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ABSTRACT 

Water is a precious resource in Africa. The sustainable management of this resource is important 

for our everyday lives, as well as for renewable energy applications such as green hydrogen 

production. Especially in desert regions, this water is mainly groundwater. This study assesses how 

land surface characteristics affect groundwater recharge across Africa, in addition to the dominant 

impact of precipitation. A combination of correlation analysis, principal component analysis 

(PCA), and machine learning models (Random Forest and Gradient Boosting) interpreted with 

Shapley additive exPlanations (SHAP) was applied across eight African regions. These methods 

were used to analyse the Community Land Model (CLM) simulated datasets for different African 

land surface characteristics. The findings of the analysis indicate that precipitation is the main 

factor affecting variations in recharge. However, its effectiveness is significantly impacted by 

factors such as soil depth, slope, vegetation, organic matter, and soil texture. Three dominant 

recharge regimes were identified. These are runoff-limited regimes, evapotranspiration-limited 

regimes, and precipitation-constrained regimes (e.g., Sahara and Mediterranean). The runoff-

limited regimes are characterized by shallow soils and steep terrain that restrict infiltration despite 

high rainfall. The evapotranspiration-limited regimes are characterized by vegetation and organic-

rich soils that drive moisture losses. The precipitation-limited regimes are characterized by low 

rainfall that dominates recharge regardless of land characteristics. Random Forest models 

outperformed Gradient Boosting in predictive accuracy (R² up to 0.98), and SHAP analysis 

provided quantifications of variable importance. These findings highlight the critical role of land-

surface heterogeneity in shaping groundwater availability and its implications for water-energy 

planning. In renewable energy strategies that involve groundwater, policies should consider 

recharge variability. They should also manage soil and slopes in runoff-limited regions. And they 

should assess the balance between the water needs for energy production and competing demands 

such as drinking water and environmental needs. The study emphasises the importance of adapting 

region-specific approaches to groundwater management. These are needed to support Africa’s 

renewable energy transition.  

Keywords: Groundwater recharge, Land surface characteristics, Machine learning, Africa, Water-

Energy nexus. 
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RÉSUMÉ 

L’eau est une ressource précieuse en Afrique. La gestion durable de cette ressource est importante 

pour notre vie quotidienne, mais aussi pour des applications en énergie renouvelable telles que la 

production d’hydrogène vert. Particulièrement dans les régions désertiques, cette eau est l'eau 

souterraine. Cette étude évalue comment les caractéristiques de la surface terrestre affectent la 

recharge des eaux souterraines à travers l’Afrique, en plus de l’impact dominant des précipitations. 

La combinaison d’analyse de corrélation, de composantes principales et de modèle d’apprentissage 

automatique (Random Forest et Gradient Boosting) interprétée par SHAP (Shapley Additive 

exPlanations) a été appliquée à travers huit régions d’Afrique. Ces méthodes sont utilisées pour 

analyser des données simulées par CLM (Community Land Model), représentant les 

caractéristiques de la surface terrestre. Les résultats des analises indiquent que les variations de la 

recharge des eaux souterraines sont plus impactées par la précipitation. Cependant, les facteurs tels 

que la profondeur du sol, la pente, la végétation, la matière organique et la texture du sol influencent 

aussi la variation de la recharge. Trois régimes de recharge sont identifiés. Il s'agit des régimes 

limités par le ruissellement, des régimes limités par l'évapotranspiration et des régimes limités par 

les précipitations (par exemple, le Sahara et la Méditerranée). Les régimes limités par le 

ruissellement se caractérisent par des sols peu profonds et un terrain en pente qui limitent 

l'infiltration malgré des précipitations élevées. Les régimes limités par l'évapotranspiration se 

caractérisent par une végétation et des sols riches en matière organique favorisant les pertes 

d'humidité. Les régimes limités par les précipitations se caractérisent par des précipitations faibles 

qui dominent la recharge, quelles que soient les caractéristiques du terrain. Les modèles Random 

Forest ont surpassé le Gradient Boosting en termes de précision prédictive (R² jusqu'à 0,98), et 

l'analyse SHAP a fourni une interprétation robuste de l'importance des variables. Ces résultats 

soulignent le rôle essentiel de l'hétérogénéité de la surface terrestre dans la détermination de la 

disponibilité des eaux souterraines et ses implications pour la planification de l'eau et de l'énergie. 

Les politiques devraient intégrer la variabilité de la recharge dans les stratégies en matière 

d'énergies renouvelables, donner la priorité à la gestion des sols et des pentes dans les régions où 

la recharge est limité par le ruissellement, et évaluer soigneusement l'équilibre entre l'utilisation de 

l'eau pour la production d'énergie et les demandes concurrentes telles que l'eau potable, l'agriculture 

et les écosystèmes dans les environnements arides. L'étude souligne la nécessité d'adopter des 
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approches spécifiques à chaque région en matière de gestion des eaux souterraines afin de soutenir 

le développement durable et la transition vers les énergies renouvelables en Afrique. 

Mots-clés: recharge des eaux souterraines, caractéristiques de la surface terrestre, apprentissage 

automatique, Afrique, nexus eau-énergie. 
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GENERAL INTRODUCTION  

In many regions of the African continent, especially in arid and semi-arid areas, where surface 

water availability is limited, groundwater is a vital source of water for domestic, agricultural, and 

industrial use, as well as for ecosystems (Gebreslassie et al., 2025; MacDonald et al., 2012). 

Groundwater recharge (GWR), defined as the process by which water percolates from the surface 

to replenish underground aquifers, is therefore crucial for the sustainable management of water 

resources (Gebreslassie et al., 2025). GWR however, is a complex and spatially heterogeneous 

process influenced by both climatic variables and land surface characteristics  (Fu et al., 2019).  

Traditionally, studies on GWR have focused on dominant climatic drivers such as precipitation and 

potential evapotranspiration (Atawneh et al., 2021). While these are undeniably important, recent 

research suggests that land surface features have a significant impact on how water percolates and 

accumulates underground (Fu et al., 2019; Toure et al., 2024). Understanding these interactions is 

especially critical in the African context, where land conditions vary widely across regions 

(Oloruntoba et al., 2025) and data scarcity (Akpoti et al., 2024) presents additional challenges to 

water resource planning. 

Concurrently, the growing shift toward renewable energy technologies, including concentrated 

solar power (CSP), hydropower, and green hydrogen production, intensifies the demand for 

sustainable water supply. These technologies depend heavily on reliable water resources, making 

groundwater management an essential pillar of Africa’s renewable energy transition (IRENA, 

2021; Winkler et al., 2025). For hydropower, aquifer-fed baseflow helps sustain dry-season river 

discharge, ensuring continuous electricity generation (Bardsley, 1995). In the case of green 

hydrogen, electrolysis requires around 9 liters of pure water per kilogram of hydrogen produced 

(Scholz, 2024), meaning that large-scale deployment will place significant pressure on existing 

water resources. Concentrated solar power plants, such as Morocco’s Noor complex, also highlight 

the water-energy balance: initial wet-cooling designs consumed millions of cubic meters of water 

annually, before later phases adopted dry-cooling to reduce demand (Fares & Abderafi, 2018; Ersoy 

et al., 2022). 

Despite increasing recognition of the importance of groundwater for sustainable development 

(Adom et al., 2022; Anghileri et al., 2024; Biazar et al., 2025), there remains limited understanding 

of how non-climatic factors, specifically land surface characteristics, influence GWR across 
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diverse African regions. Moreover, traditional hydrological modeling approaches may not fully 

capture the complex, nonlinear relationships governing GWR variability across space. There is 

therefore a need in addition to known traditional methods, a data-driven, region-specific analyses 

that leverage the potential of machine learning (ML) and explainable artificial intelligence (XAI) 

to better understand the drivers of groundwater recharge and their implications for sustainability 

(Jung et al., 2024; Maity et al., 2024; Siabi et al., 2022). 

