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ABSTRACT

The continuous availability and renewability of groundwater rely on the process of groundwater
recharge. Therefore, recharge forecasting is essential for effective groundwater resource
management, particularly in the context of climate change. In this study, we employ the
Community Land Model version 5 to forecast recharge across Africa for the period 2071-2100
at 10km spatial resolution. The land module was forced with outputs from three regional climate
model outputs (CCLMS5, RegCM4 and REMO2015), each driven by two global climate models
(MPI_ESM and NorESM) under two climate scenarios (RCP2.6 and RCP8.5), and recharge
estimated using the water balance approach at both continental and regional scales. Based on
the long-term recharge forecast, continental average recharge potential of 119 mm/year (with
standard deviation of 68 mm/year) and 92 mm/year (with standard deviation of 59 mm/year)
for RCP2.6 and RCPS8.5 were recorded respectively. The standard deviation serves as an

indicator of spatial variability across the models’ ensemble.

Further analysis, including correlation, coefficient of variation and bias were used to assess
regional recharge reliability and sensitivity, respectively. Model performance was found to be
region specific, with significant differences in biases between CCLMS5 and REMO2015, while

REGCM4 demonstrated consistent pattern across most regions and both climate scenarios.

The results indicate recharge projections are more influenced by model structures and the
choice of driving GCM than emission scenarios. These structural differences and uncertainties
highlight the complex interactions between global and regional climate processes that influence
recharge projections. Such uncertainties present challenges for regional development and
climate adaptation strategies. Therefore, this study recommends evaluating the performance of
individual models within ensemble frameworks and highlights the importance of local and

regional calibrations to enhance the reliability of groundwater recharge projections.

Keywords: Groundwater recharge; climate models; climate scenarios; long-term forecast;

regional sensitivity; African regions.
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RESUME

La disponibilité et la renouvelabilité continues des eaux souterraines dépendent du processus
de recharge des nappes phréatiques. Par conséquent, la prévision de la recharge est essentielle
pour une gestion efficace des ressources en eaux souterraines, en particulier dans le contexte
du changement climatique. Dans cette étude, nous utilisons le modéle Community Land Model
version 5 pour prévoir la recharge a travers I'Afrique pour la période 2071-2100 avec une
résolution spatiale de 10 km. Le module terrestre a été alimenté par les résultats de trois modeles
climatiques régionaux (CCLMS5, RegCM4 et REMO2015), chacun piloté par deux modeles
climatiques mondiaux (MPI_ESM et NorESM) dans le cadre de deux scénarios climatiques
(RCP2.6 et RCP8.5), et la recharge a été estimée a 'aide de 'approche du bilan hydrique a
l'échelle continentale et régionale. Sur la base des prévisions de recharge a long terme, le
potentiel de recharge moyen continental de 119 mm/an (avec un écart type de 68 mm/an) et de
92 mm/an (avec un écart type de 59 mm/an) a été enregistré respectivement pour les scénarios
RCP2.6 et RCP8.5. L'écart type sert d'indicateur de la variabilité spatiale dans I'ensemble des

modéles.

Une analyse plus approfondie, incluant la corrélation, le coefficient de variation et le biais, a
été utilisée pour évaluer respectivement la fiabilité et la sensibilité de la recharge régionale. Les
performances des modeles se sont avérées spécifiques a chaque région, avec des différences
significatives entre les biais du CCLMS5 et du REMO2015, tandis que le REGCM4 a montré un

schéma cohérent dans la plupart des régions et pour les deux scénarios climatiques.

Les résultats indiquent que les projections relatives a la recharge sont davantage influencées
par les structures des modeles et le choix du MCG utilis€ que par les scénarios d'émissions. Ces
différences structurelles et ces incertitudes mettent en évidence les interactions complexes entre
les processus climatiques mondiaux et régionaux qui influencent les projections relatives a la
recharge. Ces incertitudes posent des défis pour les stratégies de développement régional et
d'adaptation au climat. Par conséquent, cette étude recommande d'évaluer les performances des
modeles individuels dans le cadre d'ensembles et souligne I'importance des calibrages locaux
et régionaux pour améliorer la fiabilité des projections relatives a la recharge des eaux

souterraines.

Mots-clés : Recharge des eaux souterraines ; modeles climatiques ; scénarios climatiques ;

prévisions a long terme ; sensibilité régionale ; régions africaines.
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GENERAL INTRODUCTION

Background
Groundwater makes up a significant portion of available freshwater and is a major source of
water for domestic and agricultural uses (Dari et al., 2025). It forms the fundamental of water
supply throughout most of African communities as demand for quality and secure water rises
(MacDonald et al., 2021). Groundwater is the most abundant freshwater resource in Africa
based on storage volume, which has led to intense competition among various water users, such
as the food and energy production sectors (Bayat et al., 2023). Across the African continent,
groundwater resources are widely distributed and characterised by two aquifer systems: low
recharge/high storage regional sedimentary aquifers and high recharge/low storage weathered
crystalline rock aquifers (MacDonald et al., 2021; Pazola et al., 2023). Continuous supply of
groundwater relies on the recharge process, which restores the aquifers from the surface.
Groundwater recharge is the amount of water that infiltrates into the subsurface, reaching the
groundwater table by means of various mechanisms, which include rainfall infiltration (both
diffuse and preferential pathways), return flow from irrigation and leaking pipes (Crosbie et al.,
2011).

Groundwater recharge rate estimation is primarily important to assessing current trends
in water security and forecasting future changes (Gleeson et al., 2020; MacDonald et al., 2021).
Its rates are influenced by a range of climatic conditions, hydrological and hydrogeological
variables (Moeck et al., 2016; Pazola et al., 2023). Due to complexities influencing the recharge
rates, parameters and factors are identified both at regional and global scales (Pazola et al.,
2023). Seasonal variability of precipitation and potential evapotranspiration directly influence
the amount of water available for recharge. Vegetation influences the processes involved in
infiltration rates and deep drainage, and land cover changes lead to considerable variation in
groundwater recharge. Direct measurement of groundwater recharge is difficult and almost
impossible due to the nature of recharge quantity, complexity and varying nature of
hydrogeological setting (Jayakody et al., 2014). Commonly known procedures used for
recharge estimation are chloride mass balance, soil physics methods, environmental and
isotopic tracers, groundwater-level fluctuation methods, water balance (WB) methods and
estimation of baseflow to rivers (MacDonald et al., 2021). These methods provide valuable
insight, but are constrained by site-specific applicability, limited spatial or temporal resolution
and challenges in representing long-term climatic variability. To address these limitations,
hydrological modelling has become an essential tool for groundwater recharge estimation. By

2



integrating watershed characteristics, soil hydraulic properties, land cover and topographic data,
hydrological models present hydrological processes more holistically. They also offer the
capacity to assess the influence of climate variability on recharge, making them essential for
groundwater dynamics to environmental and climatic changes (Jayakody et al., 2014).
Performance of hydrological models depend on the availability and quality of climatic inputs
such as precipitation, temperature, insolation and humidity (Nitcheva, 2018). Since recharge is
driven by these variables, reliable projections are required to ensure robust assessment. Climate
models, therefore, serve as indispensable tools that provide the necessary boundary conditions
and large-scale climatic information that drives hydrological processes for accurate recharge
simulations.

Climate models, ranging from global circulation models (GCMs) to more detailed
regional climate models (RCMs), simulate atmospheric variables such as temperature,
precipitation, wind patterns, and carbon emissions to simulate and predict future climatic
conditions (McGuffie & Henderson-Sellers, 2001;Allen et al., 2010). GCMs project significant
changes to both regional and globally averaged precipitation and temperature, with significant
implications for groundwater recharge (Kurylyk & MacQuarrie, 2013). Hydrological and land
surface models are therefore coupled with climate model outputs to estimate recharge under
different emission scenarios. Consequently, projections are highly sensitive to the choice of
climate models due to varying capabilities and inherent uncertainties to simulate rainfall
patterns and intensities, temperature changes and extreme weather events (Crosbie et al., 2011).

Although historical and present-day estimates of groundwater recharge can be validated
with measured water balance components and observational datasets, long-term groundwater
recharge forecast remain uncertain due to climate variation, the complex nature of recharge
processes, climate model structural differences, emission scenarios and further limitations.
Studies conducted by Xu & Beekman, (2019); Ashaolu et al. (2020); Barbosa et al. (2022),
adopted hydrological and climate models to estimate and predict recharge across various
African regions. Additionally, MacDonald et al. (2021) provided groundwater recharge
estimates maps through ground-based observations for Africa. These studies offer valuable
insights into groundwater recharge but often focus on methodological development while
neglecting the variability introduced by different GCM-RCM configurations, particularly in
Africa’s diverse hydroclimatic regions.

Addressing this gap, the present study investigates how the choice of model influences

recharge projections by uncovering model-specific nuances that highlight regional differences,



uncertainties, and areas of consistent agreement in projected groundwater recharge. The
research is important as it improves the reliability of water resource projections, which are
crucial for sustainable management, policy formulation and climate adaptation planning.
Robust recharge estimates will support long-term initiatives such as long-term planning of
green hydrogen production in Africa and ensure water security for both ecosystems and

communities under changing climate conditions.

Objectives
This study aims to assess the extent and nature of model-driven variability in projected
groundwater recharge over Africa using multiple climate model data
The specific objectives of the study are;
- Simulate future GWR using CLMS forced by six GCM—RCM combinations.

- Quantify model-driven spread and identify regions of spatial recharge agreement.
- Diagnose regional recharge sensitivity to climate model configuration.

- Provide insights for water planners on the spatial reliability of model-based recharge

forecasts.

This work is divided into several sections. The first chapter provides a literature review on
groundwater and recharge systems, an overview of climate models and uncertainty, and the
second chapter presents the materials and methods used in the study. The third chapter presents

the results and discussions. Lastly, conclusions and recommendations.
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CHAPTER ONE: LITERATURE REVIEW

Introduction
This chapter highlights a comprehensive study of research works concerning groundwater,
recharge, climate models, the contribution of models in hydrological studies, and uncertainty

sources and assessment.

1.1 Groundwater and Recharge System
1.1.1 Groundwater

Groundwater is a primary source of high-quality freshwater worldwide (Mileham et al., 2009)
and the largest reserve of unfrozen freshwater (96%) on Earth (Taylor et al., 2013), providing
vital and climate-resilient access to water (Miiller Schmied et al., 2021). It is stored within pore
spaces, fractures, and cavities in subsurface materials. The storage within geological structures
defines the groundwater systems as either unconfined or confined aquifers. Unconfined
groundwater systems are associated with exposed water surface through permeable soil layers,
while confined aquifers lie between impermeable layers and are subjected to high pressure
(Atangana, 2018). The occurrence of groundwater is mainly influenced by geology,
geomorphology, and precipitation (Lei et al., 2010). Major hydrogeological environments
existing in Sub-Saharan Africa include Precambrian basement rocks, consolidated sedimentary
rocks, unconsolidated sediments and volcanic rocks (Adelana et al., 2008).

