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 ABSTRACT 

ABSTRACT 

With the need for a shift from the use of fossil fuels to renewable energy, wind technology is 

one of the promising, clean, renewable, and cost-effective energy sources. For sub-Saharan 

regions where 600 million people still lack electricity, wind energy appears to be an opportunity 

to assure energy security especially, in southern Africa, where abundant wind energy potential 

exists. Basically, wind technology consists of the use of a wind turbine, which extracts the 

kinetic energy of moving air through a rotor. This implies the knowledge of wind speed at the 

rotor level, known as Hub height (around 100m), but wind measurements are typically done at 

ground level (around 10m). Therefore, it is crucial to find alternative ways for wind data 

assessment at the rotor level. Numerical atmospheric datasets and height scaling methods seem 

to be solutions. This study evaluates the impact of using different height scaling methods with 

and without numerical atmospheric datasets, the high-resolution ICON in Limited Area Mode 

(ICON-LAM), the ERA5 reanalysis, and the statistical downscaling variant of ERA5 

(ERA5_GWA) on the multiple heights wind speed calculation and subsequently, on the wind 

power estimation over southern Africa from 2017 to 2019. The results show that ERA5_GWA 

outperforms ERA5 and ICON-LAM for the 10m wind speed simulation. ERA5 introduced the 

highest bias with an underestimation of the wind power at 20m, 40m and 60m, regardless of 

the used wind speed height scaling method. Most of the scaling methods performed similarly 

except for the Justus_Law, which introduced an overestimation of the wind power, and the 

Linear interpolation, which introduced an underestimation. The accuracy of scaling methods 

using vertical levels of wind speed from numerical atmospheric datasets is highly dependent on 

the choices of the nearest levels close to the target height wind speed. This study reveals that 

the choice of datasets has a greater impact than wind speed height scaling on wind energy 

assessment.  

 

Keywords: ICON-LAM; ERA5; Global Wind Atlas; Wind Speed; Height Scaling; Wind 

Power; Africa. 
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 RESUMÉ 

RESUMÉ 

Avec la nécessité de passer des combustibles fossiles aux énergies renouvelables, la technologie 

éolienne est l'une des sources d'énergie prometteuses, propres, renouvelables et rentables. Pour 

les régions subsahariennes où 600 millions de personnes n'ont toujours pas accès à l'électricité, 

l'énergie éolienne semble être une opportunité d'assurer la sécurité énergétique, en particulier 

en Afrique australe, où le potentiel éolien est abondant. Fondamentalement, la technologie 

éolienne consiste à utiliser une éolienne qui extrait l'énergie cinétique de l'air en mouvement à 

l'aide d'un rotor. Cela implique de connaître la vitesse du vent au niveau du rotor, appelée 

hauteur de moyeu (environ 100 m), mais les mesures du vent sont généralement effectuées au 

niveau du sol (environ 10 m). Il est donc essentiel de trouver d'autres moyens d'évaluer les 

données éoliennes au niveau du rotor. Les ensembles de données atmosphériques numériques 

et les méthodes de mise à l'échelle en hauteur semblent être des solutions. Cette étude évalue 

l'impact de l'utilisation de différentes méthodes de mise à l'échelle en hauteur avec et sans 

ensembles de données atmosphériques numériques, à savoir le modèle ICON haute résolution 

en mode zone limitée (ICON-LAM), la réanalyse ERA5 et la variante de réduction d'échelle 

statistique de l'ERA5 (ERA5_GWA) sur le calcul de la vitesse du vent à plusieurs hauteurs et, 

par conséquent, sur l'estimation de la puissance éolienne en Afrique australe de 2017 à 2019. 

Les résultats de l’évaluation montrent que ERA5_GWA a une meilleure représentation de la 

vitesse du vent a 10m comparé á ERA5 et ICON-LAM entre 2017 et 2019 dans la partie australe 

de l’Afrique. ERA5 introduit un biais plus élevé avec une sous-estimation de la puissance 

éolienne à 20 m, 40 m et 60 m, quelle que soit la méthode utilisée pour la mise à l'échelle de la 

vitesse du vent. La plupart des méthodes de mise à l'échelle ont donné des résultats similaires, 

à l'exception de la méthode Justus_Law, qui a introduit une surestimation de la puissance 

éolienne, et de l'interpolation linéaire, qui a son niveau a introduit une sous-estimation. La 

précision des méthodes de mise à l'échelle utilisant les niveaux verticaux de vitesse du vent 

provenant des ensembles de données atmosphériques numériques dépend fortement du choix 

des niveaux les plus proches de la hauteur cible. Cette étude révèle que le choix des ensembles 

de données a un impact plus important que les méthodes de mise à l'échelle de la vitesse du 

vent lors de l’estimation de l'énergie éolienne.  

Mots-clés : ICON-LAM ; ERA5 ; Atlas mondial des vents ; Vitesse du vent ; Mise à l'échelle 

en fonction de la hauteur ; Énergie éolienne ; Afrique.  
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 GENERAL INTRODUCTION 

INTRODUCTION 

 

The contemporary world is experiencing an increase in population, which is projected to 

reach 9.7 billion by 2050, and this, eventually, will lead to a corresponding global energy 

demand increase (Gerland et al., 2022). Fossil fuels, including coal, oil and natural gas, 

account for more than 80% of the global energy supply (Holechek et al., 2022) as shown in 

Figure 1 (Energy Institute, 2025). It is evident that the energy sector is a significant 

contributor to climate change, with the various methods of utilising fossil fuels being a 

primary factor in greenhouse gas (GHG) emissions (IEA, 2025a). Despite its negligible 

contribution to greenhouse gas emissions, the African continent is one of the most affected 

by the effects of climate change, due to its vulnerability, lack of resilience, and limited 

mitigation efforts (Trisos et al., 2022). Moreover, in sub-Saharan Africa, it is estimated that 

approximately 600 million people still lack access to electricity (IEA, 2025b), and the 

African continent has also been subject to a series of extreme weather events and ongoing 

energy poverty (Nhamo et al., 2025). Therefore, there is an urgent necessity to shift from 

fossil fuels to renewable energy sources.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Wind energy is a promising renewable energy source offering significant advantages since 

it is environmentally clean, sustainable, and has seen efficiency improvement and cost has 

 
Figure 1: World Share of direct primary energy consumption by source in 2024 

(Energy Institute, 2025) 



 

 

3 

 

 GENERAL INTRODUCTION 

dropped substantially over time  (Kara & Sahin, 2023). This makes it an attractive choice 

for future energy needs. Wind turbines harness the kinetic energy of the wind by turning a 

rotor, relying on varying wind speed, which fluctuates both spatially and temporally 

(Gumuła et al., 2017). Therefore, the knowledge of reliable wind resources at the rotor level 

is fundamental to energy policy planning and wind project development. However, 

standard wind measurements are taken at low heights below the rotor and close to the 

ground (Barthelmie et al., 2016). 

The use of atmospheric numerical datasets to assess the wind resources for downstream 

wind energy applications is one solution to measurement issues. These atmospheric 

numerical datasets are simulated products, and their output data influence the estimation of 

wind energy (Emeis, 2018). Between these simulated datasets, we distinguished the fifth 

version of the ECMWF reanalysis (ERA5) dataset, the ERA5_Global Wind Atlas 

(ERA5_GWA), which is a statistical downscaling variant of ERA5, and the ICOsahedral 

Non-hydrostatic Limited Area Model (ICON-LAM), which is a dynamical downscaling 

dataset (Chen et al., 2024b). Despite continuous improvements to the many available 

simulated wind datasets, significant questions remain about their reliability for wind power 

simulation. Another approach to addressing measurement issues is to use extrapolation 

techniques to estimate the wind speed at the turbine rotor level from a given measurement 

height. These techniques, known as height scaling methods, are tools that have 

assumptions, such as the surface roughness length, which depend heavily on land cover. 

Especially in regions with sparse data, the assumptions of height scaling methods are often 

poorly defined, which can affect the accuracy of wind energy estimation. Consequently, 

the deployment of wind energy technology is limited in such regions, for example, Southern 

Africa. Due to all these unknowns, it is crucial to evaluate how different wind speed data 

variant affects the estimation of wind energy production in Southern Africa, a region with 

abundant wind potential. 

The evaluation of wind speed data comes with several questions. How do height scaling 

methods affect the wind speed estimation? What is the impact of dataset variability on the 

wind power simulation? And to what extent do wind speed datasets and height scaling 

models influence the accuracy of wind power simulations in Southern Africa? Answering 

those questions help to understand the impact of dataset and scaling methods on wind 

energy estimation. 
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One hypothesis is that the height scaling methods introduce new uncertainty in wind speed 

estimation since these methods are designed for a specific weather condition and the type 

of terrain. Another hypothesis is that using different simulated datasets leads to different 

wind power estimations for the same location under the same conditions.  

Therefore, this study aims to evaluate the impact of different datasets and height scaling 

methods on wind power estimation, through three main objectives, which will help 

policymakers and future wind projects in the region. The first objective is to compare the 

simulated 10 m wind speeds from the ERA5 reanalysis dataset, the ERA5_GWA statistical 

downscaling dataset, and the ICON-LAM dynamical downscaling dataset against in-situ 

10m wind speed from over more than 200 stations in southern Africa for a validation. The 

second objective is to evaluate the influence of different height scaling methods on the 

accuracy of the scaled wind speeds at various hub heights. The last objective is to quantify 

the combined impact of the datasets and the height scaling methods on the simulated wind 

power. 

The first section of this study is a bibliographic review. It begins with the history and the 

background of wind technology. A comprehensive review of existing literature on wind 

resource assessment, atmospheric numerical datasets, height scaling methods, and wind 

energy estimation will help to identify any gaps and limitations in the current wind power 

generation technology. 

The second section is the Materials and Methods section. This section includes the location 

of the study site. It also includes a description of models used and how they were employed. 

All the metrics and tools involved in the analysis are presented. 

In the next section Results and Discussion, the results of the dataset performance at 10m, 

the height scaling methods evaluation, and the estimation of wind energy by method and 

dataset are presented and discussed. 

Finally, in Conclusion and Perspectives section, a summary of the entire study is provided. 

Then, recommendations for future study directions are highlighted for further improvement 

of the study. 
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CHAPTER I: LITERATURE REVIEW 

Introduction 

This chapter starts with the background of wind technology in which the history and the 

development of wind technology are presented. The chapter continues with a review of the 

wind resources, the resource assessment, the atmospheric numerical models, and the scaling 

methods. Finally, the chapter ends with a gap analysis, which helps to identify the lack of 

existing studies. 

I.1. History and Development of Wind Energy 

The use of wind power is not a new thought. The wind technology was not primarily 

developed for generating electricity, but rather for milling and pumping purposes (Kaldellis 

& Zafirakis, 2011). One of the earliest windmills, a machine that utilises wind power, was 

discovered in ancient Persia,  nowadays known as eastern Iran, around the 10th century 

(Pasqualetti et al., 2004). In Europe, it was later in the 12th century that windmills became 

common, particularly in northern countries such as the Netherlands and England, where 

they were used in agriculture and industry for many years (Fleming & Probert, 1984).  It 

was finally at the end of the 19th century that Charles F. Brush in Cleveland, Ohio, built the 

first larger automatically operated wind turbine, which generated electricity with a power 

of 12kW (Burton et al., 2011). Brush’s wind turbine demonstrates its ability to convert the 

power of the wind into electricity. Figure 2 shows the illustration of Brush’s Wind turbine 

(Righter, 1996). 

The oil crisis in the second half of the 20th century, combined with the development of 

technology in the fields of aerodynamics, power electronics, and material sciences, 

contributed greatly to the fast evolution of wind turbine design and subsequently stimulated 

investment and innovation in renewable energies, including wind power (Thomas & 

Robbins, 1980). Denmark, like a pioneer, played a key role in the commercialisation of 

wind power by exporting wind turbines, especially to the United States and initiated a 

deployment of grid-connected wind turbines (Gipe, 1991). With the improvement of turbine 

efficiency, policies which support the global wind energy sector, environmental energy 

security and climate change issues, has been exponentially growing since the 2000s. The 

world’s global wind power installed capacity moves from just over 17GW to more than 

1,100 GW in 2024 (IRENA, 2025), and then wind energy is one of the fastest-growing 
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renewable sources of electricity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nowadays, wind turbines are in the range of megawatt installed capacity with a hub height 

exceeding 100 meters and over 150 meters rotor diameters compared to a few kilowatts 

with small meter heights and diameters in their early stage. Otherwise, increasingly 

offshore wind turbines are emerging due to the more consistent and higher offshore wind, 

but onshore wind turbines are the most installed to date. 

