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ABSTRACT

ABSTRACT

With the need for a shift from the use of fossil fuels to renewable energy, wind technology is
one of the promising, clean, renewable, and cost-effective energy sources. For sub-Saharan
regions where 600 million people still lack electricity, wind energy appears to be an opportunity
to assure energy security especially, in southern Africa, where abundant wind energy potential
exists. Basically, wind technology consists of the use of a wind turbine, which extracts the
kinetic energy of moving air through a rotor. This implies the knowledge of wind speed at the
rotor level, known as Hub height (around 100m), but wind measurements are typically done at
ground level (around 10m). Therefore, it is crucial to find alternative ways for wind data
assessment at the rotor level. Numerical atmospheric datasets and height scaling methods seem
to be solutions. This study evaluates the impact of using different height scaling methods with
and without numerical atmospheric datasets, the high-resolution ICON in Limited Area Mode
(ICON-LAM), the ERAS reanalysis, and the statistical downscaling variant of ERAS
(ERA5 _GWA) on the multiple heights wind speed calculation and subsequently, on the wind
power estimation over southern Africa from 2017 to 2019. The results show that ERAS GWA
outperforms ERAS and ICON-LAM for the 10m wind speed simulation. ERAS introduced the
highest bias with an underestimation of the wind power at 20m, 40m and 60m, regardless of
the used wind speed height scaling method. Most of the scaling methods performed similarly
except for the Justus Law, which introduced an overestimation of the wind power, and the
Linear interpolation, which introduced an underestimation. The accuracy of scaling methods
using vertical levels of wind speed from numerical atmospheric datasets is highly dependent on
the choices of the nearest levels close to the target height wind speed. This study reveals that
the choice of datasets has a greater impact than wind speed height scaling on wind energy

assessment.

Keywords: ICON-LAM; ERAS; Global Wind Atlas; Wind Speed; Height Scaling; Wind

Power; Africa.
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RESUME

RESUME

Avec lanécessité de passer des combustibles fossiles aux énergies renouvelables, la technologie
¢olienne est I'une des sources d'énergie prometteuses, propres, renouvelables et rentables. Pour
les régions subsahariennes ou 600 millions de personnes n'ont toujours pas acces a I'électricité,
'énergie éolienne semble étre une opportunité d'assurer la sécurité¢ énergétique, en particulier
en Afrique australe, ou le potentiel éolien est abondant. Fondamentalement, la technologie
éolienne consiste a utiliser une éolienne qui extrait I'énergie cinétique de I'air en mouvement a
l'aide d'un rotor. Cela implique de connaitre la vitesse du vent au niveau du rotor, appelée
hauteur de moyeu (environ 100 m), mais les mesures du vent sont généralement effectuées au
niveau du sol (environ 10 m). Il est donc essentiel de trouver d'autres moyens d'évaluer les
données éoliennes au niveau du rotor. Les ensembles de données atmosphériques numériques
et les méthodes de mise a 1'échelle en hauteur semblent étre des solutions. Cette étude évalue
l'impact de I'utilisation de différentes méthodes de mise a I'échelle en hauteur avec et sans
ensembles de données atmosphériques numériques, a savoir le modele ICON haute résolution
en mode zone limitée (ICON-LAM), la réanalyse ERAS et la variante de réduction d'échelle
statistique de 'ERAS (ERAS5 _GWA) sur le calcul de la vitesse du vent a plusieurs hauteurs et,
par conséquent, sur l'estimation de la puissance éolienne en Afrique australe de 2017 a 2019.
Les résultats de 1’évaluation montrent que ERAS5 GWA a une meilleure représentation de la
vitesse du vent a 10m comparé & ERAS et ICON-LAM entre 2017 et 2019 dans la partie australe
de ’Afrique. ERAS introduit un biais plus élevé avec une sous-estimation de la puissance
¢olienne a 20 m, 40 m et 60 m, quelle que soit la méthode utilisée pour la mise a I'échelle de la
vitesse du vent. La plupart des méthodes de mise a 1'échelle ont donné des résultats similaires,
a l'exception de la méthode Justus Law, qui a introduit une surestimation de la puissance
¢olienne, et de l'interpolation linéaire, qui a son niveau a introduit une sous-estimation. La
précision des méthodes de mise a I'échelle utilisant les niveaux verticaux de vitesse du vent
provenant des ensembles de données atmosphériques numériques dépend fortement du choix
des niveaux les plus proches de la hauteur cible. Cette étude révele que le choix des ensembles
de données a un impact plus important que les méthodes de mise a I'échelle de la vitesse du

vent lors de I’estimation de I'énergie €olienne.

Mots-clés : ICON-LAM ; ERAS ; Atlas mondial des vents ; Vitesse du vent ; Mise a 1'échelle

en fonction de la hauteur ; Energie éolienne ; Afrique.
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ACRONYMS AND ABBREVIATIONS

3D-Var
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C3S
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CFSv2
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DWD
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ERA-Int
ESA-CCI
GHG
HAWTS
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IEA
IRENA
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LiDAR
MAE

ME
MERRA-2

MPI-M
NASA

: Three-Dimensional Variational
: Four-Dimensional Variational
: Twentieth Century Reanalysis, version 3
: African Renewable Energy Initiative
: Copernicus Climate Change Service
: Copernicus Regional ReAnalysis
: Climate Forecast System, version 2
: Cooperative Institute for Research in Environmental Sciences
: Consortium for Small-scale Modelling — Regional ReAnalysis at 6
km resolution
: Climate Forecast System Reanalysis
: Department of Energy
: Deutscher Wetterdienst
: European Centre for Medium-Range Weather Forecasts
: ECMWF Reanalysis 5
: ECMWF Reanalysis 5 Global Wind Atlas
: ECMWF Reanalysis interim
: European Space Agency Climate Change Initiative
: GreenHouses Gas
: Horizontal Axis Wind Turbines
: ICOsahedral Non-hydrostatic in Limited Area Mode
: International Energy Agency
: International Renewable ENergy Agency
: Japanese Reanalysis 55
: Light Detection And Ranging
: Mean Absolute Error
: Mean Error
: Modern-Era Retrospective analysis for Research and Applications
Version 2
: Max-Planck-Institut fiir Meteorologie

: National Aeronautics and Space Administration
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INTRODUCTION

The contemporary world is experiencing an increase in population, which is projected to
reach 9.7 billion by 2050, and this, eventually, will lead to a corresponding global energy
demand increase (Gerland et al., 2022). Fossil fuels, including coal, oil and natural gas,
account for more than 80% of the global energy supply (Holechek et al., 2022) as shown in
Figure 1 (Energy Institute, 2025). It is evident that the energy sector is a significant
contributor to climate change, with the various methods of utilising fossil fuels being a
primary factor in greenhouse gas (GHG) emissions (IEA, 2025a). Despite its negligible
contribution to greenhouse gas emissions, the African continent is one of the most affected
by the effects of climate change, due to its vulnerability, lack of resilience, and limited
mitigation efforts (Trisos et al., 2022). Moreover, in sub-Saharan Africa, it is estimated that
approximately 600 million people still lack access to electricity (IEA, 2025b), and the
African continent has also been subject to a series of extreme weather events and ongoing
energy poverty (Nhamo et al., 2025). Therefore, there is an urgent necessity to shift from

fossil fuels to renewable energy sources.

Oil

Gas

Hydropower - 2.85%
Nuclear . 1.8%
Wind . 1.6%
Solar . 1.35%

Biofuels I 0.87%

35.34%

26.38%

Other renewables i 0.51%

Figure 1: World Share of direct primary energy consumption by source in 2024
(Energy Institute, 2025)

Wind energy is a promising renewable energy source offering significant advantages since

it is environmentally clean, sustainable, and has seen efficiency improvement and cost has
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dropped substantially over time (Kara & Sahin, 2023). This makes it an attractive choice
for future energy needs. Wind turbines harness the kinetic energy of the wind by turning a
rotor, relying on varying wind speed, which fluctuates both spatially and temporally
(Gumuta et al., 2017). Therefore, the knowledge of reliable wind resources at the rotor level
is fundamental to energy policy planning and wind project development. However,
standard wind measurements are taken at low heights below the rotor and close to the
ground (Barthelmie et al., 2016).

The use of atmospheric numerical datasets to assess the wind resources for downstream
wind energy applications is one solution to measurement issues. These atmospheric
numerical datasets are simulated products, and their output data influence the estimation of
wind energy (Emeis, 2018). Between these simulated datasets, we distinguished the fifth
version of the ECMWF reanalysis (ERAS) dataset, the ERAS Global Wind Atlas
(ERAS5_GWA), which is a statistical downscaling variant of ERAS, and the ICOsahedral
Non-hydrostatic Limited Area Model (ICON-LAM), which is a dynamical downscaling
dataset (Chen et al., 2024b). Despite continuous improvements to the many available
simulated wind datasets, significant questions remain about their reliability for wind power
simulation. Another approach to addressing measurement issues is to use extrapolation
techniques to estimate the wind speed at the turbine rotor level from a given measurement
height. These techniques, known as height scaling methods, are tools that have
assumptions, such as the surface roughness length, which depend heavily on land cover.
Especially in regions with sparse data, the assumptions of height scaling methods are often
poorly defined, which can affect the accuracy of wind energy estimation. Consequently,
the deployment of wind energy technology is limited in such regions, for example, Southern
Africa. Due to all these unknowns, it is crucial to evaluate how different wind speed data
variant affects the estimation of wind energy production in Southern Africa, a region with
abundant wind potential.

The evaluation of wind speed data comes with several questions. How do height scaling
methods affect the wind speed estimation? What is the impact of dataset variability on the
wind power simulation? And to what extent do wind speed datasets and height scaling
models influence the accuracy of wind power simulations in Southern Africa? Answering
those questions help to understand the impact of dataset and scaling methods on wind

energy estimation.
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One hypothesis is that the height scaling methods introduce new uncertainty in wind speed
estimation since these methods are designed for a specific weather condition and the type
of terrain. Another hypothesis is that using different simulated datasets leads to different
wind power estimations for the same location under the same conditions.

Therefore, this study aims to evaluate the impact of different datasets and height scaling
methods on wind power estimation, through three main objectives, which will help
policymakers and future wind projects in the region. The first objective is to compare the
simulated 10 m wind speeds from the ERAS reanalysis dataset, the ERAS GWA statistical
downscaling dataset, and the ICON-LAM dynamical downscaling dataset against in-situ
10m wind speed from over more than 200 stations in southern Africa for a validation. The
second objective is to evaluate the influence of different height scaling methods on the
accuracy of the scaled wind speeds at various hub heights. The last objective is to quantify
the combined impact of the datasets and the height scaling methods on the simulated wind
power.

The first section of this study is a bibliographic review. It begins with the history and the
background of wind technology. A comprehensive review of existing literature on wind
resource assessment, atmospheric numerical datasets, height scaling methods, and wind
energy estimation will help to identify any gaps and limitations in the current wind power
generation technology.

The second section is the Materials and Methods section. This section includes the location
of the study site. It also includes a description of models used and how they were employed.
All the metrics and tools involved in the analysis are presented.

In the next section Results and Discussion, the results of the dataset performance at 10m,
the height scaling methods evaluation, and the estimation of wind energy by method and
dataset are presented and discussed.

Finally, in Conclusion and Perspectives section, a summary of the entire study is provided.
Then, recommendations for future study directions are highlighted for further improvement

of the study.




CHAPTER I: LITERATURE REVIEW

CHAPTERI: LITERATURE REVIEW




CHAPTER I: LITERATURE REVIEW

CHAPTER I: LITERATURE REVIEW

Introduction

This chapter starts with the background of wind technology in which the history and the
development of wind technology are presented. The chapter continues with a review of the
wind resources, the resource assessment, the atmospheric numerical models, and the scaling
methods. Finally, the chapter ends with a gap analysis, which helps to identify the lack of

existing studies.

L.1. History and Development of Wind Energy

The use of wind power is not a new thought. The wind technology was not primarily
developed for generating electricity, but rather for milling and pumping purposes (Kaldellis
& Zafirakis, 2011). One of the earliest windmills, a machine that utilises wind power, was
discovered in ancient Persia, nowadays known as eastern Iran, around the 10" century
(Pasqualetti et al., 2004). In Europe, it was later in the 12 century that windmills became
common, particularly in northern countries such as the Netherlands and England, where
they were used in agriculture and industry for many years (Fleming & Probert, 1984). It
was finally at the end of the 19" century that Charles F. Brush in Cleveland, Ohio, built the
first larger automatically operated wind turbine, which generated electricity with a power
of 12kW (Burton et al., 2011). Brush’s wind turbine demonstrates its ability to convert the
power of the wind into electricity. Figure 2 shows the illustration of Brush’s Wind turbine
(Righter, 1996).

