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ABSTRACT  

The continuous availability and renewability of groundwater rely on the process of groundwater 

recharge. Therefore, recharge forecasting is essential for effective groundwater resource 

management, particularly in the context of climate change. In this study, we employ the 

Community Land Model version 5 to forecast recharge across Africa for the period 2071-2100 

at 10km spatial resolution. The land module was forced with outputs from three regional climate 

model outputs (CCLM5, RegCM4 and REMO2015), each driven by two global climate models 

(MPI_ESM and NorESM) under two climate scenarios (RCP2.6 and RCP8.5), and recharge 

estimated using the water balance approach at both continental and regional scales. Based on 

the long-term recharge forecast, continental average recharge potential of 119 mm/year (with 

standard deviation of 68 mm/year) and 92 mm/year (with standard deviation of 59 mm/year) 

for RCP2.6 and RCP8.5 were recorded respectively. The standard deviation serves as an 

indicator of spatial variability across the models’ ensemble.   

Further analysis, including correlation, coefficient of variation and bias were used to assess 

regional recharge reliability and sensitivity, respectively. Model performance was found to be 

region specific, with significant differences in biases between CCLM5 and REMO2015, while 

REGCM4 demonstrated consistent pattern across most regions and both climate scenarios. 

The results indicate recharge projections are more influenced by model structures and the 

choice of driving GCM than emission scenarios. These structural differences and uncertainties 

highlight the complex interactions between global and regional climate processes that influence 

recharge projections. Such uncertainties present challenges for regional development and 

climate adaptation strategies. Therefore, this study recommends evaluating the performance of 

individual models within ensemble frameworks and highlights the importance of local and 

regional calibrations to enhance the reliability of groundwater recharge projections. 

 

Keywords: Groundwater recharge; climate models; climate scenarios; long-term forecast; 

regional sensitivity; African regions. 
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RÉSUME  

La disponibilité et la renouvelabilité continues des eaux souterraines dépendent du processus 

de recharge des nappes phréatiques. Par conséquent, la prévision de la recharge est essentielle 

pour une gestion efficace des ressources en eaux souterraines, en particulier dans le contexte 

du changement climatique. Dans cette étude, nous utilisons le modèle Community Land Model 

version 5 pour prévoir la recharge à travers l'Afrique pour la période 2071-2100 avec une 

résolution spatiale de 10 km. Le module terrestre a été alimenté par les résultats de trois modèles 

climatiques régionaux (CCLM5, RegCM4 et REMO2015), chacun piloté par deux modèles 

climatiques mondiaux (MPI_ESM et NorESM) dans le cadre de deux scénarios climatiques 

(RCP2.6 et RCP8.5), et la recharge a été estimée à l'aide de l'approche du bilan hydrique à 

l'échelle continentale et régionale. Sur la base des prévisions de recharge à long terme, le 

potentiel de recharge moyen continental de 119 mm/an (avec un écart type de 68 mm/an) et de 

92 mm/an (avec un écart type de 59 mm/an) a été enregistré respectivement pour les scénarios 

RCP2.6 et RCP8.5. L'écart type sert d'indicateur de la variabilité spatiale dans l'ensemble des 

modèles.  

Une analyse plus approfondie, incluant la corrélation, le coefficient de variation et le biais, a 

été utilisée pour évaluer respectivement la fiabilité et la sensibilité de la recharge régionale. Les 

performances des modèles se sont avérées spécifiques à chaque région, avec des différences 

significatives entre les biais du CCLM5 et du REMO2015, tandis que le REGCM4 a montré un 

schéma cohérent dans la plupart des régions et pour les deux scénarios climatiques. 

Les résultats indiquent que les projections relatives à la recharge sont davantage influencées 

par les structures des modèles et le choix du MCG utilisé que par les scénarios d'émissions. Ces 

différences structurelles et ces incertitudes mettent en évidence les interactions complexes entre 

les processus climatiques mondiaux et régionaux qui influencent les projections relatives à la 

recharge. Ces incertitudes posent des défis pour les stratégies de développement régional et 

d'adaptation au climat. Par conséquent, cette étude recommande d'évaluer les performances des 

modèles individuels dans le cadre d'ensembles et souligne l'importance des calibrages locaux 

et régionaux pour améliorer la fiabilité des projections relatives à la recharge des eaux 

souterraines. 

Mots-clés : Recharge des eaux souterraines ; modèles climatiques ; scénarios climatiques ; 

prévisions à long terme ; sensibilité régionale ; régions africaines. 
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GENERAL INTRODUCTION 

Background 

Groundwater makes up a significant portion of available freshwater and is a major source of 

water for domestic and agricultural uses (Dari et al., 2025). It forms the fundamental of water 

supply throughout most of African communities as demand for quality and secure water rises 

(MacDonald et al., 2021). Groundwater is the most abundant freshwater resource in Africa 

based on storage volume, which has led to intense competition among various water users, such 

as the food and energy production sectors (Bayat et al., 2023). Across the African continent, 

groundwater resources are widely distributed and characterised by two aquifer systems: low 

recharge/high storage regional sedimentary aquifers and high recharge/low storage weathered 

crystalline rock aquifers (MacDonald et al., 2021; Pazola et al., 2023). Continuous supply of 

groundwater relies on the recharge process, which restores the aquifers from the surface. 

Groundwater recharge is the amount of water that infiltrates into the subsurface, reaching the 

groundwater table by means of various mechanisms, which include rainfall infiltration (both 

diffuse and preferential pathways), return flow from irrigation and leaking pipes (Crosbie et al., 

2011).  

Groundwater recharge rate estimation is primarily important to assessing current trends 

in water security and forecasting future changes (Gleeson et al., 2020; MacDonald et al., 2021). 

Its rates are influenced by a range of climatic conditions, hydrological and hydrogeological 

variables (Moeck et al., 2016; Pazola et al., 2023). Due to complexities influencing the recharge 

rates, parameters and factors are identified both at regional and global scales (Pazola et al., 

2023). Seasonal variability of precipitation and potential evapotranspiration directly influence 

the amount of water available for recharge. Vegetation influences the processes involved in 

infiltration rates and deep drainage, and land cover changes lead to considerable variation in 

groundwater recharge. Direct measurement of groundwater recharge is difficult and almost 

impossible due to the nature of recharge quantity, complexity and varying nature of 

hydrogeological setting (Jayakody et al., 2014). Commonly known procedures used for 

recharge estimation are chloride mass balance, soil physics methods, environmental and 

isotopic tracers, groundwater-level fluctuation methods, water balance (WB) methods and 

estimation of baseflow to rivers (MacDonald et al., 2021). These methods provide valuable 

insight, but are constrained by site-specific applicability, limited spatial or temporal resolution 

and challenges in representing long-term climatic variability. To address these limitations, 

hydrological modelling has become an essential tool for groundwater recharge estimation. By 
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integrating watershed characteristics, soil hydraulic properties, land cover and topographic data, 

hydrological models present hydrological processes more holistically. They also offer the 

capacity to assess the influence of climate variability on recharge, making them essential for 

groundwater dynamics to environmental and climatic changes  (Jayakody et al., 2014). 

Performance of hydrological models depend on the availability and quality of climatic inputs 

such as precipitation, temperature, insolation and humidity  (Nitcheva, 2018). Since recharge is 

driven by these variables, reliable projections are required to ensure robust assessment. Climate 

models, therefore, serve as indispensable tools that provide the necessary boundary conditions 

and large-scale climatic information that drives hydrological processes for accurate recharge 

simulations. 

Climate models, ranging from global circulation models (GCMs) to more detailed 

regional climate models (RCMs), simulate atmospheric variables such as temperature, 

precipitation, wind patterns, and carbon emissions to simulate and predict future climatic 

conditions (McGuffie & Henderson-Sellers, 2001;Allen et al., 2010). GCMs project significant 

changes to both regional and globally averaged precipitation and temperature, with significant 

implications for groundwater recharge (Kurylyk & MacQuarrie, 2013). Hydrological and land 

surface models are therefore coupled with climate model outputs to estimate recharge under 

different emission scenarios. Consequently, projections are highly sensitive to the choice of 

climate models due to varying capabilities and inherent uncertainties to simulate rainfall 

patterns and intensities, temperature changes and extreme weather events (Crosbie et al., 2011).   

Although historical and present-day estimates of groundwater recharge can be validated 

with measured water balance components and observational datasets, long-term groundwater 

recharge forecast remain uncertain due to climate variation, the complex nature of recharge 

processes, climate model structural differences, emission scenarios and further limitations. 

Studies conducted by Xu & Beekman, (2019); Ashaolu et al. (2020); Barbosa et al. (2022), 

adopted hydrological and climate models to estimate and predict recharge across various 

African regions. Additionally, MacDonald et al. (2021) provided groundwater recharge 

estimates maps through ground-based observations for Africa. These studies offer valuable 

insights into groundwater recharge but often focus on methodological development while 

neglecting the variability introduced by different GCM-RCM configurations, particularly in 

Africa’s diverse hydroclimatic regions.  

Addressing this gap, the present study investigates how the choice of model influences 

recharge projections by uncovering model-specific nuances that highlight regional differences, 
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uncertainties, and areas of consistent agreement in projected groundwater recharge. The 

research is important as it improves the reliability of water resource projections, which are 

crucial for sustainable management, policy formulation and climate adaptation planning. 

Robust recharge estimates will support long-term initiatives such as long-term planning of 

green hydrogen production in Africa and ensure water security for both ecosystems and 

communities under changing climate conditions.  

 

 Objectives 

This study aims to assess the extent and nature of model-driven variability in projected 

groundwater recharge over Africa using multiple climate model data 

The specific objectives of the study are;  

- Simulate future GWR using CLM5 forced by six GCM–RCM combinations. 

- Quantify model-driven spread and identify regions of spatial recharge agreement. 

- Diagnose regional recharge sensitivity to climate model configuration. 

- Provide insights for water planners on the spatial reliability of model-based recharge 

forecasts. 

 

This work is divided into several sections. The first chapter provides a literature review on 

groundwater and recharge systems, an overview of climate models and uncertainty, and the 

second chapter presents the materials and methods used in the study. The third chapter presents 

the results and discussions. Lastly, conclusions and recommendations. 
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CHAPTER ONE: LITERATURE REVIEW 

Introduction 

This chapter highlights a comprehensive study of research works concerning groundwater, 

recharge, climate models, the contribution of models in hydrological studies, and uncertainty 

sources and assessment.  