 

I.2. Wind Technology 

I.2.1. The wind turbine 

A wind turbine is the main technology of wind power generation. It can be onshore or 

offshore, depending on whether it is installed on land or at sea. Onshore wind turbines are 

considered the most mature segment of wind power due to their long deployment history, 

lower installation costs, and well-established infrastructure compared to offshore 

alternatives (Tumse et al., 2024), but suffer from land availability and turbulence. On the 

other hand, offshore wind systems have the advantage of higher and stable wind speeds but 

face complex installation, maintenance, and grid connection challenges. 

 

Figure 2 : Brush’s wind turbine (Righter, 1996) 
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Based on the rotor axes orientation, we can distinguish two principal types of turbines: The 

Horizontal Axis Wind Turbines (HAWTs) and the Vertical Axis Wind Turbines (VAWTs). 

HAWTs’ rotor shafts are aligned horizontally and face into the wind, then use pitch and 

yaw mechanisms for control (Elkodama et al., 2023), which led them to a higher 

aerodynamic efficiency and made them the most commercially viable wind turbine. On the 

opposite side, VAWTs’ rotors are aligned vertically and benefit from their ground-level 

gearbox placement, which is useful for maintenance purposes, but they have lower 

aerodynamic efficiency and higher fatigue loads (Ghoneam et al., 2024). A typical HAWT 

and VAWT is illustrated in Figure 3 (Rashad et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the size, we have small wind turbines with an installed capacity up to 40kW, 

medium wind turbines with an installed capacity in the range of 40kW to 1MW, large wind 

turbines with an installed capacity of 1MW to 10MW and ultra-large wind turbines for 

more than 10MW (Kassa et al., 2024). The size of a wind turbine is influenced by some 

characteristics, such as the hub height and the rotor’s diameter. The more the rotor’s 

diameter and the hub height are, the better the wind turbine can harvest wind energy, 

because a higher hub height gives access to stronger winds and longer rotor blades increase 

the swept area of the rotor (Lee et al., 2019). Figure 4 shows the basic main part of a wind 

turbine (Aminzadeh et al., 2023). Additional parameters are the control system and the 

 

Figure 3 : Illustration of Typical HAWT (A) and VAWT (B) (Rashad et al., 2017) 
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advanced material used. Advanced materials like carbon composite and a digitalised control 

system help to optimise the performance of the turbine as they allow a great bending 

strength of the blades and a good wind capture (Tolasa & Furi, 2025). 

Nowadays, wind turbines are typically from medium range to ultra large, using a bigger 

rotor diameter and hub height, and are built with advanced materials and digitalised control 

systems. All those improvements in technology help to improve not only the overall 

efficiency but also reduce the construction and maintenance costs. Therefore, wind 

technology becomes more competitive with fossil fuels (Mehta et al., 2024). However, with 

all those improvements, the speed at which wind blows throughout the rotors remains the 

most critical factor for a wind turbine operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I.2.2. Wind Power production 

To produce wind energy, a wind turbine is needed to convert the kinetic energy of moving 

air into mechanical energy and then into electricity through a generator. The power of the 

wind 𝑃𝑤𝑖𝑛𝑑 is shown by Manwell et al. (2009): 

 

Figure 4 : Wind Turbine Schematic (Aminzadeh et al., 2023) 
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 𝑃𝑤 =
1

2
𝜌𝐴𝑣3 (1) 

 

 𝑃𝑤/𝐴 =
1

2
𝜌𝑣3 (2) 

Where 𝑃𝑤  is the power of the moving air (in 𝑊), 𝑃𝑤/𝐴 is the wind power density (in 

𝑊/𝑚²),  𝜌 is the air density (in 𝑘𝑔. 𝑚−3), 𝐴 the swept area of the rotors (in 𝑚2 ) and 𝑣3 the 

wind velocity (in 𝑚. 𝑠−1). 

The real wind power extracted by the wind turbine rotor is less than 𝑃𝑤  . In 1919, Albert 

Betz established the theoretical power fraction that can be extracted from an ideal wind 

stream. Using the difference between upstream and downstream wind power, he estimated 

a limit of 59%,  known as the Betz limit, of wind power which can only be converted to 

mechanical power (Şen, 2013). Then every wind turbine is characterised by a power 

coefficient 𝐶𝑝, which is the ratio between the wind power extracted by the turbine and the 

power of the wind passing through the rotors.  

 𝐶𝑝 =  
𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑

𝑃𝑤
 (3) 

 

 𝐶𝑝𝐵𝑒𝑡𝑧 =
16

27
× 100 ≈ 59.3% (4) 

Where 𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 is the power of the wind extracted by the wind turbine, and 𝐶𝑝𝐵𝑒𝑡𝑧 the 

Betz limit. 

For an efficient and protective operation, a cut-in and cut-out wind speed is set for a wind 

turbine. Cut-in wind speed is the lowest wind speed at which the turbine starts energy 

generation, and the cut-out wind speed is the highest operational wind speed for a wind 

turbine. While a cut-in wind speed is designed to allow the turbine to produce sufficient 

energy to overcome the mechanical resistance, the cut-out wind speed allows a turbine to 

avoid damage from extreme wind events (Dahham et al., 2023).   

 

I.3. Wind Resources 

The wind power production is proportional to the cube of the wind speed, making wind 

speed a crucial factor for energy generation (Manwell et al., 2009). Then, for a wind energy 

project,  knowledge about wind resources is essential for the turbine site selection, size 
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selection and cost evaluation  (Duranay et al., 2024).       

 

I.3.1. The wind speed variability 

The wind speed varies from one location to another, even if they are close together. This 

depends mostly on local topography and the land cover. The spatial variability of wind 

speed in coastal and rough areas is very high (Cerralbo et al., 2015).  

The wind speed also varies in time. It varies from a few seconds to a few minutes within 

the same area. This variability, as measured by an anemometer, gives rise to what we call 

turbulence and gust. While turbulence is the wind speed fluctuation around its mean value, 

a gust is a discrete event that occurs within a turbulence wind field. In a study of wind gust 

characteristics done by Hu et al.  (2018), the authors explain the wind gust and its impact 

on wind turbine loads. The results of Zheng et al. (2022) study show that a higher turbulence 

intensity leads to a higher turbine blade fatigue. The temporal variability can also be on 

daily time scales, giving a variation in wind speed between day and night, mainly depending 

on the incoming solar radiation (Ashkenazy & Yizhaq, 2023). Else, for a much bigger time 

scale, we can distinguish seasonal, annual and interannual variation, which are driven by 

the climate pattern (Stuecker, 2023). Pryor et al. (2018) have shown that wind variability, 

especially interannual variability, directly affects the wind energy production.  

Finally, wind speed varies with height and normally increases when height increases. Close 

to the ground, the wind is affected by the surface friction, resulting in a reduction of its 

speed (Bagavathsingh et al., 2016). The vertical wind profile is affected by the atmospheric 

stability conditions. The knowledge about whether the atmospheric conditions are neutral, 

stable or unstable is important because, depending on the condition, the wind gradient can 

be intensified or reduced. Løvøy Alvestad et al. (2024) concluded that a good understanding 

of the impact of atmospheric conditions on wind turbines is crucial for the turbine efficiency 

and energy production. 

 

I.3.2. The wind resources Assessment 

One of the direct and reliable methods used to assess the wind resources is the In-Situ 

Measurement-Based Estimation. It consists of the use of cup/propeller anemometers, sonic 

anemometers, or wind vanes for wind speed data collection. Figure 5 illustrates the different 

types of anemometers. Most measurements occur at ground level, typically at 10m height. 
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Otherwise, with the use of a weather mast, measurement can be done at a higher height 

(Barthelmie et al., 2016). In-situ measurement offers a high temporal resolution and is 

accurate at the local assessment level. However, it is cost-limited due to instruments used 

which are expensive and has a height constraint as the measurement height cannot align 

with modern wind turbine hub height which is around 100 m. Finally, those instruments 

are installed in discrete position then can only measure a wind speed at a specific 

geographic location not over an entire area (Sempreviva et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

Another way to perform wind speed measurement is to use the remote sensing method. This 

technique is based on the Doppel Effect principle to determine the wind speed. It can be 

used either for onshore wind or for offshore wind using a LiDAR (Light Detection And 

    
Figure 5 : a-Cup anemometer, b-Propeller Anemometer, c-Sonic anemometer,  d-Wind 

vane (Mzough & King Ededem, 2023) 
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Ranging). Pichugina et al. (2012) described and successfully used a Doppler LiDAR 

system. A satellite-based sensor can also help to evaluate wind speed. Satellite data for the 

offshore region integrates the SAR (Synthetic Aperture Radar) Technique. It consists of 

observing capillary waves from the ocean surface and determining a spatial gradient (Koch 

& Feser, 2006).  

Apart from the measurement methods, a wind resource assessment through statistical 

methods and numerical models is possible. The Weibull distribution is one of the statistical 

methods. This method is based on two main parameters: the scale parameter c and the shape 

parameter k (Carta et al., 2009). Many researchers use the Weibull distribution for wind 

resource estimation. The work of Bulut & Bingöl, (2024) concluded that the Weibull 

distribution is the most used statistical method between 2014 and 2023. Some other 

statistical methods which are also widely used are the Rayleigh distribution, derived from 

a fixed shape parameter of the Weibull distribution and the Gaussian distribution (Gorla et 

al., 2020). In terms of numerical models, we have the reanalysis dataset, the Wind Atlas, 

and the others simulation dataset. They are widely used for wind mapping, short-term 

measurement correction, bias correction and validation purposes, but always need a 

validation against real data (Charabi et al., 2011). 

A lot of uncertainties engage in wind resource assessment. One uncertainty is a 

measurement error. It is related to a calibration drift and flow distortion when using 

instruments like anemometers and lidars during in-situ and remote sensing measurements 

(Klaas-Witt & Emeis, 2022). The spatial representativity of numerical model and satellite 

data is another uncertainty. This is due to their coarse spatial resolution. Otherwise, it is 

also relevant to consider the impact of climate change, which affects the climate variability 

and a long-term trend in wind regime. Poor quality or sparse measurement data can lead to 

biased wind farm models, especially when outlier data are not well detected and treated 

(Zou & Djokic, 2020). 

 

I.3.3. The wind resources in Africa 

Compared to Europe, where there is a rapid evolution, wind technology in Africa is still at 

an early stage of development. With its diversity in geography from coastal windier zones 

to highland plateaus, Africa has a huge wind energy potential and offers a suitable area for 

a large-scale wind farm. The African Renewable Energy Initiative (AREI) estimates that 
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Africa could generate 10GW of wind power by 2020 and over 300GW by 2030 (Pouget, 

2019). Wind energy in Africa is not only abundant but also economically viable in many 

regions when supported by effective policies (Abbas et al., 2020). Therefore, wind energy 

could play a crucial role in Africa’s energy mix by helping the continent shift away from 

fossil fuels and thereby enhance energy security (Haidi & Cheddadi, 2022). Despite its huge 

potential, less than 1% of Africa’s electricity generation is covered by wind energy, since 

many African countries suffer from a lack of strong energy policy, scarcity of localised 

wind resources data, limited financing and international investment access, a weak grid 

infrastructure and transmission capacity (Agbetuyi et al., 2013).   

With the use of Geographic Information System (GIS), Mentis, (2013) analysed the 

potential of onshore wind power on the African continent at 1 km grid resolution. The 

analysis shows that countries such as South Africa, Sudan, Algeria, Egypt, Libya, Nigeria, 

Mauritania, Tunisia, and Morocco have a high energy yield, while countries such as 

Equatorial Guinea, Gabon, the Central African Republic, Burundi, Liberia, Benin, and 

Togo have a small wind potential. In the same direction, Elsner (2019) evaluated the 

technical offshore wind potential over Africa. The authors found that one third of African 

coastal countries, including Mozambique, South Africa, Somalia, Madagascar, and 

Morocco, have valuable resources.  

Mas’ud et al. (2017) reviewed the wind energy potential in Cameroon, Nigeria, and South 

Africa. The study highlights the lack of a renewable energy policy in Cameroon but 

concluded that the use of wind energy for electricity generation in Cameroon would be 

helpful in the dry season when hydro power is not available. Otherwise, the study found 

that the implementation of wind energy in Nigeria is slow, even if a clear policy exists. 

Finally, the study suggested that Cameroon and Nigeria can learn from the renewable 

energy progress, especially the wind’s policy sector and development in South Africa. 

 

I.4. Atmospheric Numerical Models 

Emeis (2018) summarised his jobs by raising the point that it is not feasible to use direct 

in-situ measurement at modern wind turbine hub height. Then the remote sensing method 

and numerical models seem suitable for today’s wind assessment. Atmospheric numerical 

models are tools that help to understand past observations and to provide accurate 

forecasting of the future Earth’s climate system. 
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I.4.1. Overview of Atmospherics Numerical Models 

Several atmospheric models exist. Here is just an overview of some of them 

I.4.1.1. Reanalysis Dataset 

Reanalysis is a method of combining numerical models data with past observations for the 

elaboration of a consistent historical dataset. This method involves the use of data 

assimilation to overcome observations missing data perfectly (Brönnimann et al., 2018). 

