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ABSTRACT

Abstract

The management of climate risks such as droughts, floods and heat waves requires high quality
historical climate data that offers good spatial and temporal distribution. To achieve this, rain
gauges are installed to provide the most reliable measurement of rainfall. However, the rain
gauge network is generally very poor in developing countries, leading to many uncertainties,
especially in areas where no rain gauge is installed. To fill this gaps, rainfall estimation based on
satellites seems to be a good and cost-effective alternative because they supply information for
these areas at a relative low cost. However, these datasets are subject to systematic and random
errors inherent to the observation method; therefore, there is a need to adjust them before their
use for operational applications and decision making. This study proposes a rigorous method
in three-step to improve satellite estimation data for Burkina Faso. The first step is devoted to
assessing the accuracy of seven satellite precipitation datasets. Then the best dataset is bias
corrected using Empirical Quantile Mapping (EQM) and Time and space-variant (TSV) bias-
adjustment approaches. The final step is to generate blended datasets between the best corrected
datasets and in-situ gauges data to produce more robust estimates of precipitation datasets. This
blending was performed with Regression kriging (RK) and Mean Field Bias (MFB) with two
interpolation techniques namely Shepard and Spheremap. The main results of the study are
the following: The evaluation revealed that TAMSAT and CHIRPS were the best for daily and
monthly time scales respectively. EQM method outperformed TSV at daily scale, while at the
monthly scale the TSV was more suitable for bias correction. Morever, RK-Spheremap was
the best of the four methods for merging satellite and in situ data at both time scales. Thus,
the approach proposed in this study has improved the correlation coefficients improved the
correlation of the daily data by 85.2% (from 0.147 to 0.999), the Bias by 12.4% (from 0.875 to
0.999) and the RMSE by 95.6% (from 26.494 to 1.175). Concerning the monthly dataset, the
correlation coefficients are enhanced by 8.4% (from 0.916 to 1), the Bias by 2.3% (from 0.977
to 1) and the RMSE by 99.9% (from 35.654 to 0.042). This study may help in improving floods
and droughts monotoring, as well as climate model validation over Burkina Faso.

Keywords: bias correction; datasets; merging; rain gauge; satellite; evaluation; statistical metrics.

Résumé

La gestion des risques climatiques tels que les sécheresses, les inondations et les vagues de
chaleur nécessite des données climatiques historiques de haute qualité offrant une bonne
répartition spatiale et temporelle. A cet effet, des pluviomètres sont installés afin de fournir la
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ABSTRACT

mesure la plus fiable des précipitations. Cependant, le réseau de pluviomètres est généralement
très pauvre dans les pays en développement, ce qui entraîne de nombreuses incertitudes,
notamment dans les zones où aucun pluviomètre n’est installé. Pour remédier à ce problème,
l’estimation des précipitations basée sur les satellites semble être une bonne alternative car
ceux-ci fournissent des informations pour ces zones à un coût relativement faible. Toutefois
ces données sont sujets à des erreurs systématiques et aléatoires inhérentes à la méthode
d’observation; il est donc nécessaire de procéder à des ajustements avant leur utilisation pour
des applications opérationnelles et la prise de décision. Cette étude propose une méthode
rigoureuse en trois étapes pour améliorer les données d’estimation satellitaires pour le Burkina
Faso. La première étape est consacrée à l’évaluation de la précision de sept ensembles de
données de précipitations par satellite. Ensuite, les meilleurs jeux de données ont été corrigés
des biais en utilisant les approches de correction des biais Empirical Quantile Mapping (EQM)
et Time and space-variant (TSV). L’ étape finale a consisté à générer des ensembles de données
mixtes entre les données satellitaires corrigées de biais et des données in situ des pluviomètres
afin de produire des estimations plus robustes des données sur les précipitations. Cette fusion a
été réalisée avec les methodes Regression Kriging (RK) et Mean Field Bias (MFB) associés à
deux techniques d’interpolation, à savoir Shepard et Spheremap. Les principaux résultats de
l’étude sont les suivants: l’évaluation a révélé que TAMSAT et CHIRPS étaient respectivement
les meilleurs pour les échelles de temps quotidiennes et mensuelles. La méthode EQM a
surpassé TSV à l’échelle quotidienne, tandis qu’à l’échelle mensuelle, la TSV était plus
adaptée à la correction des biais. En outre, RK-Spheremap a été la meilleure des quatre
méthodes de fusion des données satellitaires et in situ aux deux échelles de temps. L’approche
ainsi proposée dans cette étude a permis d’améliorer les coefficients de corrélation des données
journalières de 85,2% (de 0,147 à 0,999), le biais de 12,4% (de 0,875 à 0,999) et le RMSE de
95,6% (de 26,494 à 1,175). À l’échelle de temps mensuelle, les coefficients de corrélation ont
été améliorés de 8,4% (de 0,916 à 1), le biais de 2,3% (de 0,977 à 1) et l’ EQM de 99,9% (de
35,654 à 0,042). Cette étude peut aider à améliorer le suivi des inondations et des sécheresses,
ainsi que la validation des modèles climatiques au Burkina Faso.

