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ABSTRACT

Water is a precious resource in Africa. The sustainable management of this resource is important
for our everyday lives, as well as for renewable energy applications such as green hydrogen
production. Especially in desert regions, this water is mainly groundwater. This study assesses how
land surface characteristics affect groundwater recharge across Africa, in addition to the dominant
impact of precipitation. A combination of correlation analysis, principal component analysis
(PCA), and machine learning models (Random Forest and Gradient Boosting) interpreted with
Shapley additive exPlanations (SHAP) was applied across eight African regions. These methods
were used to analyse the Community Land Model (CLM) simulated datasets for different African
land surface characteristics. The findings of the analysis indicate that precipitation is the main
factor affecting variations in recharge. However, its effectiveness is significantly impacted by
factors such as soil depth, slope, vegetation, organic matter, and soil texture. Three dominant
recharge regimes were identified. These are runoff-limited regimes, evapotranspiration-limited
regimes, and precipitation-constrained regimes (e.g., Sahara and Mediterranean). The runoff-
limited regimes are characterized by shallow soils and steep terrain that restrict infiltration despite
high rainfall. The evapotranspiration-limited regimes are characterized by vegetation and organic-
rich soils that drive moisture losses. The precipitation-limited regimes are characterized by low
rainfall that dominates recharge regardless of land characteristics. Random Forest models
outperformed Gradient Boosting in predictive accuracy (R? up to 0.98), and SHAP analysis
provided quantifications of variable importance. These findings highlight the critical role of land-
surface heterogeneity in shaping groundwater availability and its implications for water-energy
planning. In renewable energy strategies that involve groundwater, policies should consider
recharge variability. They should also manage soil and slopes in runoft-limited regions. And they
should assess the balance between the water needs for energy production and competing demands
such as drinking water and environmental needs. The study emphasises the importance of adapting
region-specific approaches to groundwater management. These are needed to support Africa’s

renewable energy transition.

Keywords: Groundwater recharge, Land surface characteristics, Machine learning, Africa, Water-

Energy nexus.
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RESUME

L’eau est une ressource précieuse en Afrique. La gestion durable de cette ressource est importante
pour notre vie quotidienne, mais aussi pour des applications en énergie renouvelable telles que la
production d’hydrogene vert. Particulierement dans les régions désertiques, cette eau est 1'eau
souterraine. Cette étude évalue comment les caractéristiques de la surface terrestre affectent la
recharge des eaux souterraines a travers I’ Afrique, en plus de I'impact dominant des précipitations.
La combinaison d’analyse de corrélation, de composantes principales et de modéle d’apprentissage
automatique (Random Forest et Gradient Boosting) interprétée par SHAP (Shapley Additive
exPlanations) a été appliquée a travers huit régions d’Afrique. Ces méthodes sont utilisées pour
analyser des données simulées par CLM (Community Land Model), représentant les
caractéristiques de la surface terrestre. Les résultats des analises indiquent que les variations de la
recharge des eaux souterraines sont plus impactées par la précipitation. Cependant, les facteurs tels
que la profondeur du sol, la pente, la végétation, la matiere organique et la texture du sol influencent
aussi la variation de la recharge. Trois régimes de recharge sont identifiés. Il s'agit des régimes
limités par le ruissellement, des régimes limités par 1'évapotranspiration et des régimes limités par
les précipitations (par exemple, le Sahara et la Méditerranée). Les régimes limités par le
ruissellement se caractérisent par des sols peu profonds et un terrain en pente qui limitent
l'infiltration malgré des précipitations ¢élevées. Les régimes limités par 1'évapotranspiration se
caractérisent par une végétation et des sols riches en matiére organique favorisant les pertes
d'’humidité. Les régimes limités par les précipitations se caractérisent par des précipitations faibles
qui dominent la recharge, quelles que soient les caractéristiques du terrain. Les modeles Random
Forest ont surpassé le Gradient Boosting en termes de précision prédictive (R? jusqu'a 0,98), et
l'analyse SHAP a fourni une interprétation robuste de l'importance des variables. Ces résultats
soulignent le rdle essentiel de I'hétérogénéité de la surface terrestre dans la détermination de la
disponibilité des eaux souterraines et ses implications pour la planification de l'eau et de 1'énergie.
Les politiques devraient intégrer la variabilit¢ de la recharge dans les stratégies en matiere
d'énergies renouvelables, donner la priorité a la gestion des sols et des pentes dans les régions ou
la recharge est limité par le ruissellement, et évaluer soigneusement I'équilibre entre 1'utilisation de
l'eau pour la production d'énergie et les demandes concurrentes telles que 1'eau potable, I'agriculture

et les €écosystemes dans les environnements arides. L'étude souligne la nécessité d'adopter des
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approches spécifiques a chaque région en matiére de gestion des eaux souterraines afin de soutenir

le développement durable et la transition vers les énergies renouvelables en Afrique.

Mots-clés: recharge des eaux souterraines, caractéristiques de la surface terrestre, apprentissage

automatique, Afrique, nexus eau-énergie.
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GENERAL INTRODUCTION

In many regions of the African continent, especially in arid and semi-arid areas, where surface
water availability is limited, groundwater is a vital source of water for domestic, agricultural, and
industrial use, as well as for ecosystems (Gebreslassie et al., 2025; MacDonald et al., 2012).
Groundwater recharge (GWR), defined as the process by which water percolates from the surface
to replenish underground aquifers, is therefore crucial for the sustainable management of water
resources (Gebreslassie et al., 2025). GWR however, is a complex and spatially heterogeneous

process influenced by both climatic variables and land surface characteristics (Fu et al., 2019).

Traditionally, studies on GWR have focused on dominant climatic drivers such as precipitation and
potential evapotranspiration (Atawneh et al., 2021). While these are undeniably important, recent
research suggests that land surface features have a significant impact on how water percolates and
accumulates underground (Fu et al., 2019; Toure et al., 2024). Understanding these interactions is
especially critical in the African context, where land conditions vary widely across regions
(Oloruntoba et al., 2025) and data scarcity (Akpoti et al., 2024) presents additional challenges to

water resource planning.

Concurrently, the growing shift toward renewable energy technologies, including concentrated
solar power (CSP), hydropower, and green hydrogen production, intensifies the demand for
sustainable water supply. These technologies depend heavily on reliable water resources, making
groundwater management an essential pillar of Africa’s renewable energy transition (IRENA,
2021; Winkler et al., 2025). For hydropower, aquifer-fed baseflow helps sustain dry-season river
discharge, ensuring continuous electricity generation (Bardsley, 1995). In the case of green
hydrogen, electrolysis requires around 9 liters of pure water per kilogram of hydrogen produced
(Scholz, 2024), meaning that large-scale deployment will place significant pressure on existing
water resources. Concentrated solar power plants, such as Morocco’s Noor complex, also highlight
the water-energy balance: initial wet-cooling designs consumed millions of cubic meters of water
annually, before later phases adopted dry-cooling to reduce demand (Fares & Abderafi, 2018; Ersoy
et al., 2022).

Despite increasing recognition of the importance of groundwater for sustainable development
(Adom et al., 2022; Anghileri et al., 2024; Biazar et al., 2025), there remains limited understanding

of how non-climatic factors, specifically land surface characteristics, influence GWR across




diverse African regions. Moreover, traditional hydrological modeling approaches may not fully
capture the complex, nonlinear relationships governing GWR variability across space. There is
therefore a need in addition to known traditional methods, a data-driven, region-specific analyses
that leverage the potential of machine learning (ML) and explainable artificial intelligence (XAI)
to better understand the drivers of groundwater recharge and their implications for sustainability

(Jung et al., 2024; Maity et al., 2024; Siabi et al., 2022).