Across Africa, particularly in the arid and semi-arid regions, most rural and urban
communities strongly depend on groundwater due to its perennial presence, capacity to buffer
short-term climate variability and affordability of abstraction infrastructure as compared to
other water sources (D61l & Fiedler, 2008; MacDonald et al., 2021). The African population's
dependence on groundwater varies from ~ 50% to 75% (Carter & Parker, 2009). In the face of
rapid population growth and climate change, groundwater plays a crucial role in sustainability
and ensuring human adaptation to extreme and global environmental conditions. Groundwater
forms an essential component of the climate system as illustrated in figure 1, influencing the

study of the climate change influence on groundwater resources (Amanambu et al., 2020).
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Figure 1: Groundwater interaction with Earth’s climate system. Source: (Amanambu et al.,
2020).

1.1.2 Groundwater Recharge

Groundwater recharge is a key driver of the hydrogeological system, and its estimation forms
a fundamental part of groundwater renewability and resource management (Pazola et al., 2023).
It is the downward movement of water from the surface of the soil through the unsaturated zone
to the saturated zone beneath the water table. Net infiltration, drainage, percolation, and residual
flux are terminologies used in literature to equate recharge (Scanlon et al., 2002). Recharge
sources are classified as direct recharge, localised recharge, and indirect recharge as shown in
figure 2. The figure provide visual explanation of the recharge mechanism associated the
various recharge types. Direct recharge is the portion of rainfall or irrigation that contributes to
the groundwater by direct percolation through the unsaturated zone after partitioning from
surface runoff and evaporation. Recharge that results from surface depressions is known as
localised recharge. Whereas the quantity of water that percolates into the aquifer through canals,
river beds, or other waterbodies is referred to as indirect recharge (Mahmud et al., 2023).
MacDonald et al. (2009) delineated three primary rainfall recharge zones in Africa, namely:
negligible groundwater recharge in areas receiving less than 200 mm/year of rainfall,
approximately 50 mm/year recharge in regions with rainfall between 200-500 mm/year, and
over 50 mm/year recharge in zones where rainfall surpasses 500 mm/year.

Groundwater recharge is influenced by factors such as climate, land use, land or vegetation
cover, geology, topography, soil texture and structure, irrigation water use, depth of water table
and existence of nearby water bodies (Acharya et al., 2018; Ali & Mubarak, 2017). These

factors, individually or as combined efforts affect the rate of recharge. Precipitation is the key
7



climatic factor that regulate the recharge and abundance of water on the land surface (Scanlon
et al., 2002). According to Jobbagy & Jackson (2004), the distribution of pore sizes and soil
porosity have an impact on transpiration, infiltration, water holding capacity, and overall
recharge. Sandy soils possess more porosity and have greater hydraulic conductivity, leading
to higher recharge and clayey soils, on the contrary, have tiny pores with greater surface tension
and lower recharge. Runoff components of rain and irrigation, including soil evaporation, are

largely governed by the type of soil cover and density, and thus lead to variable groundwater

recharge (Ali & Mubarak, 2017).
E=evapo(transpi)ration -
E

! 1 [

Surtace Runoff
Rivers/canals e depressions, and / \'/
ponding interflow

Indirect Localized Direct
recharge recharge recharge

Figure 2: Types of groundwater recharge mechanisms. Source: (Mahmud et al., 2023)

1.1.3 Groundwater Recharge Estimation Methods

Direct and accurate quantification of the volume of water that reaches the water table is
challenging. Consequently, a variety of methods and techniques have been developed for the
estimation and prediction of groundwater recharge. The methods include direct measurements,
water balance methods, Darcian approaches, tracer techniques and empirical methods (Lei et
al., 2010). Mahmud et al. (2023) classified methods primarily as direct and indirect methods.
The direct physical method is the lysimeter method, and the direct chemical method is the tracer
technique (applied or historical). Indirect physical methods are the soil water balance, water
budget method, and groundwater table fluctuation methods. Recharge estimations can also be
classified based on regions where arid, semi-arid and humid climates exist. Water budget
method, isotopic tracers, lysimeters, Darcy’s law and other numerical methods are used in arid
and semi-arid climatic zones (Mahmud et al., 2023). For humid zones, soil water balance, water

budgets, lysimeters, Darcy’s law, applied tracers, and numerical models are most appropriate
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(Scanlon et al., 2002). Mahmud et al. (2023) outlined a detailed review on the estimation
methods for natural groundwater recharge, equations and problems associated with recharge
estimation using the lysimeter method, water balance methods, water budget method, water
table fluctuations, applied tracer techniques, and use of Darcy’s equation.
Recharge equations based on the lysimeter method (eq. 1.1) and the water balance (eq. 1.2) are:
R=P+1—-ET + AS (1.1)
R=P+1—ET—-R,* AS (1.2)
Where R = recharge, P = precipitation, I = Irrigations, ET = Evapotranspiration, R, = runoff,
+ AS = changes in soil water storage (calculated as differences in initial to final water content
in the lysimeter zone or basin/site). Estimates based on the lysimeter method and water balance
are dependent on the reliability and accuracy of the water flux data. Problems associated with
the lysimeter are the high expense of constructing and maintaining the lysimeter. Also, flow
along the sidewalls of the lysimeter can lead to overestimation of the actual recharge.
Furthermore, estimation of surface runoff is the main source of uncertainty in the water balance
approach, especially in humid regions (Ali & Mubarak, 2017).

Numerical modelling provides essential tools needed for continuous understanding of
groundwater processes. They help in understanding the past, present and future states of
geophysical (including groundwater processes) and earth systems. A widely used numerical
groundwater model is the Modular Groundwater Flow Model (MODFLOW), developed by the
United States Geological Survey (USGS). It’s a three-dimensional finite model with enhanced
capabilities to simulate flow, solute transport, and coupled surface-groundwater flow
(Amanambu et al., 2020). Amanambu et al. (2020) enlisted numerical models (groundwater
and surface/subsurface coupled) and their characteristics used in groundwater recharge studies.

Hydrological models are simplified computational representations of water cycles
within a region or basin (Kour et al., 2016), that simulate the dynamic processes involved in
transforming precipitation into surface runoft, groundwater recharge, and streamflow through
mechanisms such as infiltration, interception, evaporation, transpiration, snowmelt, and
subsurface flows (Chokkavarapu & Mandla, 2019). These models range from simple empirical
relationships between precipitation and recharge, soil-water-balance models (HELP Model,
SMBM, etc.), embedded soil water balance models within coupled hydrological modelling
framework and models based on Richards’ equation (HydroGeosphere, ParFLOW, HYDRUS,
FEFLOW, Mike SHE, etc.) (Moeck et al., 2016). The effectiveness of these models relies on

how well the equations approximate the physical system being modelled. Use of geographical
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information systems (GIS) and remote sensing are also tools that aid in groundwater recharge
estimation and simulation. It can be used singly for gathering and manipulating large, high-
quality databases or fully integrated with other numerical models. Visualisation capabilities of
GIS help recalibrate numerical models by showing differences between modelled, interpolated
and measured water levels (Amanambu et al., 2020). A globally known hydrological model for
groundwater recharge studies is the WaterGAP Global Hydrology Model (WGHM) (D61l et al.,
2002; Alcamo et al., 2003). The model was used to provide a global groundwater recharge map
by Ddll et al. (2002) at a grid scale of 0.5 degree x 0.5 degree and an updated simulation using
the WGHM?2 model by Do6ll & Fiedler (2008). The first global-scale study on groundwater
recharge was conducted by L’vovich (1979); the estimation was based on the baseflow

components of observed river discharge.

1.2 Climate Models and Their Role in Hydrological Modelling
1.2.1 The need for climate models

Climate models are computer-based representations of the Earth’s climate system, including
atmosphere, ocean, land, and ice. They solve mathematical equations that describe the planet's
energy budget and vary from simple to complex depending on the feedback mechanisms
involved as shown in figure 3. Models are based on fundamental physics laws: energy and mass
conservation, fluid motion and ideal gas laws (Philander, 2012). Climate models are used to
quantitatively measure climate sensitivity, radioactive forcings and climate feedbacks (Kour et
al., 2016). Climate sensitivity was defined as the equilibrium change in surface temperature that

results from given radiative forcings by Schwartz (2004).
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Figure 3: Types of feedback mechanisms in the Earth’s climate system. Source: (Kour et al.,
2016).

Climate models are essential tools needed for investigating, understanding, and predicting the
climate system efficiently. They provide meteorological input data such as rainfall, and
temperature for simulating the water cycles at various scales. In combination with hydrological
models, they help evaluate how future climatic scenarios may alter hydrological regimes,

informing water resource management and adaptation strategies (Kour et al., 2016).

1.2.2 Overview of climate models

Climate models differ in complexity, purpose, and spatial resolutions. EBMs are the simplest
climate models used to simulate the Earth's temperature by balancing incoming solar radiation
with outgoing infrared radiation. They are used to study fundamental climate processes and
sensitivities (Kour et al., 2016). Global Circulation Models (GCMs) are the most sophisticated
models, which simulate the climate system components in three dimensions, including
atmosphere, ocean, land surface, and ice. They are used for detailed climate projections and
understanding the interconnections within the Earth's climate system at a large spatial scale,
approximately 100 — 250 km resolution (Teutschbein & Seibert, 2010; McGuffie and
Henderson-Sellers 2001). GCMs are primary tools for climate simulations under a range of
future GHG emissions (Nikulin et al., 2012). Due to the coarse resolution of GCMS, regional
models are developed to dynamically downscale them (nesting RCMs in GCMs) to produce
high-resolution climate data outputs (Kour et al., 2016). Regional Climate Models (RCMs) are
advanced models designed to simulate the climate system at meso- and regional scales
compared to GCMs. RCMs usually operate at a resolution of approximately 2km for convection

permitting RCMs (very high resolutions) to the CORDEX spatial resolution (Akinsanola et al.,
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2025) which allows finer representation of land features, coastlines, and elevation for more

accurate local climate variations.
1.2.3 The value of CORDEX Africa simulations for understanding African climate