The oil crisis in the second half of the 20" century, combined with the development of
technology in the fields of aerodynamics, power electronics, and material sciences,
contributed greatly to the fast evolution of wind turbine design and subsequently stimulated
investment and innovation in renewable energies, including wind power (Thomas &
Robbins, 1980). Denmark, like a pioneer, played a key role in the commercialisation of
wind power by exporting wind turbines, especially to the United States and initiated a
deployment of grid-connected wind turbines (Gipe, 1991). With the improvement of turbine
efficiency, policies which support the global wind energy sector, environmental energy
security and climate change issues, has been exponentially growing since the 2000s. The
world’s global wind power installed capacity moves from just over 17GW to more than

1,100 GW in 2024 (IRENA, 2025), and then wind energy is one of the fastest-growing
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renewable sources of electricity.

Figure 2 : Brush’s wind turbine (Righter, 1996)
Nowadays, wind turbines are in the range of megawatt installed capacity with a hub height
exceeding 100 meters and over 150 meters rotor diameters compared to a few kilowatts
with small meter heights and diameters in their early stage. Otherwise, increasingly
offshore wind turbines are emerging due to the more consistent and higher offshore wind,

but onshore wind turbines are the most installed to date.

L.2. Wind Technology
1.2.1.The wind turbine

A wind turbine is the main technology of wind power generation. It can be onshore or
offshore, depending on whether it is installed on land or at sea. Onshore wind turbines are
considered the most mature segment of wind power due to their long deployment history,
lower installation costs, and well-established infrastructure compared to offshore
alternatives (Tumse et al., 2024), but suffer from land availability and turbulence. On the
other hand, offshore wind systems have the advantage of higher and stable wind speeds but

face complex installation, maintenance, and grid connection challenges.
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Based on the rotor axes orientation, we can distinguish two principal types of turbines: The
Horizontal Axis Wind Turbines (HAWTs) and the Vertical Axis Wind Turbines (VAWTs).
HAWTS’ rotor shafts are aligned horizontally and face into the wind, then use pitch and
yaw mechanisms for control (Elkodama et al., 2023), which led them to a higher
aerodynamic efficiency and made them the most commercially viable wind turbine. On the
opposite side, VAWTS’ rotors are aligned vertically and benefit from their ground-level
gearbox placement, which is useful for maintenance purposes, but they have lower
aerodynamic efficiency and higher fatigue loads (Ghoneam et al., 2024). A typical HAWT
and VAWT is illustrated in Figure 3 (Rashad et al., 2017).

(A) (B)

Figure 3 : Illustration of Typical HAWT (A) and VAWT (B) (Rashad et al., 2017)

According to the size, we have small wind turbines with an installed capacity up to 40kW,
medium wind turbines with an installed capacity in the range of 40kW to IMW, large wind
turbines with an installed capacity of IMW to 10MW and ultra-large wind turbines for
more than 10MW (Kassa et al., 2024). The size of a wind turbine is influenced by some
characteristics, such as the hub height and the rotor’s diameter. The more the rotor’s
diameter and the hub height are, the better the wind turbine can harvest wind energy,
because a higher hub height gives access to stronger winds and longer rotor blades increase
the swept area of the rotor (Lee et al., 2019). Figure 4 shows the basic main part of a wind

turbine (Aminzadeh et al., 2023). Additional parameters are the control system and the
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advanced material used. Advanced materials like carbon composite and a digitalised control
system help to optimise the performance of the turbine as they allow a great bending
strength of the blades and a good wind capture (Tolasa & Furi, 2025).

Nowadays, wind turbines are typically from medium range to ultra large, using a bigger
rotor diameter and hub height, and are built with advanced materials and digitalised control
systems. All those improvements in technology help to improve not only the overall
efficiency but also reduce the construction and maintenance costs. Therefore, wind
technology becomes more competitive with fossil fuels (Mehta et al., 2024). However, with
all those improvements, the speed at which wind blows throughout the rotors remains the

most critical factor for a wind turbine operation.

T r Gl Rotor
. 4 - = ~ . Wind » ‘_ blade
’ N direction
" \
’ \
i \
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' Swept area diameter ’ With gearbox
( and generator
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v

(Front view) Underground electrical connections (Side view)

Figure 4 : Wind Turbine Schematic (Aminzadeh et al., 2023)

1.2.2.Wind Power production

To produce wind energy, a wind turbine is needed to convert the kinetic energy of moving
air into mechanical energy and then into electricity through a generator. The power of the

wind P,,;n4 1S shown by Manwell et al. (2009):

9
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1
B, = EpAv3 (1)

1
P,/A = Epv3 (2)

Where B, is the power of the moving air (in W), B, /A is the wind power density (in
W /m?), p is the air density (in kg.m~3), A the swept area of the rotors (in m? ) and v the
wind velocity (in m.s™1).

The real wind power extracted by the wind turbine rotor is less than P,, . In 1919, Albert
Betz established the theoretical power fraction that can be extracted from an ideal wind
stream. Using the difference between upstream and downstream wind power, he estimated
a limit of 59%, known as the Betz limit, of wind power which can only be converted to
mechanical power (Sen, 2013). Then every wind turbine is characterised by a power
coefficient Cp, which is the ratio between the wind power extracted by the turbine and the

power of the wind passing through the rotors.

Cp — Pext;acted (3)
w
16
CPpety = 77 X 100 =~ 59.3% (4)

Where P,ytracteq 15 the power of the wind extracted by the wind turbine, and Cpg,t, the
Betz limit.

For an efficient and protective operation, a cut-in and cut-out wind speed is set for a wind
turbine. Cut-in wind speed is the lowest wind speed at which the turbine starts energy
generation, and the cut-out wind speed is the highest operational wind speed for a wind
turbine. While a cut-in wind speed is designed to allow the turbine to produce sufficient
energy to overcome the mechanical resistance, the cut-out wind speed allows a turbine to

avoid damage from extreme wind events (Dahham et al., 2023).

I.3. Wind Resources

The wind power production is proportional to the cube of the wind speed, making wind
speed a crucial factor for energy generation (Manwell et al., 2009). Then, for a wind energy

project, knowledge about wind resources is essential for the turbine site selection, size

10
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selection and cost evaluation (Duranay et al., 2024).

1.3.1. The wind speed variability

The wind speed varies from one location to another, even if they are close together. This
depends mostly on local topography and the land cover. The spatial variability of wind
speed in coastal and rough areas is very high (Cerralbo et al., 2015).

The wind speed also varies in time. It varies from a few seconds to a few minutes within
the same area. This variability, as measured by an anemometer, gives rise to what we call
turbulence and gust. While turbulence is the wind speed fluctuation around its mean value,
a gust is a discrete event that occurs within a turbulence wind field. In a study of wind gust
characteristics done by Hu et al. (2018), the authors explain the wind gust and its impact
on wind turbine loads. The results of Zheng et al. (2022) study show that a higher turbulence
intensity leads to a higher turbine blade fatigue. The temporal variability can also be on
daily time scales, giving a variation in wind speed between day and night, mainly depending
on the incoming solar radiation (Ashkenazy & Yizhaq, 2023). Else, for a much bigger time
scale, we can distinguish seasonal, annual and interannual variation, which are driven by
the climate pattern (Stuecker, 2023). Pryor et al. (2018) have shown that wind variability,
especially interannual variability, directly affects the wind energy production.

Finally, wind speed varies with height and normally increases when height increases. Close
to the ground, the wind is affected by the surface friction, resulting in a reduction of its
speed (Bagavathsingh et al., 2016). The vertical wind profile is affected by the atmospheric
stability conditions. The knowledge about whether the atmospheric conditions are neutral,
stable or unstable is important because, depending on the condition, the wind gradient can
be intensified or reduced. Lavey Alvestad et al. (2024) concluded that a good understanding
of the impact of atmospheric conditions on wind turbines is crucial for the turbine efficiency

and energy production.

1.3.2. The wind resources Assessment

One of the direct and reliable methods used to assess the wind resources is the In-Situ
Measurement-Based Estimation. It consists of the use of cup/propeller anemometers, sonic
anemometers, or wind vanes for wind speed data collection. Figure 5 illustrates the different

types of anemometers. Most measurements occur at ground level, typically at 10m height.

11
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Otherwise, with the use of a weather mast, measurement can be done at a higher height
(Barthelmie et al., 2016). In-situ measurement offers a high temporal resolution and is
accurate at the local assessment level. However, it is cost-limited due to instruments used
which are expensive and has a height constraint as the measurement height cannot align
with modern wind turbine hub height which is around 100 m. Finally, those instruments
are installed in discrete position then can only measure a wind speed at a specific

geographic location not over an entire area (Sempreviva et al., 2008).

B

;{ N a—

c d

Figure 5 : a-Cup anemometer, b-Propeller Anemometer, c-Sonic anemometer, d-Wind
vane (Mzough & King Ededem, 2023)

Another way to perform wind speed measurement is to use the remote sensing method. This
technique is based on the Doppel Effect principle to determine the wind speed. It can be

used either for onshore wind or for offshore wind using a LiDAR (Light Detection And

12
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Ranging). Pichugina et al. (2012) described and successfully used a Doppler LiDAR
system. A satellite-based sensor can also help to evaluate wind speed. Satellite data for the
offshore region integrates the SAR (Synthetic Aperture Radar) Technique. It consists of
observing capillary waves from the ocean surface and determining a spatial gradient (Koch
& Feser, 2006).

Apart from the measurement methods, a wind resource assessment through statistical
methods and numerical models is possible. The Weibull distribution is one of the statistical
methods. This method is based on two main parameters: the scale parameter ¢ and the shape
parameter k (Carta et al., 2009). Many researchers use the Weibull distribution for wind
resource estimation. The work of Bulut & Bingol, (2024) concluded that the Weibull
distribution is the most used statistical method between 2014 and 2023. Some other
statistical methods which are also widely used are the Rayleigh distribution, derived from
a fixed shape parameter of the Weibull distribution and the Gaussian distribution (Gorla et
al., 2020). In terms of numerical models, we have the reanalysis dataset, the Wind Atlas,
and the others simulation dataset. They are widely used for wind mapping, short-term
measurement correction, bias correction and validation purposes, but always need a
validation against real data (Charabi et al., 2011).

A lot of uncertainties engage in wind resource assessment. One uncertainty is a
measurement error. It is related to a calibration drift and flow distortion when using
instruments like anemometers and lidars during in-situ and remote sensing measurements
(Klaas-Witt & Emeis, 2022). The spatial representativity of numerical model and satellite
data is another uncertainty. This is due to their coarse spatial resolution. Otherwise, it is
also relevant to consider the impact of climate change, which affects the climate variability
and a long-term trend in wind regime. Poor quality or sparse measurement data can lead to
biased wind farm models, especially when outlier data are not well detected and treated

(Zou & Dijokic, 2020).

1.3.3. The wind resources in Africa

Compared to Europe, where there is a rapid evolution, wind technology in Africa is still at
an early stage of development. With its diversity in geography from coastal windier zones
to highland plateaus, Africa has a huge wind energy potential and offers a suitable area for

a large-scale wind farm. The African Renewable Energy Initiative (AREI) estimates that
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Africa could generate I0GW of wind power by 2020 and over 300GW by 2030 (Pouget,
2019). Wind energy in Africa is not only abundant but also economically viable in many
regions when supported by effective policies (Abbas et al., 2020). Therefore, wind energy
could play a crucial role in Africa’s energy mix by helping the continent shift away from
fossil fuels and thereby enhance energy security (Haidi & Cheddadi, 2022). Despite its huge
potential, less than 1% of Africa’s electricity generation is covered by wind energy, since
many African countries suffer from a lack of strong energy policy, scarcity of localised
wind resources data, limited financing and international investment access, a weak grid
infrastructure and transmission capacity (Agbetuyi et al., 2013).