The main objective of this study is to assess how land surface characteristics influence groundwater 

recharge across different regions of Africa, alongside the primary factors of precipitation and 

potential evapotranspiration. Specifically, the study aims to identify which land surface traits affect 

GWR variability across Africa and to evaluate the roles of precipitation and land surface features 

in this variability. Furthermore, it seeks to quantify how regional land surface characteristics 

contribute to estimated GWR using machine learning and feature importance analysis. Finally, the 

study examines how variations in Africa's land surface impact the amount of water that can be 

safely used in renewable energy projects, such as hydropower and green hydrogen production. It 

also provides recommendations for policymakers. 

The work combines hydrology, data science, and energy planning. It provides policy-relevant 

recommendations to optimize the use of groundwater in renewable energy projects across Africa. 

These outcomes are expected to contribute to the sustainable resources management and align with 

Sustainable Development Goal (SDG) 6, Clean Water and Sanitation, and SDG 7, Affordable and 

Clean Energy. 

This master’s thesis is divided into three main chapters: the chapter 1 provides a comprehensive 

review of existing literature. Then, the chapter 2 describes the materials and methods employed in 

this study and the chapter 3 focuses on presenting the results obtained and discussing their 

implication. 
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CHAPTER 1: LITERATURE REVIEW 

This chapter provides a comprehensive review of existing literature on groundwater recharge in 

Africa, the impact of land surface characteristics on GWR, the use of machine learning for 

assessment, and the nexus between groundwater and renewable energy development. The review 

identifies gaps and sets the foundation for this study’s approach to improving groundwater resource 

planning through advanced modeling and data analytics. 

 

1.1. Groundwater Recharge and Land Surface Interactions 

 1.1.1. Concept and Mechanisms of Groundwater Recharge (GWR) 

Groundwater recharge (GWR) is a fundamental hydrological process through which water 

percolates from the surface to replenish underground aquifers (Gebreslassie et al., 2025). It plays 

a critical role in maintaining water availability for agriculture, domestic use, and industrial 

activities, especially in regions with limited surface water resources (Sishodia et al., 2018). 

Recharge can be classified into natural and artificial types. The former occurs through precipitation 

infiltration, river seepage, or diffuse flow, while the latter involves managed aquifer recharge 

techniques (Figure 1.1.). 

 

Figure 1.1. Groundwater recharge processes 

Source: https://sswm.info/water-nutrient-cycle/water-sources/hardwares/precipitation-

harvesting/subsurface-groundwater-recharge-  

 

https://sswm.info/water-nutrient-cycle/water-sources/hardwares/precipitation-harvesting/subsurface-groundwater-recharge-
https://sswm.info/water-nutrient-cycle/water-sources/hardwares/precipitation-harvesting/subsurface-groundwater-recharge-
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GWR is closely linked to the water cycle and is influenced by several factors, including soil type, 

land use, vegetation cover, and climatic conditions (Scanlon et al., 2012). 

 

1.1.2. Role of Land Surface Characteristics in GWR Variability 

Beyond climatic factors like rainfall and evapotranspiration, the rate and spatial distribution of 

GWR are strongly controlled by land surface and soil properties (Fu et al., 2019). Soil texture and 

structure affect infiltration and water-holding capacity (Basset et al., 2023; Franzluebbers, 2002). 

Land cover features, such as vegetation density and root depth, influence evapotranspiration and 

water retention (Alam, 2017). Topography and slope control runoff generation and the spatial 

redistribution of infiltrated water (Toure et al., 2024). 

 

1.1.3. Challenges in GWR Estimation Across Africa 

The estimation of groundwater recharge is challenging due to the lack of reliable data, the 

differences in estimation methods, and the influence of both climatic and non-climatic factors 

(Gebru et al., 2024; Wang et al., 2010). Unlike surface water, recharge cannot be directly observed 

at large scales; it must be inferred from indirect measurements or models. Common methods 

include water balance calculations, analysis of groundwater level fluctuations, tracer techniques 

(like isotopes and chloride profiles), and modeling (Gebru et al., 2024; Wang et al., 2010). Water 

balance approaches quantified recharge as the residual of precipitation after accounting for other 

fluxes. Within this framework, recharge can be calculated by subtracting actual evapotranspiration 

and surface runoff over a defined period. The general water balance equation can be expressed as 

Equation 1 (Wang et al., 2010): 

      𝑅 = 𝑃 − 𝑅 − 𝐸𝑇 ±  ∆𝑆         Equation 1 

In this equation, R is recharge, P is precipitation, ET is evapotranspiration, Q is surface runoff and 

∆𝑆 is the change in soil or groundwater storage. Tracer methods quantified groundwater recharge 

by tracking the movement of natural or applied chemical, isotopic, or gaseous markers in the 

subsurface  (Scanlon, 2010). The chloride mass balance method is one of the most used tracer 

techniques to estimate groundwater recharge. This approach is based on the conservative nature of 

chloride, which is supplied naturally through precipitation and atmospheric deposition. As 
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precipitation (P) infiltrates the soil, water is lost through evapotranspiration, but chloride remains 

and becomes more concentrated in the recharge (R) water. By comparing the chloride concentration 

in precipitation (Cp) and its concentration in groundwater (Cgw), recharge is estimate using Equation 

2 (Scanlon et al., 2002):  

       𝑅 =
𝑃.𝐶𝑝

𝐶𝑔𝑤
           Equation 2 

Although tracer methods are valuable in arid and semi-arid areas, they are not suitable for 

estimating regional groundwater recharge (Gebru et al., 2024; Wang et al., 2010). Modelling 

approaches such as MODFLOW and ParFlow are governed by hydrodynamic mechanisms. These 

models physically describe the movement of water in three dimensions, including in both saturated 

and unsaturated zones. They incorporate water balance processes, but the physical mechanism of 

evapotranspiration processes is not usually described explicitly (Tian et al., 2012). The selection of 

the method used mostly depends on the data available (Atawneh et al., 2021; Gebru et al., 2024). 

Spatially, GWR is influenced by soil type and land attributes. It is temporally also impacted by 

interannual weather variability (Fu et al., 2019). The integration of climate and land surface data is 

thus crucial for GWR assessment. 

 

1.2. Machine Learning for Hydrology and GWR Analysis 

 1.2.1 Traditional vs. Machine Learning Approaches in Hydrology 

Traditional models have long been used to simulate hydrological processes. These approaches rely 

on physics-based methods that require extensive calibration and domain-specific knowledge 

(Biazar et al., 2025). Some examples include catchment-scale models such as the Hydrologic 

Engineering Center’s Hydrologic Modeling System (HEC-HMS) and the Soil and Water 

Assessment Tool (SWAT) model (Biazar et al., 2025). Traditional models offer the advantage of 

providing physically interpretable outputs and the flexibility to simulate multiple hydrological 

variables (Devia et al., 2015). However, these models require extensive calibration, since many 

parameters cannot be measured directly. This often leads to multiple parameters sets providing 

similar results, which damages confidence in the robustness of the model (Beven, 2006). According 

to Du & Pechlivanidis (2025), traditional models demonstrate inaccuracies of processes due to their 

inability to represent complex and non-linear hydrometeorological processes. This limits their 
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effectiveness in local conditions. Machine learning (ML) models like neural networks and decision 

trees are data-driven. These models focus on identifying statistical correlations between input and 

output variables. They learn and capture nonlinearities and interactions directly from data without 

the need for a physical prescription (Biazar et al., 2025). Nevertheless, machine learning models 

are frequently criticized for their limited interpretability (Nearing et al., 2021). 