Regional climate models (RCMs) are key components of regional climate change vulnerability,
impacts, and adaptation studies. Coordinated Regional Climate Downscaling Experiment
(CORDEX) is a regional modelling project that carries out a set of experiment where reanalysis
data such as ERA-INTERIM and the Coupled Model Intercomparison Project Phase 5 (CMIPS)
GCMs are dynamically downscaled to produce historical and future simulations at horizontal
resolution of 0.44° x 0.44° and improved to 0.22° x 0.22° in 2019 ( Ilori & Balogun, 2022;
Nikulin et al., 2018; Giorgi et al., 2009). Africa has been the priority and essential domain for
CORDEX due to inadequate quality observation datasets, climate change vulnerability and low
adaptive capacity (Ilori & Balogun, 2022). CORDEX Africa (CORDEX Region 5) simulations
provide high-resolution, homogenous ensembles of regional climate projections that are crucial
for understanding African Climate dynamics. The higher spatial resolution, multi-model
approach and specific focus on the continent’s unique climate challenges enable assessment of
climate variables such as solar irradiance, temperature, cloud cover, precipitation, and wind
speed by approximate estimation and reproducing the observed spatio-temporal pattern despite
some biases. The simulations also allow robust projection of future climate variables under
different emission scenarios and evaluation of future risks related to droughts, floods,
groundwater recharge, food security and health. CORDEX Africa simulations also developed
a new set of metrics for model validations tailored for the different African regions, which help
boost confidence in both present-day and future climate projections (Gnitou et al., 2021). The
high-resolution (~25 km) CORDEX-CORE framework provides models valuable for
identifying regional vulnerabilities and informing adaptation strategies tailored to specific
African sub-regions (Sawadogo et al., 2021). According to the results of CORDEX simulations,
CORDEX Africa and CORDEX-CORE products are potentially suitable for a variety of high-
resolution precipitation data applications throughout Africa. Several studies investigated the
performance of CORDEX RCMs in simulating past and present precipitation, temperature
trends and variability, projections and climate change studies over African regions (Demissie,
2023; Ilori & Balogun, 2022; Gibba et al., 2019; Akinsanola & Ogunjobi, 2017; Dosio, 2017,
Dosio & Panitz, 2016; Pinto et al., 2016; Nikulin et al., 2012, 2018). These studies highlighted
the performance of CORDEX RCMs in simulating well precipitation and temperature at

seasonal, annual, and diurnal timescales and highlighted the superior performance of multi-
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model ensembles compared to individual models. Despite adequate performance of CORDEX
Africa simulations in understanding the African climate, variations exist in model performance.
RCMs' agreement with GCMs' projections varies across regions because of several GCMs
downscaled by the same RCM, poor representation of topography and small-scale processes
(such as convection) resolved differently by GCMs and RCMs. Differential climate signals
stemming from different GCM and RCM physics and parameterisation also contribute to

uncertainties and less confidence in simulations.
1.2.4 Contributions of CORDEX Africa simulations to Hydrological modelling

For better investigation, simulation, and representation of hydrological variables for modelling
at regional scales, high-resolution datasets are required. CORDEX Africa aids in the provision
of fine-scale climate parameters, such as precipitation, radiation, and temperature datasets of
resolution (~25 to 50km), which accurately capture the spatial variability and extremes
important for hydrological processes compared to coarser global datasets (Giorgi & Gutowski,
2015). By downscaling global models, CORDEX RCMs allow hydrological modellers to reflect
basin-scale climate variations, enhancing the reliability of projected changes in streamflow,
groundwater recharge, and drought frequency assessment (Mathewos et al., 2023). Integration
of CORDEX Africa data into hydrological modelling frameworks helps to study major river
basins and headwaters, supporting assessment of future water security and planning of irrigation
and hydropower projects (Musie et al., 2020). CORDEX-Africa enhanced data also allow
researchers to assess climate change impact on water resources across different regions.
Simulations are used to project changes in precipitation and other climate variables under
different emission scenarios and help provide vital information for understanding potential river
flow changes, water availability and flood risk (Banda et al., 2022; Bojer et al., 2024) and
assessment of potential impacts of climate change on hydropower production in different
watersheds (Kouadio et al., 2024). An ensemble of CORDEX RCMs further improves
uncertainty reductions in hydrological models' inputs and forecasts (Gyamfi et al., 2021;

Kalognomou et al., 2013).

1.3 Regional Disparities in Responses to Climate Models
1.3.1 Selected CMIP5 GCM Performance across African Regions

Africa’s regional climatic patterns are affected by large climate variability, rapid topographical

variations, inland waterbodies, and land-sea contrasts with the adjacent Atlantic and Indian
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Oceans. The results of such climate variability affect the livelihood, food productivity and water
availability across the region, putting the continent among the most vulnerable to the potential
climate changes induced by 2 1st-century greenhouse gas (GHG) forcing (Mariotti et al., 2014).
Max Planck Institute Earth System (MPI-ESM-LR), Hadley Centre Global Environment
Model by UK MetOffice (HadGEM-ES) and Norwegian Earth System Models (NCC-
NorESM1-M) constitute CMIPS GCM models used for climate studies in Africa. Taylor et al.
(2012) provide a detailed description of the models’ experimental design and parameters. The
climate response and scenario estimates of NorESM1-M were emphasised by Iversen et al.
(2013). In comparison to other models in CMIP5, the model's predicted equilibrium climate
sensitivity is 2.9 K. Giorgetta et al. (2013) examined the climate and carbon cycle of MPI-ESM
simulations used in CMIPS, stating that MPI-ESM-LR has an equilibrium climate sensitivity
of 3.6 K. The study further highlighted the model’s structure and revealed that climate feedback
depends on the level of global warming and possible forcing history. Description of HaddGEM-
ES development and evaluation used in CMIPS5 is also detailed in Collins et al. (2011). It has a
notably lower cloud cover compared to other GCMs. HadGEM-ES is a robust climate model
with significant improvement in ocean temperature and tropical variability for representing
climate dynamics, especially over Mediterranean regions (Dosio & Panitz, 2016).

Mehran et al. (2014) evaluated CMIP5 continental precipitation simulations relative to
satellite-based gauge-adjusted observations. CMIP5 simulations, including MPI-ESM,
NorESM, and HadGEM-ES simulations, were cross-validated against Global Precipitation
Climatology Project (GPCP) data. Results of the volumetric analysis hit index (VHI) of total
monthly precipitation prove the models’ simulations are in good agreement with GPCP patterns
in most regions but show less skill in simulating precipitation at high quantiles of the reference
data (75th and 90th percentiles) except in regions such as Central Africa. Analysis of total bias
also revealed models overestimate precipitation over regions with complex topography (for
example, Southern Africa) while underestimating in arid regions. A study by McSweeney et al.
(2015) to aid selecting CMIP5 GCMs for downscaling over multiple regions indicated the
ability of MPI-ESM-LR, HadGEM-ES and NorESM1-M to capture 29, 27 and 25 out of 36
key teleconnection relationships in Africa, respectively. Africa's climate conditions are strongly
influenced by the seasonal migration of the Inter-tropical Convergence Zone (ITCZ) and
associated seasonal rainfalls. Teleconnections with major modes of variability in sea-surface
temperatures (SST) such as ENSO and IOD are factors that influence the strong interannual

climate variability across Africa (McSweeney et al., 2015). MPI-ESM-LR and HadGEM-ES
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were used in a study by Dosio & Panitz (2016) to assess climate change projections for the
CORDEX-Africa domain. The results showed GCMs overestimated present climate
precipitation and overestimated seasonal mean precipitation across Central African regions,
whereas present-day mean temperature is also largely overestimated across the Sahel region.
Both models also show a decrease in mean precipitation and an increase in consecutive dry days
over West Africa (Dosio & Panitz, 2016). Agyekum et al. (2018) also evaluated CMIP5 GCMs
precipitation simulation over the Volta Basin. The evaluation of a limited number of GCMs
revealed that NOR-ESM-LR could accurately replicate the observed climatological mean of the
total annual precipitation and the peak observed rainy season in the Sudano-Sahel, the Sahel,
and the entire Volta basin. However, it struggled to replicate the Guinea Coast's bimodal

pattern.
1.3.2 Regional Climate Model Performance across African Regions

Regional climate models (RCMs) play an important role in improving African’s diverse climate
zones representation, yet their performance is influenced by methodological approaches and
inherent data limitation. The spatial accuracy of RCMs varies across regions and seasons as
they capture localised climate phenomena such as monsoons, elevation gradients and land
cover, introducing model challenges (Wu et al., 2020). Compared to GCMs, RCMs generally
better simulate finer-scale rainfall features and seasonal cycles; however, persistent biases
remain in simulation of regional rainfall intensities, annual cycles, the onset and cessation of
rainy seasons (Gerasu et al., 2024). As part of the CORDEX project, the consortium for small-
scale modelling (COSMO), the regional model (CCLM), the Regional Climate Model (REMO)
and the Regional Climate Modelling System (RegCM) are widely used models for evaluation
in the Africa domain. The models are developed by KIT, Karlsruhe, Germany, in collaboration
with the CLM-community; Climate Service Center, Germany and Abdus Salam International
Centre for Theoretical Physics, Italy, respectively. REMO and REGCM4 are hydrostatic
models, while CCLM is a non-hydrostatic model. Details on the models' dynamic and physical
parameterisation are provided by Giorgi et al. (2012) and Nikulin et al. (2012).

Focusing on individual model performances, CCLM5 demonstrated considerable skills
in reproducing key African climate, specifically the seasonal pattern of precipitation and
temperature, but exhibited quantitative biases (Fotso-Kamga et al., 2020). It improves
simulations of both mean seasonal and daily precipitation, capturing features such as the West
African monsoon and the rainfall regime in the Sahel region (Panitz et al., 2013). To assess
climate change projections, Dosio & Panitz (2016) employed CCLM to assess CORDEX-
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Africa output relative to GCMs, revealing projected increase in seasonal temperature similar to
projections of GCMs. In contrast, over regions such as Central Africa, precipitation trends
simulated are in opposite directions to GCMs, with significant reduction in precipitation.
Similarly, over Southern Africa, CCLM simulates warmer temperature than GCMs during the
both January-February-March (JFM) and July-August-September (JAS) periods over 1981-
2010 (Dosio & Panitz, 2016).

REMO2015 is recognised for capturing temperature cycles and broad precipitation
patterns well over subtropical and tropical regions, often outperforming other models in daily
and seasonal temperature metrics (Vondou & Haensler, 2017). It also produces a realistic
annual precipitation cycle and magnitude, but present regional biases; underestimation or
overestimation depending on the subregions or domain (Safari et al., 2023). The study by Jacob
et al. (2012) assessed the transferability of REMO to different CORDEX regions with a
standard setup. Using boundary conditions from the ERA-Interim global reanalysis dataset over
the period 1989 to 2008, evaluating via the Koppen-Trewartha climate classification and
probability density function (PDF) skill score compared to the CRU dataset, REMO was found
capable of well simulating the mean annual climatic features across all domains, including
Africa, despite some dry biases in East Africa. Importantly, REMO captures the inter- and intra-
annual seasonal variability for most climate across the Koppen-Trewartha climate classes.

Similarly, RegCM4 with improved land surface schemes and convection parameters
(such as Emmanuel convection scheme) show acceptable simulation of temperature and
precipitation typical of earlier versions, though it underestimate rainfall during peak rainy
seasons (Koné et al., 2018). Comparisons with CRU observational data highlights RegCM4’s
skill in capturing mean precipitation and low-level wind circulations. Representation of the
Intertropical Convergence Zone (ITCZ) over the Atlantic is narrower in the model, but the
regional features of both seasonal precipitation fields are well reproduced. The model also
captures well the Tropical Easterly Jet and the African Easterly Jet (Giorgi et al., 2012). In West
Africa and the Sahel region, RegCM4 simulates a forward shift in the monsoon onset as
produced in MPI-ESM-LR, with widespread decrease of monsoon precipitation associated with
decreased easterly wave activity and soil moisture precipitation interaction (Mariotti et al.,
2014; Saini et al., 2015).

