara region, GWR under the projection scenarios follows the same trend
observed for Africa as a whole, with values higher than in the historical dataset ( Figure 17 and
Figure 18). However, the variations relative to the historical case are even greater, because the
overall magnitudes of GWR being very small. As shown in Figure /7, historical GWR 1is 8.17
mm/yr, while it rises to 17.2 mm/yr under RCP2.6 (110% increase) and 19.0 mm/yr under
RCP8.5 (132.51% increase). Both projection scenarios show a decreasing trend in the later

years of the overlapping period, although RCP2.6 remains higher than RCP8.5
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Figure 17: Comparative spatial distribution of groundwater recharge over SAH using historical and
projected data (2006-2014)
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Figure 18:Annual comparison of meteorological parameters used as input for CLMS and
influencing evapotranspiration over SAH from 2006 to 2014.
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Next, we examine the water balance components associated with groundwater recharge.
Figure 19 presents the mean map of precipitation, ET, and runoff. For all three variables, the
projection datasets' values are higher compared to the reanalysis dataset. Specifically,
precipitation difference of about 9 mm/year under RCP2.6 and 12 mm/year under RCP8.5. ET
also exhibits slight differences, about 2 mm/year under RCP2.6 and RCP8.5. Runoff shows a
comparatively larger difference of 28.5% under RCP2.6 and 35.7% under RCP8.5. In terms of
differences in mm/year, there is a 9.0mm/year addition under RCP2.6, 12.4 mm/yr under
RCP8.5 for projected precipitation compared to the reanalysis. Respectively 2mm/yr and 2.5
mm/yr for RCP2.6 and RCP8.5 for ET, and finally, 2.4mm/year and 3mm/year addition for
surface runoff. Referring to the GWR calculation (Equ 1), the increase in recharge over the
Sahara is primarily driven by the higher precipitation values in the projections relative to the
historical dataset. While both precipitation and ET are key influencing factors, the difference in
precipitation is substantially larger than that of ET. Runoff, on the other hand, plays a minor

role, with a relatively small influence and differences across scenarios.
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Figure 19:Comparative mean map of the water balance components using reanalysis and
projected data for precipitation, evapotranspiration, and runoff over SAH(2006-2014)

In this part, we analyse the variables used as inputs for the CLMS5 model over the Sahara

zone. We observe that ET in the projection datasets is slightly higher compared to the historical

dataset, which differs from the trend seen over Africa as a whole. Furthermore, temperature,

wind speed, specific humidity, and pressure in the projections are lower than in the historical

dataset, whereas shortwave radiation (SWR) shows the opposite behaviour, with projected

values higher than historical ones, similar to ET. However, there is a large difference observed

in meteorological variables between the reanalysis and the projections dataset. In fact, around

54 hPa annual differences in Pressure are observed, and around 60% differences in specific

humidity are also observed. For temperature, it is more comprehensible with annual differences
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less than 0.8K. These large differences highlight the uncertainties of the reanalysis dataset used
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Figure 20: Annual comparison of meteorological parameters used as input for CLM5 and
influencing evapotranspiration over SAH from 2006 to 2014.

3.6.4 SUMMARY OVER THE EIGHT REGIONS

Table 2 presents a summary of the behaviour of the different variables considered in this
study, both across the eight regions and for Africa as a whole. It includes GWR, its water
balance components, and the model input variables for different datasets. The sign ‘+’ indicates
that the projected values are higher than those of the historical dataset, while the sign ‘-’

indicates the opposite, i.e., projected values are lower than historical ones.

From this synthesis, it is evident that GWR for the projected dataset is consistently
higher than under historical conditions across all regions. For temperature, pressure, humidity,
wind speed, and longwave radiation (LWR), projected values are lower compared to the
reanalysis data. Precipitation, on the other hand, shows variable behaviour and is not predictable
across regions. The large uncertainties observed in the analysis of the weather input dataset
draw particular attention to the process by which the dataset is obtained, and therefore, need a

validation of the dataset before further studies.
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In terms of variation in GWR, the largest relative difference addition is observed over
SWAF, with 209.34%, while the difference reduction is found over the MED region, with only
18%. Based on the historical dataset, the highest absolute GWR value is 147.17 mm/yr in WAF,
while the lowest is 8.17 mm/yr in SAH.