 

1.2.2. Key Machine Learning Techniques for Water Resource Modeling 

A variety of machine learning algorithms have been applied in groundwater studies, each with 

strengths and limitations depending on the problem type and available data. Popular algorithms 

include Artificial Neural Networks (ANNs), Tree-based Ensembles, Support Vector Machines 

(SVMs), and Advanced Deep Learning Models (ADLMs) (Biazar et al., 2025; Pazola et al., 2024; 

Toure et al., 2024). For spatial mapping tasks, like predicting recharge or groundwater potential 

across a region from environmental attributes, ensemble tree methods are more popular. Random 

Forest (RF) and Gradient Boosting Machines (GBM) are frequently used. They handle nonlinear 

relationships and interactions well (Anand et al., 2025; Gómez-Escalonilla et al., 2022), and are 

relatively robust to overfitting, while also providing measures of feature importance. For example, 

Pazola et al. (2024) used a Random Forest (RF) model to generate a high-resolution recharge map 

for the African continent, and RF showed best performance compared to a previous continent-wide 

estimate derived from a linear mixed model (LMM). However, RF models can be computationally 

expensive when dealing with very large datasets (Genuer et al., 2017), while GB models are more 

sensitive to noise (Xiang et al., 2020).  For time-series forecasting problems, such as predicting 

groundwater level fluctuations or recharge over time, neural networks and deep learning models 

are common. In Ghana, for example, Siabi et al. (2022) used artificial neural networks to predict 

groundwater recharge based on historical data from 1960 to 2018 (58 years). Despite their 

importance, artificial neural networks respond slowly to gradient-based learning processes and 

require repeated parameter tuning (Mosavi et al., 2018). Overall, the choice of model is dependent 

on a number of factors, including the predictive accuracy, the importance of interpretability, and 

the availability of the computational process. 
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1.2.3. Explainable AI for Feature Importance Analysis in GWR Studies 

Despite the power of ML models, a major limitation is their lack of interpretability. Explainable 

Artificial Intelligence (XAI) methods such as partial dependence plots (PDP), SHAP (SHapley 

Additive exPlanations), and permutation feature importance (PFI) have been developed to interpret 

complex ML models (Holzinger et al., 2020). SHAP is an XAI method that assigns each feature a 

contribution value toward prediction, grounded in cooperative game theory (Lundberg & Lee, 

2017). It allows researchers to assess not only which features are most influential across the model 

but also how feature importance varies with context and interactions.  

 

1.3. Groundwater and Renewable Energy Nexus in Africa  

1.3.1. Water Needs in Renewable Energy Projects 

Water plays a critical role in several renewable energy projects, serving both as a resource and a 

constraint in energy system planning. The sustainable management of food, energy, and water is 

closely interlinked, and it is essential to evaluate these connections (UNESCO, 2018). In 

hydropower, water is the primary energy source, with energy generated from kinetic and potential 

energy of flowing or stored water. While hydropower dams rely on surface river flow, a significant 

portion of dry-season river baseflow is fed by groundwater discharge. In other words, aquifers 

slowly draining into rivers help maintain streamflow during periods with no rain, which is crucial 

for year-round hydropower generation (Bardsley, 1995). The role of groundwater is even more 

direct in the green hydrogen sector. Green hydrogen production involves electrolyzing water using 

renewable electricity (solar/wind) to generate hydrogen fuel (IRENA, 2021). The reaction requires 

pure water as an input, typically around 9 liters of water per kilogram of hydrogen produced 

(Scholz, 2024).  This water demand is substantial when scaled to industrial production. In arid 

regions, groundwater becomes an obvious candidate to supply electrolysis plants. However, 

reliance on groundwater raises sustainability flags: a recent evaluation found that only a small 

fraction (on the order of 16%) of the technical hydrogen production potential in Sub-Saharan Africa 

could be met by sustainable groundwater yields (Winkler et al., 2025). Another sector is solar 

energy, particularly concentrated solar power (CSP) plants and large photovoltaic (PV) farms. 

Utility-scale CSP plants (such as Morocco’s Noor Uranate complex) use mirrors to concentrate 

sunlight and heat a working fluid to drive turbines. Traditional CSP designs use wet cooling for the 
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power cycle, consuming significant water for cooling towers. For example, the Noor I plant used 

wet cooling and consumed about 1.8 million m³ of water per year (Fares & Abderafi, 2018). In arid 

environments, such water demand is problematic. Morocco mitigated this by switching later CSP 

phases (Noor II and III) to dry cooling (Ersoy et al., 2022). Nonetheless, CSP plants still need some 

water for mirror cleaning to maintain efficiency in dusty desert air. Groundwater can be an 

important source for these needs, especially if surface water allocations are limited. Integrating 

water availability assessments, including GWR estimates, into energy planning is therefore crucial. 

 

1.3.2. Challenges in Integrated Water-Energy Planning in Africa 

The effective implementation of water-energy planning in Africa is hindered by multiple 

challenges. These challenges include institutional and political barriers  (Adom et al., 2022; 

Anghileri et al., 2024; Nhamo et al., 2018), which limits the coordination and execution of 

integrated strategies. According to Donkor & Wolde (2022), the separation of water and energy 

management across various departments leads to inadequate resource allocation and a lack of 

integrated planning. Also, the lack of reliable data on energy and water resources represents a 

substantial obstacle to making evidence-based decisions (UN-Water/Africa, 2000). These issues 

are made worse by financial limitations on the continent (Chigozie Ani et al., 2024). Furthermore, 

the existence of numerous transboundary river and lake basins introduces an additional layer of 

intricacy, necessitating the maintenance of sustained regional collaboration and diplomatic 

coordination (UN-Water/Africa, 2000). Combined, these challenges reflect the urgent need for 

strengthened institutional capacity, improved data systems, enhanced funding mechanisms, and 

more harmonized governance to support the advancement of integrated water-energy planning in 

Africa. 

 

1.3.3. Policy and Sustainability Considerations 

Governments must enhance adaptation strategies. They should implement capacity building and 

awareness campaigns on the water-energy nexus (Donkor & Wolde, 2022). The mobilization of 

financial resources continues to represent a considerable challenge; nevertheless, innovative 

financing strategies, such as blended finance approaches, have the potential to unlock both public 

and private capital for infrastructure development (Leigland et al., 2016; Tonkonogy et al., 2018). 

Transparent outputs from machine learning tools can support integrated planning further by 
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identifying vulnerable areas. These will guide efficient decisions towards water and energy 

management. 

 

PARTIAL CONCLUSION 

This chapter has reviewed the current knowledge on groundwater recharge and its interactions with 

land surface characteristics. It emphasizes the importance of machine learning as a powerful tool 

in hydrology. The connection between groundwater and renewable energy development in Africa 

is also mentioned.  
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CHAPTER 2: MATERIALS AND METHODS 

This chapter outlines the study area and the datasets, analytical tools, and software employed to 

process and analyze the data. 

2.1. Study Area  

This research focuses on the African continent. Given its diverse land surface characteristics and 

climate conditions, the continent is subdivided into eight regions, following the climate 

regionalization framework proposed by Oloruntoba et al. (2025). These regions include the 

Mediterranean (MED), the Sahara (SAH), West Africa (WAF), Central Africa (CAF), Northeast 

Africa (NEAF), Central East Africa (CEAF), Southeast Africa (SEAF), and Southwest Africa 

(SWAF). This subdivision enables a more region-specific investigation of groundwater recharge, 

helping to minimize the masking effects that a continental-scale analysis would impose. Figure 2.1 

highlights the spatial extent of each region. 

 

Figure 2.1. Classification of the African regions according to Oloruntoba et al. (2025) 
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2.2. Data Sources  

2.2.1. Hydrology and Land Surface Data 

Hydrological and land-surface variables were obtained from the Community Land Model (CLM), 

version 5 (CLM5), which provides physically based simulations of land-atmosphere interactions 

at the continental scale (CTSM, 2020; Lawrence et al., 2019). The CLM was run using the Global 

Soil Wetness Project, version 3 (GSWP3) atmospheric forcing dataset, which supplies precipitation 

and other meteorological drivers (Kim, 2017). The key variables selected for this study are 

precipitation (PRECIP, mm/year), evapotranspiration (ET, mm/year), runoff (RUNOFF, mm/year), 

percentage of Clay (PCT_CLAY, %), percentage of Sand (PCT_SAND, %), soil depth 

(ZBEDROCK, m), mean topographic slope (SLOPE, degrees), Organic Matter Density 

(ORGANIC, kg/m³), and Leaf Area Index (LAI) representing vegetation density. 

 

2.2.2. Groundwater Recharge Data  

The Groundwater recharge data were obtained using the general water balance approach, Equation 

3 (Bayat et al., 2023). 