Akinsanola & Ogunjobi (2017) used CCLM, REMO and an earlier version of RegCM
(RegCM3) in combination with other CORDEX regional models to evaluate present-day
precipitation of West Africa. Despite CCLM and REMO overestimating rainfall during pre-
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and post-monsoon seasons, all models captured the geographical extent and the three distinct
phases of the West African monsoon. RegCM3 was found to outperform all other models and
recommended for use in West Africa rainfall assessment (Akinsanola & Ogunjobi, 2017). Ilori
& Balogun's (2022) further support the performance of RegCM in simulating the mean seasonal
rainfall over West Africa. The study evaluated the performance of three RCMs (CCLM, REMO
and RegCM) by downscaling three CMIP5S GCMs (HadGEM, MPI-ESM-LR and NORESM1-
M) at aresolution of 0.22° x 0.22°. Their analysis spanning the period 1970 to 2005, highlighted
RegCM’s ability to replicate West African rainfall pattern.

Overall, studies have confirmed the RCM's abilities to capture the African climate patterns
and dynamics, including adding value to driven GCM simulations. However, unavoidable
biases persist and vary according to season, sub-area and GCM-RCM chain (Gnitou et al.,
2021). To address this, multi-model ensembles are widely adopted due to better performance
than individual models. Multi-model ensemble outperforms individual RCMs as a result of the
cancellation of opposite-signal biases found in the different RCMs (Wu et al., 2020). Ensemble
based approaches including CCLMS5, RegCM, and REMO have been used in other studies to
investigate the effect of global warming increase across the different regions for climate
adaptation and resource management (Dosio, 2017; Klutse et al., 2018; Mba et al., 2018;
Nikulin et al., 2018; Fotso-Kamga et al., 2020; Dosio et al., 2021).

1.4 Variability and Uncertainty in Groundwater Recharge Forecasts
1.4.1 Known Sources of Uncertainty in Groundwater Recharge Simulations

Uncertainties from water resources modelling perspective stem from differences in spatial and
temporal resolution of climate models compared to the finer resolution of hydrological models
(Goderniaux et al., 2015; Banda et al., 2022). Banda et al. (2022) classified sources of
uncertainties from climate model projections as (i) scenario uncertainty; uncertainty related to
emission or concentration scenario (ii) Global circulation models (GCM) uncertainty;
uncertainty related to how global models respond to specific emission scenario (iii) Regional
climate models (RCM) uncertainty or downscaling uncertainty; uncertainty from the use of
several RCMs and downscaling techniques from a specific GCM projection (iv) uncertainty
caused by internal variability of the climate system. Choices of GCM and RCM are the principal
sources of uncertainty, particularly GCM, with the most significant uncertainty in future
recharge estimations (Crosbie et al., 2011). RCM errors are related to process parameterisations

such as cloud representation, convection, horizontal diffusions and microphysics (Solman et
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al., 2013). Hydrological model uncertainties originate from parameter uncertainty (Reinecke et
al., 2021), model structure (D6ll et al., 2016) and process (inability to simulate real-world
processes thoroughly), groundwater table dynamics, input and observed data (Moges et al.,
2021). Known sources of hydrological data uncertainties are measurement or point uncertainty,
for example, rainfall, uncertainty from data interpolated in space and time, scaling uncertainty,

and uncertainties in data management (McMillan et al., 2018).
1.4.2 Uncertainties in recharge forecast across Africa

The long-term forecast of groundwater recharge in Africa is prone to uncertainty due to a
combination of environmental, methodological, and data-driven factors. The primary sources
of uncertainty include;

e Model structure and parameterisation: Climate and hydrological models vary in
simulating rainfall, evapotranspiration, soil moisture and subsurface flow. Model
selection, spatial resolution and internal assumptions result in significant variations in
recharge forecasts even when applied over similar areas (Reinecke et al., 2021).

e Observational Data Limitations: Observed data are needed for validation of model
outputs, but are sparse with no functioning measuring stations across many African
regions, especially in arid and remote landscapes (Beyene et al., 2024). Remote sensing
for large-scale monitoring and the provision of data adds to uncertainty due to
limitations in satellite data resolution and interpretation (Richey et al., 2015).

e Estimation Method Uncertainty: Different ways of estimation ( water table fluctuations,
soil moisture, remote sensing, etc.), model simplification, and assumptions often lead to
different outcomes and biases (Reinecke et al., 2024).

e Diverse landscapes and environmental controls: Rainfall conversion into groundwater
recharge is influenced by features such land cover, soil type, geological formations, and
topography. This diverse distribution of features across Africa causes difficulties in

generalising findings across regions (West et al., 2023).

1.5 Review of Recharge Studies across Africa.

Considerable studies have been conducted to estimate groundwater recharge using different
methods and to characterise uncertainties in recharge estimation across several areas in Africa.
Chung et al. (2016) investigated groundwater recharge studies in the humid and semi-arid
African region. In their study, recharge estimation methods were assessed. Water-balance

fluctuations (WTF) and chloride methods can be used with better certainty for recharge
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estimation in arid and semi-arid regions. The accuracy of these methods can be compromised
by factors such as localised inputs data and water vapour transport. However, the lack of basic
data remains a major challenge in these regions. MacDonald et al. (2021) helped bridge the gap
in historical data by mapping recharge across Africa. The study quantified long-term average
recharge rates across Africa for the period 1979-2019 from 134 ground-based estimates.
Recharge mechanisms included natural diffuse and local focused recharge, excluding discrete
leakage from large lakes and irrigation. Based on the use of a linear mixed model at the African
continental scale, long-term average rainfall and long-term annual recharge are correlated with
other factors important at the local scale. Building on the continental estimates of MacDonald
et al. (2021), Pazola et al. (2023) employed random forest regression at a finer resolution (0.1°
resolution) enhancing spatial detail and improving the representation of recharge variability.
However, the random forest model is constrained by its representation of focused recharge and
limited study in humid and equatorial African regions.

Bayat et al. (2023) quantified groundwater recharge using the water balance approach.
Land surface hydrology was simulated for the period 1965 — 2014 using the Community Land
Model version (CLMS). In their study, irrigation was included in the computation. The results
of this study offered the first model-based estimation of water availability across Africa.
Ashaolu et al. (2020) employed the water balance model to estimate spatial and temporal
recharge in the Osun drainage basin of Nigeria. The study confirmed the importance of the
water balance model in understanding the spatial and temporal status of recharge. Through
advancements in technologies and satellite data, GIS and remote sensing techniques are also
employed in recharge estimation. Barbosa et al. (2022) used NASA Gravity Recovery and
Climate Experiment (GRACE) data to evaluate groundwater storage change and recharge of
aquifers in Niger. The water table fluctuation approach was used in the study to predict recharge
rates between 2002 and 2021. The studies of Bayat et al. (2023) and MacDonald et al. (2021)
provide valuable datasets for global and continental model calibration and a baseline for future
changes; however, noticeable uncertainties exist in estimation methods, hydrological models
and model forcings. West et al. (2023) compared global-scale model estimates of groundwater
recharge across Africa. Long-term average recharge and recharge ratio from eight global
models over 100 ground-based estimates in Africa were compared. Models’ estimates were
found to disagree significantly across most of the regions. Positive and negative biases exist in
most landscapes, posing challenges to identifying areas requiring model improvement. Xu &

Beekman (2019) also assessed groundwater recharge estimation in arid and semi-arid Southern
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Africa. Methods of estimating recharge, including chloride mass balance (CMB) and water
fluctuation methods, were investigated. Methods based on mass balance and the relationship
between rainfall and water level fluctuation were proven to have the potential to simulate and
forecast recharge. In the case of South Africa, CMB are highly recommended. However,
uncertainties are known to be associated with error input and method propagation.

For a better understanding of process control on recharge variability across Africa, West
et al. (2022) synthesize information on reported groundwater control. They developed 11
descriptors consisting of climatic, topographic, vegetation, soil and geological properties using
global datasets. The study classified Africa into 15 recharge landscape units influenced by the
descriptors. Annual precipitation, seasonal precipitation, and irrigation showed a positive
relationship with recharge. Whereas radiation, slope, transpiration, and bedrock have a negative
correlation with recharge.

Previous studies estimated recharge using several known methods and assessed their
limitations across the different landscapes. However, research has not investigated the extent
and atmospheric forcings variability in hydrological modelling. The work in this thesis aims to
forecast recharge under two climate scenarios assessing recharge potential and reliability. It
also identifies areas of model agreement and regional recharge sensitivity to the GCM-RCM
choices, providing insights into uncertainty. Results of these assessments would help in the
provision of valuable insights to water planners on the spatial reliability of model-based

recharge forecasts.

Partial Conclusion

The literature review highlighted an overview of groundwater, recharge processes and the
various estimation methods relied on. It has outlined the role of climate models and their
contribution to advancing hydrological modelling, while examining the performance across
different African regions. The review examined the uncertainties inherent in groundwater
recharge projections arising from both climate and hydrological models. Finally, recharge-
focused studies conducted across Africa were considered, drawing attention to existing gaps
and diverse methodologies applied. These insights underscore the complexity of groundwater
recharge assessment under changing climate conditions and indicate the necessity of our study

in addressing model-driven variability and implications for water sustainability in Africa.
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CHAPTER TWO: MATERIALS AND METHODS

Introduction
This section presents the study area, climate model combinations, simulation methods, data
analysis, and tools used for assessing recharge potential, reliability, and regional sensitivity

across various African regions under two climate scenarios.

2.1 Study Area

The study is conducted over the CORDEX Africa domain, which spans from longitude -24.59°
to longitude 60.23° and latitude -45.71° to latitude 42.19°, covering an area of 30.3 million km*
including adjacent islands. Continental Africa is bordered by the Mediterranean Sea to the
North, the Indian Ocean to the East, and the Atlantic Ocean to the West. Africa is on both the
equator and the prime meridian. Rainfall across the continent is highly variable, providing a
basis for different climatic conditions and regional divisions (hot desert, semi-arid, tropical wet
and dry, equatorial, Mediterranean, humid subtropical marine, warm temperature upland and
mountain areas) (Lim Kam Sian et al., 2025). Mean annual precipitation varies from negligible
across the Sahara to very high rates in the equatorial regions influenced by seasonal migration
of the Inter-tropical Convergence Zone (ITCZ) and the associated seasonal rainfalls (Pazola et
al., 2023). Africa’s hydrogeology is also diverse, reflecting differences in geology and aquifer
types. Crystalline basement covers about 40% of sub-Saharan Africa, especially West and
Central Africa. The aquifers are typically weathered rocks with variable yields. High-yielding
sedimentary aquifers are found in the Sahara (notably Libya, Egypt, and the West African
coastal basins). Volcanic aquifers are mostly found in the East and Southern Africa regions

(Macdonald et al., 2008).
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Figure 4: Modified climatic zones for regional assessment. Source: (Oloruntoba et al., 2025)

The study adopted the modified regional division by Oloruntoba et al. (2025) as shown in figure
4, which was based on the IPCC climate reference regions for subcontinental analysis
developed by Iturbide et al. (2020). The new regions include the Mediterranean (MED), Sahara
(SAH), West Africa (WAF), Central Africa (CAF), Central East Africa (CEAF), South West
Africa (SWAF), and South East Africa with Madagascar combined (SEAF).