ERA5 is the fifth version of the ECMWF atmospheric dataset produced in collaboration 

with the Copernicus Climate Change Service (C3S). A multi-height dataset spanning 137 

levels from ground level to 80 km, ERA5 provides data from 1940 to the present. With 1-

hour temporal resolution and 31 km spatial resolution, ERA5 use 4D-Var assimilation and 

is one of the most used global reanalysis datasets, but it suffers from its coarse resolution, 

which leads to an underestimation of peak wind events and local effects (Hersbach et al., 

2020).  

Another reanalysis dataset is MERRA-2, developed by the Global Modelling and 

Assimilation Office of NASA. MERRA-2 covers the period from 1980 to the present and 

uses 3D-Var assimilation. Otherwise, it offers multiple height data with a temporal 

resolution of 1 hour and a spatial resolution of 50km. As for ERA5, MERRA-2 also suffers 

from a coarse resolution (Gelaro et al., 2017). The Japan Meteorological Agency JMA 

produced JRA 55, a 3-hour dataset with 4D-Var assimilation. JRA55 has a spatial 

resolution of 55 km and a cover period from 1958 to the present time (Kobayashi et al., 

2015). 

The National Oceanic and Atmospheric Administration (NOAA) in collaboration with 

some agencies, produced 3 reanalysis datasets. The first, 20CRv3, is produced with the 

collaboration of CIRES and DOE. 20CRv3 is known as the longest reanalysis as it covers 

a period from 1836 to 2015. It has a spatial resolution of 75 km and provides 3 hours of 

data (Slivinski et al., 2019). The second, called NCEP-NCAR R1, is a collaboration of 

NCEP and NCAR. Covering a period from 1948 to the present, it has one of the coarsest 

resolutions, 250 km for the spatial resolution and  providing 6 hours data (Hartmann, 2025). 

The third, call CFSR,  is the first NCEP dataset, providing 1-hour data with a resolution of 

38 km (Saha et al., 2010).    

There are other reanalysis datasets with a good resolution. We can cite COSMO-REA6,  

developed by Hans-Ertel-Centre for Weather Research (HErZ) with 6 km resolution, which 
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can be used around Central Europe (Bollmeyer et al., 2015) and CERRA, produced by the 

Copernicus Climate Change Service with a resolution of 5.5 km (Ridal et al., 2024). Frank 

et al. (2020) and  Jourdier et al. (2023) showed that CERRA and COSMO-REA6 perform 

better than the global reanalysis dataset. However, their field of interest is limited because 

they are regional reanalyses and available for a specific area. 

According to Table 1 which summarises the previous reanalysis dataset,  most of the global 

reanalysis datasets suffer from their coarse spatial resolution. However,  Hartmann (2025) 

found that ERA5 had a better performance than MERRA-2, JRA55, NCEP-NCAR R1, 

NCEP-DOE R2 and NCEP/CFSv2 in a precipitation rates comparison against GPCPv2.3. 

Else, Foli et al. (2022) evaluated the accuracy of two reanalysis datasets, ERA5 and NCEP-

NCAR reanalysis II, for the best representation of the West Africa wind regime. The results 

of this evaluation show that ERA5 has a better description for the wind regime of West 

Africa. Therefore, ERA5, with its coarse resolution, compared to other global reanalysis 

datasets, presents some advantages regarding its 4D-Var assimilation and the hourly data 

provided. 

Table 1: Global Reanalysis Dataset Comparison 

Dataset Agency Period Temporal 

resolution 

Spatial 

resolution 

Assimilation 

ERA5 ECMWF 

C3S 

1940 to 

present 

Hourly 31 km 4D-Var 

MERRA-2 NASA 1980 to 

present 

Hourly 50 km 3D-Var 

JRA 55 JMA 1958 to 

present 

3 Hours 55 km 4D-Var 

20CRv3 NOAA 

(CIRES/DOE) 

1836 to 

2015 

3 Hours 75 km Kalman 

Filter 

NCEP/NCAR 

R1 

NOAA/ NCEP/ 

NCAR 

1948 to 

present 

6 Hours 250 km 3D-Var 

CFSR NOAA/NCEP 1979 to 

2010 

Hourly 38 km 3D-Var 
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I.4.1.2. Other Dataset 

In 2000, in a big collaboration team, another NCAR-supported Numerical Atmospheric 

model, the Weather Research and Forecasting (WRF) model, was released. WRF is a non-

hydrostatic mesoscale model widely used in many fields. It involves a 4D-var data 

assimilation and is very useful for weather prediction (Skamarock et al., 2008). The uses of 

WRF in wind resources assessment and wind energy development have been explored in 

several studies (Haupt & Mahoney, 2015; Liu et al., 2011; Mahoney et al., 2012) 

Dynamic downscaling is a method which uses a weather model and improves the area’s 

topographic representation with better resolved atmospheric physics and dynamics, then 

produces a refined dataset. Therefore, the result is a high-resolution dataset. 

The German Meteorological Service (DWD) and MPI-M developed ICON (ICOsahedral 

Nonhydrostatic), which is a global high-resolution numerical weather model (Zängl et al., 

2015). ICON comes with an icosahedral triangular grid and uses a non-hydrostatic 

equation. The grid that ICON has, allowed ICON to flexibly depict complex terrain surfaces 

such as mountainous and coastal area. ICON-LAM, a Limited-Area Mode of ICON, is a 

dynamical downscaled model obtained from ICON without data assimilation. This 

downscaling helps ICON-LAM to perform simulations at a higher spatial resolution than 

the original product ICON global initialized analysis. The precision of WRF, COSMO and 

ICON were estimated in a comparative performance study (Manco et al., 2023). The study 

concludes that WFR, COSMO and ICON well represented the weather conditions.  

The World Bank Ground and DTU Energy developed the Global Wind Atlas (GWA), a 

high-resolution mapping tool. GWA provided a long-term mean wind speed and assisted 

in the identification of high wind potential sites. Then it is a useful tool for policymakers 

and specialists in sustainable energy fields  (Davis et al., 2023); (Badger & Jørgensen, 

2011). GWA is obtained through a dynamical downscaling process. First, from a large-

scale reanalysis dataset to a mesoscale dataset with a resolution of 3 km, resulting in a 

generalised wind climate. Then, from the generalised wind climate to a microscale 

modelling system, resulting in a high 250 m resolution local wind climate  (Global Wind 

Atlas-Methodology, 2023).  

 

I.4.2. Focus on ICON-LAM, ERA5 and ERA5_GWA 

A comparison of a high-resolution numerical forecast, COSMO and ICON-LAM, is done 
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for Romanian territory based on some surface variables, including 10 m wind speed. The 

study concluded that ICON-LAM performs better than COSMO (Iriza-Burcă et al., 2024). 

Chen et al. (2024a) ran ICON-LAM at 3.3 km spatial resolution over southern Africa for 3 

years simulation from 2017 to 2019. The evaluation is based on a comparison of the 

simulated hourly 10 m wind speed against in-situ observation data. The study concluded 

that ICON-LAM in general reproduced well the observation data with a bias of 1.12 m/s.  

For a study purpose over West Africa, Sterl et al. (2018) used ERA5 for an assessment of 

the synergies of solar photovoltaic (PV) and wind power potential, with a stability 

coefficient to quantify these synergies for achieving a balanced power output and limiting 

storage needs. The ability of ERA5 is analysed over West Africa by Gbode et al. (2023) to 

investigate the variability in seasonal wind resources. The authors concluded that ERA5 

can assess the wind resource, but it presents bias during extreme wind events. Near-surface 

mean and gust wind speeds in ERA5 across Sweden are investigated by Minola et al. 

(2020), where the ERA5 reanalysis product has been compared to the observations in terms 

of wind speed and wind gust across Sweden for the period 2013–2017. The results praise 

ERA5 on its predecessors ERA-int (ERA interim) for wind speed and wind gust 

reproduction. In Ethiopia, modelling of wind power production has shown that a simulation 

of wind power production and the identification of wind potential areas in Ethiopia can be 

done using the ERA5 dataset (Nefabas et al., 2021).   

A typical study comparing ICON-LAM, ERA5 and ERA5-GWA is done by Chen et al. 

(2024b). The authors evaluated the simulated 60 m height wind speed from the three 

datasets at 18 weather mast stations over South Africa. The evaluation has shown that 

ICON-LAM outperforms the two other datasets by underestimating the 60 m wind speed 

with a Mean Error (ME) of −0.1 𝑚. 𝑠−1 . ERA5-GWA and ERA5 underestimated the wind 

speed with a Mean Error (ME) −0.3 𝑚. 𝑠−1 and  −1.8 𝑚. 𝑠−1 respectively. 

 

I.5. The Height Scaling Methods 

The atmospherics numerical dataset provides data for multiple height levels. However, to 

estimate the wind speed at the exact hub height for a given wind turbine, the use of height 

scaling methods is useful (Manwell et al., 2009). 

One uncertainty introduced by the height scaling methods is the atmospheric stability. The 

atmospheric stability impacts the wind vertical estimation. While a neutral atmosphere led 
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to a predictable logarithmic wind profile, a stable and unstable atmosphere can accentuate 

or flatten the wind profile. Wharton and Lundquist (2012) show that the atmospheric 

stability consideration improves the wind assessment accuracy. 

Another uncertainty is the surface roughness length. The surface roughness describes the 

resistance of the land surface and highly influences the frictional velocity. It is a theoretical 

height above the ground at which the mean wind speed would be equal to zero if the 

logarithmic wind profile were extrapolated downwards. It depends on the type of terrain 

and the land cover. Kent et al. (2017) has shown that the consideration of land cover and 

surface roughness length variability affects the wind speed estimation. 

Typically, the use of the height scaling method, in general, is based on the power laws and 

the logarithmic law (Emeis & Turk, 2007).   

 

I.5.1. The logarithmic law 

The Logarithmic law is based on the theoretical and empirical research in boundary layer 

flows, fluid mechanics and atmospheric research (Manwell et al., 2009). It depends on the 

surface roughness length 𝑧0 in meters, the Von-Karman constant 𝑘 and the frictional 

velocity 𝑢∗ in m/s. We distinguished the logarithmic linear law and the logarithmic law 

(Gualtieri & Secci, 2011). The logarithmic linear law is based on the Monin-Obukhov 

similarity theory, which implies the Monin-Obukhov stability function 𝜓𝑚 and the Monin-

Obukhov length 𝐿 in meters:  

 𝑉 = (
𝑢∗

𝑘
) [ln (

𝑧

𝑧0
) − 𝜓𝑚 (

𝑧

𝐿
)] (5) 

 

With 𝑉 the wind speed in m/s at the height 𝑧 in meters. 

The logarithmic law implies a neutral stability 𝜓𝑚 = 0: 

 𝑉 = (
𝑢∗

𝑘
) [ln (

𝑧

𝑧0
)] (6) 

Motta et al. (2005) used the logarithmic linear law and the logarithmic law to extrapolate 

10 m wind speed to different heights up to 70 m and found an underestimation in wind 

speed. 
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I.5.2. The Power Law 

The power law mostly depends on the wind power law exponent 𝛼. It also implies 

knowledge of the wind speed 𝑉𝑟 at a reference height 𝑧𝑟.  

 𝑉 = 𝑉𝑟 (
𝑧

𝑧𝑟
)

𝛼

 (7) 

With 𝑉 the wind speed at the height 𝑧. 

The power law is widely used in a lot of studies, such as (Jung & Schindler, 2021; Şen et 

al., 2012; Wan et al., 2019; Xu et al., 2018a). 

I.5.3.  The wind shear factors 

The power law exponent, or more generally, the wind shear component, varies with time 

due to its dependence on atmospheric stability and varies with space due to its dependence 

on surface roughness. The extrapolation of wind speed from measurement level without 

atmospheric stability and terrain effect consideration could introduce significant errors (Xu 

et al., 2018b). The estimation of the shear component led to a different empirical formula. 

For a neutral atmosphere, and over a flat area, the shear component 𝛼, equal to 1/7 (0.143), 

is known as the one-seven law (Manwell et al., 2009).  

A summary of several empirical laws for the estimation of the shear component at the 

international airport of Agadir Al Massira in 2016 was done by Tizgui et al. (2018). The 

study presented an overview of those empirical laws, and for the extrapolation of 10 m 

wind speed to different heights, the authors used the power law, with one shear 

component’s empirical law to estimate the wind speed at 50 m, 80 m, and 100 m. The 

results show that wind speed increases with height, and above 50 m, it becomes significant. 