     GWR =  (PRECIP +  IRRIG)  − (ET +  RUNOFF)  Equation 3 

where: 

• PRECIP = Precipitation (mm/year) 

• IRRIG = Irrigation water input (mm/year) 

• ET = Evapotranspiration (mm/year) 

• RUNOFF = Surface runoff (mm/year) 

 

As Irrigation is negligible compared to other variables, we consider the determination of GWR to 

be as Equation 4: 

     GWR =  PRECIP −  (ET +  RUNOFF)           Equation 4 
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2.2.3. Derived Hydrological Ratios 

Two dimensionless indices were calculated to evaluate water partitioning: 

• Evapotranspiration Ratio (ET_R):  

Equation 5 was used to determine the fraction of precipitation lost to evapotranspiration. 

           𝐸𝑇𝑅 =
𝐸𝑇

𝑃𝑅𝐸𝐶𝐼𝑃
         Equation 5 

 

• Runoff Ratio (RO_R): 

We used Equation 6 to calculate the fraction of rainfall that leaves as surface runoff. 

          𝑅𝑂𝑅 =
𝑅𝑈𝑁𝑂𝐹𝐹

𝑃𝑅𝐸𝐶𝐼𝑃
         Equation 6 

 

2.3. Data Processing and Analysis 

2.3.1. Methods, Techniques, And Software  

This study uses a dataset provided in NetCDF (Network Common Data Form), a widely adopted 

format for storing multidimensional scientific data. Several materials are employed to process and 

analyse these data effectively: 

❖ NetCDF Operator (NCO):  

NCO is a suite of command-line programs specifically designed for manipulating and 

analyzing NetCDF files (Zender, 2008). In this study, NCO was used for initial data 

manipulation tasks, including a spatial view of each variable, as well as the head of each 

dataset (showing general information about each variable: Name, Dimension, Unit, etc.). 

 

❖ Climate Data Operator (CDO):  

CDO is another powerful set of command-line tools, originally developed to process and 

analyse data produced by climate and numerical weather prediction models (Kaspar et al., 

2010). We employed CDO for more advanced manipulation, such as subsetting, regridding, 

temporal aggregation, and merging. 
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❖ Python: 

Python is currently the fastest-growing programming language in the world due to its ease 

of use, quick learning curve, and numerous high-quality packages for data science and 

machine learning (Vallat, 2018). In this study, Python is predominantly used for data 

analysis and visualisation. The key libraries used are Xarray (for handling 

multidimensional arrays), Pandas (for data manipulation), Matplotlib and Seaborn (for 

plotting), Scikit-learn (for machine learning applications), NumPy (for efficient numerical 

computations and array operations), and Cartopy (for geospatial data visualisation). 

 

❖ Quantum Geographic Information System (QGIS): 

QGIS is a free, open-source geographic information system that provides tools for 

visualising, analysing, and mapping spatial data (Elakkiya & Sankarganesh, 2023). QGIS 

is used in this study to extract and generate region-specific datasets corresponding to eight 

predefined regions from the larger continental-scale dataset. This enables us to target spatial 

analysis, which is an important step in our process. 

 

2.3.3. Data Analysis 

Four analytical approaches have been adopted: 

❖ Spatial Distribution Analysis:  

We visualized the spatial patterns of GWR, precipitation, and land surface variables to gain 

an idea of how each variable is distributed and how they are spatially associated across the 

continent. 

 

❖ Correlation Analysis: 

We examined the relationships between land surface characteristics and both 

Evapotranspiration ratio (ET_R) and Runoff ratio (RO_R) for each region using the Pearson 

correlation coefficient (Equation 7) (Asuero et al., 2006). 
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            𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅) 𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)𝑛
𝑖=1

2
∙ ∑ (𝑦𝑖−𝑦̅) 𝑛

𝑖=1
2
          Equation 7 

Where: 

• xi, yi = paired values of two variables at ith grid cell, 

• x̅, y̅  =  mean values of x and y,  

• n = number of obvervation. 

 

The coefficient fluctuates within the range of -1 to +1, where values proximate to +1 denote 

a robust positive linear relationship, values proximate to -1 denote a robust negative linear 

relationship, and values proximate to 0 denote an absence of significant linear correlation. 

 

❖ Principal Component Analysis:  

 Principal Component Analysis (PCA) is a dimensionality-reduction technique that 

transforms a set of correlated predictors into a smaller set of uncorrelated variables known 

as principal components (PCs) (Hasan & Abdulazeez, 2021). The method identifies 

dominant gradients in multivariate data by decomposing the covariance matrix into 

eigenvalues and eigenvectors (Equation 8): 

              𝑍 = 𝑋𝑊           Equation 8 

 

Where: 

• X = standardized data matrix of predictors (eig, Soil depth, slope, LAI) 

• W = matrix of eigenvectors (principal component loadings) 

• Z = transformed data (principal component scores) 

 

The eigenvalues quantify the variance explained by each PC, while the eigenvectors define 

directions of maximum variability in the data. Typically, the first few PCs capture the 

majority of total variance, highlighting the most influential gradients (Jollife & Cadima, 

2016).In this study, PCA helps summarize land-surface characteristics data into a smaller 

number of interpretable gradients. 
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❖ Machine Learning Models 

Two ensemble machine learning (ML) models were used to quantify the predictive 

influence of land-surface characteristics on groundwater recharge. They are Random Forest 

(RF) and Gradient Boosting (GB). Both rely on decision trees but differ in how they 

aggregate information. 

• Random Forest (RF) 

RF constructs an ensemble of decision trees using bootstrap sampling (bagging) and 

random feature selection at each node. Each tree predicts independently, and the overall 

prediction is the average of all trees. A single decision tree can be expressed as Equation 9 

(Anand et al., 2025): 

         𝑓(𝑥) = ∑ 𝑤𝑗 ∙ ℎ𝑗(𝑥)𝑇
𝑗=1        Equation 9 

 

Where: 

- 𝑓(𝑥) = the predicted value for an input vector x, 

- T = the total number of trees, 

- 𝑤𝑗 = the weight associated with tree j, 

- ℎ𝑗(𝑥) = the prediction from tree j. 

 

By aggregating across many randomized trees, RF reduces variance and is robust to 

overfitting. Its strength lies in handling nonlinear relationships and complex feature 

interactions, which are common in hydrological and environmental data. 

• Gradient Boosting (GB) 

GB builds trees sequentially, where each new tree corrects the errors of the previous model 

(Equation 10). GB optimizes performance step-by-step  (Zhang & Haghani, 2015). 

 

     𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)  +  𝛾𝑚ℎ𝑚(𝑥)         Equation 10 
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Where: 

- 𝐹𝑚−1(𝑥) = the model from the previous step,  

-  ℎ𝑚(x) = the weak learner, 

- 𝛾𝑚 = the learning rate controlling the contribution of each tree. 

 

• Performance Evaluation Parameters 

Performance was evaluated using Root Mean Square Error (RMSE) and Coefficient of 

Determination (R2) (Xing et al., 2019): 

RMSE determines the average magnitude of errors between the predicted and the 

experimental value (Equation 11). It is expressed in the same units as the target variable, 

making it simple to interpret in practical terms. A lower RMSE suggests a higher degree of 

accuracy, while a higher RMSE indicates weaker model performance. 

R² evaluates the proportion of variance in the experimental data that is explained by the 

model (Equation 12). It ranges from 0 to 1. Values closer to 1 represent a better fit, while 

values closer to 0 indicate a lower fit. 

     𝑅𝑀𝑆𝐸 =  √ 
1

𝑛
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑛

𝑖=1         Equation 11 

 

            𝑅2 = 1 −  
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

         Equation 12 

 

Where: 

-  𝑛 = the number of samples used, 

- 𝑦𝑖 = the experimental value at the ith sample, 

- 𝑦𝑖̂ = the predicted value of the ith sample, 

- 𝑦̅ = the average value of the entire sample. 

 

These metrics assess prediction accuracy (RMSE) and explanatory power (R2) of the 

models in representing groundwater recharge variability. 
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• SHAP Analysis 

SHAP (Shapley Additive exPlanations) is grounded in cooperative game theory and assigns 

each feature a contribution value toward prediction (Lundberg & Lee, 2017).  