2.2 Climate Data

Future climate projections of precipitation, temperature, windspeed, humidity, air pressure,
shortwave and longwave radiation datasets for the period (2071 — 2100) were obtained from
CMIP5 GCM models: MPI_ ESM_LR and NCC_NORESM_M (Taylor et al., 2012). Outputs
from the global models were dynamically downscaled using CORDEX _Africa regional models
(CCLMS, RegCM4 and REMO2015; Nikulin et al., 2012) at a resolution of 0.22° under two
climate scenarios. Two representative concentration pathways (RCPs), namely RCP2.6 and
RCP8.5 of the IPCC fifth assessment report (ARS), were scenarios considered for analysis.
RCP2.6 assumes strong mitigation policies that result in low greenhouse gas forcing of 2.6

W/m?. RCP8.5 assumes high population and slow income growth with a modest rate of
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technological advancement and energy intensity improvements, leading to long-term high

energy demand and high greenhouse forcing of 8.5 W/m? (Moss et al., 2010).

Table 1: Global and Regional climate models (GCM/RCM) combinations

DRIVING GCM
RCM
MPI ESM LR NOR_ESM M
CCLM5 MPI-CCLM NOR-CCLM
REGCM4 MPI-REG NOR-REG
REMO2015 MPI-REMO NOR-REMO

2.3 CLMS Setup and Simulation

Community Land Model version 5 (CLMY) is a land surface model developed by the National
Centre for Atmospheric Research (NCAR). It helps represent land surface heterogeneity, such
as Africa, differently compared to other surface models. The model uses a multi-layered sub-
grid hierarchy, with each grid representing multiple land units consisting of vegetated, lake,
urban and glacier areas. Each land unit represents multiple columns, which could include
different soil profiles of evolving soil moisture content and temperature. Multiple patches of
plant functional type (PFT) or crop functional type (CFT) are included in each column
(Lawrence et al., 2019). Detailed description and evaluation of the CLM5 model can be found
in Lawrence et al. (2019).

The CLMS land surface model was used in this study to simulate groundwater recharge
forecasts across the different African regions at a half-hourly time step for a spatial resolution
of 10km. The downscaled climate data output for the far-future (2071- 2100) was used as
climate forcings in CLMS5 to calculate surface evapotranspiration, runoff, and irrigation
(considered as anthropocentric water supply) to calculate recharge for each model. Moderate
Resolution Imaging Spectroradiometer land cover type product (MCD121QI), soil texture and
properties information obtained from the International Geosphere-Biosphere Program Data and
Information System (IGBP-DIS, GSD Task, 2014) were also used in the CLM5 model for
simulation. Recharge was then calculated using the simple water balance approach (eq. 2.1)
aggregated to monthly and annual timescales.

R=P+I1)-ET-Q 2.1)
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Where R is groundwater recharge (mm/yr), P is the precipitation (mm/yr), I is the simulated
irrigation by CLM to account for all anthropocentric water supply (mm/yr), ET is
evapotranspiration (mm/yr), and Q is surface runoff (mm/yr). A detailed description of the
method and approach using CLMS5 for recharge simulation is provided by Bayat et al. (2023).
Results of simulations are stored in a NetCDF file named after each model combination for
both scenarios. Each file contained properties which include time (representing year),

longitude, and latitude (for grid cell position) and recharge values.

Start

Amlpspheﬁ_c Land Cover Soil Texture
Scenario Forcings

[ CLM5 Model }

*[ Precipitation ] [E\-’apotranspiration} [ Irrigation J [ Surface Runoff }

| | | |
l

Groundwater
Recharge

Figure 5: Adopted methodology for groundwater recharge simulation using CLMS

2.4 Statistical Analysis
2.4.1 Continental Recharge Trend and Spatial Pattern

To analyse continental-scale recharge trends, the yearly recharge was spatially averaged across
the continent for each model combination under every climate scenario. The performance of
individual model combinations, their respective recharge trends, were then compared against
an ensemble mean derived from all other models, excluding the specific model under
investigation. This comparison utilised metrics such as correlation and model percentage bias

to assess trend performance relative to the ensemble.
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Z(Rmi _m) (Rensi_M)
\/Z (Rmi _m)z Z(Rensi _Rens)z

Pearson Correlation = (2.2)

1‘1— Rmi_Rensi
LZizt Rmi—Rensi 4 (2.3)

Percent Bias = n R
i=1"enst

Where Rui and Rensi are the values of the variable at the ith grid cell point of the model and

reference, respectively, with R,,, and R,,s representing their mean values.

The long-term ensemble average of all six model combinations under each climate scenario

was calculated to assess and observe the spatial recharge distribution across the continent.

Similar procedures were carried out for the water balance components (precipitation,

evapotranspiration and runoff).
2.4.2 Model Agreement and Disagreement

To assess regions where models agree and disagree, standard deviation (std) and coefficient of
variation (CV) were used. Models were stacked together in one NetCDF file, with the standard
deviation per grid cell across all models calculated and plotted. A mapped visualization of
standard deviation highlighted regions of model consensus and areas of variation. The
coefficient of variation was then calculated as the average standard deviation divided by the

average spatial recharge value per region and scenario to help assess the recharge reliability.
2.4.3 Regional Sensitivity

To determine the regional sensitivity of individual climate models, the deviation of their output
from the ensemble mean was calculated. For each grid cell in the region’s domain, the
difference between the individual model's value and the mean of all other models in the
ensemble (excluding the model under consideration) was calculated. The disparity was then
assigned to a specified scale, ranging from greater than 40mm/year to less than -40mm/year.
Metrics used for assessment include mean bias (M-Bias) eq. 2.5 and percentage bias (P-Bias)

eq. 2.3
Bias = Rmi - Rri (24)

n

i=1 Rmi_Rensi
s (2.5)

Mean Bias =

Where N is the total number of grid points, Rmi and Rensi are the values of the variable at the ith
grid point of the model and reference, respectively, with R,,, and R, representing their mean

values.
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2.5 Tools

Analyses were carried out using Climate Data Operator (CDO), Python and QGIS. Installed
python libraries used include matplotlib (visualisation), NetCDF and Xarray (for extracting data
from files), Pandas and NumPy (for metrics computation). Regional files were generated using
the Climate Data Operator (CDO) and Quantum GIS (QGIS) to split continental files with

defined latitude and longitude values and shapefiles, respectively.

Partial Conclusion

This chapter outlined the methodological framework adopted in this study. We first described
the study area and its relevance for understanding groundwater recharge dynamics across
Africa. The analysis relied on atmospheric forcing data from CORDEX, while CLMS5 was
employed to simulate evapotranspiration and runoff, which formed the basis for recharge
estimation using the water balance approach. Pearson correlation and percentage bias were used
to analyse long-term recharge trends at the continental scale. The ensemble mean provided
insights into spatial recharge potential. Recharge reliability was evaluated through the
coefficient of variation, while ensemble standard deviation was used to identify areas of model
agreement. Regional sensitivity was assessed using simple bias. CDO, Python and GIS are tools
employed that enabled robust data processing, analysis, and visualisation. This methodological

approach provides a solid foundation for the study and interpretation of groundwater recharge.
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CHAPTER THREE: RESULTS AND DISCUSSION

Introduction

This chapter presents the results of the continental recharge forecast trends, spatial distribution,
and regional sensitivity. It examines how the different regions respond to simulated recharge
by the different GCM-RCM configurations under climate scenarios RCP2.6 and RCP8.5 for
the period 2071-2100. Reasons for model performance across regions are discussed in relation
to precipitation and other climatic conditions. Insights on the implications of model-driven

uncertainties are further provided.

3.1 Projected Recharge Trend

The simulated recharge for each model combination and their comparison with the multi-model
ensemble under both climate scenarios for the far-future (2071 —2100) are presented in figures
6 and 7, respectively. Noticeable peaks and troughs are observed under both climate cases, but
more pronounced under RCP8.5. RCMs exhibit different temporal patterns despite being driven
by the same GCM. These observations highlight structural uncertainty even under low-emission
scenarios. Under RCP2.6, REG models overestimate (~ 2.8 to 16.3 %), whereas REMO models
underestimate (~ -5.3 to -14.4 %) the ensembles. CCLM model either underestimates (NOR-
CCLM; ~ -5.5%) or overestimates (MPI-CCLM; ~ 6.6%). Models exhibit moderate positive
correlation with the ensemble (~ 0.4 to 0.7), excluding MPI-REG with a weak correlation
(0.13).
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Figure 6: Continental recharge time series per model and comparison with ensemble under
RCP2.6 climate scenario
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Increased model uncertainties are more evident under RCP8.5 (Fig.3.2), consistent with the
more intense and extreme climate forcing under this scenario. CCLM models show strong
underestimation (~ -29.5 to -49.2 %) with weak positive correlation, while REG models show
strong overestimation (~ 35.2 to 54.6 %), with no correlation (MPI-REG; 0.0) to moderate
correlation (NOR-REG; 0.40) with the ensembles. REMO models simulate closest to the

ensemble with weak to moderate correlation (~0.25 to 0.42).
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Figure 7: Continental recharge time series per model and comparison with ensemble under
RCP8.5 climate scenario

This time series analysis provides valuable insight and highlights the temporal variations of
groundwater recharge simulated by the different models. The different models’ performance
facilitates deeper analysis and understanding of regional response to model configurations

across the continent on a spatial scale.

3.2 Spatial Recharge Pattern

Long-term ensemble groundwater recharge averages for Africa (2071-2100) under RCP2.6
(Fig. 8) and RCP8.5 (Fig. 9) scenarios show remarkably similar spatial distributions. Compared
to RCP2.6 a significant decrease (~27.09 mm/year) under the higher-emission (RCP8.5)
scenario was recorded. Increased concentration of GHG emissions leads to the occurrence of
chaotic events such as drought, flood, and elevated temperature (high evapotranspiration rates).
Higher recharge rates (=300 mm/year) are observed in the tropical rainforest areas, specifically
parts of Sierra Leone, Liberia, the southeastern coast of Nigeria, Congo, Madagascar, and

Lesotho. In contrast, arid regions, most especially the Sahel and Kalahari Desert areas, record
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much lower recharge rates (< 50 mm/year). The tropical wet and dry climatic zones record
moderate recharge averages (100-250 mm/year).