With the use of Geographic Information System (GIS), Mentis, (2013) analysed the
potential of onshore wind power on the African continent at 1 km grid resolution. The
analysis shows that countries such as South Africa, Sudan, Algeria, Egypt, Libya, Nigeria,
Mauritania, Tunisia, and Morocco have a high energy yield, while countries such as
Equatorial Guinea, Gabon, the Central African Republic, Burundi, Liberia, Benin, and
Togo have a small wind potential. In the same direction, Elsner (2019) evaluated the
technical offshore wind potential over Africa. The authors found that one third of African
coastal countries, including Mozambique, South Africa, Somalia, Madagascar, and
Morocco, have valuable resources.

Mas’ud et al. (2017) reviewed the wind energy potential in Cameroon, Nigeria, and South
Africa. The study highlights the lack of a renewable energy policy in Cameroon but
concluded that the use of wind energy for electricity generation in Cameroon would be
helpful in the dry season when hydro power is not available. Otherwise, the study found
that the implementation of wind energy in Nigeria is slow, even if a clear policy exists.
Finally, the study suggested that Cameroon and Nigeria can learn from the renewable

energy progress, especially the wind’s policy sector and development in South Africa.

1.4. Atmospheric Numerical Models

Emeis (2018) summarised his jobs by raising the point that it is not feasible to use direct
in-situ measurement at modern wind turbine hub height. Then the remote sensing method
and numerical models seem suitable for today’s wind assessment. Atmospheric numerical
models are tools that help to understand past observations and to provide accurate

forecasting of the future Earth’s climate system.
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1.4.1. Overview of Atmospherics Numerical Models

Several atmospheric models exist. Here is just an overview of some of them

1.4.1.1. Reanalysis Dataset

Reanalysis is a method of combining numerical models data with past observations for the
elaboration of a consistent historical dataset. This method involves the use of data
assimilation to overcome observations missing data perfectly (Bronnimann et al., 2018).
ERAS is the fifth version of the ECMWF atmospheric dataset produced in collaboration
with the Copernicus Climate Change Service (C3S). A multi-height dataset spanning 137
levels from ground level to 80 km, ERAS provides data from 1940 to the present. With 1-
hour temporal resolution and 31 km spatial resolution, ERAS use 4D-Var assimilation and
is one of the most used global reanalysis datasets, but it suffers from its coarse resolution,
which leads to an underestimation of peak wind events and local effects (Hersbach et al.,
2020).

Another reanalysis dataset is MERRA-2, developed by the Global Modelling and
Assimilation Office of NASA. MERRA-2 covers the period from 1980 to the present and
uses 3D-Var assimilation. Otherwise, it offers multiple height data with a temporal
resolution of 1 hour and a spatial resolution of 50km. As for ERAS5, MERRA-2 also suffers
from a coarse resolution (Gelaro et al., 2017). The Japan Meteorological Agency JIMA
produced JRA 55, a 3-hour dataset with 4D-Var assimilation. JRAS5 has a spatial
resolution of 55 km and a cover period from 1958 to the present time (Kobayashi et al.,
2015).

The National Oceanic and Atmospheric Administration (NOAA) in collaboration with
some agencies, produced 3 reanalysis datasets. The first, 20CRv3, is produced with the
collaboration of CIRES and DOE. 20CRv3 is known as the longest reanalysis as it covers
a period from 1836 to 2015. It has a spatial resolution of 75 km and provides 3 hours of
data (Slivinski et al., 2019). The second, called NCEP-NCAR R1, is a collaboration of
NCEP and NCAR. Covering a period from 1948 to the present, it has one of the coarsest
resolutions, 250 km for the spatial resolution and providing 6 hours data (Hartmann, 2025).
The third, call CFSR, is the first NCEP dataset, providing 1-hour data with a resolution of
38 km (Saha et al., 2010).

There are other reanalysis datasets with a good resolution. We can cite COSMO-REAG6,
developed by Hans-Ertel-Centre for Weather Research (HErZ) with 6 km resolution, which
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can be used around Central Europe (Bollmeyer et al., 2015) and CERRA, produced by the
Copernicus Climate Change Service with a resolution of 5.5 km (Ridal et al., 2024). Frank
et al. (2020) and Jourdier et al. (2023) showed that CERRA and COSMO-REAG6 perform
better than the global reanalysis dataset. However, their field of interest is limited because
they are regional reanalyses and available for a specific area.

According to Table 1 which summarises the previous reanalysis dataset, most of the global
reanalysis datasets suffer from their coarse spatial resolution. However, Hartmann (2025)
found that ERAS had a better performance than MERRA-2, JRAS55, NCEP-NCAR RI1,
NCEP-DOE R2 and NCEP/CFSv2 in a precipitation rates comparison against GPCPv2.3.
Else, Foli et al. (2022) evaluated the accuracy of two reanalysis datasets, ERAS and NCEP-
NCAR reanalysis II, for the best representation of the West Africa wind regime. The results
of this evaluation show that ERAS has a better description for the wind regime of West
Africa. Therefore, ERAS, with its coarse resolution, compared to other global reanalysis

datasets, presents some advantages regarding its 4D-Var assimilation and the hourly data

provided.
Table 1: Global Reanalysis Dataset Comparison
Dataset Agency Period Temporal Spatial Assimilation
resolution resolution
ERAS ECMWF 1940 to Hourly 31 km 4D-Var
C3S present
MERRA-2 NASA 1980 to Hourly 50 km 3D-Var
present
JRA 55 IMA 1958 to 3 Hours 55 km 4D-Var
present
20CRv3 NOAA 1836 to 3 Hours 75 km Kalman
(CIRES/DOE) 2015 Filter
NCEP/NCAR NOAA/NCEP/ 1948 to 6 Hours 250 km 3D-Var
R1 NCAR present
CFSR NOAA/NCEP 1979 to Hourly 38 km 3D-Var
2010

16



CHAPTER I: LITERATURE REVIEW

1.4.1.2. Other Dataset

In 2000, in a big collaboration team, another NCAR-supported Numerical Atmospheric
model, the Weather Research and Forecasting (WRF) model, was released. WRF is a non-
hydrostatic mesoscale model widely used in many fields. It involves a 4D-var data
assimilation and is very useful for weather prediction (Skamarock et al., 2008). The uses of
WREF in wind resources assessment and wind energy development have been explored in
several studies (Haupt & Mahoney, 2015; Liu et al., 2011; Mahoney et al., 2012)
Dynamic downscaling is a method which uses a weather model and improves the area’s
topographic representation with better resolved atmospheric physics and dynamics, then
produces a refined dataset. Therefore, the result is a high-resolution dataset.

The German Meteorological Service (DWD) and MPI-M developed ICON (ICOsahedral
Nonhydrostatic), which is a global high-resolution numerical weather model (Zéngl et al.,
2015). ICON comes with an icosahedral triangular grid and uses a non-hydrostatic
equation. The grid that ICON has, allowed ICON to flexibly depict complex terrain surfaces
such as mountainous and coastal area. ICON-LAM, a Limited-Area Mode of ICON, is a
dynamical downscaled model obtained from ICON without data assimilation. This
downscaling helps ICON-LAM to perform simulations at a higher spatial resolution than
the original product ICON global initialized analysis. The precision of WRF, COSMO and
ICON were estimated in a comparative performance study (Manco et al., 2023). The study
concludes that WFR, COSMO and ICON well represented the weather conditions.

The World Bank Ground and DTU Energy developed the Global Wind Atlas (GWA), a
high-resolution mapping tool. GWA provided a long-term mean wind speed and assisted
in the identification of high wind potential sites. Then it is a useful tool for policymakers
and specialists in sustainable energy fields (Davis et al., 2023); (Badger & Jorgensen,
2011). GWA is obtained through a dynamical downscaling process. First, from a large-
scale reanalysis dataset to a mesoscale dataset with a resolution of 3 km, resulting in a
generalised wind climate. Then, from the generalised wind climate to a microscale
modelling system, resulting in a high 250 m resolution local wind climate (Global Wind

Atlas-Methodology, 2023).

1.4.2. Focus on ICON-LAM, ERAS and ERAS GWA

A comparison of a high-resolution numerical forecast, COSMO and ICON-LAM, is done
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for Romanian territory based on some surface variables, including 10 m wind speed. The
study concluded that ICON-LAM performs better than COSMO (Iriza-Burca et al., 2024).
Chen et al. (2024a) ran ICON-LAM at 3.3 km spatial resolution over southern Africa for 3
years simulation from 2017 to 2019. The evaluation is based on a comparison of the
simulated hourly 10 m wind speed against in-situ observation data. The study concluded
that ICON-LAM in general reproduced well the observation data with a bias of 1.12 m/s.
For a study purpose over West Africa, Sterl et al. (2018) used ERAS for an assessment of
the synergies of solar photovoltaic (PV) and wind power potential, with a stability
coefficient to quantify these synergies for achieving a balanced power output and limiting
storage needs. The ability of ERAS is analysed over West Africa by Gbode et al. (2023) to
investigate the variability in seasonal wind resources. The authors concluded that ERAS
can assess the wind resource, but it presents bias during extreme wind events. Near-surface
mean and gust wind speeds in ERAS across Sweden are investigated by Minola et al.
(2020), where the ERAS reanalysis product has been compared to the observations in terms
of wind speed and wind gust across Sweden for the period 2013—-2017. The results praise
ERAS on its predecessors ERA-int (ERA interim) for wind speed and wind gust
reproduction. In Ethiopia, modelling of wind power production has shown that a simulation
of wind power production and the identification of wind potential areas in Ethiopia can be
done using the ERAS5 dataset (Nefabas et al., 2021).

A typical study comparing ICON-LAM, ERAS and ERA5-GWA is done by Chen et al.
(2024b). The authors evaluated the simulated 60 m height wind speed from the three
datasets at 18 weather mast stations over South Africa. The evaluation has shown that
ICON-LAM outperforms the two other datasets by underestimating the 60 m wind speed
with a Mean Error (ME) of —0.1 m.s™1 . ERA5-GWA and ERAS5 underestimated the wind
speed with a Mean Error (ME) —0.3 m.s~! and —1.8 m.s ™! respectively.

LS. The Height Scaling Methods

The atmospherics numerical dataset provides data for multiple height levels. However, to
estimate the wind speed at the exact hub height for a given wind turbine, the use of height
scaling methods is useful (Manwell et al., 2009).

One uncertainty introduced by the height scaling methods is the atmospheric stability. The

atmospheric stability impacts the wind vertical estimation. While a neutral atmosphere led
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to a predictable logarithmic wind profile, a stable and unstable atmosphere can accentuate
or flatten the wind profile. Wharton and Lundquist (2012) show that the atmospheric
stability consideration improves the wind assessment accuracy.

Another uncertainty is the surface roughness length. The surface roughness describes the
resistance of the land surface and highly influences the frictional velocity. It is a theoretical
height above the ground at which the mean wind speed would be equal to zero if the
logarithmic wind profile were extrapolated downwards. It depends on the type of terrain
and the land cover. Kent et al. (2017) has shown that the consideration of land cover and
surface roughness length variability affects the wind speed estimation.

Typically, the use of the height scaling method, in general, is based on the power laws and

the logarithmic law (Emeis & Turk, 2007).

1.5.1. The logarithmic law

The Logarithmic law is based on the theoretical and empirical research in boundary layer
flows, fluid mechanics and atmospheric research (Manwell et al., 2009). It depends on the
surface roughness length z, in meters, the Von-Karman constant k and the frictional
velocity u* in m/s. We distinguished the logarithmic linear law and the logarithmic law
(Gualtieri & Secci, 2011). The logarithmic linear law is based on the Monin-Obukhov
similarity theory, which implies the Monin-Obukhov stability function ,,, and the Monin-
Obukhov length L in meters:

= (E)E)ue )

With V the wind speed in m/s at the height z in meters.

The logarithmic law implies a neutral stability 1,,, = 0:

()2

Motta et al. (2005) used the logarithmic linear law and the logarithmic law to extrapolate
10 m wind speed to different heights up to 70 m and found an underestimation in wind

speed.
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1.5.2. The Power Law

The power law mostly depends on the wind power law exponent . It also implies
knowledge of the wind speed V. at a reference height z,..

VA a

v=v (=) 7)

ZT
With V the wind speed at the height z.
The power law is widely used in a lot of studies, such as (Jung & Schindler, 2021; Sen et
al., 2012; Wan et al., 2019; Xu et al., 2018a).