Mots-clés : correction des biais; donnees; évaluation; pluviomètre; satellitaire; fusion; métriques
statistiques.
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ACRONYMS AND ABBREVIATIONS

Acronyms and Abbreviations

ANAM :Agence Nationale de la Météorologie
ARC2 :Africa Rainfall Estimate Climatology version 2
CDO :Climate Data Operator
ColCOK :Co-located cokriging
CMORPH :CPC MORPHing technique
CHIRPS :Climate Hazards Group Infrared Precipitation
CPC :Climate Prediction Center
CM :Conditional Merging
CNSC :Cadre national des Services Climatiques
CRU :Climate Research Unit
DT :Daily Transformation
ENACTS :Enhancing National Climate Services
EQM :Empirical Quantile Mapping
FAR :False Alarm Ratio
GQM :Gamma Quantile Mapping
GTS :Global Telecommunications System
GHCN :Global Historical Climate Network
GPCC :Global Precipitation Climatology Centre
IDW :Inverse Distance Weighted
IMERG :Integrated Multi-satellitE Retrievals for GPM
IPCC :Intergovernmental Panel on Climate Change
IR :Infrared
IRI :International Research Institute for Climate and Society
JAXA :Japan Aerospace Exploration Agency
KED :kriging with external Drift
LB :Local bias
LOCI :Local Intensity Scale
LS :Linear Scaling
NASA :National Aeronautics and Space Administration
NMS :National Meteorological Services
NMHS :National Meteorological and Hydrological Services
MAE :Mean Absolute Error
ME :Mean Error
MFB :Men Field Bias
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ACRONYMS AND ABBREVIATIONS

MSWEP :Multi-Source Weighted-Ensemble Precipitation
PANA :Programme d’Action National et d’Adaptation
PBIAS :Relative percent of bias
PERSIANN :Precipitation Estimation from Remotely Sensed Information
PREC/L :Precipitation reconstruction over land
PMW :Passive microwave
PNUD :Programme des Nations Unis Pour le Developpement
POD :Probability of Detection
FAR :False Alarm Ratio
SPD :Satellites based-precipitation estimates
RFE :African Rainfall Estimation
RMSE :Root Mean Square Error
RK :Regression Kriging
SOFF :Systematics Observations Financing Facility
SPD :Satellites precipitation data sets
TAMSAT :Tropical Applications of Meteorology using SATellite data)
SF :Spatial fixe
TARCAT :African Rainfall Climatology and Time- series
TRMM :Tropical Rainfall Measuring Mission
TSF :Time and Space Fixed
TSV :Time and Space-Variant
TSC :Temporal Spatial Constant
TV :Time variable
TIROS :Television InfraRed Observation
TIR :Thermal infrared
VIS :Visible
WMO :World Meteorological Organization
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Introduction