Continental and regional recharge rates are mainly influenced by hydrological variables
(precipitation and evapotranspiration) including topographic, vegetation and geological
formations as emphasised by West et al. (2022) . Spatial distribution of projected water balance
components are shown in Fig. A9 and Fig. A11 for RCP2.6 and RCP8.5, respectively. Regions
with higher rainfall record higher rates, whereas regions with lower precipitation records show
low recharge potential. These observations confirm the direct influence of long-term
precipitation average on groundwater recharge, as highlighted by Bayat et al. (2023) and
MacDonald et al. (2021). Additionally, simulated evapotranspiration and surface runoff show
positive spatial correlation with precipitation. Regions with higher precipitation levels, such as
WAF and CAF, experienced the higher ET values with values above 400 mm/year. SAH and
MED regions record the lowest ET values (< 200 mm/year). However, it is important to note
that models project differently the spatio-temporal distribution of the water balance components

as shown in Fig A1 to A8 for the two climate scenarios.
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Figure 8: Continental spatial recharge distribution under RCP2.6 climate scenario
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Figure 9: Continental spatial recharge distribution under RCP8.5 climate scenario

3.3 Recharge Potential and Reliability
Spatial ensemble standard deviation (Fig. 10 & 11) shows a similar distribution pattern as
observed in the spatial recharge maps. Humid and tropical wet areas show high std (> 100
mm/year), whereas semi-arid and arid areas show lower std (<75 mm/year). Regional-based
average recharge, average std and coefficient of variation (CV) under both climate scenarios
are displayed in Table 3.1. Results of the CV highlight the reliability in recharge projection
across regions. The Sahel region, despite having the lowest recharge and std, records the highest
CV (~0.73 to 0.84), indicating high relative uncertainty. Central Africa, with the highest
average and std under both climate cases, records the lowest CV (0.5) under RCP2.6, whereas
Central-East Africa records the lowest CV (0.59) under RCP8.5. All other regions record low
to moderate CV (~0.53 to 0.68) under both emission forcings, with a general decrease in std
(~8.95 mm/year).

Recharge projections are reliable in the tropical regions (Central and West Africa)
despite having a high model spread. Arid zones and the Mediterranean stand out as vulnerable
zones, indicating that even small fluctuations in recharge can have substantial impacts on water

availability and pose significant challenges for water security in such regions. Variation in
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recharge values are due to differences in model simulation of regional climatic conditions.
Precipitation exhibits significant variation as compared to other components used in recharge
calculations (Fig. A10 & A12). The spatial distribution of model consensus and spread agrees
with the findings of West et al. (2023). The study highlights that models diverge most in wetter
regions, and dry regions significantly record high CV. Differences in recharge estimates are
caused by precipitation-recharge conversion rates, attributed to varying model structure and
parameterisations. Discrepancies in model simulation of precipitation characteristics align with

findings of Dosio et al. (2021).

Table 2: Regional recharge potential and reliability under both RCP2.6 and RCP8.5 climate

scenarios
RCP2.6 RCPS8.5
Regions Mean Std Mean Std
CvV CV
(mm/year) (mm/year) (mm/year) (mm/year)

Mediterranean 31.48 18.84 0.60 21.92 14.55 0.66
Sahel 16.93 14.29 0.84 11.79 8.61 0.73
West Africa 179.12 94.76 0.53 134.16 80.26 0.60
Central Africa 232.05 115.24 0.50 158.76 105.89 0.67
North East

1154 78.96 0.68 110.3 68.54 0.62
Africa
Central East

146.77 89.93 0.61 128.21 75.41 0.59
Africa
South East

188.86 116.1 0.61 161.95 101.98 0.63
Africa
South West

165.04 89.3 0.54 118.66 80.26 0.68
Africa
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Figure 10: Continental spatial models’ variation under RCP2.6 climate scenario
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Figure 11: Continental spatial models’ variation under RCP8.5 climate scenario
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3.4 Regional Sensitivity

I.  Mediterranean

The Mediterranean Region is found between latitudes 30° and 45° north with a dry summer
climate type. Long-term average recharge of ~ 31.48 (21.92) mm/year under RCP2.6 (RCPS8.5)
are simulated, yielding low deviation within >£30 mm/year across the region. Figures 12 and
13 illustrate the spatial sensitivity pattern of the MED regions under RCP2.6 and RCP8.5,
respectively. Overestimation (positive bias) is seen across REG models, whereas CCLM and
REMO models underestimate (negative bias). MPI-REG overestimates (15.85 mm/year) under
RCP2.6, with an increase (23.37 mm/year) under RCP8.5. NOR-CCLM shows the highest
underestimation (~12 mm/year) under both scenarios. The Atlas region, consisting of Morocco,
North of Algeria (Algiers) and Tunisia, stands out as the region with the most sensitivity to
model configurations. These findings highlight model challenges in simulating complex

climatic conditions in coastal and highland zones.
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Figure 12: Mediterranean region spatial models’ variation in comparison with the ensembles
under RCP2.6 climate scenario
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Figure 13: Mediterranean region spatial models’ variation in comparison with the ensembles
under RCP8.5 climate scenario
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II.  Sahara

The Sahel region remains the driest zone under both scenarios, with low average recharge (~12

to 17 mm/year). Figures 14 and 15 present the regional sensitivity over the Sahara under RCP

2.6 and 8.5. The region records high model agreement within +£10 mm/year. Systematic model

deviations are observed across the region. CCLM models overestimate (~13 to 22 mm/year)

recharge, while REMO models tend to underestimate (~-13 to -18 mm/year) recharge. CCLM

records a significant decrease (~11 to 20 mm/year), while REG models show an increase in

positive deviations (~5.30 to 11 mm/year) under RCP8.5. However, variations are more evident

towards the South of the region, which constitutes the north of the Savanna zone. RCMs’

structure uncertainty is noticed to be more influential as compared to GCM and emission

scenario.
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Figure 14: Sahara region spatial models’ variation in comparison with the ensembles under
RCP2.6 climate scenario
MPI-CCLM MPI-REG MPI-REMO
Bias: 11.06 mmy/yr | P-Bias: 111.17 % Bias: -7.74 mm/yr | P-Bias: -59.18 %
28N 280 [ o F i W e 1 I .
' : i \ a
22N 32 &
20°N 20°N 30
18°N 18°N
18N 16°H =
107w o 10°E  20°E 30°E  4D°F 20 i
0 £
-10 5
NOR-CCLM NOR-REG NOR-REMO &
Bias: -1.65 mm/yr | P-Bias: -13.69 % Bias: 5.30 mm/yr | P-Bias: 48.64 % Bias: -9.29 mm/yr | P-Bias: -69.66 % -20 3
BN " N g =T ‘ TR °
aaen | ST e ) Exity . N -30
BTN 2 % w0
B Bl e Sl 1o . " S
oW 0° 10°E 20°E 30°E 40°E 0w o 10E 20°E 30 40°E

Figure 15: Sahara region spatial models’ variation in comparison with the ensembles under
RCP8.5 climate scenario
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I1I.

West Africa

In this study, West Africa comprises the Guinea coast and the Savanna region. Precipitation

across the region decreases from the Guinea coast toward the Sahara, with diverse landscapes

including coastal plains, inland plateaus, and mountain ranges. The region records a high

recharge average (~134 — 180 mm/year), with moderate CV (~0.53 — 0.60). Figures 16 and 17

illustrate the regional sensitivity under both climate scenarios. Noticeable model disagreement

spread across the region, with MPI-driven models deviating most on the positive

(overestimation), while NOR-driven models deviate mostly on the negative (underestimation).

MPI-REMO show extreme overestimation (~ 77 to 81 mm/year), and NOR-CCLM show

extreme underestimation (~53 to 94 mm/year). Models diverge within >+30 mm/year, with less

agreement within the £10 mm/year recharge range. Findings across this region highlight the

influence of driven GCM uncertainties on RCM.

Figure 16: West Africa spatial models’ variation in comparison with the ensembles under
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Figure 17: West Africa spatial models’ variation in comparison with the ensembles under
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IV.  Central-Africa

Central Africa includes the Congo rainforest, which is among the most convectively active
regions on the planet. As one of the moisture-rich regions in Africa, the mean rainfall ranges
from 50 to 200 mm per month. Central Africa stands out as the region with the highest long-
term simulated average recharge (~ 158 to 232 mm/year), with low to moderate CV (~0.50 to
0.67), indicating higher reliability. Higher std (~106 to 115 mm/year) indicates strong model
disagreement. Spatial distribution of regional sensitivity to model configurations are shown in
figures 18 and 19 for RCP2.6 and 8.5, respectively. Models exhibit a spatially mixed pattern
across the region under both climate scenarios. Increased sensitivity values are recorded under
RCP8.5. CCLM models show underestimation (~ -80 to -102 mm/year), whereas REG models
show overestimation (~51 to 79 mm/year). REMO-based models show consistent spread in
deviation under both climate cases. RCM variations are observed to be more influential than

emission scenario across the regions.
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Figure 18: Central Africa spatial models' variation in comparison with the ensembles under
RCP2.6 climate scenario
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Figure 19: Central Africa spatial models' variation in comparison with the ensembles under
RCP8.5 climate scenario

V. North East Africa

North East Africa, comprising Somalia, Djibouti, Ethiopia, and parts of Kenya, has a diverse
climate ranging from arid and semi-arid in the North to humid conditions in the south and
mountainous areas. Rainfall patterns vary significantly, with some areas experiencing a
unimodal rainy season and others a bimodal rainy season. Moderate average recharge (~110 to
115 mm/year) is simulated across the region. However, with high std (~ 68.54 to 79 mm/year)
and moderate CV (~0.62 to 0.68), there are uncertainties, making the region one of the least
reliable regions for projections. CCLM and REG models mostly overestimate recharge, while
REMO models underestimate, as shown in figures 20 and 21 for both climate cases. Comparing
GCMs, MPI-driven models exhibit extreme deviations compared to NOR models. MPI-CCLM
shows the highest overestimation (70 mm/year) under RCP2.6, MPI-REG (65.74 mm/year)
under RCP8.5. MPI-REMO shows the highest underestimation (-80 to -91 mm/year) in both
cases. Findings across this region highlight regional sensitivity to RCMs over GCMs.
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Figure 20: North-east Africa spatial models' variation in comparison with the ensembles under
RCP2.6 climate scenario
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Figure 21: North-east Africa spatial models' variation in comparison with the ensembles under
RCP8.5 climate scenario

VI.  Central East Africa

The region of Central East Africa is dominated by complex topography, contributing to the
factors responsible for the climate. The region experiences a bi-modal annual cycle of
precipitation principally driven by the movement of the ITCZ. The region has moderate
recharge potential (~ 128 — 147mm/year) comparable to North East Africa, the Mediterranean
and the Sahara region. With moderate std (~ 75 to 90 mm/year) and CV (~0.59 to 0.61),
significant disagreement exists between models, indicating low confidence in mean projections.
Figures 22 and 23 present the regional sensitivity under RCP2.6 and RCP8.5, respectively.
CCLM models overestimate (~40 to 87 mm/year), while REMO models underestimate (~ -56
to -78 mm/year) under RCP2.6. REG models exhibit a moderate spread in deviations across the

region. In the extreme case (RCP8.5), REG models show a strong increase in bias (~17 to 49
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mm/year). Deviations across this region are also geographically focused, especially lake zones

(Lake Victoria), coastlines, and transition zones.