1.5.3. The wind shear factors

The power law exponent, or more generally, the wind shear component, varies with time
due to its dependence on atmospheric stability and varies with space due to its dependence
on surface roughness. The extrapolation of wind speed from measurement level without
atmospheric stability and terrain effect consideration could introduce significant errors (Xu
et al., 2018b). The estimation of the shear component led to a different empirical formula.
For a neutral atmosphere, and over a flat area, the shear component «, equal to 1/7 (0.143),
is known as the one-seven law (Manwell et al., 2009).

A summary of several empirical laws for the estimation of the shear component at the
international airport of Agadir Al Massira in 2016 was done by Tizgui et al. (2018). The
study presented an overview of those empirical laws, and for the extrapolation of 10 m
wind speed to different heights, the authors used the power law, with one shear
component’s empirical law to estimate the wind speed at 50 m, 80 m, and 100 m. The
results show that wind speed increases with height, and above 50 m, it becomes significant.
A study of wind shear was done by Rehman and Al-Abbadi (2005). In his study, he
calculated the wind shear using 20 m, 30 m and 40 m height wind speed and found a mean
wind shear of 0.194 in Saudi Arabia. The mean wind shear of 0.194 allowed a higher turbine
capacity factor with 6% more energy produced than the wind shear of 0.143, the typical 1/7
law shear coefficient.

The study of Crippa et al. (2021) proposed a model which captures the hourly variability
of the shear component. The model of this study, which is based on Saudi Arabia,
outperformed the 1/7 law.

Another study of the wind shear was also conducted by Farrugia (2003) over the

Mediterranean island and the Republic of Malta using weather mast data at 10 m and 25 m.
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This study revealed that wind shear component variation reaches a maximum level in

January and a minimum in July.

I.6. Gap Analysis

The bibliographic review of global and regional wind energy research revealed that
atmospheric numerical models are widely used in wind energy modelling and offer
consistent coverage over data-scarce regions. It also shows that height scaling comes with
some uncertainties, especially in areas with variable surface roughness or in complex
terrain. Finally, it shows that numerous studies confirm the sensitivity of wind energy yield
to wind data products, but few studies systematically compare different data sources and
different scaling methods against observations at multiple heights.

In addition, there is a lack of cross-validated comparison between datasets. Most African
studies use one or two types of datasets, and few compare three different types of datasets
and validate their performance against in situ observation. Else, most studies use the height
scaling for a particular height, and a few perform analysis through a multi-height evaluation
and validation. Then, there is also a lack of multi-height study and multi-height validation
within situ observation.

Therefore, this thesis is motivated by the urgent need to support the wind energy
development in Southern Africa with high-resolution and validated simulation methods. It
provides support to energy policy makers for selecting suitable models and reducing

uncertainties in wind power simulation.

Conclusion

The Above chapter highlights the importance of this study. With the deep review of the
literature and the main studies on atmospheric dataset and height scaling methods, it shows
the direction of analysis of this study, based on the existing lack. The next chapter will

present the methodology followed by this study.
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Introduction

This chapter starts with the presentation of the study area through a map with the geographic
location of all stations. It is followed by a description of the three datasets involved in this

study, and the chapter ends with tools and methodology.

I1.1. Study Area and Study Periods

Due to data availability, this analysis was over 3 years starting from January 2017 to
December 2019 and the study area is the Southern part of Africa. According to the Global
Wind Atlas, this region has a good wind potential suitable for wind energy generation
(Davis et al., 2023). Stations involved in this study are located from 16°S to 38°S, and 9°E
to 39°E.

11°s

20°s

Latitude
N
&
@

30°S4

35°S

Labels
NCEI_ISD
SASSCAL_WN
TAHMO
WASA

L 2 J=kKe]

40°S . v v
10°E 15°E 20°E 25°E 30°E 3
Longitude

Figure 6: Map of the Study

«

2E 40°

Four labels, TAHMO, NCEI ISD, SASSCAL WN and WASA, with a total of 493 sites
involved in the study. The 493 sites are meteorological network stations and weather mast

stations. All of them are identified by their geographic coordinates and names or codes.
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Figure 6 presented the map of the study area where the yellow circles represent the
NCEI _ISD stations, the sky-blue squares represent the SASSCAL WN stations, the red
triangles represent TAHMO stations and black diamond-shaped markers represent WASA

stations .All information about those four labels is detailed in the next part.

I1.2. Datasets
11.2.1. Observed Datasets

The observation data involved in the study are in-situ measurements coming from weather
mast stations, in-situ data coming from local meteorological stations, and the surface
integrated database.

Eighteen weather mast stations from Wind Atlas for South Africa (WASA) are involved in
this study (Wind Atlas for South Africa, 2010). They form what is called label WASA in
this study. Hourly wind speed data, over the study period, at four (04) different heights, 10
m, 20 m, 40 m, and 60 m, were downloaded. Those mast stations are named from WMO1
to WM19, except WMO04, which has no data. Otherwise, some stations did not provide full
data over the entire 3-year time stamps of the study. The temporal data coverages of each
weather mast wind speed at different heights are shown by a pie chart in Figure 7. The

white colour is the percentage of missing data from 2017 to 2019 for a specific mast station.
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Figure 7: Pie Chart of weather mast temporal data coverage

The local meteorological station’s data are from two services. The first service is the Trans-

24




CHAPTER II: MATERIALS AND METHODS

African Hydro-Meteorological Observatory, which develops a hydro-meteorological
station network in sub-Saharan Africa. Those stations are labelled as TAHMO in this study.
The second is the Southern African Science Service Centre for Climate Change and
Adaptive Land Management (SASSCAL), which is an initiative within Southern Africa,
such as Angola, Botswana, Namibia, South Africa, and Zambia, with funding from
Germany. SASSCAL developed a meteorological station network called SASSCAL
Weather Net, which is labelled here as (SASSCAL WN). The last observation data is a
global hourly Integrated Surface Database (ISD) collected from several sources through the
National Center for Environmental Information (NCEI). Data from NCEI in this study are
labelled (NCEI ISD).

42 stations from the label TAHMO, 104 stations from the label SASSCAL WN and 329
stations from the label NCEI are investigated for evaluating simulated 10 m wind speed.
All these data are open-source data and can be easily accessed through their original

website.

11.2.2. Simulated Datasets

Three (03) simulated datasets are used in the study. The dynamical downscaled dataset
ICON-LAM, the reanalysis ERAS dataset and the statistical downscaling variant of ERAS
(ERAS_GWA).

The ICON-LAM dataset used is a regional setup of the ICON atmospheric model (Zingl et
al., 2015). It has a spatial resolution of 3.3 km. The setup and configuration details are
provided by Chen et al. (2024a). While ICON-LAM data from TAHMO, SASSCAL WN
and NCEI ISD are hourly resolution data, the WASA data are on 15-min bases, then are
averaged on hourly resolution.

The ERAS reanalysis data is produced by ECMWF with 31 km spatial and 1-hour temporal
resolution. ECMWF provided eastward and northward (u, v) components wind speed and
the horizontal wind speed is obtained by computing the square root of the sum of u? and v?
wind speed (Hersbach et al., 2020).

The ERAS GWA is a statistical downscaled product of a combination of ERAS and GWA.
It is obtained by multiplying the time series of ERAS by the ratio between the long-term
mean wind speed of GWA and ERAS. As aresult, ERAS GWA has a spatial resolution of
250 m. This is shown by the equation (8)
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GWA _
ERA5_GWA = ERAS5 ime series Long—term mean

(8)

X
ERA 5Long—term mean

Several studies use this statistical downscaling approach to combine the reanalysis dataset
with GWA from the perspective of obtaining a high-resolution dataset. While Gruber et al.
(2021) and Murcia et al. (2022) combine ERAS with GWA for a renewable energy potential
study, Gonzalez-Aparicio et al. (2017) and Ryberg et al. (2019a) apply the same approach
to MERRA-2.

I1.3. Methods and tools
IL.3.1. Preprocessing

The analysis started with a preprocessing which only concerns the observed data and the
ICON-LAM dataset. It involved a data cleaning process and a process to fix a time zone to
UTC.

The data cleaning on ICON-LAM is basically to remove duplicate station data in case of
multi-station data on one ICON grid, and to remove stations where all values are the same
over the study time. For the observed data, data cleaning was used to remove implausible
data. According to the Beaufort wind scale table, at 10 m height on a flat area, the wind
speed of 32.7 (m/s) and above is considered hurricane wind (World Meteorological
Organization, 2019). Therefore, in this study, the wind speed at 10 m height on a flat area
of 40 (m/s) and above is considered implausible data and is removed from the database. We
also fix a threshold of 70% and then remove all stations with more than 70% missing values.
This threshold was also applied by Chen et al. (2024a). At the end, 204 (78 from
SASSCAL_WN, 24 from TAHMO and 102 from NCEI ISD) stations’ data and 18 weather

mast station data remain for the study.

11.3.2. Metrics

Four metrics are used in this study. The Mean Absolute Error (MAE), the Mean Error (ME),

the Pearson correlation coefficient (Pearson r), and Perkins Skill Scores (PSS). Let assume

0; data from observation, 0 the average of observed data, X; data from a simulated dataset,

X the average of simulated data, Fy the frequency distribution of simulated data, Fy, the
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frequency distribution of the observation data, n the total number of data and b the number
of bins for the frequencies estimation.

11.3.2.1. The Mean Absolute Error (MAE)

MAE is obtained by the average of the absolute differences between the simulation product
and the Observation. It gives the average magnitude of the errors without direction
consideration. A lower value of MAE means satisfactory performance of the simulated

dataset. The mathematical formula is:

n

1
Néb—i=1

11.3.2.2. The Mean Error (ME)

ME is obtained by the average differences between the simulation product and the
Observation. It gives the average magnitude of the errors with direction consideration,
indicating an over- or underestimation of the simulated product. Then a positive ME means
an overestimation of the observation and a negative ME, an underestimation. Otherwise, a
value of ME close to zero (0) means satisfactory performance of the simulated dataset. The

mathematical formula is:

1 n
N &—i=0

11.3.2.3. The Pearson correlation coefficient (Pearson r)

Pearson r evaluates the linear relationship between the observations and the simulated data.
In the range of [-1; 1], -1 indicates a negative correlation and 1 indicates a positive

correlation. The mathematical formula is:

fo(Xi —X) (0, - 0)

) fo- oy

(11)

11.3.2.4. The Perkins Skill Score (PSS)

PSS analyses the frequency distribution of the simulation and the observation and then
estimates their overlapping area (Perkins et al., 2007). In the range [0; 1], PSS equal to 1
indicates a perfect overlap, which represent an outstanding performance and PSS equal to

0 means the worst performance. The mathematical formula is:
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b
PSS = z min(Fy; Fp) (12)
1

11.3.3. The Taylor Diagram

The Taylor diagram is a polar diagram in a 2-D plot, which shows the correspondence
between simulated and observed values, using statistical metrics. It is a powerful plot
presenting jointly the correlation, the standard deviation, and the root mean square error. It
is a useful tool for complex models, with multiple variables and multiple dimensions, such
as a geophysical model, for evaluation and comparison. It also allows us to define skill
scores for the model classification (Taylor, 2001). The mathematical formula of the Taylor
skill scores is:
4(1+1r)*

@R ay *

Where r is the correlation coefficient of the simulation, 7, the maximum correlation
attainable (here r, = 1), o, the standard deviation of the simulation and 6, the observation
standard deviation. The use of the Taylor Diagram for model validation is common in
atmospheric model studies (Coppola et al., 2024; dos Santos Silva et al., 2023).

The methodology employed in this study involves the utilisation of the Taylor skill score S
to establish a ranking of all methods, based on the average value over all the 18 weather
mast stations of the corresponding metrics (standards deviation, Pearson correlation, and

the root mean square error).

11.3.4. The Different Height Scaling Methods

To scale a wind speed to a specific height called the target height, we need the knowledge

of the wind speed at a certain height called the reference height. In this study, we call the

Advanced method a height scaling method, which involves the use of reference heights

wind speed available from the vertical levels of numerical atmospheric data sets remarkably

close to the target height. In total, ten (10) different methods were used in this study.
11.3.4.1. The Linear Interpolation

For this method, the knowledge of wind speed V4 and V, at the two nearest reference

heights z; and z,, at the target height z are used. In this study, the linear interpolation
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method is called Advanced Linear Interpolation (Adv_Lin). To estimate the wind speed V/,

at the target height, we use the formula:
zZ—z

Adv_Lin: V,=V,+ ( 11) (Vy—V,) (14)

Z) — Z

11.3.4.2. The Logarithmic Law

The logarithmic law in this study assumes the Monin-Obukhov stability function equals
zero (YP,,, = 0). To estimate the wind speed V, at the target height z, the following formula

1s used:

(z—d)
lnzz—o
(z1 —d)

In~——=
Zy

(15)

With z the surface roughness length, d the displacement height (in this case d = 0) and
V1 the wind speed at the reference height z4. In the analysis, we make the uses of the
Logarithmic law in two ways. One with the knowledge of the nearest reference height wind
speed, which is called the advanced logarithmic law (Adv_Log), and the second is any
target height (in this case, 10 m height), which is called the simple logarithmic law
(LogLaw).