The main objective of this study is to assess how land surface characteristics influence groundwater
recharge across different regions of Africa, alongside the primary factors of precipitation and
potential evapotranspiration. Specifically, the study aims to identify which land surface traits affect
GWR variability across Africa and to evaluate the roles of precipitation and land surface features
in this variability. Furthermore, it seeks to quantify how regional land surface characteristics
contribute to estimated GWR using machine learning and feature importance analysis. Finally, the
study examines how variations in Africa's land surface impact the amount of water that can be
safely used in renewable energy projects, such as hydropower and green hydrogen production. It

also provides recommendations for policymakers.

The work combines hydrology, data science, and energy planning. It provides policy-relevant
recommendations to optimize the use of groundwater in renewable energy projects across Africa.
These outcomes are expected to contribute to the sustainable resources management and align with
Sustainable Development Goal (SDG) 6, Clean Water and Sanitation, and SDG 7, Affordable and
Clean Energy.

This master’s thesis is divided into three main chapters: the chapter 1 provides a comprehensive
review of existing literature. Then, the chapter 2 describes the materials and methods employed in
this study and the chapter 3 focuses on presenting the results obtained and discussing their

implication.
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REVIEW



CHAPTER 1: LITERATURE REVIEW

This chapter provides a comprehensive review of existing literature on groundwater recharge in
Africa, the impact of land surface characteristics on GWR, the use of machine learning for
assessment, and the nexus between groundwater and renewable energy development. The review
identifies gaps and sets the foundation for this study’s approach to improving groundwater resource

planning through advanced modeling and data analytics.

1.1. Groundwater Recharge and Land Surface Interactions
1.1.1. Concept and Mechanisms of Groundwater Recharge (GWR)

Groundwater recharge (GWR) is a fundamental hydrological process through which water
percolates from the surface to replenish underground aquifers (Gebreslassie et al., 2025). It plays
a critical role in maintaining water availability for agriculture, domestic use, and industrial
activities, especially in regions with limited surface water resources (Sishodia et al., 2018).
Recharge can be classified into natural and artificial types. The former occurs through precipitation
infiltration, river seepage, or diffuse flow, while the latter involves managed aquifer recharge

techniques (Figure 1.1.).

Storm cloud 7 ’
A — Antificisl
recharge Pipe to source of
recharge water
Precipitation Natural
"f::::‘o’ N:htuul
precipitation S— "',:n'?"

N, Control valve stream

Figure 1.1. Groundwater recharge processes

Source: https://sswm.info/water-nutrient-cycle/water-sources/hardwares/precipitation-
harvesting/subsurface-groundwater-recharge-



https://sswm.info/water-nutrient-cycle/water-sources/hardwares/precipitation-harvesting/subsurface-groundwater-recharge-
https://sswm.info/water-nutrient-cycle/water-sources/hardwares/precipitation-harvesting/subsurface-groundwater-recharge-

GWR s closely linked to the water cycle and is influenced by several factors, including soil type,

land use, vegetation cover, and climatic conditions (Scanlon et al., 2012).

1.1.2. Role of Land Surface Characteristics in GWR Variability

Beyond climatic factors like rainfall and evapotranspiration, the rate and spatial distribution of
GWR are strongly controlled by land surface and soil properties (Fu et al., 2019). Soil texture and
structure affect infiltration and water-holding capacity (Basset et al., 2023; Franzluebbers, 2002).
Land cover features, such as vegetation density and root depth, influence evapotranspiration and
water retention (Alam, 2017). Topography and slope control runoff generation and the spatial

redistribution of infiltrated water (Toure et al., 2024).

1.1.3. Challenges in GWR Estimation Across Africa

The estimation of groundwater recharge is challenging due to the lack of reliable data, the
differences in estimation methods, and the influence of both climatic and non-climatic factors
(Gebru et al., 2024; Wang et al., 2010). Unlike surface water, recharge cannot be directly observed
at large scales; it must be inferred from indirect measurements or models. Common methods
include water balance calculations, analysis of groundwater level fluctuations, tracer techniques
(like isotopes and chloride profiles), and modeling (Gebru et al., 2024; Wang et al., 2010). Water
balance approaches quantified recharge as the residual of precipitation after accounting for other
fluxes. Within this framework, recharge can be calculated by subtracting actual evapotranspiration
and surface runoff over a defined period. The general water balance equation can be expressed as

Equation 1 (Wang et al., 2010):
R=P—-R—ET + AS Equation 1

In this equation, R is recharge, P is precipitation, £7 is evapotranspiration, Q is surface runoff and
AS is the change in soil or groundwater storage. Tracer methods quantified groundwater recharge
by tracking the movement of natural or applied chemical, isotopic, or gaseous markers in the
subsurface (Scanlon, 2010). The chloride mass balance method is one of the most used tracer
techniques to estimate groundwater recharge. This approach is based on the conservative nature of

chloride, which is supplied naturally through precipitation and atmospheric deposition. As




precipitation (P) infiltrates the soil, water is lost through evapotranspiration, but chloride remains
and becomes more concentrated in the recharge (R) water. By comparing the chloride concentration
in precipitation (Cp) and its concentration in groundwater (Cgyw), recharge is estimate using Equation

2 (Scanlon et al., 2002):

__ PGy

R Equation 2

= o
Although tracer methods are valuable in arid and semi-arid areas, they are not suitable for
estimating regional groundwater recharge (Gebru et al., 2024; Wang et al., 2010). Modelling
approaches such as MODFLOW and ParFlow are governed by hydrodynamic mechanisms. These
models physically describe the movement of water in three dimensions, including in both saturated
and unsaturated zones. They incorporate water balance processes, but the physical mechanism of
evapotranspiration processes is not usually described explicitly (Tian et al., 2012). The selection of
the method used mostly depends on the data available (Atawneh et al., 2021; Gebru et al., 2024).
Spatially, GWR is influenced by soil type and land attributes. It is temporally also impacted by
interannual weather variability (Fu et al., 2019). The integration of climate and land surface data is

thus crucial for GWR assessment.

1.2. Machine Learning for Hydrology and GWR Analysis
1.2.1 Traditional vs. Machine Learning Approaches in Hydrology

Traditional models have long been used to simulate hydrological processes. These approaches rely
on physics-based methods that require extensive calibration and domain-specific knowledge
(Biazar et al., 2025). Some examples include catchment-scale models such as the Hydrologic
Engineering Center’s Hydrologic Modeling System (HEC-HMS) and the Soil and Water
Assessment Tool (SWAT) model (Biazar et al., 2025). Traditional models offer the advantage of
providing physically interpretable outputs and the flexibility to simulate multiple hydrological
variables (Devia et al., 2015). However, these models require extensive calibration, since many
parameters cannot be measured directly. This often leads to multiple parameters sets providing
similar results, which damages confidence in the robustness of the model (Beven, 2006). According
to Du & Pechlivanidis (2025), traditional models demonstrate inaccuracies of processes due to their

inability to represent complex and non-linear hydrometeorological processes. This limits their




effectiveness in local conditions. Machine learning (ML) models like neural networks and decision
trees are data-driven. These models focus on identifying statistical correlations between input and
output variables. They learn and capture nonlinearities and interactions directly from data without
the need for a physical prescription (Biazar et al., 2025). Nevertheless, machine learning models

are frequently criticized for their limited interpretability (Nearing et al., 2021).