 

1.1 Groundwater and Recharge System 

1.1.1 Groundwater 

Groundwater is a primary source of high-quality freshwater worldwide (Mileham et al., 2009) 

and the largest reserve of unfrozen freshwater (96%) on Earth (Taylor et al., 2013), providing 

vital and climate-resilient access to water (Müller Schmied et al., 2021). It is stored within pore 

spaces, fractures, and cavities in subsurface materials. The storage within geological structures 

defines the groundwater systems as either unconfined or confined aquifers. Unconfined 

groundwater systems are associated with exposed water surface through permeable soil layers, 

while confined aquifers lie between impermeable layers and are subjected to high pressure 

(Atangana, 2018). The occurrence of groundwater is mainly influenced by geology, 

geomorphology, and precipitation (Lei et al., 2010). Major hydrogeological environments 

existing in Sub-Saharan Africa include Precambrian basement rocks, consolidated sedimentary 

rocks, unconsolidated sediments and volcanic rocks (Adelana et al., 2008).  

Across Africa, particularly in the arid and semi-arid regions, most rural and urban 

communities strongly depend on groundwater due to its perennial presence, capacity to buffer 

short-term climate variability and affordability of abstraction infrastructure  as compared to 

other water sources (Döll & Fiedler, 2008; MacDonald et al., 2021).  The African population's 

dependence on groundwater varies from ~ 50% to 75% (Carter & Parker, 2009). In the face of 

rapid population growth and climate change, groundwater plays a crucial role in sustainability 

and ensuring human adaptation to extreme and global environmental conditions. Groundwater 

forms an essential component of the climate system as illustrated in figure 1, influencing the 

study of the climate change influence on groundwater resources (Amanambu et al., 2020).  



 

7 

 

 

Figure 1: Groundwater interaction with Earth’s climate system. Source: (Amanambu et al., 

2020). 

1.1.2 Groundwater Recharge 

Groundwater recharge is a key driver of the hydrogeological system, and its estimation forms 

a fundamental part of groundwater renewability and resource management (Pazola et al., 2023).  

It is the downward movement of water from the surface of the soil through the unsaturated zone 

to the saturated zone beneath the water table. Net infiltration, drainage, percolation, and residual 

flux are terminologies used in literature to equate recharge (Scanlon et al., 2002). Recharge 

sources are classified as direct recharge, localised recharge, and indirect recharge as shown in 

figure 2. The figure provide visual explanation of the recharge mechanism associated the 

various recharge types. Direct recharge is the portion of rainfall or irrigation that contributes to 

the groundwater by direct percolation through the unsaturated zone after partitioning from 

surface runoff and evaporation. Recharge that results from surface depressions is known as 

localised recharge. Whereas the quantity of water that percolates into the aquifer through canals, 

river beds, or other waterbodies is referred to as indirect recharge (Mahmud et al., 2023). 

MacDonald et al. (2009)  delineated three primary rainfall recharge zones in Africa, namely: 

negligible groundwater recharge in areas receiving less than 200 mm/year of rainfall, 

approximately 50 mm/year recharge in regions with rainfall between 200-500 mm/year, and 

over 50 mm/year recharge in zones where rainfall surpasses 500 mm/year. 

 Groundwater recharge is influenced by factors such as climate, land use, land or vegetation 

cover, geology, topography, soil texture and structure, irrigation water use, depth of water table 

and existence of nearby water bodies (Acharya et al., 2018; Ali & Mubarak, 2017). These 

factors, individually or as combined efforts affect the rate of recharge. Precipitation is the key 
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climatic factor that regulate the recharge and abundance of water on the land surface (Scanlon 

et al., 2002). According to  Jobbágy & Jackson (2004), the distribution of pore sizes and soil 

porosity have an impact on transpiration, infiltration, water holding capacity, and overall 

recharge. Sandy soils possess more porosity and have greater hydraulic conductivity, leading 

to higher recharge and clayey soils, on the contrary, have tiny pores with greater surface tension 

and lower recharge. Runoff components of rain and irrigation, including soil evaporation, are 

largely governed by the type of soil cover and density, and thus lead to variable groundwater 

recharge (Ali & Mubarak, 2017). 

 

Figure 2: Types of groundwater recharge mechanisms. Source: (Mahmud et al., 2023) 

1.1.3 Groundwater Recharge Estimation Methods 

Direct and accurate quantification of the volume of water that reaches the water table is 

challenging. Consequently, a variety of methods and techniques have been developed for the 

estimation and prediction of groundwater recharge. The methods include direct measurements, 

water balance methods, Darcian approaches, tracer techniques and empirical methods (Lei et 

al., 2010). Mahmud et al. (2023) classified methods primarily as direct and indirect methods. 

The direct physical method is the lysimeter method, and the direct chemical method is the tracer 

technique (applied or historical). Indirect physical methods are the soil water balance, water 

budget method, and groundwater table fluctuation methods. Recharge estimations can also be 

classified based on regions where arid, semi-arid and humid climates exist. Water budget 

method, isotopic tracers, lysimeters, Darcy’s law and other numerical methods are used in arid 

and semi-arid climatic zones (Mahmud et al., 2023). For humid zones, soil water balance, water 

budgets, lysimeters, Darcy’s law, applied tracers, and numerical models are most appropriate 
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(Scanlon et al., 2002). Mahmud et al. (2023) outlined a detailed review on the estimation 

methods for natural groundwater recharge, equations and problems associated with recharge 

estimation using the lysimeter method, water balance methods, water budget method, water 

table fluctuations, applied tracer techniques, and use of Darcy’s equation.  

Recharge equations based on the lysimeter method (eq. 1.1) and the water balance (eq. 1.2) are:  

𝑅 = 𝑃 + 𝐼 − 𝐸𝑇 ±  ∆S      (1.1) 

𝑅 = 𝑃 + 𝐼 − 𝐸𝑇 − 𝑅𝑜 ±  ∆S   (1.2) 

Where R = recharge, P = precipitation, I = Irrigations, ET = Evapotranspiration, Ro = runoff, 

± ∆S = changes in soil water storage (calculated as differences in initial to final water content 

in the lysimeter zone or basin/site). Estimates based on the lysimeter method and water balance 

are dependent on the reliability and accuracy of the water flux data. Problems associated with 

the lysimeter are the high expense of constructing and maintaining the lysimeter. Also, flow 

along the sidewalls of the lysimeter can lead to overestimation of the actual recharge. 

Furthermore, estimation of surface runoff is the main source of uncertainty in the water balance 

approach, especially in humid regions (Ali & Mubarak, 2017). 

Numerical modelling provides essential tools needed for continuous understanding of 

groundwater processes. They help in understanding the past, present and future states of 

geophysical (including groundwater processes) and earth systems. A widely used numerical 

groundwater model is the Modular Groundwater Flow Model (MODFLOW), developed by the 

United States Geological Survey (USGS). It’s a three-dimensional finite model with enhanced 

capabilities to simulate flow, solute transport, and coupled surface-groundwater flow 

(Amanambu et al., 2020). Amanambu et al. (2020)  enlisted numerical models (groundwater 

and surface/subsurface coupled) and their characteristics used in groundwater recharge studies. 

Hydrological models are simplified computational representations of water cycles 

within a region or basin (Kour et al., 2016), that simulate the dynamic processes involved in 

transforming precipitation into surface runoff, groundwater recharge, and streamflow through 

mechanisms such as infiltration, interception, evaporation, transpiration, snowmelt, and 

subsurface flows (Chokkavarapu & Mandla, 2019). These models range from simple empirical 

relationships between precipitation and recharge, soil-water-balance models (HELP Model, 

SMBM, etc.), embedded soil water balance models within coupled hydrological modelling 

framework and models based on Richards’ equation (HydroGeosphere, ParFLOW, HYDRUS, 

FEFLOW, Mike SHE, etc.) (Moeck et al., 2016). The effectiveness of these models relies on 

how well the equations approximate the physical system being modelled. Use of geographical 
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information systems (GIS) and remote sensing are also tools that aid in groundwater recharge 

estimation and simulation. It can be used singly for gathering and manipulating large, high-

quality databases or fully integrated with other numerical models. Visualisation capabilities of 

GIS help recalibrate numerical models by showing differences between modelled, interpolated 

and measured water levels (Amanambu et al., 2020). A globally known hydrological model for 

groundwater recharge studies is the WaterGAP Global Hydrology Model (WGHM) (Döll et al., 

2002; Alcamo et al., 2003).  The model was used to provide a global groundwater recharge map 

by Döll et al. (2002) at a grid scale of 0.5 degree × 0.5 degree and an updated simulation using 

the WGHM2 model by Döll & Fiedler (2008). The first global-scale study on groundwater 

recharge was conducted by L’vovich (1979); the estimation was based on the baseflow 

components of observed river discharge. 

 

1.2 Climate Models and Their Role in Hydrological Modelling 

1.2.1 The need for climate models 

Climate models are computer-based representations of the Earth’s climate system, including 

atmosphere, ocean, land, and ice. They solve mathematical equations that describe the planet's 

energy budget and vary from simple to complex depending on the feedback mechanisms 

involved as shown in figure 3. Models are based on fundamental physics laws: energy and mass 

conservation, fluid motion and ideal gas laws (Philander, 2012). Climate models are used to 

quantitatively measure climate sensitivity, radioactive forcings and climate feedbacks (Kour et 

al., 2016). Climate sensitivity was defined as the equilibrium change in surface temperature that 

results from given radiative forcings by Schwartz (2004). 



 

11 

 

 

Figure 3: Types of feedback mechanisms in the Earth’s climate system. Source: (Kour et al., 

2016). 

Climate models are essential tools needed for investigating, understanding, and predicting the 

climate system efficiently. They provide meteorological input data such as rainfall, and 

temperature for simulating the water cycles at various scales. In combination with hydrological 

models, they help evaluate how future climatic scenarios may alter hydrological regimes, 

informing water resource management and adaptation strategies (Kour et al., 2016). 

1.2.2 Overview of climate models 

Climate models differ in complexity, purpose, and spatial resolutions. EBMs are the simplest 

climate models used to simulate the Earth's temperature by balancing incoming solar radiation 

with outgoing infrared radiation. They are used to study fundamental climate processes and 

sensitivities (Kour et al., 2016). Global Circulation Models (GCMs) are the most sophisticated 

models, which simulate the climate system components in three dimensions, including 

atmosphere, ocean, land surface, and ice. They are used for detailed climate projections and 

understanding the interconnections within the Earth's climate system at a large spatial scale, 

approximately 100 – 250 km resolution (Teutschbein & Seibert, 2010; McGuffie and 

Henderson-Sellers 2001). GCMs are primary tools for climate simulations under a range of 

future GHG emissions (Nikulin et al., 2012). Due to the coarse resolution of GCMS, regional 

models are developed to dynamically downscale them (nesting RCMs in GCMs) to produce 

high-resolution climate data outputs (Kour et al., 2016). Regional Climate Models (RCMs) are 

advanced models designed to simulate the climate system at meso- and regional scales 

compared to GCMs. RCMs usually operate at a resolution of approximately 2km for convection 

permitting RCMs (very high resolutions) to the  CORDEX spatial resolution (Akinsanola et al., 
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2025) which allows finer representation of land features, coastlines, and elevation for more 

accurate local climate variations.  