11.3.4.3. The Power Law

The use of the power law is driven by the estimation of the wind power law exponent. One
method to estimate the wind power law exponent in this study is the so-called Advanced
Power law method (Adv_Pl), which involves the knowledge of the wind speed V1 and V,
at the two nearest heights z; and z, to the target height (Devis et al., 2018). The power
law exponent is then estimated by:

In(V{/V
_In(vy/Vy) 6)
In(z4/2,)
Another way is the use of empirical laws, which estimate the wind shear from some specific
criterion, such as the land topography, the surface roughness, and weather conditions. The
validity of empirical Laws is limited to the lower atmosphere up to 200 m above the ground

level (Tizgui et al., 2018). Table 2 summarises all the empirical methods used in this study.
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The most used empirical law is the well-known one-seven law (hereafter 1 7 Law). The
wind shear is estimated for a neutral atmosphere to 1/7=1.143 (Manwell et al., 2009).
Another expression for the wind shear is proposed by Counihan, (1975). The expression
depends only on the surface roughness length (hereafter Counihan_Law). It suggests that,
for the surface roughness length between 0.00lm and 10 m (0.001m < z0 < 10m), the
shear component is expressed by:

a = 0.096log;, zo + 0.016(logyo z9)% + 0.24 17)

Spera, (1994) used an expression proposed by NASA researchers. The equation

(Spera_Law) is based on the surface roughness and the wind speed at the reference height.

0.2

0
o« = (%) (1 - 0.55log(V,)) (18)

Another equation (hereafter Justus Law) is proposed by Justus C., relying only on the
wind speed at a reference height of 10m (Justus & Mikhail, 1976).
_0.37-10.0881In(V;)

T 0088 (%)

(19)

Khalfa et al. (2014) proposed an expression (Khalfa_Law), which takes into consideration
the stability conditions and the geographic mean height.
1 0.0881

In (z—i) 100881 ln(

o= A In (%) (20)
Zg

The last empirical law (hereafter Nfaoui_Law) investigated in this study is proposed by
Nfaoui et al. (1998) through the formula:
x —0.0881 In(V;)
o =

 1-0.08811In (%)

where x = 0.25 for z, € [0.000m; 0.005m], x = 0.31 for z, € [0.005m; 0.050m], x =
0.27 for z, € [0.050m; 0.500m] and x = 0.48 for z, € [0.500m; 4.000m]

(21)
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Table 2 : List of Empirical Law

Methods Empirical Formula References

1_7 Law oa=1.143 (Manwell et al., 2009)

Counihan _Law = a = 0.0961log;,z, + 0.016(log;yz¢)? + 0.24  (Counihan, 1975)

Justus_Law o« 0.37 — 0.0881n(V;) (Justus & Mikhail,
= 7 1976)
1-0.0881n (10)
Spera_Law z0\ %2 (Spera, 1994)
a= (H) (1 —=0.55log(V;))
Khalfa_Law o= 1 0.0881 In (E) (Khalfa et al., 2014)
- Zg \A V,
In (Zo) 1-0.08811n (%) n
Nfaoui_Law o= x — 0.0881In(V;) (Nfaoui et al., 1998)
- 7
1-0.08811n (ﬁ)

I1.3.5. The Surface Roughness length and the Wind Energy
estimation

The European Space Agency Climate Change Initiative (ESA CCI) includes a Land Cover
project whose aim is to generate a global land cover product. This consists of a generation
of a tool which provides for a specific geographic area, a land cover types and a land cover
code (Chirachawala et al., 2020). The Renewable Energy Simulation toolkit (RESKit) is a
powerful tool for the large-scale simulation of renewable energy systems (Ryberg et al.,

2019; https://github.com/FZJ-IEK3-VSA/RESKit). RESKit provides a table which links

ESA CCI land cover code to a corresponding surface roughness length. The use of height
scaling methods to scale 10m wind speed to different heights implies the knowledge of the
surface roughness length. In this study, ESA CCI Land cover is used to provide a Land
cover code for the 18 specific weather mast stations. Otherwise, the RESKit table is used
to assign the specific surface roughness length to every weather mast station.

The wind energy is estimated over the 3-years study time periods from 2017 to 2019. The

wind energy density estimation is done with the formula:
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N

1 3

E/A = Epz U;
i=1

Where E /A is the energy density in Wh/m?, U; the hourly wind speed in m/s, N the number
of wind speed measurement in the 3 years study period in hourly bases and p the air density
in kg/m* (Manwell et al., 2009). For the evaluation, a boxplot of the Relative Deviation

(RD) in percentage of the energy density is used.

E/A, —E/A
RD = /x /ObSX100
E/Aobs

Where the E /A, is the energy density for the simulated product in Wh/m? and E /A, the

energy density of the observation in Wh/m?.

Conclusion

This chapiter provided a comprehensive overview of the study area and study period of the
research. The geographical locations of all stations affiliated with the TAHMO, NCEI ISD,
SASSCAL WN and WASA labels have been well presented. A details account of the
observed data, as well as the three atmospheric datasets ICON-LAM, ERAS and
ERAS5 GWA provided a deep understanding of the characteristics and the relevance of each
product. Furthermore, the metrics, analytical and statistical tools involve in this study have
been explained. This assured a good understanding of the analysis and the founding, which

will be part of the next chapter.
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Introduction

This chapter highlights all results of this study. It starts with the comparison of simulated
10 m wind speed over 204 stations across the southern Africa using the MAE, ME, Pearson
r, and PSS. The next part of this chapter is the evaluation of height scaling methods and
dataset throughout a boxplot and Taylor diagram. Then finally the chapter will end with

the wind energy estimation.

II1.1. Datasets Comparison at 10m

Simulated 10 m wind speed data from the three datasets ICON-LAM, ERAS5 and
ERAS5 GWA are compared against observation data over 204 stations of labels TAHMO,
SASSCAL WN and NCEI _ISD. For this comparison, four metrics are used, and for every
metric, a scatter plot and box plot will help for results visualisation (Figure 8, Figure 9,
Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15). In the scatter plot,
the different stations are represented according to their labels shape markers (square for
SASSCAL WN, triangle for TAHMO and circle for NCEI ISD) and to the colour of their
metric values. For the boxplot, the first 3 boxes show the variation across the labels (green
for SASSCAL WN, grey for TAHMO, and blue for NCEI ISD) and the last box in pink
is for all stations together. The yellow markers show the dispersion of stations across every

label, and the number of stations of every label is written above every box.

II1.1.1. MAE

In general, few stations have a higher MAE than 3.0 m/s. ERAS _GWA outperforms the
other datasets in terms of MAE with an average over all stations of 1.33 m/s, followed by
ERAS5 with an average of 1.50 m/s and then ICON-LAM with 1.77 m/s has a lower

performance. Table 3 provides a summary of the statistics of the MAE comparison

Table 3: Statistic of MAE comparison at 10 m

Datasets 15t Quartiles 2" Quartiles 3" Quartiles 90% of stations
ERAS GWA 0.97 1.15 1.46 1.93
ERAS 1.14 1.32 1.67 2.22
ICON-LAM 1.44 1.64 2.00 2.47
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It shows the MAE statistics (in m/s) for the three quartiles, and for 90% of stations
confirming the good performance of ERA5S GWA in terms of MAE. Figure 8 displays the
MAE results through a scatter plot, and Figure 9 displays it through a boxplot.
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Figure 8: Scatter plot of MAE comparison of Datasets vs Observation at 10m
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Figure 9: Box plot of MAE comparison of Datasets vs Observation at 10m

Finally, the MAE results of specific station are summarised by Table 4
Table 4: MAE results for specific stations

Datasets Lowest bias Highest Bias
MAE Station Location MAE Station Location
ERAS GWA 041 TA00546 17.78°S 4.11 68815099999  33.08°S
31.13°W 18.02°W
ERAS 0.85 67593 22.49°S 4.60 68491099999  28.20°S
28.70°W 32.42°W
ICON-LAM 0.87 65934 17.55°S 428 103 23.30°S
24.53°W 16.12°W
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IM.12. ME

Globally, ERA5S GWA outperforms ERAS and ICON-LAM in terms of ME with an error
value of +0.39 m/s, +0.75 m/s, and +1.23 m/s, respectively. ICON-LAM tends to

overestimate the 10 m wind speed, with 95.10% of overestimation stations and only 4.90%

of underestimation stations, while ERA5S GWA recorded 32.84% of underestimation

stations and 67.16% of overestimation stations. Figure 10 and Figure 11, which present

respectively the scatter plot and the box plot of ME comparison, confirm the tendency of

each dataset. A summary of the statistics of the ME comparison is provided by Table 5, and

Table 6 present the results of some specific stations.
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Figure 10: Scatter plot of ME comparison of Datasets vs Observation at 10m
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Figure 11: Box plot of ME comparison of Datasets vs Observation at 10m

Table 5: Statistic of ME comparison at 10 m

Datasets 1%t Quartiles 2" Quartiles 3¢ Quartiles 90% of stations
ERAS GWA -0.14 0.32 0.81 1.47
ERAS 0.13 0.79 1.37 1.97
ICON-LAM 0.63 1.26 1.77 2.29
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Table 6: ME results for specific stations

Datasets Lowest error Highest error
ME Station Location ME Station Location
ERAS GWA -285 31196 26.40°S  +3.88 68815099999 33.08°S
18.01°W 18.02°W
ERAS -2.27 31210 22.79°S  +4.57 68491099999 28.20°S
16.81°W 32.42°W
ICON-LAM -1.05 68821099999 33.62°S  +4.28 103 23.30°S
19.47°W 16.12°W
II1.1.3. Pearson r
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Figure 12: Scatter plot of Pearson r comparison of Datasets vs Observation at 10m
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Figure 13: Boxplot of Pearson r comparison of Datasets vs Observation at 10m

ERAS5 GWA is obtained from a statistical downscaling of ERAS. This statistical

downscaling affects the magnitude but not the correlation. Then, ERA5S GWA is obtained
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with a different magnitude compared to ERAS, but it strictly has the same correlation
coefficient. Therefore, ERA5S GWA and ERAS recorded the same correlation for every
station. In general, the three datasets have similar correlation coefficients, with a slight
advantage for ICON-LAM, which has an average correlation coefficient over all stations
of 0.626, while ERAS5 and ERAS5 GWA have a coefficient of 0.617. Figure 12 shows the
Pearson r result with a scatter plot, but due to the similar performance of the three datasets,
it is difficult to find any trend. Using Figure 13, which presents the results of Pearson r with
a box plot, and Table 7, which summarises the results by quartiles, the slight advantage of
ICON-LAM can be identified. Table 8 presents the results of Pearson r for some specific
stations.

Table 7: Statistic of Pearson r comparison at 10 m

Datasets 15t Quartiles  2"d Quartiles 3" Quartiles 90% of stations
ICON-LAM 0.580 0.643 0.707 0.769

ERAS GWA & 0.540 0.643 0.715 0.769

ERAS

Table 8: Pearson r results for specific stations

Datasets Lowest correlation Highest correlation
Pearson r Station Location Pearsonr Station Location
ICON-LAM 0.090 46943 16.98°S  0.850 858577 28.63°S
15.62°W 16.51°W
ERAS_ GWA 0.000 46943 16.98°S  0.853 68926399999 34.56°S
& ERAS 15.62°W 20.25°W

I.14. PSS

As for Pearson r, the three datasets have similar performance in terms of PSS. Table 9
summarises the statistics of the PSS comparison and then shows the similarity between
dataset’s performance across different quartiles for the PSS comparison.