A study of wind shear was done by Rehman and Al-Abbadi (2005). In his study, he 

calculated the wind shear using 20 m, 30 m and 40 m height wind speed and found a mean 

wind shear of 0.194 in Saudi Arabia. The mean wind shear of 0.194 allowed a higher turbine 

capacity factor with 6% more energy produced than the wind shear of 0.143, the typical 1/7 

law shear coefficient.  

The study of Crippa et al. (2021) proposed a model which captures the hourly variability 

of the shear component. The model of this study, which is based on Saudi Arabia, 

outperformed the 1/7 law.  

Another study of the wind shear was also conducted by Farrugia (2003) over the 

Mediterranean island and the Republic of Malta using weather mast data at 10 m and 25 m. 
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This study revealed that wind shear component variation reaches a maximum level in 

January and a minimum in July. 

 

I.6. Gap Analysis 

The bibliographic review of global and regional wind energy research revealed that 

atmospheric numerical models are widely used in wind energy modelling and offer 

consistent coverage over data-scarce regions. It also shows that height scaling comes with 

some uncertainties, especially in areas with variable surface roughness or in complex 

terrain. Finally, it shows that numerous studies confirm the sensitivity of wind energy yield 

to wind data products, but few studies systematically compare different data sources and 

different scaling methods against observations at multiple heights. 

In addition, there is a lack of cross-validated comparison between datasets. Most African 

studies use one or two types of datasets, and few compare three different types of datasets 

and validate their performance against in situ observation. Else, most studies use the height 

scaling for a particular height, and a few perform analysis through a multi-height evaluation 

and validation. Then, there is also a lack of multi-height study and multi-height validation 

within situ observation. 

Therefore, this thesis is motivated by the urgent need to support the wind energy 

development in Southern Africa with high-resolution and validated simulation methods. It 

provides support to energy policy makers for selecting suitable models and reducing 

uncertainties in wind power simulation. 

 

Conclusion 

The Above chapter highlights the importance of this study. With the deep review of the 

literature and the main studies on atmospheric dataset and height scaling methods, it shows 

the direction of analysis of this study, based on the existing lack. The next chapter will 

present the methodology followed by this study. 
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CHAPTER II: MATERIALS AND METHODS 

Introduction 

This chapter starts with the presentation of the study area through a map with the geographic 

location of all stations. It is followed by a description of the three datasets involved in this 

study, and the chapter ends with tools and methodology. 

 

II.1. Study Area and Study Periods 

Due to data availability, this analysis was over 3 years starting from January 2017 to 

December 2019 and the study area is the Southern part of Africa. According to the Global 

Wind Atlas, this region has a good wind potential suitable for wind energy generation 

(Davis et al., 2023). Stations involved in this study are located from 16°S to 38°S, and 9°E 

to 39°E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four labels, TAHMO, NCEI_ISD, SASSCAL_WN and WASA, with a total of 493 sites 

involved in the study. The 493 sites are meteorological network stations and weather mast 

stations. All of them are identified by their geographic coordinates and names or codes. 

 

 
Figure 6: Map of the Study 

Area 
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Figure 6 presented the map of the study area where the yellow circles represent the 

NCEI_ISD stations, the sky-blue squares represent the SASSCAL_WN stations, the red 

triangles represent TAHMO stations and black  diamond-shaped markers represent WASA 

stations .All information about those four labels is detailed in the next part.  

 

II.2. Datasets 

II.2.1. Observed Datasets 

The observation data involved in the study are in-situ measurements coming from weather 

mast stations, in-situ data coming from local meteorological stations, and the surface 

integrated database. 

Eighteen weather mast stations from Wind Atlas for South Africa (WASA) are involved in 

this study (Wind Atlas for South Africa, 2010). They form what is called label WASA in 

this study. Hourly wind speed data, over the study period, at four (04) different heights, 10 

m, 20 m, 40 m, and 60 m, were downloaded. Those mast stations are named from WM01 

to WM19, except WM04, which has no data. Otherwise, some stations did not provide full 

data over the entire 3-year time stamps of the study. The temporal data coverages of each 

weather mast wind speed at different heights are shown by a pie chart in Figure 7. The 

white colour is the percentage of missing data from 2017 to 2019 for a specific mast station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The local meteorological station’s data are from two services. The first service is the Trans-

 

10 m 

 

20 m 

 

40 m 

 

60 m 

Figure 7: Pie Chart of weather mast temporal data coverage 
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African Hydro-Meteorological Observatory, which develops a hydro-meteorological 

station network in sub-Saharan Africa. Those stations are labelled as TAHMO in this study. 

The second is the Southern African Science Service Centre for Climate Change and 

Adaptive Land Management (SASSCAL), which is an initiative within Southern Africa, 

such as Angola, Botswana, Namibia, South Africa, and Zambia, with funding from 

Germany. SASSCAL developed a meteorological station network called SASSCAL 

Weather Net, which is labelled here as (SASSCAL_WN). The last observation data is a 

global hourly Integrated Surface Database (ISD) collected from several sources through the 

National Center for Environmental Information (NCEI). Data from NCEI in this study are 

labelled (NCEI_ISD). 

42 stations from the label TAHMO, 104 stations from the label SASSCAL_WN and 329 

stations from the label NCEI are investigated for evaluating simulated 10 m wind speed. 

All these data are open-source data and can be easily accessed through their original 

website.  

 

II.2.2. Simulated Datasets 

Three (03) simulated datasets are used in the study. The dynamical downscaled dataset 

ICON-LAM, the reanalysis ERA5 dataset and the statistical downscaling variant of ERA5 

(ERA5_GWA). 

The ICON-LAM dataset used is a regional setup of the ICON atmospheric model (Zängl et 

al., 2015). It has a spatial resolution of 3.3 km. The setup and configuration details are 

provided by Chen et al. (2024a). While ICON-LAM data from TAHMO, SASSCAL_WN 

and NCEI_ISD are hourly resolution data, the WASA data are on 15-min bases, then are 

averaged on hourly resolution. 

The ERA5 reanalysis data is produced by ECMWF with 31 km spatial and 1-hour temporal 

resolution. ECMWF provided eastward and northward (u, v) components wind speed and 

the horizontal wind speed is obtained by computing the square root of the sum of u² and v² 

wind speed (Hersbach et al., 2020).   

The ERA5_GWA is a statistical downscaled product of a combination of ERA5 and GWA. 

It is obtained by multiplying the time series of ERA5 by the ratio between the long-term 

mean wind speed of GWA and ERA5. As a result, ERA5_GWA has a spatial resolution of 

250 m. This is shown by the equation (8) 
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 𝐸𝑅𝐴5_𝐺𝑊𝐴 = 𝐸𝑅𝐴5𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 ×
𝐺𝑊𝐴𝐿𝑜𝑛𝑔−𝑡𝑒𝑟𝑚 𝑚𝑒𝑎𝑛

𝐸𝑅𝐴5𝐿𝑜𝑛𝑔−𝑡𝑒𝑟𝑚 𝑚𝑒𝑎𝑛
 (8) 

 

Several studies use this statistical downscaling approach to combine the reanalysis dataset 

with GWA from the perspective of obtaining a high-resolution dataset. While Gruber et al. 

(2021) and Murcia et al. (2022) combine ERA5 with GWA for a renewable energy potential 

study, González-Aparicio et al. (2017) and Ryberg et al. (2019a) apply the same approach 

to MERRA-2. 

 

II.3. Methods and tools 

II.3.1. Preprocessing 

The analysis started with a preprocessing which only concerns the observed data and the 

ICON-LAM dataset. It involved a data cleaning process and a process to fix a time zone to 

UTC. 

The data cleaning on ICON-LAM is basically to remove duplicate station data in case of 

multi-station data on one ICON grid, and to remove stations where all values are the same 

over the study time. For the observed data, data cleaning was used to remove implausible 

data. According to the Beaufort wind scale table, at 10 m height on a flat area, the wind 

speed of 32.7 (m/s) and above is considered hurricane wind (World Meteorological 

Organization, 2019). Therefore, in this study, the wind speed at 10 m height on a flat area 

of 40 (m/s) and above is considered implausible data and is removed from the database. We 

also fix a threshold of 70% and then remove all stations with more than 70% missing values. 

This threshold was also applied by Chen et al. (2024a). At the end, 204 (78 from 

SASSCAL_WN, 24 from TAHMO and 102 from NCEI_ISD) stations’ data and 18 weather 

mast station data remain for the study. 

 

II.3.2. Metrics 

Four metrics are used in this study. The Mean Absolute Error (MAE), the Mean Error (ME), 

the Pearson correlation coefficient (Pearson r), and Perkins Skill Scores (PSS). Let assume 

𝑂𝑖 data from observation, 𝑂 the average of observed data, 𝑋𝑖 data from a simulated dataset, 

𝑋  the average of simulated data, 𝐹𝑋 the frequency distribution of simulated data, 𝐹𝑂 the 
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frequency distribution of the observation data, 𝑛 the total number of data and 𝑏 the number 

of bins for the frequencies estimation. 

II.3.2.1. The Mean Absolute Error (MAE) 

MAE is obtained by the average of the absolute differences between the simulation product 

and the Observation. It gives the average magnitude of the errors without direction 

consideration. A lower value of MAE means satisfactory performance of the simulated 

dataset. The mathematical formula is: 

 
𝑀𝐴𝐸 =

1

𝑛
∑ |𝑋𝑖 − 𝑂𝑖|

𝑛

𝑖=1
 (9) 

 

II.3.2.2. The Mean Error (ME) 

ME is obtained by the average differences between the simulation product and the 

Observation. It gives the average magnitude of the errors with direction consideration, 

indicating an over- or underestimation of the simulated product. Then a positive ME means 

an overestimation of the observation and a negative ME, an underestimation. Otherwise, a 

value of ME close to zero (0) means satisfactory performance of the simulated dataset. The 

mathematical formula is:   

 
𝑀𝐸 =

1

𝑛
∑ 𝑋𝑖 − 𝑂𝑖

𝑛

𝑖=0
 (10) 

 

II.3.2.3. The Pearson correlation coefficient (Pearson r) 

Pearson r evaluates the linear relationship between the observations and the simulated data. 

In the range of [-1; 1], -1 indicates a negative correlation and 1 indicates a positive 

correlation. The mathematical formula is: 

 
𝑟 =

∑ (𝑋𝑖 − 𝑋)𝑛
𝑖=0 (𝑂𝑖 − 𝑂)

√∑ (𝑋𝑖 − 𝑋)
2

𝑛
𝑖=0

√∑ (𝑂𝑖 − 𝑂)
2

𝑛
𝑖=0

 (11) 

 

II.3.2.4. The Perkins Skill Score (PSS) 

PSS analyses the frequency distribution of the simulation and the observation and then 

estimates their overlapping area (Perkins et al., 2007). In the range [0; 1], PSS equal to 1 

indicates a perfect overlap, which represent an outstanding performance and PSS equal to 

0 means the worst performance. The mathematical formula is: 
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𝑃𝑆𝑆 = ∑ min

 
(𝐹𝑋; 𝐹𝑂)

𝑏

1
 (12) 

 

II.3.3. The Taylor Diagram 

The Taylor diagram is a polar diagram in a 2-D plot, which shows the correspondence 

between simulated and observed values, using statistical metrics. It is a powerful plot 

presenting jointly the correlation, the standard deviation, and the root mean square error. It 

is a useful tool for complex models, with multiple variables and multiple dimensions, such 

as a geophysical model, for evaluation and comparison. It also allows us to define skill 

scores for the model classification (Taylor, 2001). The mathematical formula of the Taylor 

skill scores is:   

 
𝑆 =

4(1 + 𝑟)4

(
σ𝑥

σ𝑜
+

σ𝑜

σ𝑥
)

2
(1 + 𝑟0)4

 (13) 

 

Where 𝑟 is the correlation coefficient of the simulation, 𝑟0 the maximum correlation 

attainable (here 𝑟0 ≈  1), σ𝑥 the standard deviation of the simulation and σ𝑜 the observation 

standard deviation. The use of the Taylor Diagram for model validation is common in 

atmospheric model studies (Coppola et al., 2024; dos Santos Silva et al., 2023).  

The methodology employed in this study involves the utilisation of the Taylor skill score S 

to establish a ranking of all methods, based on the average value over all the 18 weather 

mast stations of the corresponding metrics (standards deviation, Pearson correlation, and 

the root mean square error). 

 

II.3.4. The Different Height Scaling Methods 

To scale a wind speed to a specific height called the target height, we need the knowledge 

of the wind speed at a certain height called the reference height. In this study, we call the 

Advanced method a height scaling method, which involves the use of reference heights 

wind speed available from the vertical levels of numerical atmospheric data sets remarkably 

close to the target height. In total, ten (10) different methods were used in this study. 