1.2.2. Key Machine Learning Techniques for Water Resource Modeling

A variety of machine learning algorithms have been applied in groundwater studies, each with
strengths and limitations depending on the problem type and available data. Popular algorithms
include Artificial Neural Networks (ANNs), Tree-based Ensembles, Support Vector Machines
(SVMs), and Advanced Deep Learning Models (ADLMs) (Biazar et al., 2025; Pazola et al., 2024;
Toure et al., 2024). For spatial mapping tasks, like predicting recharge or groundwater potential
across a region from environmental attributes, ensemble tree methods are more popular. Random
Forest (RF) and Gradient Boosting Machines (GBM) are frequently used. They handle nonlinear
relationships and interactions well (Anand et al., 2025; Gémez-Escalonilla et al., 2022), and are
relatively robust to overfitting, while also providing measures of feature importance. For example,
Pazola et al. (2024) used a Random Forest (RF) model to generate a high-resolution recharge map
for the African continent, and RF showed best performance compared to a previous continent-wide
estimate derived from a linear mixed model (LMM). However, RF models can be computationally
expensive when dealing with very large datasets (Genuer et al., 2017), while GB models are more
sensitive to noise (Xiang et al., 2020). For time-series forecasting problems, such as predicting
groundwater level fluctuations or recharge over time, neural networks and deep learning models
are common. In Ghana, for example, Siabi et al. (2022) used artificial neural networks to predict
groundwater recharge based on historical data from 1960 to 2018 (58 years). Despite their
importance, artificial neural networks respond slowly to gradient-based learning processes and
require repeated parameter tuning (Mosavi et al., 2018). Overall, the choice of model is dependent
on a number of factors, including the predictive accuracy, the importance of interpretability, and

the availability of the computational process.




1.2.3. Explainable Al for Feature Importance Analysis in GWR Studies

Despite the power of ML models, a major limitation is their lack of interpretability. Explainable
Artificial Intelligence (XAI) methods such as partial dependence plots (PDP), SHAP (SHapley
Additive exPlanations), and permutation feature importance (PFI) have been developed to interpret
complex ML models (Holzinger et al., 2020). SHAP is an XAI method that assigns each feature a
contribution value toward prediction, grounded in cooperative game theory (Lundberg & Lee,
2017). It allows researchers to assess not only which features are most influential across the model

but also how feature importance varies with context and interactions.

1.3. Groundwater and Renewable Energy Nexus in Africa
1.3.1. Water Needs in Renewable Energy Projects

Water plays a critical role in several renewable energy projects, serving both as a resource and a
constraint in energy system planning. The sustainable management of food, energy, and water is
closely interlinked, and it is essential to evaluate these connections (UNESCO, 2018). In
hydropower, water is the primary energy source, with energy generated from kinetic and potential
energy of flowing or stored water. While hydropower dams rely on surface river flow, a significant
portion of dry-season river baseflow is fed by groundwater discharge. In other words, aquifers
slowly draining into rivers help maintain streamflow during periods with no rain, which is crucial
for year-round hydropower generation (Bardsley, 1995). The role of groundwater is even more
direct in the green hydrogen sector. Green hydrogen production involves electrolyzing water using
renewable electricity (solar/wind) to generate hydrogen fuel (IRENA, 2021). The reaction requires
pure water as an input, typically around 9 liters of water per kilogram of hydrogen produced
(Scholz, 2024). This water demand is substantial when scaled to industrial production. In arid
regions, groundwater becomes an obvious candidate to supply electrolysis plants. However,
reliance on groundwater raises sustainability flags: a recent evaluation found that only a small
fraction (on the order of 16%) of the technical hydrogen production potential in Sub-Saharan Africa
could be met by sustainable groundwater yields (Winkler et al., 2025). Another sector is solar
energy, particularly concentrated solar power (CSP) plants and large photovoltaic (PV) farms.
Utility-scale CSP plants (such as Morocco’s Noor Uranate complex) use mirrors to concentrate

sunlight and heat a working fluid to drive turbines. Traditional CSP designs use wet cooling for the




power cycle, consuming significant water for cooling towers. For example, the Noor I plant used
wet cooling and consumed about 1.8 million m? of water per year (Fares & Abderafi, 2018). In arid
environments, such water demand is problematic. Morocco mitigated this by switching later CSP
phases (Noor II and III) to dry cooling (Ersoy et al., 2022). Nonetheless, CSP plants still need some
water for mirror cleaning to maintain efficiency in dusty desert air. Groundwater can be an
important source for these needs, especially if surface water allocations are limited. Integrating

water availability assessments, including GWR estimates, into energy planning is therefore crucial.

1.3.2. Challenges in Integrated Water-Energy Planning in Africa

The effective implementation of water-energy planning in Africa is hindered by multiple
challenges. These challenges include institutional and political barriers (Adom et al., 2022;
Anghileri et al., 2024; Nhamo et al., 2018), which limits the coordination and execution of
integrated strategies. According to Donkor & Wolde (2022), the separation of water and energy
management across various departments leads to inadequate resource allocation and a lack of
integrated planning. Also, the lack of reliable data on energy and water resources represents a
substantial obstacle to making evidence-based decisions (UN-Water/Africa, 2000). These issues
are made worse by financial limitations on the continent (Chigozie Ani et al., 2024). Furthermore,
the existence of numerous transboundary river and lake basins introduces an additional layer of
intricacy, necessitating the maintenance of sustained regional collaboration and diplomatic
coordination (UN-Water/Africa, 2000). Combined, these challenges reflect the urgent need for
strengthened institutional capacity, improved data systems, enhanced funding mechanisms, and
more harmonized governance to support the advancement of integrated water-energy planning in

Africa.

1.3.3. Policy and Sustainability Considerations

Governments must enhance adaptation strategies. They should implement capacity building and
awareness campaigns on the water-energy nexus (Donkor & Wolde, 2022). The mobilization of
financial resources continues to represent a considerable challenge; nevertheless, innovative
financing strategies, such as blended finance approaches, have the potential to unlock both public
and private capital for infrastructure development (Leigland et al., 2016; Tonkonogy et al., 2018).

Transparent outputs from machine learning tools can support integrated planning further by




identifying vulnerable areas. These will guide efficient decisions towards water and energy

management.

PARTIAL CONCLUSION

This chapter has reviewed the current knowledge on groundwater recharge and its interactions with
land surface characteristics. It emphasizes the importance of machine learning as a powerful tool
in hydrology. The connection between groundwater and renewable energy development in Africa

is also mentioned.




CHAPTER 2: MATERIALS AND
METHODS



CHAPTER 2: MATERIALS AND METHODS

This chapter outlines the study area and the datasets, analytical tools, and software employed to

process and analyze the data.

2.1. Study Area

This research focuses on the African continent. Given its diverse land surface characteristics and
climate conditions, the continent is subdivided into eight regions, following the climate
regionalization framework proposed by Oloruntoba et al. (2025). These regions include the
Mediterranean (MED), the Sahara (SAH), West Africa (WAF), Central Africa (CAF), Northeast
Africa (NEAF), Central East Africa (CEAF), Southeast Africa (SEAF), and Southwest Africa
(SWAF). This subdivision enables a more region-specific investigation of groundwater recharge,

helping to minimize the masking effects that a continental-scale analysis would impose. Figure 2.1

highlights the spatial extent of each region.
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Figure 2.1. Classification of the African regions according to Oloruntoba et al. (2025)
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2.2. Data Sources

2.2.1. Hydrology and Land Surface Data

Hydrological and land-surface variables were obtained from the Community Land Model (CLM),
version 5 (CLMS5), which provides physically based simulations of land-atmosphere interactions
at the continental scale (CTSM, 2020; Lawrence et al., 2019). The CLM was run using the Global
Soil Wetness Project, version 3 (GSWP3) atmospheric forcing dataset, which supplies precipitation
and other meteorological drivers (Kim, 2017). The key variables selected for this study are
precipitation (PRECIP, mm/year), evapotranspiration (ET, mm/year), runoff (RUNOFF, mm/year),
percentage of Clay (PCT CLAY, %), percentage of Sand (PCT SAND, %), soil depth
(ZBEDROCK, m), mean topographic slope (SLOPE, degrees), Organic Matter Density
(ORGANIC, kg/m?), and Leaf Area Index (LAI) representing vegetation density.

2.2.2. Groundwater Recharge Data

The Groundwater recharge data were obtained using the general water balance approach, Equation

3 (Bayat et al., 2023).