Table 9: Statistic of PSS comparison at 10 m

Datasets 15t Quartiles 2" Quartiles 3" Quartiles 90% of stations
ERAS GWA 0.652 0.755 0.827 0.892
ICON-LAM 0.605 0.735 0.815 0.887
ERAS 0.597 0.722 0.812 0.875
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Figure 14 presents the PSS results with a scatter plot and Figure 15 presents the same results

with a boxplot.
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Figure 14: Scatter plot of PSS comparison of Datasets vs Observation at 10m
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Figure 15: Boxplot of PSS comparison of Datasets vs Observation at 10m

Table 10: PSS results for specific stations

Datasets Lowest score Highest score
PSS Station Location PSS  Station Location
ERA5 GWA 0.158 46943 16.98°S  0.960 E7625 23.44°S
15.62°W 15.05°W
ERAS 0.138 46943 16.98°S 0969 114 19.71°S
15.62°W 18.04°W
ICON-LAM  0.128 46943 16.98°S  0.951 E7626 23.10°S
15.62°W 15.03°W
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Table 10 provides the results of some specific stations. In general, with a slight advantage,
ERAS5 GWA performs well in terms of PSS with an average over all stations value of
0.721, followed by ICON-LAM with an average of 0.691 and then ERA5 GWA with an
average of 0.684.

II1.2. Height scaling methods evaluation

The height scaling methods analysis is done through two evaluations. The evaluation of the
observed 10m wind speed scaled to different heights and the simulated 10 m wind speed
scaled to different heights. For the metrics calculation, a cut-in and cut-out wind speed of

respectively 2.0 m/s and 25 m/s is set on the observed wind speed.

I11.2.1. Evaluation of the Observed 10m scaled to different
heights

The 10 m wind speed from WASA at the 18 weather mast stations are scaled to 20 m, 40
m, and 60 m throughout seven scaling methods: 1 7 Law, Counihan Law, Justus Law,
Khalfa Law, Nfaoui Law, and Spera Law. This analysis highlights the effective impact
of different scaling methods on the wind speed without any dataset influence because the
scaling was done using the observed data itself.

In general, the performance of the different methods decreases with an increase in scaling
heights and the dispersion across stations increases with an increase in scaling height. Then,
the scaling from 10 m to 60 m introduced the highest errors, followed by the scaling from
10 m to 40 m and the lowest errors were recorded for a scaling from 10 m to 20 m.
Otherwise, the performance of all methods follows the same trend for every scaling (10 m
to 20 m, 10 m to 40 m, and 10 m to 60m). However, the performance variation across the
different methods is more remarkable for a scaling from 10 m to 60 m. Therefore, the
discussion will focus on the scaling from 10 m to 60 m. For every metric, a box plot is used
for the results presentation. The results presentation will focus on the third quartile (the
results of 75% of stations).

The results of all methods are summarised in Table 15 (see the appendices)
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I11.2.1.1. MAE

Globally, it is evident that the 1 7 Law and Counihan Law, characterised by low
dispersion across different stations, demonstrate superior performance with a low bias of
respectively 1.15 m/s and 1.13 m/s. Conversely, the Justus Law followed by Khalfa Law,
distinguished by high dispersion and median, demonstrate low performance due to high
bias of 1.44 m/s and 1.31 m/s, respectively. Nfaoui Law, Loglaw and Spera Law
demonstrate commendable performance, as evidenced by their low median values.
However, it is noteworthy that these laws exhibit a considerable degree of dispersion across
different stations in comparison to Counihan Law and 1 7 Law. Figure 16 presents the

MAE results for the scaling methods comparison.
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Figure 16: Boxplot of MAE comparison of scaling methods at multiple heights

111.2.1.2.ME

Figure 17 presents the ME results for the scaling methods comparison. The results show
that the 1 7 Law and Counihan Law tend to underestimate the scaled wind speed, while
Justus Law and Spera Law tend to overestimate it. Khalfa Law, Nfaoui Law, and

LoglLaw demonstrate a good performance with a slight overestimation.
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Figure 17: Boxplot of ME comparison of scaling methods at multiple heights
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I11.2.1.3.Pearson r

All the methods have an almost perfect Pearson correlation. They all have similar
correlations, and the differences between them are negligible. For a scaling of 10 m to 20
m, all have a Pearson correlation of 0.995, a Pearson correlation of 0.98 for a scaling from
10 m to 40 m and then a Pearson correlation of 0.95 for a scaling from 10 m to 60 m. Figure

18 presents the Pearson correlation results for the scaling methods comparison
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Figure 18: Boxplot of Pearson r comparison of scaling methods at multiple heights
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I11.2.1.4.PSS

In general, all methods have good Perkins Skill Scores, which are above 0.80.
Counihan Law, 1 7 Law, and LoglLaw exhibit similar and the highest score of 0.94, 0.92,
and 0.90, respectively, while Khalfa Law demonstrates the lowest score of 0.86. Figure 19

presents the PSS results for scaling methods comparison.
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Figure 19: Boxplot of PSS comparison of scaling methods at multiple heights

I11.2.2. Evaluation of the Simulated 10m scaled to
different heights

The simulated 10 m wind speeds from ICON-LAM, ERAS5 and ERAS GWA are scaled to

20 m, 40 m, and 60 m using seven methods: 1 7 Law, Counihan Law, Justus Law,
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Khalfa Law, Nfaoui Law and Spera Law for ERA5 GWA, and ten methods: 1 7 Law,
Counihan Law, Justus Law, Khalfa Law, Nfaoui Law, Spera Law, Adv Lin, Adv_PI
and Adv Log for ICON-LAM and ERAS. Then Adv _Lin, Adv_ Pl and Adv_Log are not
used for ERA5S GWA. The influence of the datasets and the different height scaling
methods on wind speed is highlighted by this analysis. For each metric, a box plot will
display the results. The ICON-LAM dataset is represented by the red box, ERAS by the
blue box, and the green box represents the ERAS5 GWA dataset. The results will focus on
three datasets and three scaling methods, Adv_Lin, Adv_Pl, and Adv_Log, which were not
discussed in the previous part.

The results of all methods are summarised in Table 15 (see the appendices)

I11.2.2.1. MAE

In general, ERAS5 demonstrates the highest levels of error with significant dispersion, while
ICON-LAM and ERAS5 GWA show the contrast, with [CON-LAM demonstrating a slight
advantage over ERAS GWA in terms of dispersion. The influence of the dataset is found
to be more significant than that of the scaling methods. The findings demonstrate
consistency in methods performance across the three scaling heights, except for Adv_Lin,
Adv_Pl, and Adv_Log. The bias introduced by Adv_Lin, Adv_PI, and Adv_Log decreases
when we compare 10 m to 20 m scaling and 10 m to 40 m and increases when we consider
a comparison of 10 m to 40 m scaling and 10 m to 60 m scaling. Adv_Lin introduced the
highest bias of 3.57 m/s for the scaling from 10 m to 20 m, while Adv_PI and Adv_Log
exhibit a good performance compared to other methods. Figure 20 presents the MAE results

with a box plot.
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Figure 20: Boxplot of MAE for the datasets and the scaling methods comparison at
multiple heights
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111.2.2.2. ME

CHAPTER III: RESULTS AND DISCUSSIONS

It is evident that ERAS underestimates the scaled windspeed for all methods with high
dispersion across different stations, while ICON-LAM and ERAS5 GWA introduced a

slight underestimation for all methods except the Justus Law, which exhibits an

overestimation. ERAS GWA and ICON-LAM have similar performance across the same

methods, with a small advantage for ICON-LAM. Figure 21 shows the ME results with a

box plot. As for MAE, there is a consistency of method’s performance across the three

scaling heights, except for Adv_Lin, Adv_Pl, and Adv_Log, which depend on the specific

scaling height. Within the methods, the Adv_Lin introduced the highest error with an

underestimation of -2.2 m/s for ERAS for a scaling from 10 m to 20 m. Adv_PI and

Adv_Log exhibit a good performance compared to other methods.
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Figure 21: Boxplot of ME for the datasets and the scaling methods comparison at

multiple heights

111.2.2.3. Pearsonr

A Pearson correlation coefficient of similar value is recorded throughout the three datasets

and across all methods.
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Figure 22: Boxplot of Pearson r for the datasets and the scaling methods comparison

at multiple heights
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The difference between dataset performance increase with the increases of the scaling
height. Otherwise, the three datasets exhibited a substantial degree of dispersion. ERAS5 and
ERAS5 GWA, which demonstrate a high correlation value, exhibit superior performance in
comparison to ICON-LAM. The difference between methods within the same dataset is
negligible. Figure 22 presents the Pearson correlation results for the dataset and scaling
methods comparison.

For a scaling from 10 m to 20 m, the difference between dataset’s performance is negligible.
ICON-LAM show a correlation of around 0.81, while ERAS and ERA5 GWA show a
correlation of 0.82. For a scaling from 10 m to 40 m, ICON-LAM show a correlation
between 0.76 and 0.80, while ERAS and ERAS5 GWA show a correlation between 0.79 and
0.82. Finally, for a scaling from 10 m to 60 m, ICON-LAM shows a correlation between
0.73 and 0.80, while ERAS5 and ERAS5 GWA show a correlation between 0.76 and 0.82

111.2.2.4. PSS

In general, ICON-LAM outperforms ERA5S GWA and ERAS for each method, with a high
PSS around 0.9 and the lowest dispersion. ERAS shows the lowest performance for each
method, with a high dispersion across different stations. There is also a consistency in
method’s performance across the three scaling heights. Adv_Pl and Adv_Log exhibit a
good performance compared to other methods, while Adv_Lin recorded the lowest score
of 0.7 for ERAS for the scaling from 10 m to 20 m. Figure 23 presents the PSS results with
a box plot.
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Figure 23: Boxplot of PSS for the datasets and the scaling methods comparison at
multiple heights
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I11.2.3.  Evaluation through a Taylor Diagram

A Taylor diagram is plotted for the three scaling heights 20 m, 40 m, and 60 m. Each of
them combines both observed 10 m wind speeds scaled to different heights here, as
obs_extra, and simulated 10 m wind speeds scaled to different heights. The ensuing plot
serves as a crucial tool for the validation process, offering a comprehensive evaluation of
the performance of all methods. 10 methods from ICON-LAM and ERAS, 7 methods from
ERAS5 GWA and Obs extra are compared given a total of 34 methods. ICON-LAM
methods are represented with red markers, ERAS with blue markers, ERAS GWA with
green markers and Obs_extra with yellow markers. The name of the corresponding dataset
is put at the end of the methods in the legend of every diagram to make a difference between
methods from different datasets. The following Taylor diagrams are presented: the first,
illustrated by Figure 24, is for the scaling from 10 m to 20 m, the second, by Figure 25, for
the scaling from 10 m to 40 m, and the third, by Figure 26, for the scaling from 10 m to 60
m. A ranking table is provided, and it summarises the performance of each method from
the three datasets at different scaling heights, from 10 m to 20 m by Table 11, from 10 m
to 40 m by Table 12 and from 10 m to 60 m by Table 13.