II.3.4.1. The Linear Interpolation 

For this method, the knowledge of wind speed 𝑽𝟏 and 𝑽𝟐 at the two nearest reference 

heights 𝒛𝟏 and 𝒛𝟐, at the target height 𝒛 are used. In this study, the linear interpolation 
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method is called Advanced Linear Interpolation (Adv_Lin). To estimate the wind speed 𝑉𝑧 

at the target height, we use the formula: 

 𝑨𝒅𝒗_𝑳𝒊𝒏:    𝑽𝒛 = 𝑽𝟏 + (
𝒛 − 𝒛𝟏

𝒛𝟐 − 𝒛𝟏
) (𝑽𝟐 − 𝑽𝟏) (14) 

II.3.4.2. The Logarithmic Law 

The logarithmic law in this study assumes the Monin-Obukhov stability function equals 

zero (𝜓𝑚 = 0). To estimate the wind speed 𝑽𝒛 at the target height 𝒛, the following formula 

is used:  

 

𝑽𝒛 = 𝑽𝟏

𝒍𝒏
(𝒛 − 𝒅)

𝒛𝟎

𝒍𝒏
(𝒛𝟏 − 𝒅)

𝒛𝟎

 (15) 

 

With 𝒛𝟎 the surface roughness length, 𝒅 the displacement height (in this case 𝒅 = 𝟎) and  

𝑽𝟏 the wind speed at the reference height 𝒛𝟏. In the analysis, we make the uses of the 

Logarithmic law in two ways. One with the knowledge of the nearest reference height wind 

speed, which is called the advanced logarithmic law (Adv_Log), and the second is any 

target height (in this case, 10 m height), which is called the simple logarithmic law 

(LogLaw).  

 

II.3.4.3. The Power Law 

The use of the power law is driven by the estimation of the wind power law exponent. One 

method to estimate the wind power law exponent in this study is the so-called Advanced 

Power law method (Adv_Pl), which involves the knowledge of the wind speed 𝑽𝟏 and 𝑽𝟐 

at the two nearest heights 𝒛𝟏 and 𝒛𝟐  to the target height (Devis et al., 2018). The power 

law exponent is then estimated by:  

 
𝜶 =

𝐥𝐧(𝑽𝟏 𝑽𝟐⁄ )

𝒍𝒏(𝒛𝟏 𝒛𝟐⁄ )
 (16) 

 

Another way is the use of empirical laws, which estimate the wind shear from some specific 

criterion, such as the land topography, the surface roughness, and weather conditions. The 

validity of empirical Laws is limited to the lower atmosphere up to 200 m above the ground 

level (Tizgui et al., 2018). Table 2 summarises all the empirical methods used in this study. 
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The most used empirical law is the well-known one-seven law (hereafter 1_7_Law). The 

wind shear is estimated for a neutral atmosphere to 1/7= 1.143 (Manwell et al., 2009). 

Another expression for the wind shear is proposed by Counihan, (1975). The expression 

depends only on the surface roughness length (hereafter Counihan_Law). It suggests that, 

for the surface roughness length between 0.001m and 10 m (0.001𝑚 <  z0 < 10m), the 

shear component is expressed by: 

 α = 0.096 log10 z0 + 0.016(log10 z0)2 + 0.24 (17) 

 
Spera, (1994) used an expression proposed by NASA researchers. The equation 

(Spera_Law) is based on the surface roughness and the wind speed at the reference height. 

 
α =  (

z0

h1
)

0.2

(1 − 0.55 log(V1)) (18) 

 

Another equation (hereafter Justus_Law) is proposed by Justus C., relying only on the 

wind speed at a  reference height of 10m (Justus & Mikhail, 1976). 

 
α =

0.37 − 0.088 ln(V1)

1 − 0.088 ln (
z1

10)
 (19) 

 

Khalfa et al. (2014) proposed an expression (Khalfa_Law), which takes into consideration 

the stability conditions and the geographic mean height. 

 
α =

1

ln (
zg

z0
)

−
0.0881

1 − 0.0881 ln (
V1

z0
)

ln (
V1

Vn
) (20) 

 

The last empirical law (hereafter Nfaoui_Law) investigated in this study is proposed by 

Nfaoui et al. (1998) through the formula:    

 
α =

x − 0.0881 ln(V1)

1 − 0.0881 ln (
z1

10)
 (21) 

where 𝑥 =  0.25 for 𝑧0 ∈ [0.000𝑚; 0.005𝑚], 𝑥 =  0.31 for 𝑧0 ∈ [0.005𝑚; 0.050𝑚], 𝑥 =

 0.27 for 𝑧0 ∈ [0.050𝑚; 0.500𝑚] and 𝑥 =  0.48 for 𝑧0 ∈ [0.500𝑚; 4.000𝑚] 
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Table 2 : List of Empirical Law 

Methods Empirical Formula References 

1_7_Law α = 1.143 (Manwell et al., 2009) 

Counihan _Law α = 0.096 log10 z0 + 0.016(log10 z0)2 + 0.24 (Counihan, 1975) 

Justus_Law 
α =

0.37 − 0.088 ln(V1)

1 − 0.088 ln (
z1

10)
 

(Justus & Mikhail, 
1976) 

Spera_Law 
α =  (

z0

h1
)

0.2

(1 − 0.55 log(V1)) 
(Spera, 1994) 

Khalfa_Law 
α =

1

ln (
zg

z0
)

−
0.0881

1 − 0.0881 ln (
V1

z0
)

ln (
V1

Vn
) 

(Khalfa et al., 2014) 

Nfaoui_Law 
α =

x − 0.0881 ln(V1)

1 − 0.0881 ln (
z1

10)
 

(Nfaoui et al., 1998) 

 

 

II.3.5. The Surface Roughness length and the Wind Energy 

estimation 

The European Space Agency Climate Change Initiative (ESA CCI) includes a Land Cover 

project whose aim is to generate a global land cover product. This consists of a generation 

of a tool which provides for a specific geographic area, a land cover types and a land cover 

code (Chirachawala et al., 2020). The Renewable Energy Simulation toolkit (RESKit) is a 

powerful tool for the large-scale simulation of renewable energy systems (Ryberg et al., 

2019; https://github.com/FZJ-IEK3-VSA/RESKit). RESKit provides a table which links 

ESA CCI land cover code to a corresponding surface roughness length. The use of height 

scaling methods to scale 10m wind speed to different heights implies the knowledge of the 

surface roughness length. In this study, ESA CCI Land cover is used to provide a Land 

cover code for the 18 specific weather mast stations. Otherwise, the RESKit table is used 

to assign the specific surface roughness length to every weather mast station.  

The wind energy is estimated over the 3-years study time periods from 2017 to 2019. The 

wind energy density estimation is done with the formula: 

https://github.com/FZJ-IEK3-VSA/RESKit
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𝐸/𝐴 =  
1

2
𝜌 ∑ 𝑈𝑖

3

𝑁

𝑖=1

 

Where 𝐸/𝐴 is the energy density in Wh/m², 𝑈𝑖 the hourly wind speed in m/s, 𝑁 the number 

of wind speed measurement in the 3 years study period in hourly bases  and 𝜌 the air density 

in kg/m³ (Manwell et al., 2009). For the evaluation, a boxplot of the Relative Deviation 

(RD) in percentage of the energy density is used.  

𝑅𝐷 =
𝐸/𝐴𝑥 − 𝐸/𝐴𝑜𝑏𝑠

𝐸/𝐴𝑜𝑏𝑠
× 100 

Where the 𝐸/𝐴𝑥 is the energy density for the simulated product in Wh/m² and 𝐸/𝐴𝑜𝑏𝑠  the 

energy density of the observation in Wh/m². 

 

 

Conclusion 

This chapiter provided a comprehensive overview of the study area and study period of the 

research. The geographical locations of all stations affiliated with the TAHMO, NCEI_ISD, 

SASSCAL_WN and WASA labels have been well presented. A details account of the 

observed data, as well as the three atmospheric datasets ICON-LAM, ERA5 and 

ERA5_GWA provided a deep understanding of the characteristics and the relevance of each 

product. Furthermore, the metrics, analytical and statistical tools involve in this study have 

been explained. This assured a good understanding of the analysis and the founding, which 

will be part of the next chapter. 
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CHAPTER III: RESULTS AND DISCUSSION 

Introduction 

This chapter highlights all results of this study. It starts with the comparison of simulated 

10 m wind speed over 204 stations across the southern Africa using the MAE, ME, Pearson 

r, and PSS. The next part of this chapter is the evaluation of height scaling methods and 

dataset   throughout a boxplot and Taylor diagram. Then finally the chapter will end with 

the wind energy estimation. 

 

III.1. Datasets Comparison at 10m 

Simulated 10 m wind speed data from the three datasets ICON-LAM, ERA5 and 

ERA5_GWA are compared against observation data over 204 stations of labels TAHMO, 

SASSCAL_WN and NCEI_ISD. For this comparison, four metrics are used, and for every 

metric, a scatter plot and box plot will help for results visualisation (Figure 8, Figure 9, 

Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15). In the scatter plot, 

the different stations are represented according to their labels shape markers (square for 

SASSCAL_WN, triangle for TAHMO and circle for NCEI_ISD) and to the colour of their 

metric values. For the boxplot, the first 3 boxes show the variation across the labels (green 

for SASSCAL_WN, grey for TAHMO, and blue for NCEI_ISD) and the last box in pink 

is for all stations together. The yellow markers show the dispersion of stations across every 

label, and the number of stations of every label is written above every box. 

 

III.1.1. MAE 

In general, few stations have a higher MAE than 3.0 m/s. ERA5_GWA outperforms the 

other datasets in terms of MAE with an average over all stations of 1.33 m/s, followed by 

ERA5 with an average of 1.50 m/s and then ICON-LAM with 1.77 m/s has a lower 

performance. Table 3 provides a summary of the statistics of the MAE comparison 

Table 3: Statistic of MAE comparison at 10 m 

Datasets 1st Quartiles 2nd Quartiles 3rd Quartiles 90% of stations 

ERA5_GWA 0.97 1.15 1.46 1.93 

ERA5 1.14 1.32 1.67 2.22 

ICON-LAM 1.44 1.64 2.00 2.47 
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It shows the MAE statistics (in m/s) for the three quartiles, and for 90% of stations 

confirming the good performance of ERA5_GWA in terms of MAE. Figure 8 displays the 

MAE results through a scatter plot, and Figure 9 displays it through a boxplot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the MAE results of specific station are summarised by Table 4 

Table 4: MAE results for specific stations 

Datasets Lowest bias Highest Bias 

MAE Station Location MAE Station Location 

ERA5_GWA 0.41 TA00546 17.78°S 

31.13°W 

4.11 68815099999 33.08°S 

18.02°W 

ERA5 0.85 67593 22.49°S 

28.70°W 

4.60 68491099999 28.20°S 

32.42°W 

ICON-LAM 0.87 65934 17.55°S 

24.53°W 

4.28 103 23.30°S 

16.12°W 

 

 
Figure 8: Scatter plot of MAE comparison of Datasets vs Observation at 10m 

 
Figure 9: Box plot of MAE comparison of Datasets vs Observation at 10m 
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III.1.2. ME 

Globally, ERA5_GWA outperforms ERA5 and ICON-LAM in terms of ME with an error 

value of +0.39 m/s, +0.75 m/s, and +1.23 m/s, respectively. ICON-LAM tends to 

overestimate the 10 m wind speed, with 95.10% of overestimation stations and only 4.90% 

of underestimation stations, while ERA5_GWA recorded 32.84% of underestimation 

stations and 67.16% of overestimation stations. Figure 10 and Figure 11, which present 

respectively the scatter plot and the box plot of ME comparison, confirm the tendency of 

each dataset. A summary of the statistics of the ME comparison is provided by Table 5, and 

Table 6 present the results of some specific stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Statistic of ME comparison at 10 m 

Datasets 1st Quartiles 2nd Quartiles 3rd Quartiles 90% of stations 

ERA5_GWA -0.14 0.32 0.81 1.47 

ERA5 0.13 0.79 1.37 1.97 

ICON-LAM 0.63 1.26 1.77 2.29 

 
Figure 10: Scatter plot of ME comparison of Datasets vs Observation at 10m 

Figure 11: Box plot of ME comparison of Datasets vs Observation at 10m 
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Table 6: ME results for specific stations 

Datasets Lowest error Highest error 

ME Station Location ME Station Location 

ERA5_GWA -2.85 31196 26.40°S 

18.01°W 

+3.88 68815099999 33.08°S 

18.02°W 

ERA5 -2.27 31210 22.79°S 

16.81°W 

+4.57 68491099999 28.20°S 

32.42°W 

ICON-LAM -1.05 68821099999 33.62°S 

19.47°W 

+4.28 103 23.30°S 

16.12°W 

 

III.1.3. Pearson r 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERA5_GWA is obtained from a statistical downscaling of ERA5. This statistical 

downscaling affects the magnitude but not the correlation. Then, ERA5_GWA is obtained 

 
Figure 12: Scatter plot of Pearson r comparison of Datasets vs Observation at 10m 

 
Figure 13: Boxplot of Pearson r comparison of Datasets vs Observation at 10m 



 

 

38 

 

 CHAPTER III: RESULTS AND DISCUSSIONS 

with a different magnitude compared to ERA5, but it strictly has the same correlation 

coefficient. Therefore, ERA5_GWA and ERA5 recorded the same correlation for every 

station. In general, the three datasets have similar correlation coefficients, with a slight 

advantage for ICON-LAM, which has an average correlation coefficient over all stations 

of 0.626, while ERA5 and ERA5_GWA have a coefficient of 0.617. Figure 12 shows the 

Pearson r result with a scatter plot, but due to the similar performance of the three datasets, 

it is difficult to find any trend. Using Figure 13, which presents the results of Pearson r with 

a box plot, and Table 7, which summarises the results by quartiles, the slight advantage of 

ICON-LAM can be identified. Table 8 presents the results of Pearson r for some specific 

stations. 