Background and Context

Climate change has an impact on the environment, which changes the resources available to
humans. Vulnerability to this phenomenon varies depending on geographic location, weather,
and economic, social, and environmental conditions. The Sixth Assessment Report of IPCC
cites Africa as the most vulnerable continent to climate change and variability (IPCC, 2022).
The Sahelian zone of West Africa is particularly vulnerable to climate change, as the majority of
its resources are climate-dependent, and the poverty of populations limits its access to suitable
adaptation solutions (Roudier et al., 2011). Over the last four decades, severe changes in rainfall
patterns have been documented, with reductions in rainfall from 36% to 50% (Ali and Lebel,
2008, Lebel et al., 2003). The decrease in rainfall during this period was characterized by severe
droughts, which were considered the most significant global droughts of the twentieth century in
terms of spatial and temporal extent, leaving catastrophic consequences that will be remembered
for a long time. Moreover, in this region of Africa, climate crises are also characterized by floods
due to heavy rains with serious consequences on the main socio-economic activities. Because
of its geographical location in the Sudano-Sahelian zone of West Africa, Burkina Faso is not
spared from the harmful effects of climate variability and change. Drought remains one of the
most frequent and disaster in this country and it occurred during the last two decades of the
20th century, in 1973, 1984, 1991, 1994, 1998 and 2004 (PANA, 2003) due to low rainfall
and uneven distribution. On the other hand, floods are also responsible for huge disruptions
including loss of human lives and economic assets, as well as damage to infrastructure. Tazen et
al.(2018) reported that they had increased in number and intensity in Ouagadougou and across
the country, based on a review of historical flooding incidents.

Drought and floods have a negative impact on agriculture, the country’s main economic sector,
which accounts for 35% of GDP. The tragic flood of September 1, 2009, which affected more
than 150,000 people and caused serious property losses and deaths, is still fresh in people’s
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minds. In addition, climate models and climate change scenarios predict a decrease in
precipitation of 3.4% by 2025 and 7.3% by 2050 (PANA, 2007). The climate conditions
described above reflect the high vulnerability to current and even future climatic shocks
requiring adaptation measures to climate variability and change at local, national and global
levels. Therefore, the provision of appropriate sector services could enhance adaptive capacity
and resilience, thereby reducing the impact of extreme weather events. As a result, WMO
created the National Framework for Climate Services (CNSC) intending to promote adaptation
to climate change by producing and disseminating appropriate weather and climate data and
services to different users and decision-makers. The priority sectors are agriculture, water
resources, hydrometeorology, disaster warning, health and energy. In the same spirit, the
World Meteorological Organization, in collaboration with a wide range of international
organizations, created the Systematic Observations Funding Facility (SOFF) to help countries
improve weather forecasts, early warning systems and climate information by providing
technical and financial assistance to generate and exchange baseline observations. However,
the effectiveness and reliability of all these actions fall within the framework of adaptation,
such as climate forecasts, or any hydrological study, whether they are linked to flood
forecasting, drought monitoring, management of water resources or the assessment of the
impacts of climate change, depend heavily on the availability of good quality rainfall data.
Good quality data includes a good spatial distribution across the country, but also a reasonable
time series with as few missing data as possible. The figure 1 provides overview of the most
frequent natural disaster and the impacts of those disasters on human populations from 1980 to
2020 in Burkina Faso.

Figure 1: Frequent natural disaster and populations affected by those disasters from 1980 to
2020 in Burkina Faso.
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Problem Statement

Precipitation data are usually provided from the National Meteorological Services (NMS)
observation network. The suggested density of the ground-based precipitation network is 250
km2 per station for mountainous regions and 575 km2 per station for interior plains regions
(WMO, 2008). However, the network of rain gauges in most of Africa is sparse, and long-term
records are not always available (Dembélé and Swart, 2016). Various reasons explain this
situation. Many of them are political, socio-economic and go far beyond the direct influence of
NMHSs. They include civil wars, poverty, and more recently, regional epidemics. In Burkina
Faso, as in other developing countries, the densification of a network of meteorological stations
is not one of the government’s priorities. The national meteorological services then lack the
financial capacities and technical infrastructures to deal with the network of stations. Therefore
least developed countries, such as Burkina Faso depend on international assistance to maintain
their observation networks and related services (PNUD, 2016). Furthermore, in Burkina Faso,
classified forests and protected areas cover an estimated 3.9 million hectares1, or about 14% of
the country’s territory, making it impossible to establish a good network of stations. Weather
radars seemed to be an alternative, but their exorbitant acquisition and maintenance costs limit
the development of a radar network. Those in Ouagadougou and Bobo Dioulasso have not
been in service for some years. In addition to this, insecurity has affected the management of
the existing observation network, in that localities under terrorist threat have seen their
populations empty, which implies the absence of observations by abandoning the stations.