MPI-CCLM MPI-REG MPI-REMO
ias: 40.31 mmyyr | P-Bias: 28.79 % 0.19 mm/yr | P-Bias: -0.13 % 8.57 mm/yr | P-Bias: -49.15 %
2N ,.’ 2N T 1.| 4 2 o @D
0 L g 3 r
iy
2°5 27 |8 ok 2° 40
4*s 4a*s 4%
30
65 65 5"
85 s Eo ¥ 20 E
- >
30°F 3I5°E 20°E 45°E 50°E 20°E [ 40°E 45°E 50°E 10 g
NOR-REG NOR-REMO —10 5
Bias: 6.56 mm/yr | P-Bias: 4.51 % Bias: -55.80 mm/yr | P-Bias: -35.76 % "
N T ] > 7 H
P e, 203
o [ / £ e
25 [ . 7 —30
45 L o
655 ﬁ%ﬁ ; & -0
s " B
wE e avE 45°E S0°E R 40°E 45°E S0°E
Figure 22: Central-east Africa spatial models' variation in comparison with the ensembles
under RCP2.6 climate scenario
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Figure 23: Central-east Africa spatial models' variation in comparison with the ensembles
under RCP8.5 climate scenario

VII.  South East Aftrica

South East Africa, including Madagascar, stands out among the regions with high recharge
potential (~ 161 to 189 mm/year). The region has diverse climate conditions (semi-arid, tropical
wet and dry, humid subtropical and tropical rainforest in the east of Madagascar), which
influence model performance. Despite high recharge potential, the region shows high std (~ 102
to 116 mm/year) and low CV (~ 0.61 — 0.63), indicating high spread between models and
significant uncertainty. MPI-driven models (REG & REMO) show strong positive deviations
(overestimation), while NOR-driven models (REMO) show strong negative deviations

(underestimation), with reverse trend over the same locations. Results are presented in figures
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24 and 25 for RCP2.6 and 8.5, respectively. NOR-REG exhibits the highest overestimation
40.56 (74.49) mm/year under RCP2.6 (RCP8.5), while NOR-CCLM exhibits the highest
underestimation -88.29 (-92.40) mm/year. GCMs are also observed to be more influential than

RCMs and emission scenarios across this region.
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Figure 24: South-east Africa spatial models' variation in comparison with the ensembles under
RCP2.6 climate scenario
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Figure 25: South-east Africa spatial models' variation in comparison with the ensembles under
RCP2.6 climate scenario
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VIII.  South West Africa

The region is characterised by semi-arid and arid (Kalahari desert) climates. Despite being an
arid zone, the region has substantial recharge potential (~119 to 165 mm/year). However, the
moderate to high std (~84 to 89 mm/year) and CV (~0.54 — 0.68) indicate large absolute
differences between models. CCLM models show strong underestimation, whereas REG
models show strong overestimation, as shown in figures 26 and 27. In comparison with RCP2.6,
NOR-CCLM (-89.26 mm/year) and MPI-REG (51.95 mm/year) show an extreme increase in
deviation, while MPI-REMO (-43.47 mm/year). NOR-REG shows the strongest positive bias
(~ 122 to 151 mm/year), MPI-CCLM shows the extreme negative bias (~107 to 108 mm/year)
in both climate scenarios. Agreement within the + 10 mm/year is mostly observed across the

Kalahari Desert, and due to the aquifer type.
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Figure 26:South-west Africa spatial models' variation in comparison with the ensembles
under RCP2.6 climate scenario
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Figure 27: South-west Africa spatial models' variation in comparison with the ensembles
under RCP2.6 climate scenario

The analysis of regional sensitivity to model configuration, as illustrated in figures 12
to 27, reveals important spatial patterns in model agreement and uncertainty. Regions with
higher recharge average (Central, West, South Africa) show greater disagreement among
models. Whereas arid regions like the Sahara show the greatest model agreement. This suggests
that water-abundant areas face more uncertainty in projections, posing a significant risk to water
resource planning and development. Model disagreement hotspots are region-specific, most
especially areas with complex topography and diverse hydroclimatic zones, including
convective rainfall and elevation-driven microclimates, as concluded by Akinsanola et al.
(2015) and Klutse et al. (2016). WAF, SEAF and SWAF regions display strong sensitivities to
the choice of driving GCMs, whereas MED, SAH, CAF, NEAF and CEAF show greater
sensitivities to the RCM. These observation align with findings of Crosbie et al. (2011) stating
the greater influence of model structure uncertainties than emission scenario uncertainties on
recharge simulation. Considerable uncertainties among RCMs driven by the same GCM is also
reported by Saini et al. (2015). These discrepancies and uncertainties reflect sensitivities to
model physics, process parameterisations, and internal dynamics.

Considering the spatial patterns in model agreement and uncertainty, potential drivers
for model performance are further discussed. Spatial agreement in the SAH and MED regions
can be attributed to low precipitation and recharge records, simpler topography, and the model's
abilities to simulate these climatic conditions. However, overestimation by CCLM4 and

RegCM4 across some parts of the Sahel arises from the northward extension of high rainfall
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intensities and the overestimation of the daily rainfall index (Klutse et al., 2016). In West
Africa, orography plays a significant role in rainfall patterns, but inadequate model resolution
of topography leads to over- or underestimation of rainfall (Akinsanola & Ogunjobi, 2017).
These challenges are evident across the orographic zones of MED, NEAF (including Ethiopian
highlands), CEAF and Madagascar. Additionally, RCMs differ in the simulation of the
magnitude, spatial extent, and development of the West African Monsoon (WAM) features
(Sylla et al., 2010). The pre- and post-monsoon rainfall intensity is often overestimated by the
CCLM and REMO models (Akinsanola & Ogunjobi, 2017). Klutse et al. (2016) also highlights
the shift of higher rainfall intensities in regions equatorward, causing overestimation of rainfall
intensity in the West Coast and dry biases in the Sahel. Variations among model simulations
are also influenced by different sensitivities and responses to prescribed sea surface temperature
(SST) patterns (Thorncroft et al., 2011).

Central Africa presents complex vegetation cover, water resources (such as the Congo
Basin), and varied topography, which influence a diverse precipitation regime (Fotso-Kamga
et al., 2020). Models show variability in the timing and intensity of the rainy season across the
regions, partly due to a misconception of Central Africa demonstrating a bimodal pattern
associated with migration of the ITCZ (Mba et al., 2018). CMIP5 models demonstrate
disparities in the location of rainfall, correlated with the overestimation and underestimation of
modelled moisture flux convergence in the region (Creese & Washington, 2016). Akinsanola
et al. (2025) further attribute variability to models’ misrepresentation of regional
teleconnections (such as the Congo Basin Cell), land-sea thermal and pressure contrast. These
variations induce biases in atmospheric circulation and land-atmosphere feedback, leading to
errors in the regional hydrology.

In Southern Africa, mean precipitation and variability influencing recharge are driven
by complex processes from global to local scales. The region is dominated by mid-latitude and
tropical weather systems (Jury, 2013) with regional circulations features (such as Angola low,
Kalahari heat low, Mozambique Channel Trough, Botswana High) (Akinsanola et al., 2025).
Analysis of CMIP5 models shows overestimation of rainfall, whereas CORDEX RCMs show
a decrease in rainfall bias (Pinto et al., 2018). Persistent biases relate to the inaccurate
representation of the strength of Angola's low (Karypidou et al., 2022), tropical temperate
trough orography and tropical convection dynamics (Munday & Washington, 2018). Models'
projections of weaker (stronger) Mozambique Channel Trough lead to excess (deficient)

rainfall simulation over Madagascar and parts of South Africa (Cook et al., 2004).
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Eastern Africa lies within the tropics but is dominated by a semiarid and arid climate
type. The rainfall season is driven by the migration of the ITCZ. Complex topography
characterised by coastal plains to the east and interior highlands in the north-south direction is
a major factor responsible for the climate in the region (Akinsanola et al., 2025). Variation in
CMIPS5 models stems from failure to properly simulate the annual rainfall cycle driven by sea
surface temperature (SST) biases. Wet biases are due to models’ inabilities to capture westerlies
over the Indian Ocean, influencing rainfall (Hirons & Turner, 2018). Furthermore, CORDEX
RCMs display wet bias related to the simulation of ITCZ rainfall belts, and difficulties
capturing the dominant bimodal rainfall peak over the Eastern Horn (Endris et al., 2013).

In general, GCMs or RCMs inabilities to adequately capture processes such as
orographically driven precipitation, convective systems, and effects of large water bodies
contribute to model biases and diverse regional sensitivities across Africa. These limitations
highlight the need for model improvements in regional climate projections, physical process

representation and resolution to enhance reliability for water resource assessments.

3.3 Implications of Groundwater Recharge Uncertainty

The observed uncertainties in groundwater recharge forecasts across Africa pose significant
challenges for water resource management, especially under changing climate scenarios.
Development projects such as green hydrogen production in Africa hinge on the availability
and sustainability of water resources, most especially in arid and semi-arid regions with scarce
surface water. Green hydrogen production via electrolysis requires 9 —15 litres of purified water
per kilogram of hydrogen produced (Scholz, 2024). The uncertainties in recharge forecast pose
risks and challenges for large-scale initiatives and the underutilization of electrolysis
infrastructure. In regions facing high uncertainty and vulnerable regions (e.g., the Sahara, Table
A.1), the feasibility of hydrogen initiatives (operational reliability) can be jeopardised. High
uncertainty complicates sustainable groundwater management, making it challenging to
determine a safe abstraction limit and plan for future water security. This can lead to
overexploitation and increased competition as population demand rises and reliance on
irrigation increases. Investors and developers require confidence in long-term water
availability. Areas with high inter-model uncertainties may lead to greater project risk of
investment for environmental studies, monitoring of hydrogen project viability, water storage,
and saltwater desalination. Moreover, in regions with high average and high reliability, such as

Central Africa, there is potential for a stable foundation of water supply and sustainable
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development to meet growing demands, but it necessitates adaptive management strategies due

to an increase in variability.

3.4 Limitations of the study

Groundwater recharge is a derived process influenced by the model representation of
precipitation (P) and evapotranspiration (ET). Thus, uncertainties or biases in these forcing
parameters directly propagate into the recharge estimates. Notable biases in CORDEX Africa
precipitation data, such as over- or under-estimation in certain regions and seasons, annual
variability and zonal misplacement of rainfall peaks (Gnitou et al., 2021) can significantly affect
recharge simulations. Additionally, despite CLM5's advanced hydrological schemes, limited
representation of African continent vegetation types, simplified conceptualisation of subsurface
flow, complex aquifer recharge dynamics, and hard coding of irrigation into the surface dataset
reduce the precision of recharge simulation. Absence of observational validation for predicted
recharge values due to the inherent data limitations throughout the African continent is another
critical limitation. This data scarcity constrains the ability to calibrate model outputs reliably.
Consequently, instead of affirming the models' perfect real-world correctness, the main goal of
this analysis was to quantify the disagreement and variability amongst the various model
combinations within the ensemble. This method highlights the relative variations and dispersion
in model projections as a helpful measure of confidence and spatial diversity in recharge

estimates across Africa, while acknowledging the inherent uncertainties.