Table 7: Statistic of Pearson r comparison at 10 m 

Datasets 1st Quartiles 2nd Quartiles 3rd Quartiles 90% of stations 

ICON-LAM 0.580 0.643 0.707 0.769 

ERA5_GWA & 

ERA5 

0.540 0.643 0.715 0.769 

 

Table 8: Pearson r results for specific stations 

Datasets Lowest correlation Highest correlation 

Pearson r Station Location Pearson r Station Location 

ICON-LAM 0.090 46943 16.98°S 

15.62°W 

0.850 858577 28.63°S 

16.51°W 

ERA5_GWA 

& ERA5 

0.000 46943 16.98°S 

15.62°W 

0.853 68926399999 34.56°S 

20.25°W 

 

III.1.4. PSS 

As for Pearson r, the three datasets have similar performance in terms of PSS. Table 9 

summarises the statistics of the PSS comparison and then shows the similarity between 

dataset’s performance across different quartiles for the PSS comparison. 

Table 9: Statistic of PSS comparison at 10 m 

Datasets 1st Quartiles 2nd Quartiles 3rd Quartiles 90% of stations 

ERA5_GWA 0.652 0.755 0.827 0.892 

ICON-LAM 0.605 0.735 0.815 0.887 

ERA5 0.597 0.722 0.812 0.875 
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Figure 14 presents the PSS results with a scatter plot and Figure 15 presents the same results 

with a boxplot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10: PSS results for specific stations 

Datasets Lowest score Highest score 

PSS Station Location PSS Station Location 

ERA5_GWA 0.158 46943 16.98°S 

15.62°W 

0.960 E7625 23.44°S 

15.05°W 

ERA5 0.138 46943 16.98°S 

15.62°W 

0.969 114 19.71°S 

18.04°W 

ICON-LAM 0.128 46943 16.98°S 

15.62°W 

0.951 E7626 23.10°S 

15.03°W 

 

Figure 14: Scatter plot of PSS comparison of Datasets vs Observation at 10m 

 
Figure 15: Boxplot of PSS comparison of Datasets vs Observation at 10m 
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Table 10 provides the results of some specific stations. In general, with a slight advantage, 

ERA5_GWA performs well in terms of PSS with an average over all stations value of 

0.721, followed by ICON-LAM with an average of 0.691 and then ERA5_GWA with an 

average of 0.684. 

 

III.2. Height scaling methods evaluation 

The height scaling methods analysis is done through two evaluations. The evaluation of the 

observed 10m wind speed scaled to different heights and the simulated 10 m wind speed 

scaled to different heights. For the metrics calculation, a cut-in and cut-out wind speed of 

respectively 2.0 m/s and 25 m/s is set on the observed wind speed.  

 

III.2.1. Evaluation of the Observed 10m scaled to different 

heights 

The 10 m wind speed from WASA at the 18 weather mast stations are scaled to 20 m, 40 

m, and 60 m throughout seven scaling methods: 1_7_Law, Counihan_Law, Justus_Law, 

Khalfa_Law, Nfaoui_Law, and Spera_Law. This analysis highlights the effective impact 

of different scaling methods on the wind speed without any dataset influence because the 

scaling was done using the observed data itself. 

 In general, the performance of the different methods decreases with an increase in scaling 

heights and the dispersion across stations increases with an increase in scaling height. Then, 

the scaling from 10 m to 60 m introduced the highest errors, followed by the scaling from 

10 m to 40 m and the lowest errors were recorded for a scaling from 10 m to 20 m. 

Otherwise, the performance of all methods follows the same trend for every scaling (10 m 

to 20 m, 10 m to 40 m, and 10 m to 60m). However, the performance variation across the 

different methods is more remarkable for a scaling from 10 m to 60 m. Therefore, the 

discussion will focus on the scaling from 10 m to 60 m. For every metric, a box plot is used 

for the results presentation. The results presentation will focus on the third quartile (the 

results of 75% of stations). 

The results of all methods are summarised in Table 15 (see the appendices) 
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III.2.1.1.  MAE 

Globally, it is evident that the 1_7_Law and Counihan_Law, characterised by low 

dispersion across different stations, demonstrate superior performance with a low bias of 

respectively 1.15 m/s and 1.13 m/s. Conversely, the Justus_Law followed by Khalfa_Law, 

distinguished by high dispersion and median, demonstrate low performance due to high 

bias of 1.44 m/s and 1.31 m/s, respectively. Nfaoui_Law, LogLaw and Spera_Law 

demonstrate commendable performance, as evidenced by their low median values. 

However, it is noteworthy that these laws exhibit a considerable degree of dispersion across 

different stations in comparison to Counihan_Law and 1_7_Law. Figure 16 presents the 

MAE results for the scaling methods comparison. 

 

 

    

 

 

 

 

 

 

III.2.1.2. ME 

Figure 17 presents the ME results for the scaling methods comparison. The results show 

that the 1_7_Law and Counihan_Law tend to underestimate the scaled wind speed, while 

Justus_Law and Spera_Law tend to overestimate it. Khalfa_Law, Nfaoui_Law, and 

LogLaw demonstrate a good performance with a slight overestimation. 

 

 

 

 

 

 

 

 
Figure 16: Boxplot of MAE comparison of scaling methods at multiple heights 

 

Figure 17: Boxplot of ME comparison of scaling methods at multiple heights 
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III.2.1.3. Pearson r 

All the methods have an almost perfect Pearson correlation. They all have similar 

correlations, and the differences between them are negligible. For a scaling of 10 m to 20 

m, all have a Pearson correlation of 0.995, a Pearson correlation of 0.98 for a scaling from 

10 m to 40 m and then a Pearson correlation of 0.95 for a scaling from 10 m to 60 m. Figure 

18 presents the Pearson correlation results for the scaling methods comparison 

 

 

 

 

 

 

 

 

III.2.1.4. PSS 

In general, all methods have good Perkins Skill Scores, which are above 0.80. 

Counihan_Law, 1_7_Law, and LogLaw exhibit similar and the highest score of 0.94, 0.92, 

and 0.90, respectively, while Khalfa_Law demonstrates the lowest score of 0.86. Figure 19 

presents the PSS results for scaling methods comparison.  

 

 

  

 

 

 

 

 

III.2.2. Evaluation of the Simulated 10m scaled to 

different heights 

The simulated 10 m wind speeds from ICON-LAM, ERA5 and ERA5_GWA are scaled to 

20 m, 40 m, and 60 m using seven methods: 1_7_Law, Counihan_Law, Justus_Law, 

 
Figure 18: Boxplot of Pearson r comparison of scaling methods at multiple heights 

 
Figure 19: Boxplot of PSS comparison of scaling methods at multiple heights 
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Khalfa_Law, Nfaoui_Law and Spera_Law for ERA5_GWA, and ten methods: 1_7_Law, 

Counihan_Law, Justus_Law, Khalfa_Law, Nfaoui_Law, Spera_Law, Adv_Lin, Adv_Pl 

and Adv_Log for ICON-LAM and ERA5. Then Adv_Lin, Adv_Pl and Adv_Log are not 

used for ERA5_GWA. The influence of the datasets and the different height scaling 

methods on wind speed is highlighted by this analysis. For each metric, a box plot will 

display the results. The ICON-LAM dataset is represented by the red box, ERA5 by the 

blue box, and the green box represents the ERA5_GWA dataset. The results will focus on 

three datasets and three scaling methods, Adv_Lin, Adv_Pl, and Adv_Log, which were not 

discussed in the previous part. 

The results of all methods are summarised in Table 15 (see the appendices) 

 

 

III.2.2.1.    MAE 

In general, ERA5 demonstrates the highest levels of error with significant dispersion, while 

ICON-LAM and ERA5_GWA show the contrast, with ICON-LAM demonstrating a slight 

advantage over ERA5_GWA in terms of dispersion. The influence of the dataset is found 

to be more significant than that of the scaling methods. The findings demonstrate 

consistency in methods performance across the three scaling heights, except for Adv_Lin, 

Adv_Pl, and Adv_Log. The bias introduced by Adv_Lin, Adv_Pl, and Adv_Log decreases 

when we compare 10 m to 20 m scaling and 10 m to 40 m and increases when we consider 

a comparison of 10 m to 40 m scaling and 10 m to 60 m scaling. Adv_Lin introduced the 

highest bias of 3.57 m/s for the scaling from 10 m to 20 m, while Adv_Pl and Adv_Log 

exhibit a good performance compared to other methods. Figure 20 presents the MAE results 

with a box plot. 

 

 

 

 

 

 

 

 

 
Figure 20: Boxplot of MAE for the datasets and the scaling methods comparison at 

multiple heights 
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III.2.2.2.    ME 

It is evident that ERA5 underestimates the scaled windspeed for all methods with high 

dispersion across different stations, while ICON-LAM and ERA5_GWA introduced a 

slight underestimation for all methods except the Justus_Law, which exhibits an 

overestimation. ERA5_GWA and ICON-LAM have similar performance across the same 

methods, with a small advantage for ICON-LAM. Figure 21 shows the ME results with a 

box plot. As for MAE, there is a consistency of method’s performance across the three 

scaling heights, except for Adv_Lin, Adv_Pl, and Adv_Log, which depend on the specific 

scaling height. Within the methods, the Adv_Lin introduced the highest error with an 

underestimation of -2.2 m/s for ERA5 for a scaling from 10 m to 20 m. Adv_Pl and 

Adv_Log exhibit a good performance compared to other methods. 

 

 

 

 

 

 

 

 

 

III.2.2.3.    Pearson r 

A Pearson correlation coefficient of similar value is recorded throughout the three datasets 

and across all methods.  

 

 

 

 

 

 

 

 

 

Figure 21: Boxplot of ME for the datasets and the scaling methods comparison at 

multiple heights 

 

Figure 22: Boxplot of Pearson r for the datasets and the scaling methods comparison 

at multiple heights 
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The difference between dataset performance increase with the increases of the scaling 

height. Otherwise, the three datasets exhibited a substantial degree of dispersion. ERA5 and 

ERA5_GWA, which demonstrate a high correlation value, exhibit superior performance in 

comparison to ICON-LAM. The difference between methods within the same dataset is 

negligible. Figure 22 presents the Pearson correlation results for the dataset and scaling 

methods comparison. 

For a scaling from 10 m to 20 m, the difference between dataset’s performance is negligible. 

ICON-LAM show a correlation of around 0.81, while ERA5 and ERA5_GWA show a 

correlation of 0.82. For a scaling from 10 m to 40 m, ICON-LAM show a correlation 

between 0.76 and 0.80, while ERA5 and ERA5_GWA show a correlation between 0.79 and 

0.82. Finally, for a scaling from 10 m to 60 m, ICON-LAM shows a correlation between 

0.73 and 0.80, while ERA5 and ERA5_GWA show a correlation between 0.76 and 0.82 

 

III.2.2.4.    PSS 

In general, ICON-LAM outperforms ERA5_GWA and ERA5 for each method, with a high 

PSS around 0.9 and the lowest dispersion. ERA5 shows the lowest performance for each 

method, with a high dispersion across different stations. There is also a consistency in 

method’s performance across the three scaling heights. Adv_Pl and Adv_Log exhibit a 

good performance compared to other methods, while Adv_Lin recorded the lowest score 

of 0.7 for ERA5 for the scaling from 10 m to 20 m. Figure 23 presents the PSS results with 

a box plot. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Boxplot of PSS for the datasets and the scaling methods comparison at 

multiple heights 
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III.2.3. Evaluation through a Taylor Diagram 

A Taylor diagram is plotted for the three scaling heights 20 m, 40 m, and 60 m. Each of 

them combines both observed 10 m wind speeds scaled to different heights here, as 

obs_extra, and simulated 10 m wind speeds scaled to different heights. The ensuing plot 

serves as a crucial tool for the validation process, offering a comprehensive evaluation of 

the performance of all methods. 10 methods from ICON-LAM and ERA5, 7 methods from 

ERA5_GWA and Obs_extra are compared given a total of 34 methods. ICON-LAM 

methods are represented with red markers, ERA5 with blue markers, ERA5_GWA with 

green markers and Obs_extra with yellow markers. The name of the corresponding dataset 

is put at the end of the methods in the legend of every diagram to make a difference between 

methods from different datasets. The following Taylor diagrams are presented: the first, 

illustrated by Figure 24, is for the scaling from 10 m to 20 m, the second, by Figure 25, for 

the scaling from 10 m to 40 m, and the third, by Figure 26, for the scaling from 10 m to 60 

m. A ranking table is provided, and it summarises the performance of each method from 

the three datasets at different scaling heights, from 10 m to 20 m by Table 11, from 10 m 

to 40 m by Table 12  and from 10 m to 60 m by Table 13. 