GWR = (PRECIP + IRRIG) — (ET + RUNOFF) Equation 3

where:
e PRECIP = Precipitation (mm/year)
e [RRIG = Irrigation water input (mm/year)
e ET = Evapotranspiration (mm/year)

e RUNOFF = Surface runoff (mm/year)

As Irrigation is negligible compared to other variables, we consider the determination of GWR to

be as Equation 4:

GWR = PRECIP — (ET + RUNOFF) Equation 4
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2.2.3. Derived Hydrological Ratios

Two dimensionless indices were calculated to evaluate water partitioning:

e Evapotranspiration Ratio (ET_R):

Equation 5 was used to determine the fraction of precipitation lost to evapotranspiration.

ET

ETy = Equation 5

PRECIP
e Runoff Ratio (RO_R):
We used Equation 6 to calculate the fraction of rainfall that leaves as surface runoff.

RUNOFF

ROp = ——— Equation 6
PRECIP

2.3. Data Processing and Analysis
2.3.1. Methods, Techniques, And Software

This study uses a dataset provided in NetCDF (Network Common Data Form), a widely adopted
format for storing multidimensional scientific data. Several materials are employed to process and

analyse these data effectively:

¢ NetCDF Operator (NCO):
NCO is a suite of command-line programs specifically designed for manipulating and
analyzing NetCDF files (Zender, 2008). In this study, NCO was used for initial data
manipulation tasks, including a spatial view of each variable, as well as the head of each

dataset (showing general information about each variable: Name, Dimension, Unit, etc.).

+ Climate Data Operator (CDO):
CDO is another powerful set of command-line tools, originally developed to process and
analyse data produced by climate and numerical weather prediction models (Kaspar et al.,
2010). We employed CDO for more advanced manipulation, such as subsetting, regridding,

temporal aggregation, and merging.
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% Python:
Python is currently the fastest-growing programming language in the world due to its ease
of use, quick learning curve, and numerous high-quality packages for data science and
machine learning (Vallat, 2018). In this study, Python is predominantly used for data
analysis and visualisation. The key libraries used are Xarray (for handling
multidimensional arrays), Pandas (for data manipulation), Matplotlib and Seaborn (for
plotting), Scikit-learn (for machine learning applications), NumPYy (for efficient numerical

computations and array operations), and Cartopy (for geospatial data visualisation).

< Quantum Geographic Information System (QGIS):

QGIS is a free, open-source geographic information system that provides tools for
visualising, analysing, and mapping spatial data (Elakkiya & Sankarganesh, 2023). QGIS
is used in this study to extract and generate region-specific datasets corresponding to eight
predefined regions from the larger continental-scale dataset. This enables us to target spatial

analysis, which is an important step in our process.

2.3.3. Data Analysis

Four analytical approaches have been adopted:

+* Spatial Distribution Analysis:
We visualized the spatial patterns of GWR, precipitation, and land surface variables to gain
an idea of how each variable is distributed and how they are spatially associated across the

continent.

¢ Correlation Analysis:
We examined the relationships between land surface characteristics and both
Evapotranspiration ratio (ET_R) and Runoffratio (RO_R) for each region using the Pearson

correlation coefficient (Equation 7) (Asuero et al., 2006).
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y =
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Ty Equation 7

Where:
e X;,y; = paired values of two variables at ith grid cell,
e X,y = meanvaluesofxandy,

e n = number of obvervation.

The coefficient fluctuates within the range of -1 to +1, where values proximate to +1 denote
a robust positive linear relationship, values proximate to -1 denote a robust negative linear

relationship, and values proximate to 0 denote an absence of significant linear correlation.

+ Principal Component Analysis:
Principal Component Analysis (PCA) is a dimensionality-reduction technique that
transforms a set of correlated predictors into a smaller set of uncorrelated variables known
as principal components (PCs) (Hasan & Abdulazeez, 2021). The method identifies
dominant gradients in multivariate data by decomposing the covariance matrix into

eigenvalues and eigenvectors (Equation 8):

Z=XW Equation 8

Where:
e X =standardized data matrix of predictors (eig, Soil depth, slope, LAI)
e W =matrix of eigenvectors (principal component loadings)

e 7 =transformed data (principal component scores)

The eigenvalues quantify the variance explained by each PC, while the eigenvectors define
directions of maximum variability in the data. Typically, the first few PCs capture the
majority of total variance, highlighting the most influential gradients (Jollife & Cadima,
2016).In this study, PCA helps summarize land-surface characteristics data into a smaller

number of interpretable gradients.
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% Machine Learning Models

Two ensemble machine learning (ML) models were used to quantify the predictive
influence of land-surface characteristics on groundwater recharge. They are Random Forest
(RF) and Gradient Boosting (GB). Both rely on decision trees but differ in how they

aggregate information.

e Random Forest (RF)
RF constructs an ensemble of decision trees using bootstrap sampling (bagging) and
random feature selection at each node. Each tree predicts independently, and the overall

prediction is the average of all trees. A single decision tree can be expressed as Equation 9

(Anand et al., 2025):

f(x) = JT'=1 w; - hi(x) Equation 9

Where:

f (x) = the predicted value for an input vector x,

T = the total number of trees,
- w; = the weight associated with tree j,

h;(x) = the prediction from tree j.

By aggregating across many randomized trees, RF reduces variance and is robust to
overfitting. Its strength lies in handling nonlinear relationships and complex feature

interactions, which are common in hydrological and environmental data.

e Gradient Boosting (GB)
GB builds trees sequentially, where each new tree corrects the errors of the previous model

(Equation 10). GB optimizes performance step-by-step (Zhang & Haghani, 2015).

Ep(x) = Fpe1 (0) + yYimh (%) Equation 10
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Where:
- Fp,_1(x) = the model from the previous step,
- hp(x) = the weak learner,

- ¥m = the learning rate controlling the contribution of each tree.

e Performance Evaluation Parameters
Performance was evaluated using Root Mean Square Error (RMSE) and Coefficient of

Determination (R?) (Xing et al., 2019):

RMSE determines the average magnitude of errors between the predicted and the
experimental value (Equation 11). It is expressed in the same units as the target variable,
making it simple to interpret in practical terms. A lower RMSE suggests a higher degree of

accuracy, while a higher RMSE indicates weaker model performance.

R? evaluates the proportion of variance in the experimental data that is explained by the
model (Equation 12). It ranges from 0 to 1. Values closer to 1 represent a better fit, while

values closer to 0 indicate a lower fit.

RMSE = \/%2?;1(371 —¥;)? Equation 11
n 5y
R>?=1- ?;1((337/—13;))2 Equation 12
i=1\Vi—

Where:
- n =the number of samples used,
- y; = the experimental value at the i™ sample,

- 9, = the predicted value of the i sample,

-y = the average value of the entire sample.

These metrics assess prediction accuracy (RMSE) and explanatory power (R?) of the

models in representing groundwater recharge variability.
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e SHAP Analysis
SHAP (Shapley Additive exPlanations) is grounded in cooperative game theory and assigns

each feature a contribution value toward prediction (Lundberg & Lee, 2017).

f(x)= 0o+ Z{Vil @, Equation 13

Where:

- f(x) = model prediction,

- @, = mean prediction across all samples,
- @; = contribution of feature I,

- M = number of features.

PARTIAL CONCLUSION

The combination of CLM datasets, advanced geospatial tools, and machine learning techniques
provides a comprehensive framework for assessing groundwater recharge drivers across Africa. By
integrating both statistical and Al-based approaches, this methodology captures spatial variability
while enhancing interpretability, offering a strong foundation for the results presented in the next

chapter.
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CHAPTER 3: RESULTS AND
DISCUSSION



CHAPTER 3: RESULTS AND DISCUSSION

This chapter presents the results of the statistical and machine learning analyses performed to
investigate the spatial variability of groundwater recharge (GWR) and its controlling factors across
Africa. By combining correlation analysis, principal component analysis (PCA), and SHAP-based
machine learning interpretation, the chapter explores how land-surface characteristics impact
GWR, and how these interactions vary across regions. The implications of these findings for

sustainable water supply in renewable energy projects are also discussed.