Table 2: Table of comparison over the 8 regions between the projected data and reanalysis
data on the meteorological variables.

+ + - + + - - - - -
+ - - - + - - - - -
+ + + + + - - - = -
+ +- - + - - - = = -
+ + - + - - - = = -
+ - - - - - - - - -
+ + + 2l + - - - - -
+ + - + - - - - - -
+ - - - + - - - - -
3.7 Comparison with ERAS

In order to refine our study, it is necessary to compare our results against a reference
dataset that is more closely aligned with reality. For this purpose, we compared our previous
results with ERAS. Figure 22 shows the spatial mean of the historical dataset, the projections,
and ERAS over the overlapping period 2006-2014. The results indicate that precipitation and
ET from ERAS are closer to the reanalysis dataset. Specifically, ERAS precipitation (646.86
mm/yr) is about 1.7% lower than the historical value (658.18 mm/yr), while ERAS ET (517.84
mm/yr) 1s about 6.2% higher than the historical estimate (487.39 mm/yr). However, runoff
shows a much larger discrepancy: historical runoff (125.28 mm/yr) is more than 50% higher
than ERAS runoff (48.61 mm/yr), representing a difference of 61.2%. This highlights a
significant mismatch between the two datasets. Therefore, GWR estimated using ERAS5 1s 98.09
mm/yr, which is 55.08% higher compared to the historical value of 63.25 mm/yr. Although this
discrepancy is substantial, it is still considerably smaller than the nearly 99% difference

observed between the historical dataset and the projections. This could be explained by the fact
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that runoff depends strongly on parameterisations, and ERAS will not have a particular good

representation of runoff.
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Figure 21:Spatial distribution of mean GWR, PT, ET, and Runoff including ERA-5 over
Africa(2006-2014).

Figure 22 presents the annual trends of the projections, the historical dataset, and ERAS. A
similar annual trend is observed between the historical dataset and ERA-5 for both GWR and
surface runoff, although their magnitudes differ, highlighting uncertainties in the absolute
values. For evapotranspiration and precipitation, ERA-5 and the reanalysis dataset show a
closer alignment, indicating stronger consistency and robustness in the representation of these
variables across datasets. Overall, comparison with ERAS5 provides a useful reference to assess
the accuracy of the projections, particularly for surface runoft, and highlight the associated

uncertainties. The reason why surface Runoff is lower could be that CLM5 assumes 16 plant
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functional types (PFTs) for Africa. However, this standard setup does not fully capture the

diversity of vegetation found across the continent (Oloruntoba et al., 2025).

Moreover, a comparison of these results aligns closely with the study of Mutna (2023);
we can observe a high level of consistency across all variables. For precipitation (PT), Antonio
reported mean values of 643.06 mm/yr (ERAS) and 653.11 mm/yr (CLMS5), whereas our
analysis yielded 646.86 mm/yr (ERAS) and 658.18 mm/yr (CLMS5 reanalysis). Similarly, for
evapotranspiration (ET), Antonio obtained 516.96 mm/yr (ERAS) and 485.84 mm/yr (CLMS5),
compared with 517.84 mm/yr and 487.39 mm/yr, respectively, in this study. Runoff estimates
were also of the same order of magnitude, with Antonio reporting 48.13 mm/yr (ERAS) and
123.98 mm/yr (CLMS5), while our results showed 48.61 mm/yr and 125.28 mm/yr, respectively.
Finally, groundwater recharge (GWR) was estimated at 96.09 mm/yr (ERAS) and 48.48 mm/yr
(CLMS5) in Antonio’s work, compared with 98.09 mm/yr and 63.25 mm/yr, respectively, in our
analysis. Overall, the close agreement between the two sets of results confirms the robustness
and reliability of the methodology. At the same time, the minor differences could be due to the
difference in averaging periods (2005-2014 vs. 2006-2014) (Mutna, 2023); but also from other

factors.
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Figure 22:annual trend of GWR, PT, ET, and Runoff including ERA-5 over Africa
(2006-2014)
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3.8 Limitations of the approach