In general, for every scaling height, methods from the 10 m observed wind speed scaled to 

different heights obtain the highest scores. This is because the impact of datasets is more 

significant than that of different methods, and the comparison is done against observed data. 

The lowest scores are obtained by the different methods from ERA5, due to a low standard 

deviation of ERA5's different methods, thereby confirming the high dispersion shown by 

the boxplots. ERA5_GWA and ICON-LAM demonstrate analogous performance, with 

ERA5_GWA exhibiting an advantage in scaling from 10 m to 20 m; however, this tendency 

undergoes a shift with increasing scaling height from 10 m to 40 m and from 10 m to 60 m. 

There are no trends in the performance of Adv_Lin, Adv_Pl, and Adv_Log regarding the 

scaling height, confirming the importance of the choice of the nearest height wind speed 

for those methods. However, Adv_Pl and Adv_Log exhibit a good performance compared 

to other methods, while Adv_Lin shows a contrast.   
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Table 11: Taylor Skill Score for 10m to 20m scaling 

Scaling 10 m to 20 m  

Methods Scores Methods Scores 

Justus_Law_obs_extra 0.994 Spera_ Law_ICON 0.879 

Counihan_ Law_obs_extra 0.994 Adv_Log_ICON 0.879 

Spera_ Law_obs_extra 0.994 LogLaw_ICON 0.879 

1_7_ Law_obs_extra 0.994 Justus_ Law_ICON 0.879 

LogLaw_obs_extra 0.993 Nfaoui_ Law_ICON 0.878 

Nfaoui_ Law_obs_extra 0.992 Khalfa_ Law_ICON 0.873 

Khalfa_ Law_obs_extra 0.985 Adv_Lin_ICON 0.860 

Counihan_ Law_ERA5_GWA 0.887 LogLaw_ERA5 0.831 

Spera_ Law_ERA5_GWA 0.887 Justus_ Law_ERA5 0.828 

Nfaoui_ Law_ERA5_GWA 0.887 1_7_ Law_ERA5 0.825 

1_7_ Law_ERA5_GWA 0.887 Counihan_ Law_ERA5 0.821 

Justus_ Law_ERA5_GWA 0.887 Spera_ Law_ERA5 0.821 

LogLaw_ERA5_GWA 0.886 Adv_Pl_ERA5 0.812 

Khalfa_ Law_ERA5_GWA 0.883 Adv_Log_ERA5 0.809 

Adv_Pl_ICON 0.882 Nfaoui_ Law_ERA5 0.807 

Counihan_ Law_ICON 0.880 Khalfa_ Law_ERA5 0.797 

1_7_ Law_ICON 0.879 Adv_Lin_ERA5 0.684 

 

 

 

 
Figure 24: Taylor Diagram for 10m to 20m scaling 
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Table 12: Taylor Skill Score for 10m to 40m scaling 

Scaling 10 m to 40 m  

Methods Scores Methods Scores 

Spera_obs_extra 0.971 Counihan_ICON 0.858 

Justus_obs_extra 0.970 Nfaoui_ICON 0.857 

Counihan_obs_extra 0.970 Justus_ICON 0.856 

1_7_obs_extra 0.969 1_7_ICON 0.856 

LogLaw_obs_extra 0.967 LogLaw_ICON 0.854 

Nfaoui_obs_extra 0.966 Khalfa_ERA5_GWA 0.847 

Khalfa_obs_extra 0.936 Khalfa_ICON 0.837 

Adv_Pl_ICON 0.874 Adv_Pl_ERA5 0.832 

Adv_Log_ICON 0.874 LogLaw_ERA5 0.829 

Adv_Lin_ICON 0.873 Justus_ERA5 0.828 

Spera_ERA5_GWA 0.873 Adv_Log_ERA5 0.827 

Counihan_ERA5_GWA 0.872 1_7_ERA5 0.822 

Justus_ERA5_GWA 0.871 Counihan_ERA5 0.816 

Nfaoui_ERA5_GWA 0.870 Spera_ERA5 0.815 

1_7_ERA5_GWA 0.870 Adv_Lin_ERA5 0.792 

LogLaw_ERA5_GWA 0.868 Nfaoui_ERA5 0.787 

Spera_ICON 0.858 Khalfa_ERA5 0.759 

 

 

 

 
Figure 25: Taylor Diagram for 10m to 40m scaling 
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Table 13: Taylor Skill Score for 10m to 60m scaling 

Scaling 10 m to 60 m  

Methods Scores Methods Scores 

Justus_obs_extra 0.947 1_7_ICON 0.845 

Counihan_obs_extra 0.947 LogLaw_ICON 0.844 

Spera_obs_extra 0.947 Justus_ICON 0.844 

1_7_obs_extra 0.946 Spera_ICON 0.844 

LogLaw_obs_extra 0.944 Nfaoui_ICON 0.835 

Nfaoui_obs_extra 0.937 Adv_Pl_ERA5 0.833 

Khalfa_obs_extra 0.877 Adv_Log_ERA5 0.829 

Adv_Pl_ICON 0.876 Adv_Lin_ERA5 0.814 

Adv_Log_ICON 0.875 Justus_ERA5 0.809 

Spera_ERA5_GWA 0.860 LogLaw_ERA5 0.806 

Counihan_ERA5_GWA 0.860 Khalfa_ERA5_GWA 0.805 

Justus_ERA5_GWA 0.859 1_7_ERA5 0.801 

1_7_ERA5_GWA 0.858 Counihan_ERA5 0.791 

LogLaw_ERA5_GWA 0.856 Spera_ERA5 0.791 

Nfaoui_ERA5_GWA 0.852 Khalfa_ICON 0.791 

Adv_Lin_ICON 0.846 Nfaoui_ERA5 0.753 

Counihan_ICON 0.846 Khalfa_ERA5 0.709 

 

 

 

 
Figure 26: Taylor Diagram for 10m to 60m scaling 
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III.3. Wind Power Simulation 

The wind energy is estimated over the 3 years study time periods. As for the height scaling 

methods, the datasets and scaling method’s impact on the wind power is investigated 

through two analyses. The first is the estimation of the wind energy density using the scaled 

wind speed from the observed 10m wind speed. The second is the use of the scaled wind 

speed from the 10m simulated wind speed to estimate the wind energy density. A cut-in 

and cut-out wind speed of respectively 2.0 m/s and 25.0 m/s is set on the observed wind 

speed, and a relative deviation boxplot helps for the analysis.  

 

III.3.1. The impact of scaling methods wind speed on the 

power simulation 

The direct impact of seven height scaling methods on wind power simulation is evaluated. 

A boxplot of the relative deviation of each methods, highlights in Figure 27,  the systematic 

biases associated with the different scaling methods.  

 

 

    

 

 

 

 

 

 

In general, the increase in the scaling height led to an increase in the dispersion of wind 

energy estimation. While Justus_Law and Spera_Law overestimated the wind energy, 

Khalfa_Law and Nfaoui_Law exhibited an underestimation. In the case of 1_7_Law, 

Counihan_Law and LogLaw, a slight deviation was observed. 

In the context of a scaling ranging from 10 m to 20 m, all the methods presented exhibited 

low dispersion. In contrast, Justus_Law, Spera_Law, and LogLaw exhibited an 

overestimation of energy, with errors of approximately 9.62%, 4.31% and 4.33%, 

respectively. Conversely, Counihan_Law, Khalfa_Law and Nfaoui_Law demonstrated an 

underestimation of energy, with errors of approximately 2.32%, 5.15% and 3.28%, 

 
Figure 27: Boxplot of Energy Relative deviation for scaling methods wind 

energy estimation comparison at multiple height 
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respectively. The 1_7_Law estimation demonstrated the most precise result, exhibiting a 

mere 0.03% energy discrepancy. 

All methods exhibited an increase in dispersion when a scaling factor was applied, ranging 

from 10 m to 40 m. While Justus_Law, Spera_Law and LogLaw overestimated the energy, 

respectively, for approximately 24.58%, 10.79% and 10.37%, Khalfa_Law underestimated 

the energy for approximately 10.43%. The 1_7_Law and Counihan_Law exhibited a 

marginal overestimation of 5.21% and 0.11%, respectively. Nfaoui_Law exhibited a 

marginal underestimation of 3.22%. 

It was evident that all methods presented a high degree of dispersion when a scaling factor 

ranging from 10 m to 60 m was employed. While Justus_Law, Spera_Law and LogLaw 

respectively exhibited an overestimation of 29.53%, 14.87% and 9.85%, Khalfa_Law and 

Nfaoui_Law underestimated the wind energy estimation by 14% and 6.96%, respectively. 

Finally, the 1_7_Law exhibited a marginal overestimation of 5.69% and the Counihan_Law 

demonstrated a slight underestimation of around 0.88%. 

 

 

III.3.2. The impact of datasets and scaling methods wind 

speed on the power simulation 

The impact of both datasets and scaling methods on wind power simulation is evaluated. A 

boxplot of the relative deviation of each methods, highlights in Figure 28 the systematic 

biases associated with the different datasets and scaling methods. The ICON-LAM dataset 

is represented with red box, ERA5 with blue box and ERA5_GWA with green box. 

 

 

 

 

 

 

 

 

 

 

 
Figure 28: Boxplot of Energy Relative deviation for datasets and scaling 

methods wind energy estimation comparison at multiple height 
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In general, ERA5 underestimates wind energy, with a high degree of dispersion being 

observed across different weather mast stations. ICON-LAM and ERA5_GWA have been 

shown to have similar estimation properties, with ICON-LAM demonstrating an advantage 

in terms of low dispersion when compared to ERA5_GWA. The impact of the dataset is 

found to be of greater significance than that of the scaling methods. Analogous trends were 

observed at the various scaling heights. The following essay will provide a comprehensive 

overview of the relevant literature on the subject. 

The ERA5 model demonstrates an underestimation of wind energy estimation ranging from 

33.83% for Justus_Law to 75% for Adv_Lin, when scaling is conducted from 10 m to 20 

m. The Adv_Pl and the Adv_Log exhibited an underestimation of 49.34% and 54.06%, 

respectively. With ICON-LAM, Justus_Law exhibited an overestimation of wind energy 

by approximately 15.42%, while Adv_Lin underestimated the wind energy by 36%. The 

Adv_Pl and the Adv_Log respectively presented an overestimation of 5.60% and 12.57%, 

respectively. With ERA5_GWA, Justus_Law exhibited an overestimation of wind energy 

by approximately 17.48%, while Khalfa_Law demonstrated an underestimation of wind 

energy by around 8.16%.  

For a scaling for 10 m to 40 m, ERA5 show an underestimation of wind energy estimation 

between 30.17% for Justus_Law and 60.33% for Adv_Lin. Adv_Pl and Adv_Log presented 

respectively an underestimation of 48.01% and 50.30%. With ICON-LAM, Justus_Law 

overestimated the wind energy for about 24.81% while Adv_Lin underestimated the wind 

energy for about 11.27%. Adv_Pl and Adv_Log presented respectively an overestimation 

of 2.74% and 2.07%. With ERA5_GWA, Justus_Law overestimated the wind energy for 

about 31.16% while Khalfa_Law underestimated the wind energy for about 14.57%. 

For a scale ranging from 10 m to 60 m, the ERA5 model demonstrates an underestimation 

of wind energy estimation, with a range of 28.16% to 54.15% for Justus_Law and Adv_Lin, 

respectively. The results of the Adv_Pl and Adv_Log models indicated an underestimation 

of 48.03% and 49.60%, respectively. It is evident that ICON-LAM led to an overestimation 

of wind energy by approximately 33.56% by Justus_Law, while Adv_Lin resulted in an 

underestimation of wind energy by around 30.93%. It was demonstrated that both Adv_Pl 

and Adv_Log exhibited an overestimation of 3.25% and 6.18%, respectively. Utilising 

ERA5_GWA, Justus_Law exhibited an overestimation of wind energy by approximately 

35.68%, while Khalfa_Law demonstrated an underestimation of wind energy by around 
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20.50%. 