         𝑓(𝑥) =  ∅0 + ∑ ∅𝑖
𝑀
𝑖=!           Equation 13 

 

Where: 

- 𝑓(𝑥) = model prediction, 

- ∅0 = mean prediction across all samples, 

- ∅𝑖 = contribution of feature I, 

- M = number of features. 

 

 

PARTIAL CONCLUSION 

The combination of CLM datasets, advanced geospatial tools, and machine learning techniques 

provides a comprehensive framework for assessing groundwater recharge drivers across Africa. By 

integrating both statistical and AI-based approaches, this methodology captures spatial variability 

while enhancing interpretability, offering a strong foundation for the results presented in the next 

chapter. 
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CHAPTER 3: RESULTS AND DISCUSSION 

This chapter presents the results of the statistical and machine learning analyses performed to 

investigate the spatial variability of groundwater recharge (GWR) and its controlling factors across 

Africa. By combining correlation analysis, principal component analysis (PCA), and SHAP-based 

machine learning interpretation, the chapter explores how land-surface characteristics impact 

GWR, and how these interactions vary across regions. The implications of these findings for 

sustainable water supply in renewable energy projects are also discussed.  

 

3.1. Spatial Variability of GWR, Precipitation, and Land‐Surface Characteristics 

The first stage of the analysis aimed to understand the spatial distribution of groundwater recharge 

and its correlation with land surface characteristics across Africa. Figure 3.1 shows the spatial 

distribution of GWR, Precipitation, and land surface characteristics over Africa.  

 

 

Figure 3.1. Spatial distribution of GWR, Precipitation, and land surface characteristics over Africa. 
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The spatial distribution shows that recharge is impacted by not only precipitation but also land 

surface characteristics. These characteristics are the proportion of sand (PCT_SAND) and clay 

(PCT_CLAY), vegetation density, represented by Leaf Area index (LAI), organic matter 

(ORGANIC), slope (SLOP), and soil thickness (ZBEDROCK). The interactions between these 

factors are non-linear and dependent on each region. There is then a need for a regional approach 

for the analysis. 

 

3.2. Regional Correlation Analysis 

We examined the correlation between each land-surface characteristic and precipitation 

partitioning (Evapotranspiration Ratio and the Runoff Ratio) to investigate the influence of 

individual land-surface characteristics on groundwater recharge.  

 

3.2.1. Factors Controlling Evapotranspiration Ratio (ET_R) 

Several consistent patterns are evident in the relationships between land-surface characteristics and 

the evapotranspiration ratio (Figure 3.2). Soil depth (ZBEDROCK) shows a positive association 

with ET_R across most regions, for example, in Central Africa (0.37), Southwest Africa (0.60), and 

Southeast Africa (0.55). This suggests that soil depth has a significant and general impact on the 

proportion of rainfall that is lost through evapotranspiration. Vegetation cover shows negative 

correlations with ET_R. In Central Africa (-0.35), Southeast Africa (-0.31), and West Africa (-0.17), 

higher vegetation density is associated with lower evaporative fractions. This likely reflects the 

ability of vegetated areas to retain soil moisture. Soil texture shows region-specific impact with 

ET_R. Clay fractions are negatively related to ET_R in CEAF, SWAF, and SEAF, with correlation 

values ranging from -0.23 to -0.38. This pattern indicates that finer-textured soils are generally 

associated with lower evaporative losses. Conversely, sandy soils show weak to moderate positive 

associations in SWAF and SEAF (+0.28 to +0.29). These results suggest that sandy textures may 

facilitate enhanced infiltration and deeper soil-water availability, which can lead to sustained 

evapotranspiration. Terrain slope is negatively correlated with ET_R in most regions, such as 

SWAF (-0.46) and SEAF (-0.34). Steeper terrain, therefore, tends to coincide with lower 

evaporative fractions, likely due to faster redistribution of precipitation as surface flow, which 

reduces the residence time of water available for evapotranspiration. Organic matter also shows 
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low to moderate negative correlation across the regions, MED (0.00), SAH (0.01), CEAF (-0.30). 

This suggests that organic matter has less influence on ER_R. 

 

 

 

 

3.2.2. Factors Controlling Runoff Ratio (RO_R) 

Figure 3.3 highlights the relationships between land-surface characteristics and the fraction of 

rainfall that is converted into surface runoff. Among these, slope emerges as the most pronounced 

control, with positive correlations observed across most regions, for example, in Northeast Africa 

(+0.50), Southwest Africa (+0.61), and Southeast Africa (+0.40). These results indicate that steeper 

terrain systematically coincides with areas where a larger share of precipitation is transformed into 

runoff. Soil depth also plays a critical role, with shallow soils (low ZBEDROCK values) strongly 
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Figure 3.2. Correlation between land surface characteristics and ET_R in eight African regions 
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associated with higher runoff ratios. This is evidenced by robust negative correlations between soil 

depth and RO_R in several regions, such as NEAF (-0.77), West Africa (-0.72), and Central Africa 

(-0.74). Soil texture exerts region-specific influences on RO_R. In WAF, CAF, and SEAF, higher 

clay content corresponds with elevated runoff ratios (0.26 to 0.43), consistent with the lower 

permeability of finer-textured soils that restrict infiltration. By contrast, sand tends to display 

negative correlations in most regions, indicating that coarser textures, which promote infiltration, 

are associated with proportionally lower runoff fractions. Vegetation and organic matter also show 

positive correlations with RO_R in certain regions, most notably in WAF where LAI (+0.43) and 

organic matter (+0.38) coincide with higher runoff fractions.  
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Figure 3.3. Correlation between land surface characteristics and RO_R in eight African regions 
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3.3. Principal Component Analysis: Dominant Gradients Influencing Recharge 

Partitioning 

❖ Mediterranean (MED) region 

In the Mediterranean region (Figure 3.4), the first principal component (PC1) is dominated by 

organic matter (0.50), clay content (0.47), and is negatively associated with sand (-0.42) and soil 

depth (-0.29). Given this grouping, PC1 is interpreted as a Soil Texture Gradient. 

The second component (PC2) is positively dominated by soil depth (0.58) and clay content (0.41), 

while sand (-0.47) and slope (-0.39) have a more negative association. As such, PC2 is interpreted 

as a Terrain-Drainage gradient. 

 

 

 

 

 

❖ Sahara (SAH) region 

In the Sahara (Figure 3.5), PC1 shows strong positive loadings for clay (0.60) and organic matter 

(0.54), and a strong negative loading for sand (-0.57). This defines a Soil Texture Gradient.  

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil 

depth (0.70) and negative loadings for slope (-0.69).  

 

Figure 3.4. PCA feature loadings for the Mediterranean region, showing PC1 as a Soil Texture 

Gradient and PC2 as a Terrain-Drainage Gradient 
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❖ West Africa (WAF) 

In West Africa (Figure 3.6), PC1 captures a clear Soil Texture Gradient, with strong positive 

loadings for clay (0.52), organic matter (0.48), and vegetation (LAI: 0.40), contrasted against a 

strong negative loading for sand (-0.50).  

 

Figure 3.5. PCA feature loadings for the Sahara region, showing PC1 as a Soil Texture Gradient 

and PC2 as an Infiltration versus Drainage Gradient 

Figure 3.6. PCA feature loadings for the West Africa, showing PC1 as a Soil Texture Gradient 

and PC2 as an Infiltration versus Drainage Gradient 
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PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil 

depth (0.65) and negative loadings for slope (-0.64).  

 

❖ Central Africa (CAF) 

For Central Africa (Figure 3.7), PC1 represents a Soil Texture Gradient, with strong positive 

loadings for clay content (0.57), organic matter (0.49), and vegetation (LAI: 0.34), opposed by a 

strong negative loading for sand (-0.55).  

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil 

depth (0.75) and negative loadings for slope (-0.62).  

 

 

 

 

❖ Northeast Africa (NEAF) 

In Northeast Africa (Figure 3.8), PC1 aligns with a Soil Texture Gradient, with strong positive 

contributions from clay (0.59), organic matter (0.52), and vegetation (LAI: 0.33), opposed by a 

strong negative loading from sand (-0.51).  

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil 

depth (0.70) and negative loadings for slope (-0.64).  