In general, for every scaling height, methods from the 10 m observed wind speed scaled to
different heights obtain the highest scores. This is because the impact of datasets is more
significant than that of different methods, and the comparison is done against observed data.
The lowest scores are obtained by the different methods from ERAS, due to a low standard
deviation of ERAS's different methods, thereby confirming the high dispersion shown by
the boxplots. ERA5 GWA and ICON-LAM demonstrate analogous performance, with
ERAS GWA exhibiting an advantage in scaling from 10 m to 20 m; however, this tendency
undergoes a shift with increasing scaling height from 10 m to 40 m and from 10 m to 60 m.
There are no trends in the performance of Adv_Lin, Adv_Pl, and Adv_Log regarding the
scaling height, confirming the importance of the choice of the nearest height wind speed
for those methods. However, Adv_Pl and Adv_Log exhibit a good performance compared

to other methods, while Adv_Lin shows a contrast.
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Figure 24: Taylor Diagram for 10m to 20m scaling

Table 11: Taylor Skill Score for 10m to 20m scaling

Scaling 10 m to 20 m

¥ Khalfa_ERAS_GWA
< loglLaw_ERA5_GWA
» Nfaoui_ERAS_GWA
* Spera_ERAS5_GWA
1_7_obs_extra
Counihan_obs_extra
Justus_obs_extra
Khalfa_obs_extra
LogLaw_obs_extra
Nfaoui_obs_extra
Spera_obs_extra

Methods
Justus Law_obs_extra
Counihan_ Law_obs_extra
Spera_ Law_obs_extra
1 7 Law_obs_extra
Loglaw obs extra
Nfaoui Law obs extra
Khalfa Law obs extra
Counihan_ Law_ERAS5 GWA
Spera_ Law_ERAS5 GWA
Nfaoui Law ERAS5 GWA
1 7 Law_ERAS5 GWA
Justus Law_ERAS GWA
LoglLaw ERAS5 GWA
Khalfa Law ERAS GWA
Adv_ Pl ICON
Counihan_ Law ICON
1 7 Law_ICON

Scores

Methods
Spera_ Law ICON
Adv_Log ICON
LogLaw ICON
Justus Law_ICON
Nfaoui Law ICON
Khalfa Law_ ICON
Adv_Lin ICON
LogLaw ERAS
Justus Law_ERAS
1 7 Law ERAS
Counihan_ Law ERAS
Spera Law ERAS
Adv_ Pl ERAS
Adv_Log ERAS
Nfaoui Law ERAS
Khalfa Law ERAS
Adv_Lin ERAS

0.994
0.994
0.994
0.994
0.993
0.992
0.985
0.887
0.887
0.887
0.887
0.887
0.886
0.883
0.882
0.880
0.879

Scores
0.879
0.879
0.879
0.879
0.878
0.873
0.860
0.831
0.828
0.825
0.821
0.821
0.812
0.809
0.807
0.797
0.684
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Figure 25: Taylor Diagram for 10m to 40m scaling
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4 Counihan_ERAS_GWA
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Table 12: Taylor Skill Score for 10m to 40m scaling

¥ Khalfa_ERAS_GWA
« Loglaw _ERA5 GWA
» Nfaoui_ERAS_GWA
* Spera_ERA5_GWA
1_7_obs_extra
Counihan_obs_extra
Justus_obs_extra
Khalfa_cbs_extra
LogLaw_obs_extra
Nfaoui_obs_extra
Spera_obs_extra

Scaling 10 m to 40 m
Methods Scores Methods Scores
Spera_obs_extra 0.971 Counihan ICON 0.858
Justus_obs_extra 0.970 Nfaoui ICON 0.857
Counihan_obs_extra 0.970 Justus ICON 0.856
1 7 obs extra 0.969 1 7 ICON 0.856
LoglLaw_obs_extra 0.967 LogLaw ICON 0.854
Nfaoui_obs_extra 0.966 Khalfa ERAS GWA 0.847
Khalfa obs extra 0.936 Khalfa ICON 0.837
Adv_ Pl ICON 0.874 Adv_Pl ERAS 0.832
Adv_Log ICON 0.874 LogLaw ERAS 0.829
Adv_Lin ICON 0.873 Justus ERAS 0.828
Spera ERA5S GWA 0.873 Adv_Log ERAS 0.827
Counihan ERA5 GWA 0.872 1 7 ERAS 0.822
Justus ERAS GWA 0.871 Counihan ERAS 0.816
Nfaoui ERAS GWA 0.870 Spera ERAS 0.815
1 7 ERAS GWA 0.870 Adv_Lin ERAS5S 0.792
Loglaw ERAS GWA 0.868 Nfaoui ERAS 0.787
Spera ICON 0.858 Khalfa ERAS 0.759

4

8



Standard Deviation

0.0

CHAPTER III: RESULTS AND DISCUSSIONS

[3

0.0 0.5

10
Reference

' @ Adv_Lin_ICON-LAM

Methods

m 1.7 ICON-LAM A Justus ERAS

& Counihan_ICON-LAM ¥ Khalfa_ERAS

A Justus_ICON-LAM « Loglaw_ERAS
¥ Khalfa_ICON-LAM » Nfaoui_ERAS

<« LogLaw_ICON-LAM * Spera_ERAS

» Nfaoui_ICON-LAM # Adv_Log_ERAS
* Spera_ICON-LAM # Adv_Lin_ERAS
# Adv_Log ICON-LAM @ Adv_Pl_ERAS

W 1.7_ERA5_GWA

& Counihan_ERAS_GWA
A Justus_ ERAS GWA

® Adv_PI_ICON-LAM
m 17 ERAS
& Counihan_ERAS

Figure 26: Taylor Diagram for 10m to 60m scaling

Table 13: Taylor Skill Score for 10m to 60m scaling

Scaling 10 m to 60 m

¥ Khalfa_ERA5_GWA
« LoglLaw_ERA5_GWA
p Nfaoui ERAS_GWA
* Spera_ERAS_GWA

1 7_obs_extra

Counihan_obs_extra

Justus_obs_extra
Khalfa_obs_extra
LoglLaw_obs_extra
Nfaoui_obs_extra
Spera_obs_extra

Methods
Justus_obs_extra
Counihan_obs_extra
Spera_obs_extra
1 7 obs_extra
Loglaw obs_extra
Nfaoui_obs_extra
Khalfa obs extra
Adv_ Pl ICON
Adv_Log ICON
Spera ERA5 GWA
Counithan ERAS GWA
Justus ERAS GWA
1 7 ERAS GWA
Loglaw ERAS GWA
Nfaoui ERAS GWA
Adv_Lin ICON
Counihan_ICON

Scores

0.947
0.947
0.947
0.946
0.944
0.937
0.877
0.876
0.875
0.860
0.860
0.859
0.858
0.856
0.852
0.846
0.846

Methods
1 7 ICON
LogLaw ICON
Justus ICON
Spera ICON
Nfaoui ICON
Adv Pl ERA5S
Adv _Log ERAS
Adv_Lin ERAS
Justus ERAS
LogLaw_ ERAS
Khalfa ERAS GWA
1 7 ERAS
Counithan ERAS
Spera ERAS
Khalfa ICON
Nfaoui ERAS
Khalfa ERAS

Scores

0.845
0.844
0.844
0.844
0.835
0.833
0.829
0.814
0.809
0.806
0.805
0.801
0.791
0.791
0.791
0.753
0.709
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I11.3. Wind Power Simulation

The wind energy is estimated over the 3 years study time periods. As for the height scaling
methods, the datasets and scaling method’s impact on the wind power is investigated
through two analyses. The first is the estimation of the wind energy density using the scaled
wind speed from the observed 10m wind speed. The second is the use of the scaled wind
speed from the 10m simulated wind speed to estimate the wind energy density. A cut-in
and cut-out wind speed of respectively 2.0 m/s and 25.0 m/s is set on the observed wind

speed, and a relative deviation boxplot helps for the analysis.

I11.3.1. The impact of scaling methods wind speed on the

power simulation

The direct impact of seven height scaling methods on wind power simulation is evaluated.
A boxplot of the relative deviation of each methods, highlights in Figure 27, the systematic

biases associated with the different scaling methods.
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Figure 27: Boxplot of Energy Relative deviation for scaling methods wmd
energy estimation comparison at multiple height

In general, the increase in the scaling height led to an increase in the dispersion of wind
energy estimation. While Justus Law and Spera Law overestimated the wind energy,
Khalfa Law and Nfaoui Law exhibited an underestimation. In the case of 1 7 Law,
Counihan_Law and LogLaw, a slight deviation was observed.

In the context of a scaling ranging from 10 m to 20 m, all the methods presented exhibited
low dispersion. In contrast, Justus Law, Spera Law, and LoglLaw exhibited an
overestimation of energy, with errors of approximately 9.62%, 4.31% and 4.33%,
respectively. Conversely, Counihan_Law, Khalfa Law and Nfaoui_Law demonstrated an

underestimation of energy, with errors of approximately 2.32%, 5.15% and 3.28%,
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respectively. The 1 7 Law estimation demonstrated the most precise result, exhibiting a
mere 0.03% energy discrepancy.

All methods exhibited an increase in dispersion when a scaling factor was applied, ranging
from 10 m to 40 m. While Justus Law, Spera Law and LogLaw overestimated the energy,
respectively, for approximately 24.58%, 10.79% and 10.37%, Khalfa Law underestimated
the energy for approximately 10.43%. The 1 7 Law and Counihan Law exhibited a
marginal overestimation of 5.21% and 0.11%, respectively. Nfaoui Law exhibited a
marginal underestimation of 3.22%.

It was evident that all methods presented a high degree of dispersion when a scaling factor
ranging from 10 m to 60 m was employed. While Justus Law, Spera Law and LogLaw
respectively exhibited an overestimation of 29.53%, 14.87% and 9.85%, Khalfa Law and
Nfaoui_Law underestimated the wind energy estimation by 14% and 6.96%, respectively.
Finally, the 1 7 Law exhibited a marginal overestimation of 5.69% and the Counihan_Law

demonstrated a slight underestimation of around 0.88%.

I11.3.2. The impact of datasets and scaling methods wind
speed on the power simulation

The impact of both datasets and scaling methods on wind power simulation is evaluated. A
boxplot of the relative deviation of each methods, highlights in Figure 28 the systematic
biases associated with the different datasets and scaling methods. The ICON-LAM dataset
is represented with red box, ERAS with blue box and ERAS GWA with green box.
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Figure 28: Boxplot of Energy Relative deviation for datasets and scaling
methods wind energy estimation comparison at multiple height
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In general, ERAS underestimates wind energy, with a high degree of dispersion being
observed across different weather mast stations. I[CON-LAM and ERA5 GWA have been
shown to have similar estimation properties, with ICON-LAM demonstrating an advantage
in terms of low dispersion when compared to ERA5 GWA. The impact of the dataset is
found to be of greater significance than that of the scaling methods. Analogous trends were
observed at the various scaling heights. The following essay will provide a comprehensive
overview of the relevant literature on the subject.

The ERAS model demonstrates an underestimation of wind energy estimation ranging from
33.83% for Justus_Law to 75% for Adv_Lin, when scaling is conducted from 10 m to 20
m. The Adv_PI and the Adv_Log exhibited an underestimation of 49.34% and 54.06%,
respectively. With ICON-LAM, Justus Law exhibited an overestimation of wind energy
by approximately 15.42%, while Adv_Lin underestimated the wind energy by 36%. The
Adv_PI and the Adv_Log respectively presented an overestimation of 5.60% and 12.57%,
respectively. With ERAS GWA, Justus Law exhibited an overestimation of wind energy
by approximately 17.48%, while Khalfa Law demonstrated an underestimation of wind
energy by around 8.16%.

For a scaling for 10 m to 40 m, ERAS show an underestimation of wind energy estimation
between 30.17% for Justus_Law and 60.33% for Adv_Lin. Adv_Pland Adv_Log presented
respectively an underestimation of 48.01% and 50.30%. With ICON-LAM, Justus_Law
overestimated the wind energy for about 24.81% while Adv_Lin underestimated the wind
energy for about 11.27%. Adv_Pl and Adv_Log presented respectively an overestimation
of 2.74% and 2.07%. With ERAS GWA, Justus Law overestimated the wind energy for
about 31.16% while Khalfa Law underestimated the wind energy for about 14.57%.

For a scale ranging from 10 m to 60 m, the ERAS model demonstrates an underestimation
of wind energy estimation, with a range of 28.16% to 54.15% for Justus Law and Adv_Lin,
respectively. The results of the Adv_Pl and Adv_Log models indicated an underestimation
0t 48.03% and 49.60%, respectively. It is evident that ICON-LAM led to an overestimation
of wind energy by approximately 33.56% by Justus Law, while Adv_Lin resulted in an
underestimation of wind energy by around 30.93%. It was demonstrated that both Adv_P1
and Adv_Log exhibited an overestimation of 3.25% and 6.18%, respectively. Utilising
ERAS GWA, Justus_Law exhibited an overestimation of wind energy by approximately

35.68%, while Khalfa Law demonstrated an underestimation of wind energy by around
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20.50%.

Conclusion

In this chapter, all result from every evaluation were presented. The accuracy of datasets
and height scaling methods was evaluated throughout three evaluations. First the simulated
10 m wind speed from three dataset were compared against the observation. After the
accuracy of dataset and scaling method were evaluated in multiple height wind speed
estimation. Finally, the impact on wind power production were evaluated. The upcoming

part of this study is the conclusion and futures perspectives.
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This study investigates the impact of wind data variant on the wind power simulation by

first evaluating the accuracy of atmospheric numerical datasets ICON-LAM, ERAS and
ERAS5 GWA to simulate 10m wind speed over 204 meteorological stations from TAHMO,
SASSCAL WN and NCEI ISD across the Southern Africa, second evaluating the
accuracy of both dataset and 10 height scaling methods to estimate multiple heights 20 m,
40 m and 60 m wind speed over 18 weather mast stations from WASA across South Africa,
and finally to evaluate the impact of both datasets and scaling methods on wind energy
estimation over 18 weather mast stations from WASA across South Africa.