Considering all these issues, acquiring a climatic record of precipitation amounts at a very
fine spatial scale with a long time series over a given area has become a huge challenge.
It makes managing extreme weather events and conducting scientific research difficult. To
overcome the lack of measuring stations, satellite rainfall estimates are considered the best
options for obtaining reliable rainfall data. These datasets are convenient due to their good
temporal and spatial coverage and data sources in ungauged areas are also available (Katsanos
et al.,2016). They provide data in inaccessible places such as forests, mountains, and dangerous
areas. Satellites and radars, unlike rain gauges, estimate precipitation indirectly, hence their
data is vulnerable to errors. The rain gauges have the advantage of high fidelity, while satellite
estimates have good spatial and temporal coverage. It is therefore essential to take advantage
of the strengths of both sources by merging the two datasets. This approach of combining
satellite precipitation datasets with precipitation measurements would have a lot of benefits

1http://www.naturama.bf/web/index.php/component/k2/item/135-apercu-sur-les-aires-protegees-au-burkina-
faso accessed 12-11-2021
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(Duque-Gardeazábal et al., 2018). In this respect, some reflections have already been made by
researchers to obtain reliable and high-resolution data by combining the precipitation datasets
from the two sources. This is why, since the end of the 1990s, several blended datasets made up
rain gauges, satellite and reanalysis are available. Among them, MSWEP and GPCP (Beck et al.,
2017) have worldwide coverage, while IMERG, CHPclimv.1.0, and CHIRPS (Huffman et al.,
2014) have regional coverage. In Africa, the Enhancing National Climate Services (ENACTS)
approach, initiated by the International Research Institute for Climate and Society (IRI), has been
implemented in eight countries at the national level. These countries are Mali, Ghana, Gambia,
Ethiopia, Rwanda, Tanzania, Zambia, and Madagascar, where data from rain gauge networks
has been blended with data from satellite rainfall estimates (Dinku et al., 2016) to improve the
availability, quality and access to climate data. As can be seen, none of these studies have been
carried out in Burkina Faso at the national level to produce a fine spatial resolution rainfall data
with a long time series.

This study proposes a model to provide an improved rainfall Data set that can represent both a
good temporal and spatial distribution for Burkina Faso. This will be done by blending satellite
and rain gauge data in three procedures: (1) Assessing the performance of satellite precipitation
datasets (2) bias adjustment of Satellites datasets , and (3) merging of datasets.

Outline of the thesis

This thesis is organized as following: An introduction including a general background related
to the study topic, problem statement, objectives and hypothesis of this work. The relevance
of the study is described in section as well. Chapter 1 presents the literature review in which
precipitation observation systems are described as well as a depth review of the most common
approaches for bias correction and datasets merging. Chapter 2 describes the methodology used
to conduct the study. Then Chapter 3 presents and discusses the results of the study. Finally, a
conclusion summarizes the main findings and contributions of the thesis. Possibilities for future
research are also presented.

Research questions

Main research questions: How can the quality of gridded precipitation datasets in Burkina Faso
be improved from rigorous scientific approaches? Specific research questions: The following
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research questions must be answered to achieve the main objective:

• What are the performances of satellite precipitation datasets for each climatic zone in
Burkina Faso at the daily and monthly time scales?

• What is the most effective rainfall bias correction algorithm for Burkina Faso?

• Do the satellite-gauges merging techniques employed improve the quality of the bias-
corrected SPDs?

Research hypotheses

• As the evaluation time step increases, the performance of the SPDs improves.

• The bias-corrected dataset shows a significantly reduced systematic bias with EQM
compared to TSV.

• The reliability of the bias-corrected datasets is improved by merging them with rain gauge
observations.

Research objectives

This study aims to improve the quality of gridded precipitation datasets using rigorous
approaches that combine satellite estimates and rainfall observations across Burkina Faso. This
general objective is divided into three specific objectives which are:

• To evaluate the performance of seven satellite precipitation datasets by comparing them
with rain gauge measurements at daily and monthly time scales for each climate zone.

• To investigate the effectiveness of two bias correction approaches in removing the
systematic bias from the best daily and monthly datasets previously identified.