The estimation of GWR remains a highly challenging and complex task, subject to
several uncertainties and methodological constrains. It is important to note that this study relies
on model-based datasets, which are inherently dependent on assumptions and
parameterizations. Consequently, the results are influenced by the structure, inputs, and
limitations of the models themselves. In addition, irrigation, which can influence local water
balances, was neglected in this analysis due to its relatively minor impact at the continental
scale. However, in localized agricultural regions, its role may be more significant and should

not be overlooked in future studies.

Furthermore, time limitations have been a limiting factor in this study; therefore, a
double-check of data, a careful process of making the data ready enough, before the atmospheric
comparison as well a code simulations, is also recommended to confirm and continue with this

interesting topic.

Partial Conclusion

This chapter presented and discussed the results obtained, allowing us to identify the
potential factors driving differences in GWR between the projection datasets (RCP2.6 and
RCPS8.5) and the reanalysis dataset. Before drawing any conclusions from the study, it is
essential to acknowledge the fundamental differences in the characteristics of the datasets: the
historical dataset is based on reanalysis products, whereas the projection datasets are generated
through downscaling techniques and simulations. Moreover, they were produced at different

spatial and temporal resolutions, which were subsequently used as inputs to CLMS5.

The difference in recharge estimates is particularly observed with the variations in the
hydrological balance. Among those variables, precipitation and evapotranspiration appear as
the most determining variables, while runoff, which plays a minor role, still contributes. To
better understand ET variability, an analysis of the CLMS5 input dataset has been conducted and
exhibits some large differences among the meteorological variables, highlighting the sensitivity
of the reanalysis dataset. As for precipitation, the observed differences are largely attributed to
the intrinsic nature of the forcing datasets.
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To strengthen our evaluation, we compared the results with a reference dataset, which
is ERAS. This comparison revealed strong consistency between precipitation and ET (with only
minor differences), but a marked discrepancy for runoff, where reanalysis values were
significantly higher than those of ERAS. This highlights persistent uncertainties in the
representation of runoff, which must be carefully considered when interpreting GWR estimates.
But this difference in surface runoff is explained by the fact that Runoff depend strongly on

parametizations and also to the Plant functional type considered in CLMS5 over Africa.
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GENERAL CONCLUSION
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GENERAL CONCLUSION AND PERSPECTIVES

This study demonstrates that the discrepancies observed between groundwater recharge
estimates derived from reanalysis datasets and those based on projected datasets are primarily
attributable to differences in their respective water balance components, with precipitation and
evapotranspiration emerging as the dominant drivers. The divergence in precipitation reflects
the intrinsic characteristic of the datasets, as precipitation is incorporated directly into the
groundwater calculation without being mediated by the CLM5 model. By contrast, the
differences in evapotranspiration required a more detailed assessment of the meteorological
forcing datasets used as inputs to CLMS5, since these inputs strongly regulate
evapotranspiration. The substantial discrepancies observed, therefore, highlight the need to
consider not only the inherent properties of the datasets but also potential internal
inconsistencies in their generation and processing. Moreover, key information collected about
the dataset reveals that the two datasets were run at different spatial and temporal resolutions.

This might also influence the dataset.

In conclusion, this study reveals that evapotranspiration and precipitation are the major
drivers of these differences, but requires further examination of the meteorological variables
influencing evapotranspiration, and also draws attention to the importance of a critical approach
to the selection of climate data for any water resource assessment, either for human
consumption or for a potential hydrogen project. It emphasises that the differences observed are
not only due to the simulated climatic conditions, but also to the nature of the datasets and the

methodological choices made when integrating them into the models.

From this study, our recommendation is to further continue the study by investigating properly
the meteorological variables influencing evapotranspiration, which requires a detailed
verification process and validation of the weather atmospheric dataset, and to analyze the

impact of using the same resolution datasets on the CLMS.
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