1.2.3 The value of CORDEX Africa simulations for understanding African climate 

Regional climate models (RCMs) are key components of regional climate change vulnerability, 

impacts, and adaptation studies. Coordinated Regional Climate Downscaling Experiment 

(CORDEX) is a regional modelling project that carries out a set of experiment where reanalysis 

data such as ERA-INTERIM and the Coupled Model Intercomparison Project Phase 5 (CMIP5)  

GCMs are dynamically downscaled to produce historical and future simulations at horizontal 

resolution of 0.44° × 0.44° and  improved to 0.22° × 0.22° in 2019 ( Ilori & Balogun, 2022; 

Nikulin et al., 2018; Giorgi et al., 2009). Africa has been the priority and essential domain for 

CORDEX due to inadequate quality observation datasets, climate change vulnerability and low 

adaptive capacity (Ilori & Balogun, 2022). CORDEX Africa (CORDEX Region 5) simulations 

provide high-resolution, homogenous ensembles of regional climate projections that are crucial 

for understanding African Climate dynamics. The higher spatial resolution, multi-model 

approach and specific focus on the continent’s unique climate challenges enable assessment of 

climate variables such as solar irradiance, temperature, cloud cover, precipitation, and wind 

speed by approximate estimation and reproducing the observed spatio-temporal pattern despite 

some biases. The simulations also allow robust projection of future climate variables under 

different emission scenarios and evaluation of future risks related to droughts, floods, 

groundwater recharge, food security and health. CORDEX Africa simulations also developed 

a new set of metrics for model validations tailored for the different African regions, which help 

boost confidence in both present-day and future climate projections (Gnitou et al., 2021). The 

high-resolution (~25 km) CORDEX-CORE framework provides models valuable for 

identifying regional vulnerabilities and informing adaptation strategies tailored to specific 

African sub-regions (Sawadogo et al., 2021). According to the results of CORDEX simulations, 

CORDEX Africa and CORDEX-CORE products are potentially suitable for a variety of high-

resolution precipitation data applications throughout Africa. Several studies investigated the 

performance of CORDEX RCMs in simulating past and present precipitation, temperature 

trends and variability, projections and climate change studies over African regions (Demissie, 

2023; Ilori & Balogun, 2022; Gibba et al., 2019; Akinsanola & Ogunjobi, 2017;  Dosio, 2017; 

Dosio & Panitz, 2016; Pinto et al., 2016; Nikulin et al., 2012, 2018). These studies highlighted 

the performance of CORDEX RCMs in simulating well precipitation and temperature at 

seasonal, annual, and diurnal timescales and highlighted the superior performance of multi-
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model ensembles compared to individual models. Despite adequate performance of CORDEX 

Africa simulations in understanding the African climate, variations exist in model performance. 

RCMs' agreement with GCMs' projections varies across regions because of several GCMs 

downscaled by the same RCM, poor representation of topography and small-scale processes 

(such as convection) resolved differently by GCMs and RCMs. Differential climate signals 

stemming from different GCM and RCM physics and parameterisation also contribute to 

uncertainties and less confidence in simulations. 

1.2.4 Contributions of CORDEX Africa simulations to Hydrological modelling 

For better investigation, simulation, and representation of hydrological variables for modelling 

at regional scales, high-resolution datasets are required. CORDEX Africa aids in the provision 

of fine-scale climate parameters, such as precipitation, radiation, and temperature datasets of 

resolution (~25 to 50km), which accurately capture the spatial variability and extremes 

important for hydrological processes compared to coarser global datasets (Giorgi & Gutowski, 

2015). By downscaling global models, CORDEX RCMs allow hydrological modellers to reflect 

basin-scale climate variations, enhancing the reliability of projected changes in streamflow, 

groundwater recharge, and drought frequency assessment (Mathewos et al., 2023). Integration 

of CORDEX Africa data into hydrological modelling frameworks helps to study major river 

basins and headwaters, supporting assessment of future water security and planning of irrigation 

and hydropower projects (Musie et al., 2020). CORDEX-Africa enhanced data also allow 

researchers to assess climate change impact on water resources across different regions. 

Simulations are used to project changes in precipitation and other climate variables under 

different emission scenarios and help provide vital information for understanding potential river 

flow changes, water availability and flood risk (Banda et al., 2022; Bojer et al., 2024) and 

assessment of potential impacts of climate change on hydropower production in different 

watersheds (Kouadio et al., 2024). An ensemble of CORDEX RCMs further improves 

uncertainty reductions in hydrological models' inputs and forecasts (Gyamfi et al., 2021; 

Kalognomou et al., 2013). 

 

1.3 Regional Disparities in Responses to Climate Models 

1.3.1 Selected CMIP5 GCM Performance across African Regions 

Africa’s regional climatic patterns are affected by large climate variability, rapid topographical 

variations, inland waterbodies, and land-sea contrasts with the adjacent Atlantic and Indian 
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Oceans. The results of such climate variability affect the livelihood, food productivity and water 

availability across the region, putting the continent among the most vulnerable to the potential 

climate changes induced by 21st-century greenhouse gas  (GHG) forcing (Mariotti et al., 2014). 

Max Planck Institute Earth System (MPI-ESM-LR),  Hadley Centre Global Environment 

Model by UK MetOffice (HadGEM-ES) and Norwegian Earth System Models (NCC-

NorESM1-M) constitute CMIP5 GCM models used for climate studies in Africa. Taylor et al. 

(2012) provide a detailed description of the models’ experimental design and parameters. The 

climate response and scenario estimates of NorESM1-M were emphasised by Iversen et al. 

(2013). In comparison to other models in CMIP5, the model's predicted equilibrium climate 

sensitivity is 2.9 K. Giorgetta et al. (2013)  examined the climate and carbon cycle of MPI-ESM 

simulations used in CMIP5, stating that MPI-ESM-LR has an equilibrium climate sensitivity 

of 3.6 K. The study further highlighted the model’s structure and revealed that climate feedback 

depends on the level of global warming and possible forcing history. Description of HadGEM-

ES development and evaluation used in CMIP5 is also detailed in Collins et al. (2011). It has a 

notably lower cloud cover compared to other GCMs. HadGEM-ES is a robust climate model 

with significant improvement in ocean temperature and tropical variability for representing 

climate dynamics, especially over Mediterranean regions (Dosio & Panitz, 2016).  

 Mehran et al. (2014) evaluated CMIP5 continental precipitation simulations relative to 

satellite-based gauge-adjusted observations. CMIP5 simulations, including MPI-ESM, 

NorESM, and HadGEM-ES simulations, were cross-validated against Global Precipitation 

Climatology Project (GPCP) data. Results of the volumetric analysis hit index (VHI) of total 

monthly precipitation prove the models’ simulations are in good agreement with GPCP patterns 

in most regions but show less skill in simulating precipitation at high quantiles of the reference 

data (75th and 90th percentiles) except in regions such as Central Africa. Analysis of total bias 

also revealed models overestimate precipitation over regions with complex topography (for 

example, Southern Africa) while underestimating in arid regions. A study by McSweeney et al. 

(2015) to aid selecting CMIP5 GCMs for downscaling over multiple regions indicated the 

ability of MPI-ESM-LR, HadGEM-ES and NorESM1-M to capture 29, 27 and  25 out of 36 

key teleconnection relationships in Africa, respectively. Africa's climate conditions are strongly 

influenced by the seasonal migration of the Inter-tropical Convergence Zone (ITCZ) and 

associated seasonal rainfalls. Teleconnections with major modes of variability in sea-surface 

temperatures (SST) such as ENSO and IOD are factors that influence the strong interannual 

climate variability across Africa (McSweeney et al., 2015).  MPI-ESM-LR  and HadGEM-ES 
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were used in a study by  Dosio & Panitz (2016) to assess climate change projections for the 

CORDEX-Africa domain. The results showed GCMs overestimated present climate 

precipitation and overestimated seasonal mean precipitation across Central African regions, 

whereas present-day mean temperature is also largely overestimated across the Sahel region. 

Both models also show a decrease in mean precipitation and an increase in consecutive dry days 

over West Africa (Dosio & Panitz, 2016). Agyekum et al. (2018) also evaluated CMIP5 GCMs 

precipitation simulation over the Volta Basin. The evaluation of a limited number of GCMs 

revealed that NOR-ESM-LR could accurately replicate the observed climatological mean of the 

total annual precipitation and the peak observed rainy season in the Sudano-Sahel, the Sahel, 

and the entire Volta basin. However, it struggled to replicate the Guinea Coast's bimodal 

pattern. 

1.3.2 Regional Climate Model Performance across African Regions 

Regional climate models (RCMs) play an important role in improving African’s diverse climate 

zones representation, yet their performance is influenced by methodological approaches and 

inherent data limitation. The spatial accuracy of RCMs varies across regions and seasons as 

they capture localised climate phenomena such as monsoons, elevation gradients and land 

cover, introducing model challenges (Wu et al., 2020). Compared to GCMs, RCMs generally 

better simulate finer-scale rainfall features and seasonal cycles; however, persistent biases 

remain in simulation of regional rainfall intensities, annual cycles, the onset and cessation of 

rainy seasons (Gerasu et al., 2024). As part of the CORDEX project, the consortium for small-

scale modelling (COSMO), the regional model (CCLM), the Regional Climate Model (REMO) 

and the Regional Climate Modelling System (RegCM) are widely used models for evaluation 

in the Africa domain. The models are developed by KIT, Karlsruhe, Germany, in collaboration 

with the CLM-community; Climate Service Center, Germany and Abdus Salam International 

Centre for Theoretical Physics, Italy, respectively. REMO and REGCM4 are hydrostatic 

models, while CCLM is a non-hydrostatic model. Details on the models' dynamic and physical 

parameterisation are provided by Giorgi et al. (2012) and  Nikulin et al. (2012).  

Focusing on individual model performances, CCLM5 demonstrated considerable skills 

in reproducing key African climate, specifically the seasonal pattern of precipitation and 

temperature, but exhibited quantitative biases (Fotso-Kamga et al., 2020). It improves 

simulations of both mean seasonal and daily precipitation, capturing features such as the West 

African monsoon and the rainfall regime in the Sahel region (Panitz et al., 2013). To assess 

climate change projections, Dosio & Panitz (2016) employed CCLM to assess CORDEX-
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Africa output relative to GCMs, revealing projected increase in seasonal temperature similar to 

projections of GCMs. In contrast, over regions such as Central Africa, precipitation trends 

simulated are in opposite directions to GCMs, with significant reduction in precipitation. 