• To improve the reliability of the bias-corrected dataset (daily and monthly time scale) by
blending the rain gauges and bias-corrected datasets using four merging algorithms.
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Chapter 1

Literature review

1.1 Precipitation observation systems

Precipitation observation methods can be divided into two broad categories: direct measurement
and indirect measurement. Direct measurements also called "situ" (in place) are carried out by
rain gauges. In this type of measurement, the devices are in direct contact with the variable
measured. On the other hand, indirect measurements, called remote sensing, consist of the
estimation of precipitation by satellites and meteorological radars. Rain gauges and satellites
will be discussed in detail below. For the radars which are not the subject of this study, a brief
description will be given.

1.1.1 Rain gauge measurements

The rain gauge is historically the first instrument used to measure precipitation (Strangeways,
2010). It offers the advantage of simple and direct measurement, but the spatial
representativeness of its measurement is very limited. The frequency of observations depends
on the type of rain gauge used. Manual rain gauges are measured at long time intervals.
Automatic tipping bucket rain gauges measure the accumulation time of a given water level on
finer time scales (Sevruk, 1997). Thanks to the automation of the measurement and its
transmission, the second type has the advantage of avoiding human intervention, which is
always a source of errors. Rain gauge data is collected by the countries’ national
meteorological services. The World Meteorological Organization (WMO) promotes the
densification of observation networks and ensures data concentration through the Global
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1.1. PRECIPITATION OBSERVATION SYSTEMS Chapter 1. Literature review

Telecommunications System (GTS). To date, the total area of all operational rain gauges
worldwide is surprisingly small, corresponding to 5.93 10−15% of the earth’s surface (Kidd et
al., 2017). The global number of rain gauges is estimated at 250,000 by Groisman and Legates.
(1995), while New et al., (2001) estimated their number at around 150,000. It is recognized
that they are not evenly distributed over the globe, especially in parts of Africa, but also over
the oceans, in desert areas. In situ measurements are only representative of a small area around
the measurement site. One of the datasets composed of original rain gauge data is the Global
Historical Climate Network (GHCN) [Menne et al., 2012] with daily and monthly temporal
resolution. Due to the uneven distribution of observing stations, gridded data are increasingly
needed. Several precipitation gridded datasets, entirely based on gauge information, have been
constructed and are widely used (Kidd et al. 2017). The most common gauge-based datasets
globally are CRU (Harris et al. 2014), GPCC (Becker et al., 2013), PREC/L (Chen and Xie,
2002), Udel (Matsuura and Willmott, 2009) and CPC-Global (Xie et al., 2010). The GPCC
remains the most comprehensive and widely used rainfall database, covering the period from
1901 to the present day. In Burkina Faso, the rain gauge network consisted of nearly 134
observation stations including synoptic, climatological, agrometeorological and rainfall
stations before 2016. Observations dating from 1902 exist for some stations. The network
currently consists of nearly 260 automatic stations whose observations are very recent and
therefore do not have long time series.

1.1.2 Uncertainties in rain gauge measurements

The measurement of rainfall by rain gauge is subject to an uncertainty mainly related to the
measuring device (the rain gauge) on the one hand and to its environment on the other hand.
Indeed, the natural and/or human surrounding conditions (vegetation, buildings, insect
intrusion, etc.) are sources of error. This is why the choice of the location of a rain gauge is
crucial to guarantee a good measurement of precipitation: a device located near a building will
underestimate the precipitation according to the wind direction (on the ground). Moreover,
changing the measuring equipment or moving it to another observation site may alter the
continuity of the precipitation observation series. It is therefore important to carry out quality
control of the precipitation observations before climatological studies. Although the
measurement of precipitation by rain gauges generates uncertainties, when it comes to
assessing the performance of models, ground-based rain gauges are always considered as
reference data and therefore as correct data.
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1.1.3 Meteorological Radars

Radar stands for radio detection and ranging and is a system that uses microwave energy for the
detection and ranging of objects. Weather radars can generally be divided into fixed position
radars and mobile radars. The latter are either transported in a vehicle or transported on board
an aircraft or a satellite. The radar is an active system that emits by itself electromagnetic
waves in a direction of space and captures the wave reflected by a target (hydrometeor). The
mechanical scanning of the system allows complete coverage of the space surrounding the radar.
Depending on the power emitted and the wavelength used, the range of the radar varies from
a few kilometers to 500 km, but in general, its useful range is limited to less than 300 km 1.
Nowadays, conventional radars are replaced by radars capable of detecting not only the intensity
of precipitation but also its speed of movement (Doppler effect). To cover very large areas,
several radars can be used in a network.