Partial Conclusion

The results and analysis show the recharge potential throughout Africa, with RCP2.6 estimates
greater than RCP8.5 projections. Recharge was shown to be higher in tropical regions, though
with higher model spread. In contrast, comparatively lower but more stable values seen in dry
and semi-arid zones like the Sahel. High-recharge zones such as Central, West, and Southern
Africa consistently show model disagreement while model agreement was highest in the
Mediterranean and Sahel regions under both climate scenarios. These results show that model
performance is primarily region-specific and that model structure is the primary driver of
recharge projection uncertainty. Importantly, these uncertainties have direct impact on policy
formulations, especially in developing water management plans and long-term energy projects

such as green hydrogen production.
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GENERAL CONCLUSION AND
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CONCLUSION AND PERSPECTIVES

Groundwater recharge estimation and forecast are essential for sustainable groundwater
management and usage in the face of climate change. Numerous studies have used climate
model outputs as forcings to hydrological and land surface models to estimate recharge. These
studies highlight the performance of models but fail to highlight the sensitivity and reliability
of the estimates across the different African regions. Hence, the objective of this study is to
estimate recharge, define its reliability, quantify model-driven spread, identify places of model
agreement, and diagnose regional sensitivities. To estimate and forecast recharge across Africa
over the period 2071- 2100, the Community Land Model version 5 (CLMS5) was employed. The
land model was forced with three regional climate models (CCLMS5, RegCM4 and REMO2015)
driven by two general circulation models (MPI-ESM and NOR-ESM). Results of continental
simulation under the two climate scenarios, RCP2.6 and RCPS8.5, indicate enormous potential
with long-term average recharge of 119.02 mm/year and 91.93 mm/year, respectively. RCP2.6
shows higher recharge potential than RCP8.5 across all regions. However, models show
considerable spatial variation in forecast, particularly in regions with high recharge potential,
with a continental average standard deviation of 68.23mm/year (59.23mm/year) under RCP2.6
(RCP8.5), respectively.

Spatial performance of model configurations are mostly region specific. Disagreements
are most observed in tropical dense zones (Congo Basin, Guinea coast, Madagascar), highland
(Guinea highlands, Ethiopian highlands) and transition zones posing risk to water resource
development planning. In contrary, regions such as the Sahel and Mediterranean show the most
model agreement due to lesser precipitation records and fewer diverse climate types. Model
structural differences are observed to be more influential than emission scenarios. Opposing
model biases mostly exist between CCLM and REMO models, with REG models showing a
consistent pattern across most regions. CCLM models mostly overestimated in the Sahel,
Northeast, and Central East regions and underestimated in the Mediterranean, West Africa,
Central Africa, and South Africa regions. REG models exhibited overestimation across the
Mediterranean, Sahel, Central Africa, Northeast, and Southwest Africa regions, with mixed
patterns across the Southeast, Central East, and West Africa regions. REMO models dominate
in underestimation in the Mediterranean, Sahara, and Eastern regions. Structural differences
and uncertainties underscore the complex interplay of global and regional processes affecting
climate projection. These necessitate improvement in model abilities at multiple scales. Model-

driven uncertainties pose serious challenges to regional development and adaptation. Success
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of development projects (such as green hydrogen) rely not just on solar and wind but on water,
which groundwater recharge either enables or constrains. Regions, such as West Africa (coastal
and Guinea Highland zones), Central Africa, and Southern Africa (Madagascar, Lesotho), show
moderate recharge potential crucial for long-term green hydrogen potential.

Findings from this study enhance scientific research and application-based projects by
providing insights into regional sensitivities to model configuration and aid in the selection of
models for hydrological and climate change studies. The study informs modelling centres of
the need to enhance model parameterisation and convective schemes to better simulate region-
specific climate dynamics. Furthermore, initiatives for green hydrogen production must
integrate groundwater recharge forecasting, prioritise places with both resource abundance and
model agreement, and invest in reducing uncertainty where stakes are highest. Uncertainties in
projections could be reduced through the development of regionally tailored climate models,
ensemble modelling, and local and regional-based calibrations. Attention should also be given
to regions with high CV (Sahel, Mediterranean), as projections vary relative to their means.
Regions with low CV but high std (Central Africa) also require much attention, though there is
stability, but disagreement among models is large in absolute terms. Policy and decision makers
are further encouraged to prioritise uncertainties and regional sensitivities to model outputs
when planning developments and implementing water resource management strategies.

Further research is recommended to investigate and compare recharge forecasts by other
hydrological, land models and reanalysis datasets (such as GLDAS) driven by the same climate
models for further uncertainty assessment and validation. Advance provision of high-resolution
datasets and observational stations across Africa are also encouraged to enhance further

regional sensitivity studies.
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APPENDIX
Table Al: Summary of Recharge Potential, Reliability and Vulnerability

Reliability

RCP2.6 RCP8.5
Regions Mean Std Mean Std
CV Reliability Cv
(mm/year) (mm/year) (mm/year) (mm/year)
Mediterranean 31.48 18.84 0.60 Moderate 21.92 14.55 0.66

Sahel
West Africa

16.93
179.12

14.29
94.76

0.84
0.53

11.79
134.16

8.61
80.26

Central Africa 232.05 115.24 0.50 158.76 105.89
North-East Moderate
1154 78.96 0.68 110.3 68.54

Africa
Central-East Moderate

146.77 89.93 0.61 128.21 75.41
Africa
South-East Moderate

188.86 116.1 0.61 161.95 101.98
Africa

South-West
Africa

165.04 89.3 0.54 118.66 80.26

0.73

0.60 Moderate
0.67 Moderate

Moderate
0.62

Moderate
0.59

Moderate

0.63
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Model's Spatial Recharge: Africa_RCP2.6

MPI-CCLM5 MPI-REMO2015 NOR-CCLM5 NOR-REGCM4 NOR-REMO2015
404N 40N 40°N 40°N I )} 40°N 1 T 80N B
20°N 20°N 20°N 20°N 20°N j 20°N
[ 0° 0° 0 o o
20°8 20°8 2078 20°8 20°S 20°5
A . 3 - 3 :
soes | Mean: 12546 mmAyr | oo | Mean: 12177 mmiyr | . | Mean: 113.68 mm/yr | . | Mean: 11357 mmiyr | . | Mean: 135.26mmiyr | 0. | Mean: 104,35 mm/yr

200 0° 20°F 40°F  BOFE 200w 0°  20°F 40 BOCE  20°W  0°  20°F  40°E  BO'E 200W  0°  20°F  40FF BO'E 20°W  0F  20°F  40°E BO°E  20°W  0°  20°F  40°F  BO°E

Recharge (mm/year)
0-50 mm 51-100 mm 101-150 mm @SS 151-200 mm  BEE 201-250 mm  EEE 251-300 mm  EEE >300 mm

Figure A7: Models’ Spatial Recharge Africa RCP2.6

Model's Spatial Recharge: Africa_RCP8.5

MPI-CCLM5 MPI-REGCM4 MPI-REM0O2015 NOR-CCLM5 NOR-REGCM4 NOR-REMO2015
40°N T ARy LT 40N a0°N ﬂc/ - ‘ T 40°N T 3 T T 40°N ; P Re iy 40°N
20°M 20°N 20°N 4 20°N ¥ 20°N 20°N
0 [ [ 0° [ 0°
20°5 20°5 2008 0°S 20°5 2008
205 Mean: 68.19 mm/yr 205 20%5 Mean: 89.22 mm/fyr proes Mean: 53.59 mm/yr 40°5 Mean: 117.43 mm/yr a0 Mean: 92.81 mm/yr

20°w  0°  20°E 40°E  G0"E 20°W  0°  20°E  40°E  G0°E  20°W  0°  20°E  40°E  60°E  20°W  0°  20°E  40°E  G0°E  20°W  ©0°  20°E  40°E  60°E  20°W  0°  20°E  40°E  G0°E

Recharge (mm/year)
0-50 mm 51-100 mm 101-150 mm s 151-200 mm s 201-250 mm . 251-300 mm . 300 mm

Figure AS8: Models’ Spatial Recharge Africa RCP8.5

Ensemble Mean of WB Components: Africa_RCP2.6

Precipitation Evapotranspiration Runoff Recharge
aon = 3 a0 Tt a0n
20n 20 200
o b 0° i
Precip. (mmfyear) . Evap. immiyear) Runoff {mmyyear) Recharge (mmJyear ¢
50 mm 4 as0mm " ;
205 50-100 mm 2075 50-100 mm 2005 51100 mm 20%5 s1100mm
100-200 mm 100-200 mm 101-150 mm L 101-150 mm s,
200400 mm 200-200 mm . 151200mm 200 mm
= 400-800 00-800 mm 201250mm A 0L-250 mm 3
.. | m- s00-1000 . 800-1000 mem .| mm 2siz00mm Mean: 142.17 mmyyr 251-300mm  Mean: 119.02 mmyyr
405 | 1000 S| >1000 A0S | 200 mn 405 w300 min
20°W o 20°E A0°E GO°E 200w o 20°E 40°E G0°E 20"W [ 20°E 40°E G0°E 20" o 20°E 40°E BO"E
Ensemble Std of WB Components: Africa_RCP2.6
Precipitation Evapoctranspiration Runoff Recharge
e a0 3 a0 %c):_ﬁnj J‘”{fj{_ %) gti’ a0 “;:é’ T Jﬁ:{';;_’) T
¥ X S ‘fys\i i ﬂ}—\,_[ _F
7 /NP Ny
20°N 20°N 20°N —y 20°N i S\ \
e 3 i N —Y
[ o o / o
Precip, {mmiyear] Runoff (mmiyear} . Recharge (mmiyear) )
0-s0 mm 0-25mm ; 0-25
2075 50-100 mm 2005 20°5 25-50 rm 2005 25-50mm
100-150 mm 50-75 mm 50-75 mm %
121 '0 e 75-100 mm - 75100 mm
% 1 - 100125 mm . 100-125 mm
N Mean: 198.23 mm/yr ) Mean: 95.42 mm/yr | mm 2550 mm Mean: 52.88 mmyyr ) 5-150mm  Mean: 68.23 mm/yr
s oS 45| =150 mm S| =150 mm
200w o 20°E 40°E BOL 20 o 20 au°t BO°E 20 o 20°t 40°E BO°E 200w [ LS 40°E 60°E

Figure A10: Models’ spatial variation of Water Balance Components RCP2.6

III



Ensemble Mean of WB Components: Africa_RCP8.5
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