Similarly, over Southern Africa, CCLM  simulates warmer temperature than GCMs during the 

both January-February-March (JFM) and July-August-September (JAS) periods over  1981-

2010 (Dosio & Panitz, 2016).  

 REMO2015 is recognised for capturing temperature cycles and broad precipitation 

patterns well over subtropical and tropical regions, often outperforming other models in daily 

and seasonal temperature metrics (Vondou & Haensler, 2017). It also produces a realistic 

annual precipitation cycle and magnitude, but present regional biases; underestimation or 

overestimation depending on the subregions or domain (Safari et al., 2023). The study by Jacob 

et al. (2012) assessed the transferability of REMO to different CORDEX regions with a 

standard setup. Using boundary conditions from the ERA-Interim global reanalysis dataset over 

the period 1989 to 2008, evaluating via the Koppen-Trewartha climate classification and 

probability density function (PDF) skill score compared to the CRU dataset, REMO was found 

capable of well simulating the mean annual climatic features across all domains, including 

Africa, despite some dry biases in East Africa. Importantly, REMO captures the inter- and intra-

annual seasonal variability for most climate across the Koppen-Trewartha climate classes.  

 Similarly, RegCM4 with improved land surface schemes and convection parameters 

(such as Emmanuel convection scheme) show acceptable simulation of temperature and 

precipitation typical of earlier versions, though it underestimate rainfall during peak rainy 

seasons (Koné et al., 2018). Comparisons with CRU observational data highlights RegCM4’s 

skill in capturing mean precipitation and low-level wind circulations. Representation of the 

Intertropical Convergence Zone (ITCZ) over the Atlantic is narrower in the model, but the 

regional features of both seasonal precipitation fields are well reproduced. The model also 

captures well the Tropical Easterly Jet and the African Easterly Jet (Giorgi et al., 2012). In West 

Africa and the Sahel region, RegCM4 simulates a forward shift in the monsoon onset as 

produced in MPI-ESM-LR, with widespread decrease of monsoon precipitation associated with 

decreased easterly wave activity and soil moisture precipitation interaction (Mariotti et al., 

2014; Saini et al., 2015).  

Akinsanola & Ogunjobi (2017) used CCLM, REMO and an earlier version of RegCM 

(RegCM3) in combination with other CORDEX regional models to evaluate present-day 

precipitation of West Africa. Despite CCLM and REMO overestimating rainfall during pre- 
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and post-monsoon seasons, all models captured the geographical extent and the three distinct 

phases of the West African monsoon. RegCM3 was found to outperform all other models and 

recommended for use in West Africa rainfall assessment (Akinsanola & Ogunjobi, 2017).  Ilori 

& Balogun's (2022) further support the performance of RegCM in simulating the mean seasonal 

rainfall over West Africa. The study evaluated the performance of three RCMs (CCLM, REMO 

and RegCM) by downscaling three CMIP5 GCMs (HadGEM, MPI-ESM-LR and NORESM1-

M) at a resolution of 0.22° × 0.22°. Their analysis spanning the period 1970 to 2005, highlighted 

RegCM’s ability to replicate West African rainfall pattern. 

Overall, studies have confirmed the RCM's abilities to capture the African climate patterns 

and dynamics, including adding value to driven GCM simulations. However, unavoidable 

biases persist and vary according to season, sub-area and GCM-RCM chain (Gnitou et al., 

2021). To address this, multi-model ensembles are widely adopted due to better performance 

than individual models. Multi-model ensemble outperforms individual RCMs as a result of the 

cancellation of opposite-signal biases found in the different RCMs (Wu et al., 2020). Ensemble 

based approaches including  CCLM5, RegCM, and REMO   have been used in other studies to 

investigate the effect of global warming increase across the different regions for climate 

adaptation and resource management (Dosio, 2017; Klutse et al., 2018;  Mba et al., 2018; 

Nikulin et al., 2018; Fotso-Kamga et al., 2020; Dosio et al., 2021).  

 

1.4 Variability and Uncertainty in Groundwater Recharge Forecasts 

1.4.1 Known Sources of Uncertainty in Groundwater Recharge Simulations 

Uncertainties from water resources modelling perspective stem from differences in spatial and 

temporal resolution of climate models compared to the finer resolution of hydrological models 

(Goderniaux et al., 2015; Banda et al., 2022). Banda et al. (2022) classified sources of 

uncertainties from climate model projections as (i) scenario uncertainty; uncertainty related to 

emission or concentration scenario (ii) Global circulation models (GCM) uncertainty; 

uncertainty related to how global models respond to specific emission scenario (iii) Regional 

climate models (RCM) uncertainty or downscaling uncertainty; uncertainty from the use of 

several RCMs and downscaling techniques from a specific GCM projection (iv) uncertainty 

caused by internal variability of the climate system. Choices of GCM and RCM are the principal 

sources of uncertainty, particularly GCM, with the most significant uncertainty in future 

recharge estimations (Crosbie et al., 2011). RCM errors are related to process parameterisations 

such as cloud representation, convection, horizontal diffusions and microphysics (Solman et 
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al., 2013). Hydrological model uncertainties originate from parameter uncertainty (Reinecke et 

al., 2021), model structure (Döll et al., 2016) and process (inability to simulate real-world 

processes thoroughly), groundwater table dynamics, input and observed data (Moges et al., 

2021). Known sources of hydrological data uncertainties are measurement or point uncertainty, 

for example, rainfall, uncertainty from data interpolated in space and time, scaling uncertainty, 

and uncertainties in data management (McMillan et al., 2018).   

1.4.2 Uncertainties in recharge forecast across Africa 

The long-term forecast of groundwater recharge in Africa is prone to uncertainty due to a 

combination of environmental, methodological, and data-driven factors. The primary sources 

of uncertainty include; 

• Model structure and parameterisation: Climate and hydrological models vary in 

simulating rainfall, evapotranspiration, soil moisture and subsurface flow. Model 

selection, spatial resolution and internal assumptions result in significant variations in 

recharge forecasts even when applied over similar areas (Reinecke et al., 2021). 

• Observational Data Limitations: Observed data are needed for validation of model 

outputs, but are sparse with no functioning measuring stations across many African 

regions, especially in arid and remote landscapes (Beyene et al., 2024).  Remote sensing 

for large-scale monitoring and the provision of data adds to uncertainty due to 

limitations in satellite data resolution and interpretation (Richey et al., 2015). 

• Estimation Method Uncertainty: Different ways of estimation ( water table fluctuations, 

soil moisture, remote sensing, etc.), model simplification, and assumptions often lead to 

different outcomes and biases (Reinecke et al., 2024). 

• Diverse landscapes and environmental controls: Rainfall conversion into groundwater 

recharge is influenced by features such land cover, soil type, geological formations, and 

topography. This diverse distribution of  features across Africa causes difficulties in 

generalising findings across regions (West et al., 2023). 

1.5 Review of Recharge Studies across Africa. 

Considerable studies have been conducted to estimate groundwater recharge using different 

methods and to characterise uncertainties in recharge estimation across several areas in Africa. 

Chung et al. (2016) investigated groundwater recharge studies in the humid and semi-arid 

African region. In their study, recharge estimation methods were assessed. Water-balance 

fluctuations (WTF) and chloride methods can be used with better certainty for recharge 
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estimation in arid and semi-arid regions. The accuracy of these methods can be compromised 

by factors such as localised inputs data and water vapour transport. However, the lack of basic 

data remains a major challenge in these regions. MacDonald et al. (2021) helped bridge the gap 

in historical data by mapping recharge across Africa. The study quantified long-term average 

recharge rates across Africa for the period 1979-2019 from 134 ground-based estimates. 

Recharge mechanisms included natural diffuse and local focused recharge, excluding discrete 

leakage from large lakes and irrigation. Based on the use of a linear mixed model at the African 

continental scale, long-term average rainfall and long-term annual recharge are correlated with 

other factors important at the local scale. Building on the continental estimates of MacDonald 

et al. (2021), Pazola et al. (2023) employed random forest regression at a finer resolution (0.1° 

resolution) enhancing spatial detail and improving the representation of recharge variability. 

However, the random forest model is constrained by its representation of focused recharge and 

limited study in humid and equatorial African regions.  

 Bayat et al. (2023) quantified groundwater recharge using the water balance approach. 

Land surface hydrology was simulated for the period 1965 – 2014 using the Community Land 

Model version (CLM5). In their study, irrigation was included in the computation. The results 

of this study offered the first model-based estimation of water availability across Africa. 

Ashaolu et al. (2020) employed the water balance model to estimate spatial and temporal 

recharge in the Osun drainage basin of Nigeria. The study confirmed the importance of the 

water balance model in understanding the spatial and temporal status of recharge. Through 

advancements in technologies and satellite data, GIS and remote sensing techniques are also 

employed in recharge estimation. Barbosa et al. (2022) used NASA Gravity Recovery and 

Climate Experiment (GRACE) data to evaluate groundwater storage change and recharge of 

aquifers in Niger. The water table fluctuation approach was used in the study to predict recharge 

rates between 2002 and 2021. The studies of Bayat et al. (2023) and MacDonald et al. (2021) 

provide valuable datasets for global and continental model calibration and a baseline for future 

changes; however, noticeable uncertainties exist in estimation methods, hydrological models 

and model forcings. West et al. (2023) compared global-scale model estimates of groundwater 

recharge across Africa. Long-term average recharge and recharge ratio from eight global 

models over 100 ground-based estimates in Africa were compared. Models’ estimates were 

found to disagree significantly across most of the regions. Positive and negative biases exist in 

most landscapes, posing challenges to identifying areas requiring model improvement. Xu & 

Beekman (2019) also assessed groundwater recharge estimation in arid and semi-arid Southern 
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Africa. Methods of estimating recharge, including chloride mass balance (CMB) and water 

fluctuation methods, were investigated. Methods based on mass balance and the relationship 

between rainfall and water level fluctuation were proven to have the potential to simulate and 

forecast recharge. In the case of South Africa, CMB are highly recommended. However, 

uncertainties are known to be associated with error input and method propagation.  

For a better understanding of process control on recharge variability across Africa, West 

et al. (2022) synthesize information on reported groundwater control. They developed 11 

descriptors consisting of climatic, topographic, vegetation, soil and geological properties using 

global datasets. The study classified Africa into 15 recharge landscape units influenced by the 

descriptors. Annual precipitation, seasonal precipitation, and irrigation showed a positive 

relationship with recharge. Whereas radiation, slope, transpiration, and bedrock have a negative 

correlation with recharge.  

Previous studies estimated recharge using several known methods and assessed their 

limitations across the different landscapes. However, research has not investigated the extent 

and atmospheric forcings variability in hydrological modelling. The work in this thesis aims to 

forecast recharge under two climate scenarios assessing recharge potential and reliability. It 

also identifies areas of model agreement and regional recharge sensitivity to the GCM-RCM 

choices, providing insights into uncertainty. Results of these assessments would help in the 

provision of valuable insights to water planners on the spatial reliability of model-based 

recharge forecasts. 