Figure 3.7. PCA feature loadings for the Central Africa, showing PC1 as a Soil Texture 

Gradient and PC2 as an Infiltration versus Drainage Gradient 
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❖ Central East Africa (CEAF) 

In CEAF (Figure 3.9), PC1 reflects a Soil Texture Gradient, dominated by high positive loadings 

for clay (0.54), organic matter (0.49), and vegetation (LAI: 0.37), opposed by a strong negative 

loading for sand (-0.48).  

 

Figure 3.8. PCA feature loadings for the Northeast Africa, showing PC1 as a Soil Texture 

Gradient and PC2 as an Infiltration versus Drainage Gradient 

Figure 3.9. PCA feature loadings for the Central East Africa, showing PC1 as a Soil Texture 

Gradient and PC2 as an Infiltration versus Drainage Gradient 
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PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for slope 

(0.62) and negative loadings for soil depth (-0.58). 

 

❖ Southwest Africa (SWAF) 

In SWAF (Figure 3.10), PC1 is strongly aligned with a Soil Texture Gradient, with high positive 

loadings for clay (0.59), organic matter (0.42), and LAI (0.27), contrasted with strong negative 

loading for sand (-0.54).  

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loading for slope 

(0.63), opposed by strong negative contributions for soil depth (-0.63) and organic matter (-0.40). 

 

 

 

 

❖ Southeast Africa (SEAF) 

In SEAF (Figure 3.11), PC1 reflects a Soil Texture Gradient, with strong positive loadings for clay 

(0.55), organic matter (0.45), and LAI (0.27), opposed by strong negative loadings for sand (-0.54). 

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for slope 

(0.71). and negative loadings for soil depth (-0.58). 

 

 

Figure 3.10. PCA feature loadings for the Southwest Africa, showing PC1 as a Soil 

Texture Gradient and PC2 as an Infiltration versus Drainage Gradient 
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❖ Summary of PCA Findings 

Across the eight African regions, PCA consistently revealed two dominant gradients: (i) a Soil 

Texture Gradient (PC1), capturing the joint variability of clay, sand, organic matter, and vegetation, 

and (ii) an Infiltration versus Drainage Gradient (PC2), dominated by soil depth and slope. These 

gradients highlight that recharge efficiency is shaped by soil, vegetation and terrain interactions 

beyond precipitation alone. While PCA provides valuable dimension reduction and identification 

of covarying features, it does not quantify the magnitude of each factor’s influence on recharge. To 

address this limitation and capture potential nonlinearities, machine learning models with SHAP 

interpretation were subsequently applied. 

 

3.4. Machine‐learning performances and SHAP-based interpretation 

3.4.1. Model performances (Random Forest and Gradient Boosting) 

The performance of machine learning models, specifically Random Forest (RF) and Gradient 

Boosting (GB), was evaluated using two key metrics (Table 3.1): Root Mean Squared Error 

(RMSE) and the coefficient of determination (R²). Across all regions, RF models consistently 

outperformed GB models in both metrics. The superiority of RF was most evident in regions like 

Figure 3.11. PCA feature loadings for the Southeast Africa, showing PC1 as a Soil Texture 

Gradient and PC2 as an Infiltration versus Drainage Gradient 
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West Africa and South West Africa, where the models achieved R² values of 0.98 and 0.97, 

respectively. These high scores indicate that RF models could explain more than 97% of the 

observed variability in recharge. Furthermore, in low-recharge environments like the Sahara, RF 

produced very low RMSE values (as low as 2.33 mm/year), highlighting its robustness and 

predictive accuracy even in data-scarce or climatically extreme settings.  

Even though Gradient Boosting models exhibited marginally diminished accuracy in comparison 

to Random Forest, this does not signify inadequate performance. GB still demonstrated strong 

predictive ability in several regions, particularly Southeast Africa (SEAF) and West Africa (WAF), 

achieving R² values above 0.90 in these areas. This difference arises from the two algorithms' 

distinct approaches (refer to Chapter 2).  

Table 3.1. Model Performance Across Different Regions 

         Models 

 

Regions 

Model Performances 

Random Forest (RF) Gradient Boosting (GB) 

 R² RMSE  R²  RMSE 

MED 0.92 10.84 0.88 13.36 

SAH 0.95 2.33 0.79 4.84 

WAF 0.98 32.24 0.95 44.05 

CAF 0.95 26.16 0.91 35.27 

NEAF 0.90 16.82 0.81 23.47 

CEAF 0.88 19.94 0.80 25.87 

SWAF 0.97 9.44 0.93 13.69 

SEAF 0.95 30.49 0.94 36.32 

 

 

3.4.2. SHAP Feature Importance Analysis 

❖ Mediterranean Region 

In the Mediterranean region, SHAP analysis confirms that, in both the Random Forest (RF) and 

Gradient Boosting (GB) models (Figure 3.12), precipitation (PRECIP) is by far the most influential 

predictor of groundwater recharge. In the RF analysis, precipitation has an average SHAP of around 

30 mm per year. This suggests that high precipitation significantly increases predicted recharge. 
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Soil depth is shown as the most important land surface feature. In both models, deeper soils are 

associated with positive SHAP values, while shallow soils produce negative SHAP values of up to 

-25 mm/year, particularly in the RF model. This suggests that, in the Mediterranean region, shallow 

soils are associated with lower recharge predictions. This is likely due to their connection with 

higher runoff ratios and limited infiltration. Other variables play moderate roles. Slope produces 

mostly negative SHAP values at higher angles. Organic matter is associated with slight downward 

shifts in predicted recharge, which potentially reflects locations where retained soil moisture is lost 

through evapotranspiration or runoff. Texture variables (clay and sand fractions) and LAI 

(vegetation) show relatively small effects (average SHAP contributions < 5 mm/year) and do not 

consistently shift recharge predictions in one direction, suggesting that in the Mediterranean 

climate these variables alone do not strongly regulate the predicted recharge fraction. 

 

 

 

 

 

 

Figure 3.12. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in the Mediterranean region, using RF (top) and GB (bottom) models. 
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❖ Sahara Region 

In the Sahara region (Figure 3.13), SHAP analysis again identifies precipitation as the primary 

predictor of groundwater recharge, though with considerably lower average SHAP magnitudes 

compared to the Mediterranean region (~6 mm/year for Random Forest, and ~3.5 mm/year for 

Gradient Boosting). This reflects the overall limited recharge potential under arid climatic 

conditions. Among land surface variables, clay content (PCT_CLAY) shows the strongest 

modelled influence. Higher clay fractions consistently shift predictions downwards, indicating that 

locations with finer-textured soils tend to be associated with reduced recharge predictions, most 

likely because such soils limit infiltration and promote localized surface runoff. Sand content 

(PCT_SAND) has a weaker and mixed influence, sometimes shifting predictions upward at high 

sand values in the RF model, suggesting that locally coarser soils may correspond to slightly higher 

infiltration potential. Other features, including LAI, soil depth (ZBEDROCK), organic matter, and 

slope produce only small SHAP shifts (mostly <1 mm/year on average) and remain centred near 

zero. This implies that, within the Sahara, recharge is almost entirely controlled by the scarcity and 

variability of precipitation itself, with land-surface differences playing only a minor role in the 

fraction of rainfall that becomes recharge. 
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❖ West Africa Regions 

In West Africa, SHAP analysis reveals a particularly strong dependence of recharge predictions on 

precipitation, with mean SHAP magnitudes exceeding 120 mm/year in the Random Forest model 

and 70 mm/year in the Gradient Boosting model (Figure 3.14). This emphasises that recharge 

potential in WAF is highly responsive to rainfall anomalies. The most influential land-surface 

variable in both models is soil depth (ZBEDROCK). Deeper soils are associated with large positive 

SHAP shifts (up to +100 mm/year in extreme RF cases), whereas shallow soils can shift predicted 

recharge downwards by approximately -100 mm/year. These strong model responses indicate that, 

within West Africa, variations in soil thickness align closely with differences in infiltration 

opportunity and storage capacity. Vegetation (LAI) and slope have secondary influences. High LAI 

tends to depress predicted recharge due to its association with stronger evapotranspiration demand. 

Soil texture shows less influence on recharge prediction. 

