WASCAL Academia Repository

Climate change-induced reduction in agricultural land suitability of West-Africa’s inland valley landscapes

Show simple item record

dc.contributor.author Akpoti, K.
dc.contributor.author Groen, T.
dc.contributor.author Dossou-Yovo, E.
dc.contributor.author Kabo-bah, A.T.
dc.contributor.author Zwart, S.J.
dc.date.accessioned 2022-11-01T15:37:05Z
dc.date.available 2022-11-01T15:37:05Z
dc.date.issued 2022-05
dc.identifier.other https://doi.org/10.1016/j.agsy.2022.103429
dc.identifier.uri http://197.159.135.214/jspui/handle/123456789/349
dc.description Research Article en_US
dc.description.abstract CONTEXT: Although rice production has increased significantly in the last decade in West Africa, the region is far from being rice self-sufficient. Inland valleys (IVs) with their relatively higher water content and soil fertility compared to the surrounding uplands are the main rice-growing agroecosystem. They are being promoted by governments and development agencies as future food baskets of the region. However, West Africa’s crop production is estimated to be negatively affected by climate change due to the strong dependence of its agriculture on rainfall. OBJECTIVE: The main objective of the study is to apply a set of machine learning models to quantify the extent of climate change impact on land suitability for rice using the presence of rice-only data in IVs along with bioclimatic indicators. METHODS: We used a spatially explicit modeling approach based on correlative Ecological Niche Modeling. We deployed 4 algorithms (Boosted Regression Trees, Generalized Linear Model, Maximum Entropy, and Random Forest) for 4-time periods (the 2030s, 2050s, 2070s, and 2080s) of the 4 Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8) from an ensemble set of 32 spatially downscaled and bias-corrected Global Circulation Models climate data. RESULTS AND CONCLUSIONS: The overall trend showed a decrease in suitable areas compared to the baseline as a function of changes in temperature and precipitation by the order of 22–33% area loss under the lowest reduction scenarios and more than 50% in extreme cases. Isothermality or how large the day to night temperatures oscillate relative to the annual oscillations has a large impact on area losses while precipitation increase accounts for most of the areas with no change in suitability. Strong adaptation measures along with technological advancement and adoption will be needed to cope with the adverse effects of climate change on inland valley rice areas in the sub-region. SIGNIFICANCE: The demand for rice in West Africa is huge. For the rice self-sufficiency agenda of the region, “where” and “how much” land resources are available is key and requires long-term, informed planning. Farmers can only adapt when they switch to improved breeds, providing that they are suited for the new conditions. Our results stress the need for land use planning that considers potential climate change impacts to define the best areas and growing systems to produce rice under multiple future climate change uncertainties. en_US
dc.language.iso en en_US
dc.publisher Agricultural Systems en_US
dc.subject Rice agroecosystem en_US
dc.subject Ecological niche modeling en_US
dc.subject Multi-GCM ensembles en_US
dc.subject Machine learning en_US
dc.subject RCP scenarios en_US
dc.subject Cropland en_US
dc.title Climate change-induced reduction in agricultural land suitability of West-Africa’s inland valley landscapes en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search WASCAL Academia


Browse

My Account