 

Partial Conclusion 

The literature review highlighted an overview of groundwater, recharge processes and the 

various estimation methods relied on. It has outlined the role of climate models and their 

contribution to advancing hydrological modelling, while examining the performance across 

different African regions. The review examined the uncertainties inherent in groundwater 

recharge projections arising from both climate and hydrological models. Finally, recharge-

focused studies conducted across Africa were considered, drawing attention to existing gaps 

and diverse methodologies applied. These insights underscore the complexity of groundwater 

recharge assessment under changing climate conditions and indicate the necessity of our study 

in addressing model-driven variability and implications for water sustainability in Africa.
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CHAPTER TWO: MATERIALS AND METHODS 

Introduction 

This section presents the study area, climate model combinations, simulation methods, data 

analysis, and tools used for assessing recharge potential, reliability, and regional sensitivity 

across various African regions under two climate scenarios. 

 

 2.1 Study Area 

The study is conducted over the CORDEX Africa domain, which spans from longitude -24.59° 

to longitude 60.23° and latitude -45.71° to latitude 42.19°, covering an area of 30.3 million km2, 

including adjacent islands. Continental Africa is bordered by the Mediterranean Sea to the 

North, the Indian Ocean to the East, and the Atlantic Ocean to the West. Africa is on both the 

equator and the prime meridian. Rainfall across the continent is highly variable, providing a 

basis for different climatic conditions and regional divisions (hot desert, semi-arid, tropical wet 

and dry, equatorial, Mediterranean, humid subtropical marine, warm temperature upland and 

mountain areas) (Lim Kam Sian et al., 2025). Mean annual precipitation varies from negligible 

across the Sahara to very high rates in the equatorial regions influenced by seasonal migration 

of the Inter-tropical Convergence Zone (ITCZ) and the associated seasonal rainfalls (Pazola et 

al., 2023). Africa’s hydrogeology is also diverse, reflecting differences in geology and aquifer 

types. Crystalline basement covers about 40% of sub-Saharan Africa, especially West and 

Central Africa. The aquifers are typically weathered rocks with variable yields. High-yielding 

sedimentary aquifers are found in the Sahara (notably Libya, Egypt, and the West African 

coastal basins). Volcanic aquifers are mostly found in the East and Southern Africa regions 

(Macdonald et al., 2008).  
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Figure 4: Modified climatic zones for regional assessment. Source: (Oloruntoba et al., 2025) 

The study adopted the modified regional division by Oloruntoba et al. (2025) as shown in  figure 

4, which was based on the IPCC climate reference regions for subcontinental analysis 

developed by  Iturbide et al. (2020). The new regions include the Mediterranean (MED), Sahara 

(SAH), West Africa (WAF), Central Africa (CAF), Central East Africa (CEAF), South West 

Africa (SWAF), and South East Africa with Madagascar combined (SEAF). 

 

2.2 Climate Data 

Future climate projections of precipitation, temperature, windspeed, humidity, air pressure, 

shortwave and longwave radiation datasets for the period (2071 – 2100) were obtained from 

CMIP5 GCM models: MPI_ESM_LR and NCC_NORESM_M (Taylor et al., 2012). Outputs 

from the global models were dynamically downscaled using CORDEX_Africa regional models 

(CCLM5, RegCM4 and REMO2015; Nikulin et al., 2012) at a resolution of 0.22° under two 

climate scenarios. Two representative concentration pathways (RCPs), namely RCP2.6 and 

RCP8.5 of the IPCC fifth assessment report (AR5), were scenarios considered for analysis. 

RCP2.6 assumes strong mitigation policies that result in low greenhouse gas forcing of 2.6 

W/m2. RCP8.5 assumes high population and slow income growth with a modest rate of 
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technological advancement and energy intensity improvements, leading to long-term high 

energy demand and high greenhouse forcing of 8.5 W/m2 (Moss et al., 2010).  

 

Table 1: Global and Regional climate models (GCM/RCM) combinations 

RCM 
DRIVING GCM 

MPI_ESM_LR NOR_ESM_M 

CCLM5 MPI-CCLM NOR-CCLM 

REGCM4 MPI-REG NOR-REG 

REMO2015 MPI-REMO NOR-REMO 

 

 2.3 CLM5 Setup and Simulation 

Community Land Model version 5 (CLM5) is a land surface model developed by the National 

Centre for Atmospheric Research (NCAR). It helps represent land surface heterogeneity, such 

as Africa, differently compared to other surface models. The model uses a multi-layered sub-

grid hierarchy, with each grid representing multiple land units consisting of vegetated, lake, 

urban and glacier areas. Each land unit represents multiple columns, which could include 

different soil profiles of evolving soil moisture content and temperature. Multiple patches of 

plant functional type (PFT) or crop functional type (CFT) are included in each column 

(Lawrence et al., 2019). Detailed description and evaluation of the CLM5 model can be found 

in  Lawrence et al. (2019).  

The CLM5 land surface model was used in this study to simulate groundwater recharge 

forecasts across the different African regions at a half-hourly time step for a spatial resolution 

of 10km. The downscaled climate data output for the far-future (2071- 2100) was used as 

climate forcings in CLM5 to calculate surface evapotranspiration, runoff, and irrigation 

(considered as anthropocentric water supply) to calculate recharge for each model. Moderate 

Resolution Imaging Spectroradiometer land cover type product (MCD121QI), soil texture and 

properties information obtained from the International Geosphere-Biosphere Program Data and 

Information System (IGBP-DIS, GSD Task, 2014) were also used in the CLM5 model for 

simulation. Recharge was then calculated using the simple water balance approach (eq. 2.1) 

aggregated to monthly and annual timescales. 

 R = (P + I) – ET – Q   (2.1) 
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Where R is groundwater recharge (mm/yr), P is the precipitation (mm/yr), I is the simulated 

irrigation by CLM to account for all anthropocentric water supply (mm/yr), ET is 

evapotranspiration (mm/yr), and Q is surface runoff (mm/yr). A detailed description of the 

method and approach using CLM5 for recharge simulation is provided by  Bayat et al. (2023). 

Results of simulations are stored in a NetCDF file named after each model combination for 

both scenarios. Each file contained properties which include time (representing year), 

longitude, and latitude (for grid cell position) and recharge values. 

 

 

Figure 5: Adopted methodology for groundwater recharge simulation using CLM5 

 

2.4 Statistical Analysis 

 2.4.1 Continental Recharge Trend and Spatial Pattern 

To analyse continental-scale recharge trends, the yearly recharge was spatially averaged across 

the continent for each model combination under every climate scenario. The performance of 

individual model combinations, their respective recharge trends, were then compared against 

an ensemble mean derived from all other models, excluding the specific model under 

investigation. This comparison utilised metrics such as correlation and model percentage bias 

to assess trend performance relative to the ensemble. 
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Pearson Correlation = 
∑(𝑹𝒎𝒊−𝑹𝒎̅̅ ̅̅̅)(𝑹𝒆𝒏𝒔𝒊−𝑹𝒆𝒏𝒔̅̅ ̅̅ ̅̅ ̅)

√∑(𝑹𝒎𝒊−𝑹𝒎̅̅ ̅̅̅)𝟐 ∑(𝑹𝒆𝒏𝒔𝒊−𝑹𝒆𝒏𝒔̅̅ ̅̅ ̅̅ ̅)𝟐
  (2.2) 

 

Percent Bias = 
∑ 𝑹𝒎𝒊−𝑹𝒆𝒏𝒔𝒊

𝒏
𝒊=𝟏

∑ 𝑹𝒆𝒏𝒔𝒊
𝒏
𝒊=𝟏

 × 𝟏𝟎𝟎 (2.3) 

Where Rmi and Rensi are the values of the variable at the ith grid cell point of the model and 

reference, respectively, with 𝑅𝑚
̅̅ ̅̅  𝑎𝑛𝑑 𝑅𝑒𝑛𝑠

̅̅ ̅̅ ̅̅  representing their mean values.  

The long-term ensemble average of all six model combinations under each climate scenario 

was calculated to assess and observe the spatial recharge distribution across the continent. 

Similar procedures were carried out for the water balance components (precipitation, 

evapotranspiration and runoff). 

2.4.2 Model Agreement and Disagreement 

To assess regions where models agree and disagree, standard deviation (std) and coefficient of 

variation (CV) were used. Models were stacked together in one NetCDF file, with the standard 

deviation per grid cell across all models calculated and plotted. A mapped visualization of 

standard deviation highlighted regions of model consensus and areas of variation. The 

coefficient of variation was then calculated as the average standard deviation divided by the 

average spatial recharge value per region and scenario to help assess the recharge reliability. 

2.4.3 Regional Sensitivity 

To determine the regional sensitivity of individual climate models, the deviation of their output 

from the ensemble mean was calculated. For each grid cell in the region’s domain, the 

difference between the individual model's value and the mean of all other models in the 

ensemble (excluding the model under consideration) was calculated. The disparity was then 

assigned to a specified scale, ranging from greater than 40mm/year to less than -40mm/year. 

Metrics used for assessment include mean bias (M-Bias) eq. 2.5 and percentage bias (P-Bias) 

eq. 2.3  

Bias =  𝑹𝒎𝒊 − 𝑹𝒓𝒊  (2.4) 

 

Mean Bias = 
∑ 𝑹𝒎𝒊−𝑹𝒆𝒏𝒔𝒊

𝒏
𝒊=𝟏

𝑵
  (2.5) 

Where N is the total number of grid points, Rmi and Rensi are the values of the variable at the ith 

grid point of the model and reference, respectively, with 𝑅𝑚
̅̅ ̅̅  𝑎𝑛𝑑 𝑅𝑒𝑛𝑠

̅̅ ̅̅ ̅̅  representing their mean 

values.  
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 2.5 Tools 

Analyses were carried out using Climate Data Operator (CDO), Python and QGIS. Installed 

python libraries used include matplotlib (visualisation), NetCDF and Xarray (for extracting data 

from files), Pandas and NumPy (for metrics computation). Regional files were generated using 

the Climate Data Operator (CDO) and Quantum GIS (QGIS) to split continental files with 

defined latitude and longitude values and shapefiles, respectively. 