3.1. Spatial Variability of GWR, Precipitation, and Land-Surface Characteristics

The first stage of the analysis aimed to understand the spatial distribution of groundwater recharge
and its correlation with land surface characteristics across Africa. Figure 3.1 shows the spatial

distribution of GWR, Precipitation, and land surface characteristics over Africa.

ORGANIC PCT_CLAY
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Figure 3.1. Spatial distribution of GWR, Precipitation, and land surface characteristics over Africa.
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The spatial distribution shows that recharge is impacted by not only precipitation but also land
surface characteristics. These characteristics are the proportion of sand (PCT_SAND) and clay
(PCT _CLAY), vegetation density, represented by Leaf Area index (LAI), organic matter
(ORGANIC), slope (SLOP), and soil thickness (ZBEDROCK). The interactions between these
factors are non-linear and dependent on each region. There is then a need for a regional approach

for the analysis.

3.2. Regional Correlation Analysis

We examined the correlation between each land-surface characteristic and precipitation
partitioning (Evapotranspiration Ratio and the Runoff Ratio) to investigate the influence of

individual land-surface characteristics on groundwater recharge.

3.2.1. Factors Controlling Evapotranspiration Ratio (ET_R)
Several consistent patterns are evident in the relationships between land-surface characteristics and
the evapotranspiration ratio (Figure 3.2). Soil depth (ZBEDROCK) shows a positive association
with ET R across most regions, for example, in Central Africa (0.37), Southwest Africa (0.60), and
Southeast Africa (0.55). This suggests that soil depth has a significant and general impact on the
proportion of rainfall that is lost through evapotranspiration. Vegetation cover shows negative
correlations with ET_R. In Central Africa (-0.35), Southeast Africa (-0.31), and West Africa (-0.17),
higher vegetation density is associated with lower evaporative fractions. This likely reflects the
ability of vegetated areas to retain soil moisture. Soil texture shows region-specific impact with
ET R. Clay fractions are negatively related to ET R in CEAF, SWAF, and SEAF, with correlation
values ranging from -0.23 to -0.38. This pattern indicates that finer-textured soils are generally
associated with lower evaporative losses. Conversely, sandy soils show weak to moderate positive
associations in SWAF and SEAF (+0.28 to +0.29). These results suggest that sandy textures may
facilitate enhanced infiltration and deeper soil-water availability, which can lead to sustained
evapotranspiration. Terrain slope is negatively correlated with ET R in most regions, such as
SWAF (-0.46) and SEAF (-0.34). Steeper terrain, therefore, tends to coincide with lower
evaporative fractions, likely due to faster redistribution of precipitation as surface flow, which

reduces the residence time of water available for evapotranspiration. Organic matter also shows
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low to moderate negative correlation across the regions, MED (0.00), SAH (0.01), CEAF (-0.30).

This suggests that organic matter has less influence on ER_R.

Correlation with ET_R (ET / Precip)
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Figure 3.2. Correlation between land surface characteristics and ET R in eight African regions

3.2.2. Factors Controlling Runoff Ratio (RO_R)
Figure 3.3 highlights the relationships between land-surface characteristics and the fraction of
rainfall that is converted into surface runoff. Among these, slope emerges as the most pronounced
control, with positive correlations observed across most regions, for example, in Northeast Africa
(+0.50), Southwest Africa (+0.61), and Southeast Africa (+0.40). These results indicate that steeper
terrain systematically coincides with areas where a larger share of precipitation is transformed into

runoff. Soil depth also plays a critical role, with shallow soils (low ZBEDROCK values) strongly
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associated with higher runoff ratios. This is evidenced by robust negative correlations between soil
depth and RO_R in several regions, such as NEAF (-0.77), West Africa (-0.72), and Central Africa
(-0.74). Soil texture exerts region-specific influences on RO_R. In WAF, CAF, and SEAF, higher
clay content corresponds with elevated runoff ratios (0.26 to 0.43), consistent with the lower
permeability of finer-textured soils that restrict infiltration. By contrast, sand tends to display
negative correlations in most regions, indicating that coarser textures, which promote infiltration,
are associated with proportionally lower runoff fractions. Vegetation and organic matter also show
positive correlations with RO_R in certain regions, most notably in WAF where LAI (+0.43) and

organic matter (+0.38) coincide with higher runoff fractions.
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Figure 3.3. Correlation between land surface characteristics and RO R in eight African regions




3.3. Principal Component Analysis: Dominant Gradients Influencing Recharge

Partitioning

% Mediterranean (MED) region
In the Mediterranean region (Figure 3.4), the first principal component (PC1) is dominated by
organic matter (0.50), clay content (0.47), and is negatively associated with sand (-0.42) and soil
depth (-0.29). Given this grouping, PC1 is interpreted as a Soil Texture Gradient.

The second component (PC2) is positively dominated by soil depth (0.58) and clay content (0.41),
while sand (-0.47) and slope (-0.39) have a more negative association. As such, PC2 is interpreted

as a Terrain-Drainage gradient.

MED - Feature Loadings for PC1 MED - Feature Loadings for PC2

ORGANIC ZBEDROCK [18-1:]

0.4
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ZBEDROCK --02 SLOPE

PCT_SAND
—0.4

PC1 PC2

PCT_SAND

Figure 3.4. PCA feature loadings for the Mediterranean region, showing PC1 as a Soil Texture
Gradient and PC2 as a Terrain-Drainage Gradient

+ Sahara (SAH) region
In the Sahara (Figure 3.5), PC1 shows strong positive loadings for clay (0.60) and organic matter
(0.54), and a strong negative loading for sand (-0.57). This defines a Soil Texture Gradient.

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil

depth (0.70) and negative loadings for slope (-0.69).
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Figure 3.5. PCA feature loadings for the Sahara region, showing PC1 as a Soil Texture Gradient
and PC2 as an Infiltration versus Drainage Gradient

% West Africa (WAF)

In West Africa (Figure 3.6), PC1 captures a clear Soil Texture Gradient, with strong positive

loadings for clay (0.52), organic matter (0.48), and vegetation (LAIL: 0.40), contrasted against a

strong negative loading for sand (-0.50).
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Figure 3.6. PCA feature loadings for the West Africa, showing PC1 as a Soil Texture Gradient
and PC2 as an Infiltration versus Drainage Gradient
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PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil

depth (0.65) and negative loadings for slope (-0.64).

+ Central Africa (CAF)

For Central Africa (Figure 3.7), PC1 represents a Soil Texture Gradient, with strong positive
loadings for clay content (0.57), organic matter (0.49), and vegetation (LAI: 0.34), opposed by a
strong negative loading for sand (-0.55).

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil

depth (0.75) and negative loadings for slope (-0.62).
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Figure 3.7. PCA feature loadings for the Central Africa, showing PC1 as a Soil Texture
Gradient and PC2 as an Infiltration versus Drainage Gradient

LAI

+* Northeast Africa (NEAF)
In Northeast Africa (Figure 3.8), PC1 aligns with a Soil Texture Gradient, with strong positive
contributions from clay (0.59), organic matter (0.52), and vegetation (LAI: 0.33), opposed by a

strong negative loading from sand (-0.51).