The datasets accuracy comparison on 10 m wind speed was done using 4 metrics MAE,
ME, Pearson r and PSS and the results show that ERAS GWA introduced the lowest bias,
with the lowest overestimation and the highest frequency distribution overlapping area of
the 10m wind speed while ICON-LAM introduced the opposites. However, the three
datasets have similar correlation of 10m wind speed simulation with a slight advantage of
ICON-LAM on ERAS5 and ERA5 GWA which have the same correlation. Therefore,
ERAS5 GWA well simulated the 10 m wind speed across the Southern Africa compared to
ERAS and ICON-LAM. Else, the statistical downscaling with the GWA, on ERAS, to
produce ERAS GWA, introduced a bias correction and improved the simulation accuracy
shown by ERA5S GWA. The performance of ICON-LAM is comparable to others study
Chen et al., 2024a.

The datasets and height scaling accuracy comparison on multi height wind speed was done
through two analyses using 4 metrics and a Talyor Diagram. In the first analysis, the
observed 10 m wind speed is scaled to 20 m, 40 m and 60 m using seven 07 height scaling
methods 1 7 Law, LogLaw, Counihan Law, Justus Law, Khalfa Law, Nfaoui Law and
Spera_Law, and those scaled wind speeds are compared against the observed wind speed
at 20 m, 40 m, and 60 m. This allows to evaluate the accuracy of the scaling method only
and the results show that, for all methods the errors introduced, and the dispersion increase
with the scaling height. At 20 m, the bias difference between methods and dispersion are
small then difficult to distinguished, but at 60 m, these bias differences are more visible,
and the dispersion are high. While all methods tend to underestimate the wind speed,
Justus Law, and Spera Law trend to overestimate the wind speed. 1 7 Law and

Counihan_Law show a satisfactory performance on wind speed estimation. In the second
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analysis, the simulated 10 m wind speed is scaled to 20 m, 40 m and 60 m using ten 10
height scaling methods 1 7 Law, LoglLaw, Counihan Law, Justus Law, Khalfa Law,
Nfaoui Law, Spera Law, Adv_Lin, Adv_Pl and Adv Log except for ERAS GWA which
use the seven 07 previous height scaling methods. Those scaled wind speeds are compared
against the observed wind speed at 20 m, 40 m, and 60 m. This allows to evaluate the
accuracy of both datasets and the scaling methods, and the results show that, the impact of
datasets prior that of scaling methods, with ERAS models which clearly underestimated the
wind speed. ICON-LAM and ERAS5 GWA have similar performance with a slight
advantages of ICON-LAM. A same trend was observed for all methods and datasets during
the three-scaling range, except Adv_Lin, Adv_Pl, and Adv_Log. The performance of those
three methods show that the choice of nearest reference heights impacts the accuracy of the
estimation. The results obtained are comparable with others study Chen et al. 2024b.

The impact of datasets and height scaling methods on the wind power simulation was also
that through two analyses. The First, show the direct impact of height scaling methods on
wind power simulation, where the observed 10 m wind speed, scaled to 20 m, 40 m and 60
m using the seven 07 previous height scaling methods, are used for the wind energy
estimation over the 3 years. The result followed the same trend as that of the wind speed
estimation. | 7 Law and Counihan Law have a satisfactory performance with a marginal
overestimation of 5.69% and a slight underestimation of 0.88%, respectively. The last
analysis shows the impact of both dataset and scaling methods on wind power simulation.
Similar, the accuracy of the estimation followed the same trend as that of the wind speed
estimation. ERAS critically underestimated the wind energy for Adv_Lin, of up to 54.15%
in the context of a scaling from 10 m to 60 m and of up to 75% in the context of a scaling
from 10 m to 20 m. Advanced Law highly depend on the choice of nearest reference
heights. Else, the results of ICON-LAM for Adv_Lin -36% compared to Adv_Pl +5.60%
and Adv_Log +12.57% in the context of a scaling from 10 m to 20 m shows Adv_Lin did
not well estimate the wind speed and the wind energy as it do not take into account, the
atmosphere stability and surface roughness impacts.

All in all, this study reveals the performance of different wind speed height scaling methods
to scale wind speed from 10 m to multiple heights and how this would impact on the
subsequent wind power calculation. Similar results are found using different wind speed

scaling methods, while the choice of the numerical atmospheric data set seems more to be
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the decisive factor on the accuracy of wind speed and wind power calculation.

One of the constraints is the limited study area of the wind power simulation. Only the 18
weather mast stations available data were used. More weather mast stations imply more
locations, more wind turbine locations or in general more potential wind farm locations
which could have been investigated for a better validation of the results. Another constraint
of this study is the limited time span which is only 3 years from 2017 to 2019. A large time
span could allow the coverage of more climate events which will influence the outputs of
this study as the wind speed will be impacted. Finally, this study did not include any real
wind turbines. The wind power simulation comparison of this study did not use any
available real wind turbine power generation data for a comparison against dataset and
methods simulation data. This could enhance the study results as real wind turbine involved
a parameter such as the turbine efficiency and the capacity factors, which affect a lot the
wind power and are critical parameters for policy makers.

Therefore, the future perspective of this current study is it expansion to a global scale. The
datasets and methods accuracy could be investigated over an entire continent such as
Africa, during a study period of 10 years and more. This will help to highlight the
interannual variability, the climate impact as well as regional impact on wind power
simulation. Else, the study could include the use of weather mast stations, which
measurement height are close to modern wind turbines hub height i.e., 100 m, which will

put the study close to real-life situations and increase the accuracy of the results.
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APPENDICES
Table 14: Summary of data used
Datasets Labels Sources
TAHMO https://tahmo.org/
SASSCAL WN  https://sasscalweathernet.org/

OBSERVED NCEI ISD

WASA
ERAS All
GWA All

ICON-LAM  All

https://www.ncei.noaa.gov/products/land-based-

station/integrated-surface-database

https://wasadata.csir.co.za/wasal/WASAData

https://cds.climate.copernicus.eu/datasets/reanaly

sis-eraS-single-levels?tab=overview

https://globalwindatlas.info/en/
https://doi.org/10.26165/JUELICH-
DATA/JYGQ65
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Table 15 : Summary of wind speed scaling results

APPENDICES

20 m 40 m 60 m
MAE | ME Pearsonr | PSS | MAE | ME Pearsonr | PSS | MAE | ME Pearson r | PSS

1 7 Law 0.353 | -0.043 0.995 | 0.982 | 0.820 | -0.011 0.976 | 0.952 | 1.151 | -0.094 0.955 | 0.944
Counihan_Law | 0.363 | -0.080 0.995 | 0.983 | 0.799 | -0.060 0.976 | 0.953 | 1.133 | -0.075 0.955 | 0.943

Justus Law 0.423 | 0.264 0.995 | 0.959 | 1.035 | 0.635 0.975 1 0.919 | 1.440 | 0.886 0.951 | 0.898

Obs_extra | Khalfa Law 0.435| 0.018 0.994 | 0.944 | 0.879 | 0.071 0.971 | 0.896 | 1.314 | 0.158 0.944 | 0.861
LogLaw 0.365 | 0.059 0.995 | 0.972 | 0.879 | 0.167 0.976 | 0.955 | 1.213 | 0.182 0.955 | 0.945

Nfaoui_Law 0.365 | -0.006 0.995 | 0.968 | 0.823 | 0.107 0.975 1 0.943 | 1.165 | 0.155 0.951 | 0.921

Spera_Law 0.360 | 0.140 0.995 | 0.968 | 0.888 | 0.379 0.976 | 0.932 | 1.244 | 0.529 0.951 | 0.919

1 7 Law 1.808 | -0.121 0.819 | 0.929 | 2.004 | -0.191 0.795 1 0.932 | 2.204 | -0.214 0.765 | 0.926
Counthan_Law | 1.787 | -0.229 0.819 | 0.931 | 2.028 | -0.366 0.795 | 0.928 | 2.233 | -0.456 0.765 | 0.916

Justus Law 1.596 | 0.169 0.817 1 0.923 | 1.779 | 0.469 0.793 1 0.911 | 2.061 | 0.742 0.763 | 0.910

ERAS5 GWA | Khalfa Law 1.608 | 0.037 0.815 | 0.918 | 1.756 | -0.067 0.787 | 0.901 | 1.894 | -0.200 0.759 | 0.882
LogLaw 1.782 | -0.088 0.819 1 0.929 | 1.984 | -0.117 0.795 1 0.931 | 2.168 | -0.186 0.765 | 0.932

Nfaoui Law 1.700 | -0.066 0.817 1 0.929 | 1.846 | -0.138 0.793 1 0.922 | 1.970 | -0.141 0.763 | 0.910

Spera_Law 1.680 | -0.002 0.817 1 0.922 | 1.805 | 0.172 0.794 | 0.921 | 1.952 | 0.265 0.763 | 0.924

1 7 Law 1.626 | -0.091 0.814 | 0.949 | 1.874 | -0.168 0.772 1 0.942 | 2.107 | -0.141 0.754 | 0.942

ICON-LAM | Counihan Law | 1.623 | -0.134 0.814 | 0.953 | 1.851 | -0.327 0.772 | 0.946 | 2.099 | -0.348 0.754 | 0.947
Justus Law 1.626 | 0.205 0.813 1 0.944 | 1.856 | 0.485 0.769 | 0.934 | 2.097 | 0.805 0.747 1 0.916

II




APPENDICES

Khalfa Law 1.574 | -0.003 0.810 | 0.943 | 1.687 | -0.058 0.762 | 0.925 | 1.873 | -0.070 0.734 | 0.900
LogLaw 1.607 | -0.020 0.814 | 0.953 | 1.859 | -0.145 0.772 1 0.943 | 2.121 | -0.134 0.754 1 0.939
Nfaoui Law 1.591 | -0.043 0.813 1 0.953 | 1.763 | -0.128 0.769 | 0.945 | 1.945 | 0.005 0.747 | 0.937
Spera_Law 1.596 | 0.073 0.813 1 0.950 | 1.743 | 0.117 0.769 | 0.953 | 2.004 | 0.295 0.748 | 0.945

Adv_Lin 1.968 | -1.064 0.795 1 0.905 | 1.663 | -0.346 0.801 | 0.942 | 2.169 | -0.961 0.763 | 0.899
Adv_ Pl 1.574 | -0.046 0.821 | 0.955 | 1.616 | -0.080 0.802 | 0.957 | 1.748 | 0.017 0.796 | 0.952
Adv Log 1.608 | -0.017 0.814 | 0.953 | 1.639 | -0.075 0.801 | 0.956 | 1.758 | 0.101 0.795 | 0.955
1 7 Law 2.669 | -1.201 0.819 | 0.825 | 2.643 | -1.528 0.795 | 0.813 | 3.074 | -1.724 0.765 ] 0.812

Counihan Law | 2.701 | -1.240 0.819 | 0.821 | 2.701 | -1.614 0.795 | 0.806 | 3.155 | -1.789 0.765 | 0.795
Justus Law 2.423 | -0.897 0.817 | 0.822 | 2.188 | -0.838 0.793 | 0.857 | 2.358 | -0.743 0.763 | 0.865
Khalfa Law 2.521 | -1.006 0.815 | 0.806 | 2.381 | -1.165 0.788 | 0.810 | 2.616 | -1.210 0.760 | 0.805
LogLaw 2.617 | -1.141 0.819 | 0.831 | 2.587 | -1.444 0.795 | 0.825 | 3.026 | -1.642 0.765 | 0.815
Nfaoui_Law 2.582 | -1.093 0.817 | 0.811 | 2.460 | -1.378 0.793 | 0.808 | 2.753 | -1.593 0.763 | 0.798
Spera_Law 2.520 | -1.019 0.817 | 0.824 | 2.355 | -1.073 0.794 | 0.829 | 2.606 | -1.192 0.763 | 0.851

ERAS

Adv_Lin 3.566 | -2.224 0.809 | 0.700 | 2.823 | -1.746 0.809 | 0.759 | 2.884 | -1.577 0.816 | 0.790
Adv_PI 2.651 | -1.312 0.819 | 0.803 | 2.559 | -1.219 0.819 | 0.807 | 2.711 | -1.364 0.821 | 0.813
Adv_Log 2.729 | -1.386 0.816 | 0.810 | 2.569 | -1.339 0.815 | 0.810 | 2.749 | -1.412 0.819 | 0.809

III