1.1.4 Satellite precipitation estimates

Remote sensing is the science of acquiring information about an object or phenomenon without
coming into physical contact with the object, unlike in situ or on-site observation. In current
usage, the term generally refers to the use of satellite or aircraft-based sensor technologies to
detect and classify objects on Earth, including on the surface and in the atmosphere and oceans,
based on propagated signals (e.g., electromagnetic radiation). Then, electromagnetic radiation is
indirectly converted to precipitation rate by algorithms. Since the 1960s when the first Television
and IR Observation Satellite (TIROS) was launched, the number of remote sensing satellites for
Meteorology purposes keeps growing. It has increased by 73% in 2017 from the update of 2016
(Lavender, 2017)2. Figure 1.2 shows the global network of operational meteorological satellites
in 2011. Two types of sensors are commonly used in satellite rainfall-estimation algorithms, the
active sensors from geostationary satellites and the passive sensors on polar-orbiting satellites
(Figure 1.1).

• Passive RS (i.e., when the reflection of sunlight is detected by the sensor), the only source
is the sun (day-light conditions).

• Active RS (i.e., when a signal is emitted by a satellite or an aircraft themselves and
its reflection by the object is detected by the sensor; sensor supplies its power source),

1https://www.radartutorial.eu/druck/Chapitre2A.pdf accessed 03-03-2022
2https://www.pixalytics.com/eo-sats-in-space-2017/
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imaging is independent of daytime or nighttime conditions.

Figure 1.1: Illustration showing the difference between passive versus active sensors.

Source:3

Figure 1.2: Meteorological satellite observation network

Source: WMO4

1.1.4.1 Satellite measurement principles

The methods used onboard meteorological satellites for precipitation observations are mainly
visible (VIS) / infrared (IR), Passive microwave (PMW) systems (Nicholson et al., 2003),

3https://public.wmo.int/en/programmes/wmo-space-programme accessed 22-03-2022
4https://earthdata.nasa.gov/learn/remote-sensors accessed 22-03-2022
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and the Multi-Sensor Technique. Today, dozens of Earth observation satellites are in orbit,
constantly providing thousands of images for military applications, but also increasingly for
civilian applications.

The Visible and Infrared
The Thermal infrared (TIR) sensors from geostationary satellites. The VIS and IR domains have
wavelengths between [0.4; 0.75] and [0.75; 1000] respectively (figure 1.3). The observation
of precipitation in both spectra is related to the characteristics of cloud tops (Lensky and
Levizzani, 2008). In the visible range, with solar radiation, clouds reflect strongly and appear
brighter than land surfaces, so the brightness depends on the vertical extension of the cloud. For
this reason, VIS channels can also be used to determine the type of cloud. Rough cloud tops
are characteristic of clouds with strong lift, while smooth cloud tops define stratus clouds. This
method is exclusively dependent on solar radiation. IR estimates precipitation by measuring
temperatures at the cloud top. In contrast to the visible, this technique works at night. The
principle is based on the fact that the colder the cloud top is, the more it will develop vertically
and therefore generate higher precipitation rates. The advantages of IR are the high temporal
sampling (every 15 minutes), the fine spatial resolution (<3km), and the wide coverage when
used from geostationary satellites. However, this relationship between cloud top temperature
and precipitation rate is an indirect relationship that varies with rainfall systems. The VIS and IR
methods have drawbacks in that they measure cloud-top properties instead of rain at the ground
(Capacci and Porcu, 2009). The rainfall estimation method is not therefore physical. In the
case of cirrus clouds, which are made of ice crystals and therefore very cold, will be considered
precipitating clouds, while this kind of cloud does not generate rain.