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for soil

depth (0.70) and negative loadings for slope (-0.64).
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Figure 3.8. PCA feature loadings for the Northeast Africa, showing PCI as a Soil Texture
Gradient and PC2 as an Infiltration versus Drainage Gradient

LAl

¢ Central East Africa (CEAF)
In CEAF (Figure 3.9), PCI1 reflects a Soil Texture Gradient, dominated by high positive loadings
for clay (0.54), organic matter (0.49), and vegetation (LAIL: 0.37), opposed by a strong negative
loading for sand (-0.48).
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Figure 3.9. PCA feature loadings for the Central East Africa, showing PC1 as a Soil Texture
Gradient and PC2 as an Infiltration versus Drainage Gradient




PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for slope

(0.62) and negative loadings for soil depth (-0.58).

% Southwest Africa (SWAF)
In SWAF (Figure 3.10), PCI is strongly aligned with a Soil Texture Gradient, with high positive
loadings for clay (0.59), organic matter (0.42), and LAI (0.27), contrasted with strong negative
loading for sand (-0.54).

PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loading for slope

(0.63), opposed by strong negative contributions for soil depth (-0.63) and organic matter (-0.40).
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Figure 3.10. PCA feature loadings for the Southwest Africa, showing PC1 as a Soil
Texture Gradient and PC2 as an Infiltration versus Drainage Gradient

+* Southeast Africa (SEAF)
In SEAF (Figure 3.11), PCI1 reflects a Soil Texture Gradient, with strong positive loadings for clay
(0.55), organic matter (0.45), and LAI (0.27), opposed by strong negative loadings for sand (-0.54).
PC2 represents an Infiltration versus Drainage Gradient, dominated by positive loadings for slope

(0.71). and negative loadings for soil depth (-0.58).
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Figure 3.11. PCA feature loadings for the Southeast Africa, showing PC1 as a Soil Texture
Gradient and PC2 as an Infiltration versus Drainage Gradient

% Summary of PCA Findings
Across the eight African regions, PCA consistently revealed two dominant gradients: (i) a Soil
Texture Gradient (PC1), capturing the joint variability of clay, sand, organic matter, and vegetation,
and (i) an Infiltration versus Drainage Gradient (PC2), dominated by soil depth and slope. These
gradients highlight that recharge efficiency is shaped by soil, vegetation and terrain interactions
beyond precipitation alone. While PCA provides valuable dimension reduction and identification
of covarying features, it does not quantify the magnitude of each factor’s influence on recharge. To
address this limitation and capture potential nonlinearities, machine learning models with SHAP

interpretation were subsequently applied.

3.4. Machine-learning performances and SHAP-based interpretation
3.4.1. Model performances (Random Forest and Gradient Boosting)

The performance of machine learning models, specifically Random Forest (RF) and Gradient
Boosting (GB), was evaluated using two key metrics (Table 3.1): Root Mean Squared Error
(RMSE) and the coefficient of determination (R?). Across all regions, RF models consistently

outperformed GB models in both metrics. The superiority of RF was most evident in regions like
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West Africa and South West Africa, where the models achieved R? values of 0.98 and 0.97,
respectively. These high scores indicate that RF models could explain more than 97% of the
observed variability in recharge. Furthermore, in low-recharge environments like the Sahara, RF
produced very low RMSE values (as low as 2.33 mm/year), highlighting its robustness and

predictive accuracy even in data-scarce or climatically extreme settings.

Even though Gradient Boosting models exhibited marginally diminished accuracy in comparison
to Random Forest, this does not signify inadequate performance. GB still demonstrated strong
predictive ability in several regions, particularly Southeast Africa (SEAF) and West Africa (WAF),
achieving R? values above 0.90 in these areas. This difference arises from the two algorithms'

distinct approaches (refer to Chapter 2).

Table 3.1. Model Performance Across Different Regions

Models Model Performances

Random Forest (RF) Gradient Boosting (GB)
Regions R? RMSE R? RMSE
MED 0.92 10.84 0.88 13.36
SAH 0.95 2.33 0.79 4.84
WAF 0.98 32.24 0.95 44.05
CAF 0.95 26.16 0.91 35.27
NEAF 0.90 16.82 0.81 23.47
CEAF 0.88 19.94 0.80 25.87
SWAF 0.97 9.44 0.93 13.69
SEAF 0.95 30.49 0.94 36.32

3.4.2. SHAP Feature Importance Analysis

¢ Mediterranean Region
In the Mediterranean region, SHAP analysis confirms that, in both the Random Forest (RF) and
Gradient Boosting (GB) models (Figure 3.12), precipitation (PRECIP) is by far the most influential
predictor of groundwater recharge. In the RF analysis, precipitation has an average SHAP of around

30 mm per year. This suggests that high precipitation significantly increases predicted recharge.
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Soil depth is shown as the most important land surface feature. In both models, deeper soils are
associated with positive SHAP values, while shallow soils produce negative SHAP values of up to
-25 mm/year, particularly in the RF model. This suggests that, in the Mediterranean region, shallow
soils are associated with lower recharge predictions. This is likely due to their connection with
higher runoff ratios and limited infiltration. Other variables play moderate roles. Slope produces
mostly negative SHAP values at higher angles. Organic matter is associated with slight downward
shifts in predicted recharge, which potentially reflects locations where retained soil moisture is lost
through evapotranspiration or runoff. Texture variables (clay and sand fractions) and LAI
(vegetation) show relatively small effects (average SHAP contributions < 5 mm/year) and do not
consistently shift recharge predictions in one direction, suggesting that in the Mediterranean

climate these variables alone do not strongly regulate the predicted recharge fraction.
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Figure 3.12. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in the Mediterranean region, using RF (top) and GB (bottom) models.
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% Sahara Region
In the Sahara region (Figure 3.13), SHAP analysis again identifies precipitation as the primary
predictor of groundwater recharge, though with considerably lower average SHAP magnitudes
compared to the Mediterranean region (~6 mm/year for Random Forest, and ~3.5 mm/year for
Gradient Boosting). This reflects the overall limited recharge potential under arid climatic
conditions. Among land surface variables, clay content (PCT CLAY) shows the strongest
modelled influence. Higher clay fractions consistently shift predictions downwards, indicating that
locations with finer-textured soils tend to be associated with reduced recharge predictions, most
likely because such soils limit infiltration and promote localized surface runoff. Sand content
(PCT_SAND) has a weaker and mixed influence, sometimes shifting predictions upward at high
sand values in the RF model, suggesting that locally coarser soils may correspond to slightly higher
infiltration potential. Other features, including LAI, soil depth (ZBEDROCK), organic matter, and
slope produce only small SHAP shifts (mostly <1 mm/year on average) and remain centred near
zero. This implies that, within the Sahara, recharge is almost entirely controlled by the scarcity and
variability of precipitation itself, with land-surface differences playing only a minor role in the

fraction of rainfall that becomes recharge.
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SAH - Random Forest SHAP Feature Importance (Bar Plot) SAH - Random Forest SHAP Summary (Beeswarm)
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Figure 3.13. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in the Sahara region, using RF (top) and GB (bottom) models.

“* West Africa Regions
In West Africa, SHAP analysis reveals a particularly strong dependence of recharge predictions on
precipitation, with mean SHAP magnitudes exceeding 120 mm/year in the Random Forest model
and 70 mm/year in the Gradient Boosting model (Figure 3.14). This emphasises that recharge
potential in WAF is highly responsive to rainfall anomalies. The most influential land-surface
variable in both models is soil depth (ZBEDROCK). Deeper soils are associated with large positive
SHAP shifts (up to +100 mm/year in extreme RF cases), whereas shallow soils can shift predicted
recharge downwards by approximately -100 mm/year. These strong model responses indicate that,
within West Africa, variations in soil thickness align closely with differences in infiltration
opportunity and storage capacity. Vegetation (LAI) and slope have secondary influences. High LAI
tends to depress predicted recharge due to its association with stronger evapotranspiration demand.

Soil texture shows less influence on recharge prediction.
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WAF - Random Forest SHAP Feature Importance (Bar Plot) WAF - Random Forest SHAP Summary (Beeswarm)
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Figure 3.14. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in West Africa, using RF (top) and GB (bottom) models.