Figure 3.13. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in the Sahara region, using RF (top) and GB (bottom) models. 
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❖ Central Africa Region 

In Central Africa, SHAP analysis reveals that the recharge regime is strongly influenced by 

precipitation. Average SHAP magnitudes exceed 70 mm/year in Random Forest models and are 

approximately 35 mm/year under Gradient Boosting (Figure 3.15). These high values reflect the 

variability in rainfall and the strong hydrological response typical of humid tropical zones. In 

Central Africa, SHAP analysis reveals that the recharge regime is strongly influenced by 

precipitation. Average SHAP magnitudes exceed 70 mm/year in Random Forest models and are 

approximately 35 mm/year under Gradient Boosting (see Figure 3.15). These high values reflect 

the variability in rainfall and the strong hydrological response typical of humid tropical zones.  

Among land surface features, soil depth is the dominant modulator of predicted recharge. Deeper 

soils shift the model outputs upward (up to 150 mm/year in RF), while shallow soils show negative 

Figure 3.14. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in West Africa, using RF (top) and GB (bottom) models. 
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SHAP shifts (approximately -100 mm/year). This suggests that infiltration opportunity is a major 

determinant of recharge efficiency in CAF. Vegetation presents a modest downward influence on 

recharge (mean SHAP < 20 mm/year). Similarly, organic matter content, clay, and slope have minor 

impacts compared to precipitation and soil thickness. 

 

 

 

 

 

❖ Northeast Africa Region 

In Northeast Africa, precipitation remains the most influential predictor of groundwater recharge 

in both Random Forest and Gradient Boosting models, with mean SHAP values of around 35 

mm/year and 18 mm/year, respectively (Figure 3.16). This again highlights that recharge potential 

in NEAF is primarily governed by rainfall variability. Interestingly, compared to other regions, 

vegetation (LAI) emerges as the dominant non-precipitation modulator, producing average SHAP 

Figure 3.15. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in Central Africa, using RF (top) and GB (bottom) models. 
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magnitudes of approximately 7 mm/year and shifting model predictions downward in the RF 

model. Higher LAI values tend to coincide with negative SHAP values, indicating that locations 

with denser vegetation are associated with reduced recharge predictions, most likely due to elevated 

evapotranspiration losses. Soil depth (ZBEDROCK) plays a secondary but positive role (mean 

SHAP ~6 mm/year in RF), suggesting that deeper soils are associated with a greater portion of 

rainfall contributing to recharge. Organic matter and soil texture (PCT_CLAY and PCT_SAND) 

also show moderate influence (mean SHAP ∼2-5 mm/year), with higher organic and clay content 

generally decreasing recharge predictions. Slope has relatively small average contributions (< 2 

mm/year). 

 

 

 

 

 

Figure 3.16. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in  Northeast Africa, using RF (top) and GB (bottom) models. 
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❖ Central East Africa Region 

In Central East Africa, precipitation remains the dominant driver of recharge predictions, with 

average SHAP values of approximately 30 mm/year under the Random Forest model and 15 

mm/year using Gradient Boosting (Figure 3.17). This reflects a high dependence of recharge on 

rainfall variability in this moderately wet region. Soil depth (ZBEDROCK) is the largest non-

climatic modulator, with an average SHAP impact of about 16 mm/year in RF and 6 mm/year in 

GB. Deeper soils are aligned with positive SHAP shifts, while shallow profiles correspond with 

decreases of up to -40 mm/year, consistent with runoff-limited recharge in areas of restricted 

infiltration capacity. Among the remaining variables, vegetation, clay content and organic matter 

exhibit modest SHAP magnitudes (~5 mm/year) with a general trend for higher vegetation, clay or 

organic content to shift predictions slightly downward. This aligns with a pattern in which water 

retention and evapotranspiration demand reduce recharge efficiency in CEAF. Slope and sand 

content show minimal influence (<5 mm/year on average), indicating that within this region, terrain 

and coarse-texture effects are secondary once soil depth is accounted for. 
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❖ Southwest Africa Region 

In Southwest Africa, recharge prediction remains predominantly controlled by precipitation, which 

contributes the highest SHAP magnitudes in both the Random Forest (~35 mm/year) and Gradient 

Boosting (~20 mm/year) models (Figure 3.18). Nevertheless, vegetation (LAI) emerges as a 

notable land surface modulator with mean SHAP impacts of ~10 mm/year (RF) and ~5 mm/year 

(GB), confirming a stronger linkage between recharge variability and evapotranspiration regulation 

in this region compared to others. At higher LAI values, SHAP values tend to shift recharge 

predictions downward (sometimes by ~20 mm/year), implying that areas with dense vegetation 

have reduced effective recharge given the same precipitation input, consistent with elevated ET 

demands. Soil depth (ZBEDROCK) plays a secondary but positive role (mean SHAP ~5 mm/year 

Figure 3.17. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in Central East Africa, using RF (top) and GB (bottom) models. 
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in RF), suggesting that deeper soils are associated with a greater portion of rainfall contributing to 

recharge. Conversely, slope, texture parameters (PCT_SAND, PCT_CLAY), and organic matter 

have minimal average SHAP contributions (< 3 mm/year), indicating that runoff‐related controls 

are less dominant in SWAF. 

 

 

 

 

 

❖ Southeast Africa Region 

In Southeast Africa, the SHAP results again underscore the dominance of precipitation as the 

primary driver of recharge variability, with mean SHAP values of approximately 70 mm/year under 

the Random Forest model and 40 mm/year in Gradient Boosting (Figure 3.19). Extreme rainfall 

events produce exceptionally high positive SHAP values (over 500 mm/year in RF), confirming 

the strong hydrological responsiveness of this region. Among land surface factors, soil depth 

(ZBEDROCK) exerts the largest average influence (approximately 20 mm/year in RF; 

Figure 3.18. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in Southwest Africa, using RF (top) and GB (bottom) models. 
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approximately 6 mm/year in GB). Deep soils increase recharge predictions, whereas shallow soils 

can reduce them by more than 50 mm/year. This aligns with a runoff-limited recharge setting, 

where infiltration opportunity is critical for effective recharge. Vegetation (LAI) and organic matter 

exhibit negative but relatively modest SHAP values (less than 8 mm/year on average), suggesting 

that, while evapotranspiration losses are present, they are less significant than soil depth controls. 

Slope and soil texture have less impact. 

 

 

 

 

3.5. Land-Surface Modulators of Recharge 

The combination of correlation, principal component analysis (PCA), and machine learning 

interpretation provides a consistent picture of how land-surface variables interact with precipitation 

to influence recharge partitioning across Africa. From these statistical analyses, the regional 

contrasts highlight consistent mechanisms modulating recharge efficiency. 

 

 

Figure 3.19. SHAP-based feature importance of precipitation and land surface factors controlling 

GWR variability in Southeast Africa, using RF (top) and GB (bottom) models. 
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❖ Precipitation as the primary driver 

Across all regions, recharge is predominantly controlled by precipitation, as evidenced by its 

overwhelming SHAP contributions and the strong model dependence on it. However, the amount 

of precipitation that contributes to recharge is strongly modulated by other variables. 

 

❖ ZBEDROCK: Soil depth as a key modulator 

Shallow soil consistently corresponds with lower recharge predictions, particularly in West Africa, 

Central Africa, and the Mediterranean. All analysis layers show this evidence: 

• Strong negative correlations between soil depth and runoff ratio (RO_R: -0.72 to -

0.77) in most of the regions. 

• Soil depth contributes most in PC2, Infiltration versus Drainage Gradient, across all 

regions. This emphasizes its important role.  

• In SHAP analysis, low soil depth shifts recharge predictions downward. 

These results suggest that shallow soils reduce infiltration and promote surface runoff. 

 

❖ Slope: Influencing runoff and recharge partitioning 

Slope emerges as a secondary but consistent gradient modulator: 

• Correlations show positive association with RO_R (up to 0.61 in SWAF), and negative with 

ET_R (-0.46 in SWAF), indicating its dual role in promoting runoff and limiting retention 

time for infiltration. 

•  Slope contributes more to PC2, Infiltration versus Drainage Gradient. This reinforces its 

role in limiting recharge. 