 

Conclusion 

In this chapter, all result from every evaluation were presented. The accuracy of datasets 

and height scaling methods was evaluated throughout three evaluations. First the simulated 

10 m wind speed from three dataset were compared against the observation. After the 

accuracy of dataset and scaling method were evaluated in multiple height wind speed 

estimation. Finally, the impact on wind power production were evaluated. The upcoming 

part of this study is the conclusion and futures perspectives.  
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CONCLUSION AND PERSPECTIVES 

This study investigates the impact of wind data variant on the wind power simulation by 

first evaluating the accuracy of atmospheric numerical datasets ICON-LAM, ERA5 and 

ERA5_GWA to simulate 10m wind speed over 204 meteorological stations from TAHMO, 

SASSCAL_WN and NCEI_ISD across the Southern Africa, second evaluating the 

accuracy of both dataset and 10 height scaling methods to estimate multiple heights 20 m, 

40 m and 60 m wind speed over 18 weather mast stations from WASA across South Africa, 

and finally to evaluate the impact of both datasets and scaling methods on wind energy 

estimation over 18 weather mast stations from WASA across South Africa. 

The datasets accuracy comparison on 10 m wind speed was done using 4 metrics MAE, 

ME, Pearson r and PSS and the results show that ERA5_GWA introduced the lowest bias, 

with the lowest overestimation and the highest frequency distribution overlapping area of 

the 10m wind speed while ICON-LAM introduced the opposites. However, the three 

datasets have similar correlation of 10m wind speed simulation with a slight advantage of 

ICON-LAM on ERA5 and ERA5_GWA which have the same correlation. Therefore, 

ERA5_GWA well simulated the 10 m wind speed across the Southern Africa compared to 

ERA5 and ICON-LAM. Else, the statistical downscaling with the GWA, on ERA5, to 

produce ERA5_GWA, introduced a bias correction and improved the simulation accuracy 

shown by ERA5_GWA. The performance of ICON-LAM is comparable to others study 

Chen et al., 2024a. 

The datasets and height scaling accuracy comparison on multi height wind speed was done 

through two analyses using 4 metrics and a Talyor Diagram. In the first analysis, the 

observed 10 m wind speed is scaled to 20 m, 40 m and 60 m using seven 07 height scaling 

methods 1_7_Law, LogLaw, Counihan_Law, Justus_Law, Khalfa_Law, Nfaoui_Law and 

Spera_Law, and those scaled wind speeds are compared against the observed wind speed 

at 20 m, 40 m, and 60 m. This allows to evaluate the accuracy of the scaling method only 

and the results show that, for all methods the errors introduced, and the dispersion increase 

with the scaling height. At 20 m, the bias difference between methods and dispersion are 

small then difficult to distinguished, but at 60 m, these bias differences are more visible, 

and the dispersion are high. While all methods tend to underestimate the wind speed, 

Justus_Law, and Spera_Law trend to overestimate the wind speed. 1_7_Law and 

Counihan_Law show a satisfactory performance on wind speed estimation. In the second 
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analysis, the simulated 10 m wind speed is scaled to 20 m, 40 m and 60 m using ten 10 

height scaling methods 1_7_Law, LogLaw, Counihan_Law, Justus_Law, Khalfa_Law, 

Nfaoui_Law, Spera_Law, Adv_Lin, Adv_Pl and Adv_Log except for ERA5_GWA which 

use the seven 07 previous height scaling methods. Those scaled wind speeds are compared 

against the observed wind speed at 20 m, 40 m, and 60 m. This allows to evaluate the 

accuracy of both datasets and the scaling methods, and the results show that, the impact of 

datasets prior that of scaling methods, with ERA5 models which clearly underestimated the 

wind speed. ICON-LAM and ERA5_GWA have similar performance with a slight 

advantages of ICON-LAM. A same trend was observed for all methods and datasets during 

the three-scaling range, except Adv_Lin, Adv_Pl, and Adv_Log. The performance of those 

three methods show that the choice of nearest reference heights impacts the accuracy of the 

estimation. The results obtained are comparable with others study Chen et al. 2024b. 

The impact of datasets and height scaling methods on the wind power simulation was also 

that through two analyses. The First, show the direct impact of height scaling methods on 

wind power simulation, where the observed 10 m wind speed, scaled to 20 m, 40 m and 60 

m using the seven 07 previous height scaling methods, are used for the wind energy 

estimation over the 3 years. The result followed the same trend as that of the wind speed 

estimation. 1_7_Law and Counihan_Law have a satisfactory performance with a marginal 

overestimation of 5.69% and a slight underestimation of 0.88%, respectively. The last 

analysis shows the impact of both dataset and scaling methods on wind power simulation. 

Similar, the accuracy of the estimation followed the same trend as that of the wind speed 

estimation. ERA5 critically underestimated the wind energy for Adv_Lin, of up to 54.15% 

in the context of a scaling from 10 m to 60 m and of up to 75% in the context of a scaling 

from 10 m to 20 m. Advanced Law highly depend on the choice of nearest reference 

heights. Else, the results of ICON-LAM for Adv_Lin -36% compared to Adv_Pl +5.60% 

and Adv_Log +12.57% in the context of a scaling from 10 m to 20 m shows Adv_Lin did 

not well estimate the wind speed and the wind energy as it do not take into account, the 

atmosphere stability and surface roughness impacts. 

All in all, this study reveals the performance of different wind speed height scaling methods 

to scale wind speed from 10 m to multiple heights and how this would impact on the 

subsequent wind power calculation. Similar results are found using different wind speed 

scaling methods, while the choice of the numerical atmospheric data set seems more to be 
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the decisive factor on the accuracy of wind speed and wind power calculation. 

One of the constraints is the limited study area of the wind power simulation. Only the 18 

weather mast stations available data were used. More weather mast stations imply more 

locations, more wind turbine locations or in general more potential wind farm locations 

which could have been investigated for a better validation of the results. Another constraint 

of this study is the limited time span which is only 3 years from 2017 to 2019. A large time 

span could allow the coverage of more climate events which will influence the outputs of 

this study as the wind speed will be impacted. Finally, this study did not include any real 

wind turbines. The wind power simulation comparison of this study did not use any 

available real wind turbine power generation data for a comparison against dataset and 

methods simulation data. This could enhance the study results as real wind turbine involved 

a parameter such as the turbine efficiency and the capacity factors, which affect a lot the 

wind power and are critical parameters for policy makers. 

Therefore, the future perspective of this current study is it expansion to a global scale. The 

datasets and methods accuracy could be investigated over an entire continent such as 

Africa, during a study period of 10 years and more. This will help to highlight the 

interannual variability, the climate impact as well as regional impact on wind power 

simulation. Else, the study could include the use of weather mast stations, which 

measurement height are close to modern wind turbines hub height i.e., 100 m, which will 

put the study close to real-life situations and increase the accuracy of the results. 
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APPENDICES 

Table 14: Summary of data used 

Datasets Labels Sources 

OBSERVED 

TAHMO https://tahmo.org/ 

SASSCAL_WN https://sasscalweathernet.org/ 

NCEI_ISD https://www.ncei.noaa.gov/products/land-based-

station/integrated-surface-database 

WASA https://wasadata.csir.co.za/wasa1/WASAData  

ERA5 All https://cds.climate.copernicus.eu/datasets/reanaly

sis-era5-single-levels?tab=overview  

GWA  All https://globalwindatlas.info/en/  

ICON-LAM All https://doi.org/10.26165/JUELICH-

DATA/JYGQ65 
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 APPENDICES 

Table 15 : Summary of wind speed scaling results 

  20 m 40 m 60 m 

  MAE ME Pearson r PSS MAE ME Pearson r PSS MAE ME Pearson r PSS 

Obs_extra 

1_7_Law 0.353 -0.043 0.995 0.982 0.820 -0.011 0.976 0.952 1.151 -0.094 0.955 0.944 

Counihan_Law 0.363 -0.080 0.995 0.983 0.799 -0.060 0.976 0.953 1.133 -0.075 0.955 0.943 

Justus_Law 0.423 0.264 0.995 0.959 1.035 0.635 0.975 0.919 1.440 0.886 0.951 0.898 

Khalfa_Law 0.435 0.018 0.994 0.944 0.879 0.071 0.971 0.896 1.314 0.158 0.944 0.861 

LogLaw 0.365 0.059 0.995 0.972 0.879 0.167 0.976 0.955 1.213 0.182 0.955 0.945 

Nfaoui_Law 0.365 -0.006 0.995 0.968 0.823 0.107 0.975 0.943 1.165 0.155 0.951 0.921 

Spera_Law 0.360 0.140 0.995 0.968 0.888 0.379 0.976 0.932 1.244 0.529 0.951 0.919 

ERA5_GWA 

1_7_Law 1.808 -0.121 0.819 0.929 2.004 -0.191 0.795 0.932 2.204 -0.214 0.765 0.926 

Counihan_Law 1.787 -0.229 0.819 0.931 2.028 -0.366 0.795 0.928 2.233 -0.456 0.765 0.916 

Justus_Law 1.596 0.169 0.817 0.923 1.779 0.469 0.793 0.911 2.061 0.742 0.763 0.910 

Khalfa_Law 1.608 0.037 0.815 0.918 1.756 -0.067 0.787 0.901 1.894 -0.200 0.759 0.882 

LogLaw 1.782 -0.088 0.819 0.929 1.984 -0.117 0.795 0.931 2.168 -0.186 0.765 0.932 

Nfaoui_Law 1.700 -0.066 0.817 0.929 1.846 -0.138 0.793 0.922 1.970 -0.141 0.763 0.910 

Spera_Law 1.680 -0.002 0.817 0.922 1.805 0.172 0.794 0.921 1.952 0.265 0.763 0.924 

ICON-LAM 

1_7_Law 1.626 -0.091 0.814 0.949 1.874 -0.168 0.772 0.942 2.107 -0.141 0.754 0.942 

Counihan_Law 1.623 -0.134 0.814 0.953 1.851 -0.327 0.772 0.946 2.099 -0.348 0.754 0.947 

Justus_Law 1.626 0.205 0.813 0.944 1.856 0.485 0.769 0.934 2.097 0.805 0.747 0.916 
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 APPENDICES 

Khalfa_Law 1.574 -0.003 0.810 0.943 1.687 -0.058 0.762 0.925 1.873 -0.070 0.734 0.900 

LogLaw 1.607 -0.020 0.814 0.953 1.859 -0.145 0.772 0.943 2.121 -0.134 0.754 0.939 

Nfaoui_Law 1.591 -0.043 0.813 0.953 1.763 -0.128 0.769 0.945 1.945 0.005 0.747 0.937 

Spera_Law 1.596 0.073 0.813 0.950 1.743 0.117 0.769 0.953 2.004 0.295 0.748 0.945 

Adv_Lin 1.968 -1.064 0.795 0.905 1.663 -0.346 0.801 0.942 2.169 -0.961 0.763 0.899 

Adv_Pl 1.574 -0.046 0.821 0.955 1.616 -0.080 0.802 0.957 1.748 0.017 0.796 0.952 

Adv_Log 1.608 -0.017 0.814 0.953 1.639 -0.075 0.801 0.956 1.758 0.101 0.795 0.955 

ERA5 

1_7_Law 2.669 -1.201  0.819 0.825 2.643 -1.528 0.795 0.813 3.074 -1.724 0.765 0.812 

Counihan_Law 2.701 -1.240 0.819 0.821 2.701 -1.614 0.795 0.806 3.155 -1.789 0.765 0.795 

Justus_Law 2.423 -0.897 0.817 0.822 2.188 -0.838 0.793 0.857 2.358 -0.743 0.763 0.865 

Khalfa_Law 2.521 -1.006 0.815 0.806 2.381 -1.165 0.788 0.810 2.616 -1.210 0.760 0.805 

LogLaw 2.617 -1.141 0.819 0.831 2.587 -1.444 0.795 0.825 3.026 -1.642 0.765 0.815 

Nfaoui_Law 2.582 -1.093 0.817 0.811 2.460 -1.378 0.793 0.808 2.753 -1.593 0.763 0.798 

Spera_Law 2.520 -1.019 0.817 0.824 2.355 -1.073 0.794 0.829 2.606 -1.192 0.763 0.851 

Adv_Lin 3.566 -2.224 0.809 0.700 2.823 -1.746 0.809 0.759 2.884 -1.577 0.816 0.790 

Adv_Pl 2.651 -1.312 0.819 0.803 2.559 -1.219 0.819 0.807 2.711 -1.364 0.821 0.813 

Adv_Log 2.729 -1.386 0.816 0.810 2.569 -1.339 0.815 0.810 2.749 -1.412 0.819 0.809 

 

 