X/

< Central Africa Region

In Central Africa, SHAP analysis reveals that the recharge regime is strongly influenced by
precipitation. Average SHAP magnitudes exceed 70 mm/year in Random Forest models and are
approximately 35 mm/year under Gradient Boosting (Figure 3.15). These high values reflect the
variability in rainfall and the strong hydrological response typical of humid tropical zones. In
Central Africa, SHAP analysis reveals that the recharge regime is strongly influenced by
precipitation. Average SHAP magnitudes exceed 70 mm/year in Random Forest models and are
approximately 35 mm/year under Gradient Boosting (see Figure 3.15). These high values reflect
the variability in rainfall and the strong hydrological response typical of humid tropical zones.
Among land surface features, soil depth is the dominant modulator of predicted recharge. Deeper

soils shift the model outputs upward (up to 150 mm/year in RF), while shallow soils show negative
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SHAP shifts (approximately -100 mm/year). This suggests that infiltration opportunity is a major
determinant of recharge efficiency in CAF. Vegetation presents a modest downward influence on
recharge (mean SHAP <20 mm/year). Similarly, organic matter content, clay, and slope have minor

impacts compared to precipitation and soil thickness.
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Figure 3.15. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in Central Africa, using RF (top) and GB (bottom) models.

¢ Northeast Africa Region
In Northeast Africa, precipitation remains the most influential predictor of groundwater recharge
in both Random Forest and Gradient Boosting models, with mean SHAP values of around 35
mm/year and 18 mm/year, respectively (Figure 3.16). This again highlights that recharge potential
in NEAF is primarily governed by rainfall variability. Interestingly, compared to other regions,

vegetation (LAI) emerges as the dominant non-precipitation modulator, producing average SHAP
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magnitudes of approximately 7 mm/year and shifting model predictions downward in the RF
model. Higher LAI values tend to coincide with negative SHAP values, indicating that locations
with denser vegetation are associated with reduced recharge predictions, most likely due to elevated
evapotranspiration losses. Soil depth (ZBEDROCK) plays a secondary but positive role (mean
SHAP ~6 mm/year in RF), suggesting that deeper soils are associated with a greater portion of
rainfall contributing to recharge. Organic matter and soil texture (PCT_CLAY and PCT _SAND)
also show moderate influence (mean SHAP ~2-5 mm/year), with higher organic and clay content

generally decreasing recharge predictions. Slope has relatively small average contributions (< 2

mm/year).
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Figure 3.16. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in Northeast Africa, using RF (top) and GB (bottom) models.
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¢ Central East Africa Region
In Central East Africa, precipitation remains the dominant driver of recharge predictions, with
average SHAP values of approximately 30 mm/year under the Random Forest model and 15
mm/year using Gradient Boosting (Figure 3.17). This reflects a high dependence of recharge on
rainfall variability in this moderately wet region. Soil depth (ZBEDROCK) is the largest non-
climatic modulator, with an average SHAP impact of about 16 mm/year in RF and 6 mm/year in
GB. Deeper soils are aligned with positive SHAP shifts, while shallow profiles correspond with
decreases of up to -40 mm/year, consistent with runoff-limited recharge in areas of restricted
infiltration capacity. Among the remaining variables, vegetation, clay content and organic matter
exhibit modest SHAP magnitudes (~5 mm/year) with a general trend for higher vegetation, clay or
organic content to shift predictions slightly downward. This aligns with a pattern in which water
retention and evapotranspiration demand reduce recharge efficiency in CEAF. Slope and sand
content show minimal influence (<5 mm/year on average), indicating that within this region, terrain

and coarse-texture effects are secondary once soil depth is accounted for.
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CEAF - Random Forest SHAP Feature Importance (Bar Plot) CEAF - Random Forest SHAP Summary (Beeswarm)
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Figure 3.17. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in Central East Africa, using RF (top) and GB (bottom) models.

X/

< Southwest Africa Region

In Southwest Africa, recharge prediction remains predominantly controlled by precipitation, which
contributes the highest SHAP magnitudes in both the Random Forest (~35 mm/year) and Gradient
Boosting (~20 mm/year) models (Figure 3.18). Nevertheless, vegetation (LAI) emerges as a
notable land surface modulator with mean SHAP impacts of ~10 mm/year (RF) and ~5 mm/year
(GB), confirming a stronger linkage between recharge variability and evapotranspiration regulation
in this region compared to others. At higher LAI values, SHAP values tend to shift recharge
predictions downward (sometimes by ~20 mm/year), implying that areas with dense vegetation
have reduced effective recharge given the same precipitation input, consistent with elevated ET

demands. Soil depth (ZBEDROCK) plays a secondary but positive role (mean SHAP ~5 mm/year
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in RF), suggesting that deeper soils are associated with a greater portion of rainfall contributing to
recharge. Conversely, slope, texture parameters (PCT_SAND, PCT_CLAY), and organic matter
have minimal average SHAP contributions (< 3 mm/year), indicating that runoft-related controls

are less dominant in SWAF.
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Figure 3.18. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in Southwest Africa, using RF (top) and GB (bottom) models.

¢ Southeast Africa Region
In Southeast Africa, the SHAP results again underscore the dominance of precipitation as the
primary driver of recharge variability, with mean SHAP values of approximately 70 mm/year under
the Random Forest model and 40 mm/year in Gradient Boosting (Figure 3.19). Extreme rainfall
events produce exceptionally high positive SHAP values (over 500 mm/year in RF), confirming
the strong hydrological responsiveness of this region. Among land surface factors, soil depth

(ZBEDROCK) exerts the largest average influence (approximately 20 mm/year in RF;
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approximately 6 mm/year in GB). Deep soils increase recharge predictions, whereas shallow soils
can reduce them by more than 50 mm/year. This aligns with a runoff-limited recharge setting,
where infiltration opportunity is critical for effective recharge. Vegetation (LAI) and organic matter
exhibit negative but relatively modest SHAP values (less than 8 mm/year on average), suggesting
that, while evapotranspiration losses are present, they are less significant than soil depth controls.

Slope and soil texture have less impact.
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Figure 3.19. SHAP-based feature importance of precipitation and land surface factors controlling
GWR variability in Southeast Africa, using RF (top) and GB (bottom) models.

3.5. Land-Surface Modulators of Recharge
The combination of correlation, principal component analysis (PCA), and machine learning
interpretation provides a consistent picture of how land-surface variables interact with precipitation
to influence recharge partitioning across Africa. From these statistical analyses, the regional

contrasts highlight consistent mechanisms modulating recharge efficiency.
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% Precipitation as the primary driver
Across all regions, recharge is predominantly controlled by precipitation, as evidenced by its
overwhelming SHAP contributions and the strong model dependence on it. However, the amount

of precipitation that contributes to recharge is strongly modulated by other variables.

% ZBEDROCK: Soil depth as a key modulator
Shallow soil consistently corresponds with lower recharge predictions, particularly in West Africa,

Central Africa, and the Mediterranean. All analysis layers show this evidence:

e Strong negative correlations between soil depth and runoff ratio (RO_R: -0.72 to -
0.77) in most of the regions.

e Soil depth contributes most in PC2, Infiltration versus Drainage Gradient, across all
regions. This emphasizes its important role.

e In SHAP analysis, low soil depth shifts recharge predictions downward.

These results suggest that shallow soils reduce infiltration and promote surface runoff.

% Slope: Influencing runoff and recharge partitioning

Slope emerges as a secondary but consistent gradient modulator:

e (Correlations show positive association with RO_R (up to 0.61 in SWAF), and negative with
ET R (-0.46 in SWAF), indicating its dual role in promoting runoff and limiting retention
time for infiltration.

e Slope contributes more to PC2, Infiltration versus Drainage Gradient. This reinforces its
role in limiting recharge.

e SHAP analysis also shows that high slope generally indicates downward prediction shifts,

particularly in regions like SEAF and MED.