 

Partial Conclusion 

This chapter outlined the methodological framework adopted in this study. We first described 

the study area and its relevance for understanding groundwater recharge dynamics across 

Africa. The analysis relied on atmospheric forcing data from CORDEX, while CLM5 was 

employed to simulate evapotranspiration and runoff, which formed the basis for recharge 

estimation using the water balance approach. Pearson correlation and percentage bias were used 

to analyse long-term recharge trends at the continental scale. The ensemble mean provided 

insights into spatial recharge potential. Recharge reliability was evaluated through the 

coefficient of variation, while ensemble standard deviation was used to identify areas of model 

agreement. Regional sensitivity was assessed using simple bias. CDO, Python and GIS are tools 

employed that enabled robust data processing, analysis, and visualisation. This methodological 

approach provides a solid foundation for the study and interpretation of groundwater recharge.
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CHAPTER THREE: RESULTS AND DISCUSSION 

Introduction 

This chapter presents the results of the continental recharge forecast trends, spatial distribution, 

and regional sensitivity. It examines how the different regions respond to simulated recharge 

by the different GCM-RCM configurations under climate scenarios RCP2.6 and RCP8.5 for 

the period 2071-2100. Reasons for model performance across regions are discussed in relation 

to precipitation and other climatic conditions. Insights on the implications of model-driven 

uncertainties are further provided. 

 

3.1 Projected Recharge Trend 

The simulated recharge for each model combination and their comparison with the multi-model 

ensemble under both climate scenarios for the far-future (2071 – 2100) are presented in figures 

6 and 7, respectively. Noticeable peaks and troughs are observed under both climate cases, but 

more pronounced under RCP8.5. RCMs exhibit different temporal patterns despite being driven 

by the same GCM. These observations highlight structural uncertainty even under low-emission 

scenarios. Under RCP2.6, REG models overestimate (~ 2.8 to 16.3 %), whereas REMO models 

underestimate (~ -5.3 to -14.4 %) the ensembles. CCLM model either underestimates (NOR-

CCLM; ~ -5.5%) or overestimates (MPI-CCLM; ~ 6.6%). Models exhibit moderate positive 

correlation with the ensemble (~ 0.4 to 0.7), excluding MPI-REG with a weak correlation 

(0.13). 

 

Figure 6: Continental recharge time series per model and comparison with ensemble under 

RCP2.6 climate scenario 
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Increased model uncertainties are more evident under RCP8.5 (Fig.3.2), consistent with the 

more intense and extreme climate forcing under this scenario. CCLM models show strong 

underestimation (~ -29.5 to -49.2 %) with weak positive correlation, while REG models show 

strong overestimation (~ 35.2 to 54.6 %), with no correlation (MPI-REG; 0.0) to moderate 

correlation (NOR-REG; 0.40) with the ensembles. REMO models simulate closest to the 

ensemble with weak to moderate correlation (~0.25 to 0.42).  

 

 

Figure 7: Continental recharge time series per model and comparison with ensemble under 

RCP8.5 climate scenario 

This time series analysis provides valuable insight and highlights the temporal variations of 

groundwater recharge simulated by the different models. The different models’ performance 

facilitates deeper analysis and understanding of regional response to model configurations 

across the continent on a spatial scale. 

 

3.2 Spatial Recharge Pattern 

Long-term ensemble groundwater recharge averages for Africa (2071–2100) under RCP2.6 

(Fig. 8) and RCP8.5 (Fig. 9) scenarios show remarkably similar spatial distributions. Compared 

to RCP2.6 a significant decrease (~27.09 mm/year) under the higher-emission (RCP8.5) 

scenario was recorded. Increased concentration of GHG emissions leads to the occurrence of 

chaotic events such as drought, flood, and elevated temperature (high evapotranspiration rates). 

Higher recharge rates (>300 mm/year) are observed in the tropical rainforest areas, specifically 

parts of Sierra Leone, Liberia, the southeastern coast of Nigeria, Congo, Madagascar, and 

Lesotho. In contrast, arid regions, most especially the Sahel and Kalahari Desert areas, record 
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much lower recharge rates (< 50 mm/year). The tropical wet and dry climatic zones record 

moderate recharge averages (100–250 mm/year).  

Continental and regional recharge rates are mainly influenced by hydrological variables 

(precipitation and evapotranspiration) including topographic, vegetation and geological 

formations as emphasised by West et al. (2022) . Spatial distribution of projected water balance 

components are shown in Fig. A9 and Fig. A11 for RCP2.6 and RCP8.5, respectively.  Regions 

with higher rainfall record higher rates, whereas regions with lower precipitation records show 

low recharge potential. These observations confirm the direct influence of long-term 

precipitation average on groundwater recharge, as highlighted by Bayat et al. (2023) and 

MacDonald et al. (2021).  Additionally, simulated evapotranspiration and surface runoff show 

positive spatial correlation with precipitation. Regions with higher precipitation levels, such as 

WAF and CAF, experienced the higher ET values with values above 400 mm/year. SAH and 

MED regions record the lowest ET values (< 200 mm/year). However, it is important to note 

that models project differently the spatio-temporal distribution of the water balance components 

as shown in Fig A1 to A8 for the two climate scenarios. 

 

Figure 8: Continental spatial recharge distribution under RCP2.6 climate scenario 
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Figure 9: Continental spatial recharge distribution under RCP8.5 climate scenario 

 

3.3 Recharge Potential and Reliability 

Spatial ensemble standard deviation (Fig. 10 & 11) shows a similar distribution pattern as 

observed in the spatial recharge maps. Humid and tropical wet areas show high std (> 100 

mm/year), whereas semi-arid and arid areas show lower std (<75 mm/year). Regional-based 

average recharge, average std and coefficient of variation (CV) under both climate scenarios 

are displayed in Table 3.1. Results of the CV highlight the reliability in recharge projection 

across regions. The Sahel region, despite having the lowest recharge and std, records the highest 

CV (~0.73 to 0.84), indicating high relative uncertainty. Central Africa, with the highest 

average and std under both climate cases, records the lowest CV (0.5) under RCP2.6, whereas 

Central-East Africa records the lowest CV (0.59) under RCP8.5. All other regions record low 

to moderate CV (~0.53 to 0.68) under both emission forcings, with a general decrease in std 

(~8.95 mm/year).  

Recharge projections are reliable in the tropical regions (Central and West Africa) 

despite having a high model spread. Arid zones and the Mediterranean stand out as vulnerable 

zones, indicating that even small fluctuations in recharge can have substantial impacts on water 

availability and pose significant challenges for water security in such regions. Variation in 
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recharge values are due to differences in model simulation of regional climatic conditions. 

Precipitation exhibits significant variation as compared to other components used in recharge 

calculations (Fig. A10 & A12). The spatial distribution of model consensus and spread agrees 

with the findings of West et al. (2023). The study highlights that models diverge most in wetter 

regions, and dry regions significantly record high CV. Differences in recharge estimates are 

caused by precipitation-recharge conversion rates, attributed to varying model structure and 

parameterisations. Discrepancies in model simulation of precipitation characteristics align with 

findings of  Dosio et al. (2021).  

 

Table 2: Regional recharge potential and reliability under both RCP2.6 and RCP8.5 climate 

scenarios 

Regions 

RCP2.6 RCP8.5 

Mean 

(mm/year) 

Std 

(mm/year) 
CV 

Mean 

(mm/year) 

Std 

(mm/year) 
CV 

Mediterranean 31.48 18.84 0.60 21.92 14.55 0.66 

Sahel 16.93 14.29 0.84 11.79 8.61 0.73 

West Africa 179.12 94.76 0.53 134.16 80.26 0.60 

Central Africa 232.05 115.24 0.50 158.76 105.89 0.67 

North East 

Africa 
115.4 78.96 0.68 110.3 68.54 0.62 

Central East 

Africa 
146.77 89.93 0.61 128.21 75.41 0.59 

South East 

Africa 
188.86 116.1 0.61 161.95 101.98 0.63 

South West 

Africa 
165.04 89.3 0.54 118.66 80.26 0.68 
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Figure 10: Continental spatial models’ variation under RCP2.6 climate scenario 

 

Figure 11: Continental spatial models’ variation under RCP8.5 climate scenario 
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3.4 Regional Sensitivity 

I. Mediterranean 

The Mediterranean Region is found between latitudes 30° and 45° north with a dry summer 

climate type. Long-term average recharge of ~ 31.48 (21.92) mm/year under RCP2.6 (RCP8.5) 

are simulated, yielding low deviation within >±30 mm/year across the region. Figures 12 and 

13 illustrate the spatial sensitivity pattern of the MED regions under RCP2.6 and RCP8.5, 

respectively. Overestimation (positive bias) is seen across REG models, whereas CCLM and 

REMO models underestimate (negative bias). MPI-REG overestimates (15.85 mm/year) under 

RCP2.6, with an increase (23.37 mm/year) under RCP8.5. NOR-CCLM shows the highest 

underestimation (~12 mm/year) under both scenarios. The Atlas region, consisting of Morocco, 

North of Algeria (Algiers) and Tunisia, stands out as the region with the most sensitivity to 

model configurations. These findings highlight model challenges in simulating complex 

climatic conditions in coastal and highland zones. 

 

 

Figure 12: Mediterranean region spatial models’ variation in comparison with the ensembles 

under RCP2.6 climate scenario 

 

Figure 13: Mediterranean region spatial models’ variation in comparison with the ensembles 

under RCP8.5 climate scenario 
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II. Sahara 

The Sahel region remains the driest zone under both scenarios, with low average recharge (~12 

to 17 mm/year). Figures 14 and 15 present the regional sensitivity over the Sahara under RCP 

2.6 and 8.5. The region records high model agreement within ±10 mm/year. Systematic model 

deviations are observed across the region. CCLM models overestimate (~13 to 22 mm/year) 

recharge, while REMO models tend to underestimate (~-13 to -18 mm/year) recharge. CCLM 

records a significant decrease (~11 to 20 mm/year), while REG models show an increase in 

positive deviations (~5.30 to 11 mm/year) under RCP8.5. However, variations are more evident 

towards the South of the region, which constitutes the north of the Savanna zone. RCMs’ 

structure uncertainty is noticed to be more influential as compared to GCM and emission 

scenario.  

 

 

Figure 14: Sahara region spatial models’ variation in comparison with the ensembles under 

RCP2.6 climate scenario 

 

Figure 15: Sahara region spatial models’ variation in comparison with the ensembles under 

RCP8.5 climate scenario 
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III. West Africa 

In this study, West Africa comprises the Guinea coast and the Savanna region. Precipitation 

across the region decreases from the Guinea coast toward the Sahara, with diverse landscapes 

including coastal plains, inland plateaus, and mountain ranges. The region records a high 

recharge average (~134 – 180 mm/year), with moderate CV (~0.53 – 0.60). Figures 16 and 17 

illustrate the regional sensitivity under both climate scenarios. Noticeable model disagreement 

spread across the region, with MPI-driven models deviating most on the positive 

(overestimation), while NOR-driven models deviate mostly on the negative (underestimation). 

MPI-REMO show extreme overestimation (~ 77 to 81 mm/year), and NOR-CCLM show 

extreme underestimation (~53 to 94 mm/year). Models diverge within >±30 mm/year, with less 

agreement within the ±10 mm/year recharge range. Findings across this region highlight the 

influence of driven GCM uncertainties on RCM.  

