WASCAL Academia Repository

Predicting Discharge in Catchment Outlet Using Deep Learning: Case Study of the Ansongo-Niamey Basin

Show simple item record

dc.contributor.author Adounkpe, Julien Yise Peniel
dc.contributor.author Alamou, Eric Adechina
dc.contributor.author Diallo, Belko Abdoul Aziz
dc.contributor.author Ali, Abdou
dc.date.accessioned 2022-11-18T03:42:26Z
dc.date.available 2022-11-18T03:42:26Z
dc.date.issued 2021
dc.identifier.uri http://197.159.135.214/jspui/handle/123456789/536
dc.description Research Article en_US
dc.description.abstract Hydrological models are one of the key challenges in hydrology. Their goal is to understand, predict and manage water resources. Most of the hydrological models so far were either physical or conceptual models. But in the past two decades, fully data-driven (empirical) models started to emerge with the breakthroughs of novel deep learning methods in runoff prediction. These breakthroughs were mostly favored by the large volume, variety and velocity of water-related data. Long Short-Term Memory and Gated Recurrent Unit neural networks, particularly achieved the outstanding milestone of outperforming classic hydrological models in less than a decade. Moreover, they have the potential to change the way hydrological modeling is performed. In this study, precipitation, minimal and maximum temperature at the Ansongo-Niamey basin combined with the discharge at Ansongo and Kandadji were used to predict the discharge at Niamey using artificial neural networks. After data preprocessing and hyperparameter optimization, the deep learning models performed well with the LSTM and GRU respectively scoring a Nash-Sutcliffe Efficiency of 0.933 and 0.935. This performance matches those of well-known physically-based models used to simulate Niamey’s discharge and therefore demonstrates the efficiency of deep learning methods in a West African context, especially in Niamey which has been facing severe floods due to climate change. en_US
dc.language.iso en en_US
dc.subject Ansongo-Niamey basin en_US
dc.subject deep learning en_US
dc.subject gated recurrent unit en_US
dc.subject hydrological model en_US
dc.subject hyperparameter optimization en_US
dc.subject long short-term memory en_US
dc.title Predicting Discharge in Catchment Outlet Using Deep Learning: Case Study of the Ansongo-Niamey Basin en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WASCAL Academia


Browse

My Account