These results suggest that steeper terrain increases runoff generation. Then it decreases the

recharge.

% Vegetation (LAI): Interaction with atmospheric demand

The role of vegetation varies by climate region:
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e SHAP analysis shows that vegetation consistently reduces predicted recharge in most of the
region. This suggests that dense vegetation areas decrease recharge via evapotranspiration

loss.
e Indrylands (e.g., SAH, MED), LAI has less influence due to a lack of vegetation.

These results suggest that recharge is limited in vegetated regions by evapotranspiration.

% Organic matter and Soil texture (clay and sand): secondary influence

Organic matter and soil texture variables have less effect across regions:

e Organic matter and clay content are positively correlated with runoff ratio in most of the
regions. The PC1, Soil Texture Gradient, shows a strong association between both organic
and clay content. Also, in the SHAP analysis, they lead to a downward shift in recharge

predictions.

¢ In contrast, the relationship between sand and ET_R is mixed, which may indicate a trade-
off between rapid infiltration and poor water retention. Furthermore, sand contributes to

PC1 and manifests a secondary effect in SHAP analysis.

3.6. Implications for water-resource and renewable energy planning

Understanding how land-surface characteristics mediate the conversion of precipitation into
groundwater recharge provides valuable insight not only for hydrological management but also for
the planning and sustainability of renewable energy systems that depend on water, such as green-

hydrogen production.

3.6.1. Regional suitability for recharge-dependent renewable energy

deployment

Based on the integrated recharge mechanisms identified in Section 3.5, three regional response

types can be identified:

Runoff-limited recharge regimes, characterized by shallow soils and steep slopes, which restrict

infiltration despite relatively high precipitation. In such regions, investment in hydropower may be
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better supported by surface-water management and soil-depth improvement measures (e.g.,

terracing, infiltration trenches) that enhance recharge and regulate flows.

ET-limited recharge regimes, characterized by moderate to high rainfall but have strong

evapotranspirative losses due to high vegetation and organic soil content.

Low-recharge dryland regimes (e.g., SAH, MED) are characterized by a strong dependence on
rainfall. These regions are not favourable for recharge-reliant renewable energy development but

may be suitable for solar or wind projects with low water demand.

3.6.2. Towards a Water-Energy Nexus perspective

The results highlight the importance of taking a Water-Energy Nexus approach in Africa. The
development of renewable energy should not be decoupled from the sustainability of water
resources. The variability of groundwater recharge, which is controlled by the interaction between
climate and land surface characteristics, creates regionally specific risks and opportunities.
Renewable systems supported by groundwater (e.g. hydrogen production) should prioritise regions
with high recharge rates (e.g. WAF and CEAF) and avoid areas where steep slopes and shallow
soils suppress recharge. Investment in land surface management can be considered a low-cost

resilience strategy, enhancing recharge and thereby supporting the reliability of energy systems.

3.6.3. Comparison with Previous Studies
The findings of this study are broadly consistent with earlier work on African recharge dynamics.
Fu et al. (2019) identified rainfall as the dominant control on recharge. This aligns with the present
results, where precipitation has the highest SHAP contributions across all regions. Similarly, Toure
et al. (2024) emphasized the role of slope in modulating infiltration opportunity, supporting the
strong positive correlation between slope and runoff observed here. Anand et al. (2025) emphasized
that the properties of the soil influence processes of infiltration and percolation, confirming the
impact of soil texture (sand, clay) and soil depth in modulating recharge prediction. Unlike previous
studies that always point out climatic impacts, the present work highlights the added value of
considering land surface characteristics. It presents slope, vegetation, organic matter, soil texture,
and soil depth as modulators of recharge efficiency. This extension provides a more integrated

framework for water-energy planning.
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PARTIAL CONCLUSION

This chapter has shown that groundwater recharge (GWR) across Africa is governed by a
combination of precipitation as the dominant driver and land-surface properties that modulate how

precipitation is partitioned into evapotranspiration and runoff.
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GENERAL CONCLUSION AND RECOMMENDATION

In this thesis, a data-driven framework combining regional-scale correlation analysis, principal
component analysis (PCA), and machine-learning (Random Forest and Gradient Boosting)
modelling was applied to quantify regional differences in recharge and to understand their
relationship with land-surface characteristics. The results provide new insights into the dominant
mechanisms affecting recharge partitioning across Africa, while highlighting implications for

regional energy-resource planning.

The first key conclusion is that precipitation is the primary determinant of spatial variability in
recharge across all African regions, with machine-learning SHAP analysis consistently showing

that recharge predictions increase most strongly in association with higher precipitation inputs.

Secondly, land surface characteristics influence recharge by impacting the fraction of rainfall lost
to evapotranspiration (ET_R) and runoff (RO_R). Correlation analysis revealed that soil depth and
slope are the most important factors that influence the runoff ratio. Shallow soils and steep terrain
are strongly associated with higher runoff. Conversely, deeper soils and gentle slopes are associated

with reduced runoff fractions.

Thirdly, the principal component analysis results confirm that the land-surface caracteristics can
be summarized into two dominant gradients. The Soil Texture Gradient (PC1) associated with
storage and vegetation properties that may influence evaporative losses. The Infiltration versus

Drainage Gradient (PC2) linked to slope and soil thickness governing runoft.

Machine-learning performance metrics indicate that Random Forest models outperform Gradient
Boosting models (R* up to 0.98 for RF versus 0.95 for GB), reflecting their greater tolerance for
strong non-linear interactions. Nonetheless, SHAP-based interpretation of both models indicates a
similar control hierarchy: precipitation dominates, while other variables, particularly soil depth,

slope and vegetation (LAI), consistently shift modelled recharge predictions by altering losses.

Three broad regional recharge behavior types are identified by integrating evidence across all

analyses:

e Runoff-limited regimes where recharge is limited by shallow soils and steep terrain.

43

——
| —



e Evapotranspiration-limited regimes where rainfall is largely lost to evapotranspiration due
to high vegetation and organic-rich conditions.
e Precipitation-constrained regimes (e.g., SAH, MED) where low rainfall dominates recharge

potential regardless of land surface characteristics.

These findings have implications for Africa’s renewable energy transition. It is usful for green
hydrogen projects, which require reliable and sustainable water inputs. Regions with higher
recharge efficiency, such as West and Central East Africa present promising locations for coupling
renewable electricity with groundwater-fed hydrogen electrolysis. Conversely, dryland regimes
such as the Mediterranean and Sahara exhibit recharge scarcity. In these areas, Hydrogen
production may require alternative water sources, such as desalination or wastewater reuse, to

avoid unsustainable groundwater depletion.
The following policy recommendations are proposed based on regional contrasts:

e in West and Central Africa (Runoft-limited regimes): promote soil and slope management
interventions such as terracing, bunds, and infiltration trenches to enhance infiltration and
reduce surface losses.

e In Ethiopia and highland regions (NEAF): prioritize landscape management to reduce
runoff and improve recharge through community-led terracing.

e In Morocco and North Africa (MED): expand adoption of dry cooling technologies for
concentrated solar power (CSP) to reduce water demand, while integrating recharge
variability into energy feasibility studies.

e In Southern regions (SEAF, SWAF): account for evapotranspiration-driven recharge losses.
When planning groundwater-based energy systems, vegetation and land use management

should be integrated.

Future work should seek to validate recharge estimates with ground observations, address
uncertainties linked to CLM simulations, and integrate socio-economic and energy-demand
scenarios to evaluate trade-offs between water use and renewable energy expansion. By
strengthening the connection between hydrology, data science, and energy policy, this thesis
contributes a framework for ensuring that Africa’s pursuit of clean energy, particularly green

hydrogen, proceeds without undermining the sustainability of its vital groundwater resources.
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