 

 

Figure 16: West Africa spatial models’ variation in comparison with the ensembles under 

RCP2.6 climate scenario 

 

Figure 17: West Africa spatial models’ variation in comparison with the ensembles under 

RCP8.5 climate scenario 
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IV. Central-Africa 

Central Africa includes the Congo rainforest, which is among the most convectively active 

regions on the planet. As one of the moisture-rich regions in Africa, the mean rainfall ranges 

from 50 to 200 mm per month. Central Africa stands out as the region with the highest long-

term simulated average recharge (~ 158 to 232 mm/year), with low to moderate CV (~0.50 to 

0.67), indicating higher reliability. Higher std (~106 to 115 mm/year) indicates strong model 

disagreement. Spatial distribution of regional sensitivity to model configurations are shown in 

figures 18 and 19 for RCP2.6 and 8.5, respectively. Models exhibit a spatially mixed pattern 

across the region under both climate scenarios. Increased sensitivity values are recorded under 

RCP8.5. CCLM models show underestimation (~ -80 to -102 mm/year), whereas REG models 

show overestimation (~51 to 79 mm/year). REMO-based models show consistent spread in 

deviation under both climate cases. RCM variations are observed to be more influential than 

emission scenario across the regions. 

 

 

Figure 18: Central Africa spatial models' variation in comparison with the ensembles under 

RCP2.6 climate scenario 
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Figure 19: Central Africa spatial models' variation in comparison with the ensembles under 

RCP8.5 climate scenario 

 

V. North East Africa 

North East Africa, comprising Somalia, Djibouti, Ethiopia, and parts of Kenya, has a diverse 

climate ranging from arid and semi-arid in the North to humid conditions in the south and 

mountainous areas. Rainfall patterns vary significantly, with some areas experiencing a 

unimodal rainy season and others a bimodal rainy season. Moderate average recharge (~110 to 

115 mm/year) is simulated across the region. However, with high std (~ 68.54 to 79 mm/year) 

and moderate CV (~0.62 to 0.68), there are uncertainties, making the region one of the least 

reliable regions for projections. CCLM and REG models mostly overestimate recharge, while 

REMO models underestimate, as shown in figures 20 and 21 for both climate cases. Comparing 

GCMs, MPI-driven models exhibit extreme deviations compared to NOR models. MPI-CCLM 

shows the highest overestimation (70 mm/year) under RCP2.6, MPI-REG (65.74 mm/year) 

under RCP8.5. MPI-REMO shows the highest underestimation (-80 to -91 mm/year) in both 

cases. Findings across this region highlight regional sensitivity to RCMs over GCMs. 
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Figure 20: North-east Africa spatial models' variation in comparison with the ensembles under 

RCP2.6 climate scenario 

 

 

Figure 21: North-east Africa spatial models' variation in comparison with the ensembles under 

RCP8.5 climate scenario 

 

VI. Central East Africa 

The region of Central East Africa is dominated by complex topography, contributing to the 

factors responsible for the climate. The region experiences a bi-modal annual cycle of 

precipitation principally driven by the movement of the ITCZ. The region has moderate 

recharge potential (~ 128 – 147mm/year) comparable to North East Africa, the Mediterranean 

and the Sahara region. With moderate std (~ 75 to 90 mm/year) and CV (~0.59 to 0.61), 

significant disagreement exists between models, indicating low confidence in mean projections. 

Figures 22 and 23 present the regional sensitivity under RCP2.6 and RCP8.5, respectively. 

CCLM models overestimate (~40 to 87 mm/year), while REMO models underestimate (~ -56 

to -78 mm/year) under RCP2.6. REG models exhibit a moderate spread in deviations across the 

region. In the extreme case (RCP8.5), REG models show a strong increase in bias (~17 to 49 
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mm/year). Deviations across this region are also geographically focused, especially lake zones 

(Lake Victoria), coastlines, and transition zones.  

 

 

Figure 22: Central-east Africa spatial models' variation in comparison with the ensembles 

under RCP2.6 climate scenario 

 

Figure 23: Central-east Africa spatial models' variation in comparison with the ensembles 

under RCP8.5 climate scenario 

 

VII. South East Africa 

South East Africa, including Madagascar, stands out among the regions with high recharge 

potential (~ 161 to 189 mm/year). The region has diverse climate conditions (semi-arid, tropical 

wet and dry, humid subtropical and tropical rainforest in the east of Madagascar), which 

influence model performance. Despite high recharge potential, the region shows high std (~ 102 

to 116 mm/year) and low CV (~ 0.61 – 0.63), indicating high spread between models and 

significant uncertainty. MPI-driven models (REG & REMO) show strong positive deviations 

(overestimation), while NOR-driven models (REMO) show strong negative deviations 

(underestimation), with reverse trend over the same locations. Results are presented in figures 
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24 and 25 for RCP2.6 and 8.5, respectively. NOR-REG exhibits the highest overestimation 

40.56 (74.49) mm/year under RCP2.6 (RCP8.5), while NOR-CCLM exhibits the highest 

underestimation -88.29 (-92.40) mm/year. GCMs are also observed to be more influential than 

RCMs and emission scenarios across this region. 

 

 

Figure 24: South-east Africa spatial models' variation in comparison with the ensembles under 

RCP2.6 climate scenario 

 

Figure 25: South-east Africa spatial models' variation in comparison with the ensembles under 

RCP2.6 climate scenario 
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VIII. South West Africa 

The region is characterised by semi-arid and arid (Kalahari desert) climates. Despite being an 

arid zone, the region has substantial recharge potential (~119 to 165 mm/year). However, the 

moderate to high std (~84 to 89 mm/year) and CV (~0.54 – 0.68) indicate large absolute 

differences between models. CCLM models show strong underestimation, whereas REG 

models show strong overestimation, as shown in figures 26 and 27. In comparison with RCP2.6, 

NOR-CCLM (-89.26 mm/year) and MPI-REG (51.95 mm/year) show an extreme increase in 

deviation, while MPI-REMO (-43.47 mm/year). NOR-REG shows the strongest positive bias 

(~ 122 to 151 mm/year), MPI-CCLM shows the extreme negative bias (~107 to 108 mm/year) 

in both climate scenarios. Agreement within the ± 10 mm/year is mostly observed across the 

Kalahari Desert, and due to the aquifer type.  

 

 

Figure 26:South-west Africa spatial models' variation in comparison with the ensembles 

under RCP2.6 climate scenario 
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Figure 27: South-west Africa spatial models' variation in comparison with the ensembles 

under RCP2.6 climate scenario 

The analysis of regional sensitivity to model configuration, as illustrated in figures 12 

to 27, reveals important spatial patterns in model agreement and uncertainty. Regions with 

higher recharge average (Central, West, South Africa) show greater disagreement among 

models. Whereas arid regions like the Sahara show the greatest model agreement. This suggests 

that water-abundant areas face more uncertainty in projections, posing a significant risk to water 

resource planning and development. Model disagreement hotspots are region-specific, most 

especially areas with complex topography and diverse hydroclimatic zones, including 

convective rainfall and elevation-driven microclimates, as concluded by Akinsanola et al. 

(2015) and Klutse et al. (2016). WAF, SEAF and SWAF regions display strong sensitivities to 

the choice of driving GCMs, whereas MED, SAH, CAF, NEAF and CEAF show greater 

sensitivities to the RCM. These observation align with findings of Crosbie et al. (2011) stating 

the greater influence of model structure uncertainties than emission scenario uncertainties on 

recharge simulation. Considerable uncertainties among RCMs driven by the same GCM is also 

reported by Saini et al. (2015). These discrepancies and uncertainties reflect sensitivities to 

model physics, process parameterisations, and internal dynamics.  

 Considering the spatial patterns in model agreement and uncertainty, potential drivers 

for model performance are further discussed. Spatial agreement in the SAH and MED regions 

can be attributed to low precipitation and recharge records, simpler topography, and the model's 

abilities to simulate these climatic conditions. However, overestimation by CCLM4 and 

RegCM4 across some parts of the Sahel arises from the northward extension of high rainfall 
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intensities and the overestimation of the daily rainfall index (Klutse et al., 2016).  In West 

Africa, orography plays a significant role in rainfall patterns, but inadequate model resolution 

of topography leads to over- or underestimation of rainfall (Akinsanola & Ogunjobi, 2017). 

These challenges are evident across the orographic zones of MED, NEAF (including Ethiopian 

highlands), CEAF and Madagascar. Additionally, RCMs differ in the simulation of the  

magnitude, spatial extent, and development of the West African Monsoon (WAM) features 

(Sylla et al., 2010). The pre- and post-monsoon rainfall intensity is often overestimated by the 

CCLM and REMO models (Akinsanola & Ogunjobi, 2017). Klutse et al. (2016) also highlights 

the shift of higher rainfall intensities in regions equatorward, causing overestimation of rainfall 

intensity in the West Coast and dry biases in the Sahel. Variations among model simulations 

are also influenced by different sensitivities and responses to prescribed sea surface temperature 

(SST) patterns (Thorncroft et al., 2011).   

Central Africa presents complex vegetation cover, water resources (such as the Congo 

Basin), and varied topography, which influence a diverse precipitation regime (Fotso-Kamga 

et al., 2020).  Models show variability in the timing and intensity of the rainy season across the 

regions, partly due to a misconception of Central Africa demonstrating a bimodal pattern 

associated with migration of the ITCZ (Mba et al., 2018).  CMIP5 models demonstrate 

disparities in the location of rainfall, correlated with the overestimation and underestimation of 

modelled moisture flux convergence in the region (Creese & Washington, 2016). Akinsanola 

et al. (2025) further attribute variability to models’ misrepresentation of regional 

teleconnections (such as the Congo Basin Cell), land-sea thermal and pressure contrast. These 

variations induce biases in atmospheric circulation and land-atmosphere feedback, leading to 

errors in the regional hydrology.  

In Southern Africa, mean precipitation and variability influencing recharge are driven 

by complex processes from global to local scales. The region is dominated by mid-latitude and 

tropical weather systems (Jury, 2013) with regional circulations features (such as Angola low, 

Kalahari heat low, Mozambique Channel Trough, Botswana High) (Akinsanola et al., 2025). 