• SHAP analysis also shows that high slope generally indicates downward prediction shifts, 

particularly in regions like SEAF and MED. 

These results suggest that steeper terrain increases runoff generation. Then it decreases the 

recharge. 

 

❖ Vegetation (LAI): Interaction with atmospheric demand 

The role of vegetation varies by climate region: 
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• SHAP analysis shows that vegetation consistently reduces predicted recharge in most of the 

region. This suggests that dense vegetation areas decrease recharge via evapotranspiration 

loss. 

• In drylands (e.g., SAH, MED), LAI has less influence due to a lack of vegetation. 

These results suggest that recharge is limited in vegetated regions by evapotranspiration. 

 

❖ Organic matter and Soil texture (clay and sand): secondary influence 

Organic matter and soil texture variables have less effect across regions: 

•  Organic matter and clay content are positively correlated with runoff ratio in most of the 

regions. The PC1, Soil Texture Gradient, shows a strong association between both organic 

and clay content. Also, in the SHAP analysis, they lead to a downward shift in recharge 

predictions. 

• In contrast, the relationship between sand and ET_R is mixed, which may indicate a trade-

off between rapid infiltration and poor water retention. Furthermore, sand contributes to 

PC1 and manifests a secondary effect in SHAP analysis. 

 

3.6. Implications for water‐resource and renewable energy planning 

Understanding how land-surface characteristics mediate the conversion of precipitation into 

groundwater recharge provides valuable insight not only for hydrological management but also for 

the planning and sustainability of renewable energy systems that depend on water, such as green-

hydrogen production. 

 

3.6.1. Regional suitability for recharge-dependent renewable energy 

deployment 

Based on the integrated recharge mechanisms identified in Section 3.5, three regional response 

types can be identified: 

Runoff-limited recharge regimes, characterized by shallow soils and steep slopes, which restrict 

infiltration despite relatively high precipitation. In such regions, investment in hydropower may be 
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better supported by surface-water management and soil-depth improvement measures (e.g., 

terracing, infiltration trenches) that enhance recharge and regulate flows. 

ET-limited recharge regimes, characterized by moderate to high rainfall but have strong 

evapotranspirative losses due to high vegetation and organic soil content.  

Low-recharge dryland regimes (e.g., SAH, MED) are characterized by a strong dependence on 

rainfall. These regions are not favourable for recharge-reliant renewable energy development but 

may be suitable for solar or wind projects with low water demand. 

 

3.6.2. Towards a Water-Energy Nexus perspective 

The results highlight the importance of taking a Water-Energy Nexus approach in Africa. The 

development of renewable energy should not be decoupled from the sustainability of water 

resources. The variability of groundwater recharge, which is controlled by the interaction between 

climate and land surface characteristics, creates regionally specific risks and opportunities. 

Renewable systems supported by groundwater (e.g. hydrogen production) should prioritise regions 

with high recharge rates (e.g. WAF and CEAF) and avoid areas where steep slopes and shallow 

soils suppress recharge. Investment in land surface management can be considered a low-cost 

resilience strategy, enhancing recharge and thereby supporting the reliability of energy systems. 

 

3.6.3. Comparison with Previous Studies 

The findings of this study are broadly consistent with earlier work on African recharge dynamics. 

Fu et al. (2019) identified rainfall as the dominant control on recharge. This aligns with the present 

results, where precipitation has the highest SHAP contributions across all regions. Similarly, Toure 

et al. (2024) emphasized the role of slope in modulating infiltration opportunity, supporting the 

strong positive correlation between slope and runoff observed here. Anand et al. (2025) emphasized 

that the properties of the soil influence processes of infiltration and percolation, confirming the 

impact of soil texture (sand, clay) and soil depth in modulating recharge prediction. Unlike previous 

studies that always point out climatic impacts, the present work highlights the added value of 

considering land surface characteristics. It presents slope, vegetation, organic matter, soil texture, 

and soil depth as modulators of recharge efficiency. This extension provides a more integrated 

framework for water-energy planning. 
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PARTIAL CONCLUSION 

This chapter has shown that groundwater recharge (GWR) across Africa is governed by a 

combination of precipitation as the dominant driver and land‐surface properties that modulate how 

precipitation is partitioned into evapotranspiration and runoff. 
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GENERAL CONCLUSION AND RECOMMENDATION  

In this thesis, a data-driven framework combining regional-scale correlation analysis, principal 

component analysis (PCA), and machine-learning (Random Forest and Gradient Boosting) 

modelling was applied to quantify regional differences in recharge and to understand their 

relationship with land‐surface characteristics. The results provide new insights into the dominant 

mechanisms affecting recharge partitioning across Africa, while highlighting implications for 

regional energy-resource planning. 

The first key conclusion is that precipitation is the primary determinant of spatial variability in 

recharge across all African regions, with machine-learning SHAP analysis consistently showing 

that recharge predictions increase most strongly in association with higher precipitation inputs.  

Secondly, land surface characteristics influence recharge by impacting the fraction of rainfall lost 

to evapotranspiration (ET_R) and runoff (RO_R). Correlation analysis revealed that soil depth and 

slope are the most important factors that influence the runoff ratio. Shallow soils and steep terrain 

are strongly associated with higher runoff. Conversely, deeper soils and gentle slopes are associated 

with reduced runoff fractions.  

Thirdly, the principal component analysis results confirm that the land-surface caracteristics can 

be summarized into two dominant gradients. The Soil Texture Gradient (PC1) associated with 

storage and vegetation properties that may influence evaporative losses. The Infiltration versus 

Drainage Gradient (PC2) linked to slope and soil thickness governing runoff.  

Machine-learning performance metrics indicate that Random Forest models outperform Gradient 

Boosting models (R² up to 0.98 for RF versus 0.95 for GB), reflecting their greater tolerance for 

strong non-linear interactions. Nonetheless, SHAP-based interpretation of both models indicates a 

similar control hierarchy: precipitation dominates, while other variables, particularly soil depth, 

slope and vegetation (LAI), consistently shift modelled recharge predictions by altering losses.  

Three broad regional recharge behavior types are identified by integrating evidence across all 

analyses: 

• Runoff-limited regimes where recharge is limited by shallow soils and steep terrain. 
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• Evapotranspiration-limited regimes where rainfall is largely lost to evapotranspiration due 

to high vegetation and organic-rich conditions. 

• Precipitation-constrained regimes (e.g., SAH, MED) where low rainfall dominates recharge 

potential regardless of land surface characteristics. 

These findings have implications for Africa’s renewable energy transition. It is usful for green 

hydrogen projects, which require reliable and sustainable water inputs. Regions with higher 

recharge efficiency, such as West and Central East Africa present promising locations for coupling 

renewable electricity with groundwater-fed hydrogen electrolysis. Conversely, dryland regimes 

such as the Mediterranean and Sahara exhibit recharge scarcity. In these areas, Hydrogen 

production may require alternative water sources, such as desalination or wastewater reuse, to 

avoid unsustainable groundwater depletion. 

The following policy recommendations are proposed based on regional contrasts: 

• in West and Central Africa (Runoff-limited regimes): promote soil and slope management 

interventions such as terracing, bunds, and infiltration trenches to enhance infiltration and 

reduce surface losses. 

• In Ethiopia and highland regions (NEAF): prioritize landscape management to reduce 

runoff and improve recharge through community-led terracing. 

• In Morocco and North Africa (MED): expand adoption of dry cooling technologies for 

concentrated solar power (CSP) to reduce water demand, while integrating recharge 

variability into energy feasibility studies. 

• In Southern regions (SEAF, SWAF): account for evapotranspiration-driven recharge losses. 

When planning groundwater-based energy systems, vegetation and land use management 

should be integrated. 

Future work should seek to validate recharge estimates with ground observations, address 

uncertainties linked to CLM simulations, and integrate socio-economic and energy-demand 

scenarios to evaluate trade-offs between water use and renewable energy expansion. By 

strengthening the connection between hydrology, data science, and energy policy, this thesis 

contributes a framework for ensuring that Africa’s pursuit of clean energy, particularly green 

hydrogen, proceeds without undermining the sustainability of its vital groundwater resources.   
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