Analysis of CMIP5 models shows overestimation of rainfall, whereas CORDEX RCMs show 

a decrease in rainfall bias (Pinto et al., 2018). Persistent biases relate to the inaccurate 

representation of the strength of Angola's low (Karypidou et al., 2022), tropical temperate 

trough orography and tropical convection dynamics (Munday & Washington, 2018). Models' 

projections of weaker (stronger) Mozambique Channel Trough lead to excess (deficient) 

rainfall simulation over Madagascar and parts of South Africa (Cook et al., 2004). 
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Eastern Africa lies within the tropics but is dominated by a semiarid and arid climate 

type. The rainfall season is driven by the migration of the ITCZ. Complex topography 

characterised by coastal plains to the east and interior highlands in the north-south direction is 

a major factor responsible for the climate in the region (Akinsanola et al., 2025). Variation in 

CMIP5 models stems from failure to properly simulate the annual rainfall cycle driven by sea 

surface temperature (SST) biases. Wet biases are due to models’ inabilities to capture westerlies 

over the Indian Ocean, influencing rainfall (Hirons & Turner, 2018). Furthermore, CORDEX 

RCMs display wet bias related to the simulation of ITCZ rainfall belts, and  difficulties 

capturing the dominant bimodal rainfall peak over the Eastern Horn (Endris et al., 2013). 

 In general, GCMs or RCMs inabilities to adequately capture processes such as 

orographically driven precipitation, convective systems, and effects of large water bodies 

contribute to model biases and diverse regional sensitivities across Africa. These limitations 

highlight the need for model improvements in regional climate projections, physical process 

representation and resolution to enhance reliability for water resource assessments. 

 

3.3 Implications of Groundwater Recharge Uncertainty 

The observed uncertainties in groundwater recharge forecasts across Africa pose significant 

challenges for water resource management, especially under changing climate scenarios. 

Development projects such as green hydrogen production in Africa hinge on the availability 

and sustainability of water resources, most especially in arid and semi-arid regions with scarce 

surface water. Green hydrogen production via electrolysis requires 9 –15 litres of purified water 

per kilogram of hydrogen produced (Scholz, 2024). The uncertainties in recharge forecast pose 

risks and challenges for large-scale initiatives and the underutilization of electrolysis 

infrastructure. In regions facing high uncertainty and vulnerable regions (e.g., the Sahara, Table 

A.1), the feasibility of hydrogen initiatives (operational reliability) can be jeopardised. High 

uncertainty complicates sustainable groundwater management, making it challenging to 

determine a safe abstraction limit and plan for future water security. This can lead to 

overexploitation and increased competition as population demand rises and reliance on 

irrigation increases. Investors and developers require confidence in long-term water 

availability. Areas with high inter-model uncertainties may lead to greater project risk of 

investment for environmental studies, monitoring of hydrogen project viability, water storage, 

and saltwater desalination. Moreover, in regions with high average and high reliability, such as 

Central Africa, there is potential for a stable foundation of water supply and sustainable 



 

47 

 

development to meet growing demands, but it necessitates adaptive management strategies due 

to an increase in variability.  

 

3.4 Limitations of the study 

Groundwater recharge is a derived process influenced by the model representation of 

precipitation (P) and evapotranspiration (ET). Thus, uncertainties or biases in these forcing 

parameters directly propagate into the recharge estimates. Notable biases in CORDEX Africa 

precipitation data, such as over- or under-estimation in certain regions and seasons, annual 

variability and zonal misplacement of rainfall peaks (Gnitou et al., 2021) can significantly affect 

recharge simulations. Additionally, despite CLM5's advanced hydrological schemes, limited 

representation of African continent vegetation types, simplified conceptualisation of subsurface 

flow, complex aquifer recharge dynamics, and hard coding of irrigation into the surface dataset 

reduce the precision of recharge simulation. Absence of observational validation for predicted 

recharge values due to the inherent data limitations throughout the African continent is another 

critical limitation. This data scarcity constrains the ability to calibrate model outputs reliably. 

Consequently, instead of affirming the models' perfect real-world correctness, the main goal of 

this analysis was to quantify the disagreement and variability amongst the various model 

combinations within the ensemble. This method highlights the relative variations and dispersion 

in model projections as a helpful measure of confidence and spatial diversity in recharge 

estimates across Africa, while acknowledging the inherent uncertainties. 

 

Partial Conclusion 

The results and analysis show the recharge potential throughout Africa, with RCP2.6 estimates 

greater than RCP8.5 projections. Recharge was shown to be higher in tropical regions, though 

with higher model spread. In contrast, comparatively lower but more stable values seen in dry 

and semi-arid zones like the Sahel.  High-recharge zones such as Central, West, and Southern 

Africa consistently show model disagreement while model agreement was highest in the 

Mediterranean and Sahel regions under both climate scenarios. These results show that model 

performance is primarily region-specific and that model structure is the primary driver of 

recharge projection uncertainty. Importantly, these uncertainties have direct impact on policy 

formulations, especially in developing water management plans and long-term energy projects 

such as green hydrogen production. 
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CONCLUSION AND PERSPECTIVES  

Groundwater recharge estimation and forecast are essential for sustainable groundwater 

management and usage in the face of climate change. Numerous studies have used climate 

model outputs as forcings to hydrological and land surface models to estimate recharge. These 

studies highlight the performance of models but fail to highlight the sensitivity and reliability 

of the estimates across the different African regions. Hence, the objective of this study is to 

estimate recharge, define its reliability, quantify model-driven spread, identify places of model 

agreement, and diagnose regional sensitivities. To estimate and forecast recharge across Africa 

over the period 2071- 2100, the Community Land Model version 5 (CLM5) was employed. The 

land model was forced with three regional climate models (CCLM5, RegCM4 and REMO2015) 

driven by two general circulation models (MPI-ESM and NOR-ESM). Results of continental 

simulation under the two climate scenarios, RCP2.6 and RCP8.5, indicate enormous potential 

with long-term average recharge of 119.02 mm/year and 91.93 mm/year, respectively. RCP2.6 

shows higher recharge potential than RCP8.5 across all regions. However, models show 

considerable spatial variation in forecast, particularly in regions with high recharge potential, 

with a continental average standard deviation of 68.23mm/year (59.23mm/year) under RCP2.6 

(RCP8.5), respectively.  

Spatial performance of model configurations are mostly region specific. Disagreements 

are most observed in tropical dense zones (Congo Basin, Guinea coast, Madagascar), highland 

(Guinea highlands, Ethiopian highlands) and transition zones posing risk to water resource 

development planning. In contrary, regions such as the Sahel and Mediterranean show the most 

model agreement due to lesser precipitation records and fewer diverse climate types. Model 

structural differences are observed to be more influential than emission scenarios. Opposing 

model biases mostly exist between CCLM and REMO models, with REG models showing a 

consistent pattern across most regions. CCLM models mostly overestimated in the Sahel, 

Northeast, and Central East regions and underestimated in the Mediterranean, West Africa, 

Central Africa, and South Africa regions. REG models exhibited overestimation across the 

Mediterranean, Sahel, Central Africa, Northeast, and Southwest Africa regions, with mixed 

patterns across the Southeast, Central East, and West Africa regions. REMO models dominate 

in underestimation in the Mediterranean, Sahara, and Eastern regions. Structural differences 

and uncertainties underscore the complex interplay of global and regional processes affecting 

climate projection. These necessitate improvement in model abilities at multiple scales. Model-

driven uncertainties pose serious challenges to regional development and adaptation. Success 
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of development projects (such as green hydrogen) rely not just on solar and wind but on water, 

which groundwater recharge either enables or constrains. Regions, such as West Africa (coastal 

and Guinea Highland zones), Central Africa, and Southern Africa (Madagascar, Lesotho), show 

moderate recharge potential crucial for long-term green hydrogen potential. 

Findings from this study enhance scientific research and application-based projects by 

providing insights into regional sensitivities to model configuration and aid in the selection of 

models for hydrological and climate change studies. The study informs modelling centres of 

the need to enhance model parameterisation and convective schemes to better simulate region-

specific climate dynamics. Furthermore, initiatives for green hydrogen production must 

integrate groundwater recharge forecasting, prioritise places with both resource abundance and 

model agreement, and invest in reducing uncertainty where stakes are highest. Uncertainties in 

projections could be reduced through the development of regionally tailored climate models, 

ensemble modelling, and local and regional-based calibrations. Attention should also be given 

to regions with high CV (Sahel, Mediterranean), as projections vary relative to their means. 

Regions with low CV but high std (Central Africa) also require much attention, though there is 

stability, but disagreement among models is large in absolute terms. Policy and decision makers 

are further encouraged to prioritise uncertainties and regional sensitivities to model outputs 

when planning developments and implementing water resource management strategies. 

Further research is recommended to investigate and compare recharge forecasts by other 

hydrological, land models and reanalysis datasets (such as GLDAS) driven by the same climate 

models for further uncertainty assessment and validation. Advance provision of high-resolution 

datasets and observational stations across Africa are also encouraged to enhance further 

regional sensitivity studies. 
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APPENDIX 

Table A1: Summary of Recharge Potential, Reliability and Vulnerability 

Regions 

RCP2.6 RCP8.5 

Mean 

(mm/year) 

Std 

(mm/year) 
CV Reliability 

Mean 

(mm/year) 

Std 

(mm/year) 
CV Reliability 

Mediterranean 31.48 18.84 0.60 Moderate 21.92 14.55 0.66 Vulnerable 

Sahel 16.93 14.29 0.84 Vulnerable 11.79 8.61 0.73 Vulnerable 

West Africa 179.12 94.76 0.53 Reliable 134.16 80.26 0.60 Moderate 

Central Africa 232.05 115.24 0.50 Reliable 158.76 105.89 0.67 Moderate 

North-East 

Africa 
115.4 78.96 0.68 

Moderate 
110.3 68.54 0.62 

Moderate 

Central-East 

Africa 
146.77 89.93 0.61 

Moderate 
128.21 75.41 0.59 

Moderate 

South-East 

Africa 
188.86 116.1 0.61 

Moderate 
161.95 101.98 0.63 

Moderate 

South-West 

Africa 
165.04 89.3 0.54 

Reliable 
118.66 80.26 0.68 

Vulnerable 

 

 

Figure A1: Models’ Spatial Precipitation_Africa_RCP2.6 

 

Figure A2: Models’ Spatial Precipitation_Africa_RCP8.5 



 

II 

 

 

Figure A3: Models’ Spatial Evapotranspiration_Africa_RCP2.6 

 

Figure A4:Models’ Spatial Evapotranspiration_Africa_RCP8.5 

 

Figure A5:Models’ Spatial Runoff_Africa_RCP2.6 

 

Figure A6: Models’ Spatial Runoff_Africa_RCP8.5 
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Figure A7: Models’ Spatial Recharge_Africa_RCP2.6 

 

Figure A8: Models’ Spatial Recharge_Africa_RCP8.5 

 

Figure A9: Spatial distribution of Water Balance Components_RCP2.6 

 

Figure A10: Models’ spatial variation of Water Balance Components_RCP2.6 
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Figure A11:Spatial distribution of Water Balance Components_RCP8.5 

 

Figure A12: Models’ spatial variation of Water Balance Components_RCP8.5 