Passive Microwave
Passive microwave sensors (PMW) are carried on satellites in polar orbit. The microwave
part of the spectrum covers a range of wavelengths from 1 centimeter to 1 meter (Figure 1.3).
These wavelengths are long compared to visible and infrared waves, so microwaves have special
properties in remote sensing. The longer waves pass through cloud cover, drizzle, dust and light
rain because they are not susceptible to atmospheric scattering which affects the shorter waves.
Clouds and precipitation emit, absorb and scatter radiation. Microwave sensors measure the
brightness temperature from the top of the atmosphere to the satellite. This property allows
detection in almost all atmospheric conditions, and therefore data acquisition at any time. MW
techniques are therefore physically more direct than those based on VIS/IR radiation. However,
microwave sensors have a poor spatial and temporal resolution (Levizzani et al., 2001). The
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brightness temperature is calculated by inverting the Planck function as shown in equation(1).

Multi-Sensor Technique
Multi-source satellite estimates result from the merging of infrared and microwave data from
different operational satellites. The combination of VIS/IR and PMW is an opportunity to
combine good sampling (VIS/IR) with better extractions (PMW) to not only improve estimates
but also spatial and temporal resolution (Ringard, 2017). Passive microwaves have the advantage
of capturing precipitation well and, for IR, following the distribution of precipitation. To this
end, several algorithms have been developed to combine PMW and IR (Joyce et al., 2004).

Figure 1.3: Electromagnetic Spectrum

Source:5
5https://www.japanistry.com/electromagnetic-spectrum/ accessed 22-03-2022
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1.2 Evaluation of SPDs

1.2.1 Summary of the previous studies on the evaluations of SPDs

The reliability of SPD datasets in reproducing ground-based precipitation needs to be assessed
(Meng et al., 2014) due to uncertainties in these datasets. With regard to the evaluation of
satellite data, data from rain gauges are still used as a reference to evaluate the ability of satellite
data estimation algorithms to reproduce precipitation on the ground. Numerous studies have
examined the performance of SPDs in several regions of the world. In China (Jiang et al., 2019),
in the islands (Katsanos et al., 2016), in Iran (Javanmard et al., 2010), in the Pacific Ocean
(Pfeifroth et al., 2013), in Italy (Conti et al., 2013). Similar researches have been conducted in
Africa, such as in the southern part (Toté et al., 2015), the eastern part (Bayissa et al., 2017), the
west and the Sahel (Dembélé and Zwart, 2016, Atiah et al., 2020). This work covers different
timescales, including daily, monthly, seasonal and annual (Dembélé and swart, 2016; Atiah et
al., 2020).

1.2.2 Verification statistics for precipitation satellite datasets

There are well-known methods and statistics in the literature to assess the ability of SPDs to
detect the occurrence and amount of precipitation. Continuous verification statistics measure
the accuracy of a continuous variable such as the amount or intensity of the precipitation. The
most commonly used continuous verification statistics are Pearson’s correlation coefficient (r),
mean error (ME), root mean square error (RMSE) and bias, mean absolute error (MAE) and
percentage relative bias (PBIAS). Categorical verification statistics are used to measure the
correspondence between the estimated and observed occurrences of events (Ebert, 2007) like
Probability of Detection (POD) and False Alarm Rate (FAR) (Qin et al., 2014).

1.2.3 Some verification results of precipitation satellite datasets

Research results reveal that SPD performance differs between geographies and seasons for
the same type of data (Gebremichael et al., 2014). This indicates that the performance of
satellite datasets is highly dependent on the location, topography, season, and hydro-climatic
characteristics of the study area. For example, Dinku et al. (2010) have shown that SPDs
perform poorly in dry areas and mountainous terrain. The CHIRPS satellite dataset fared better
in low-lying locations, according to Shrestha et al. (2017). The four satellite precipitation data
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sets (TRMM-3B42, TRMM-3B42RT, CMORPH, GSMaP) performed better in summer than in
winter. They also performed better in wet southern regions than in dry northern or high altitude
regions, as argued by Qin et al. (2014). In addition, the reliability of satellite rainfall estimates
varies with time scale. Evaluating TRMM-3B42 v7 in Morocco, Tramblay et al. (2016) found
that the satellite estimates perfectly reproduced observed precipitation at monthly and annual
time scales, but were less efficient in detecting extreme precipitation in Nepal. Gosset et al.
(2013) assessed the accuracy of CMORPH and concluded that it overestimates daily rainfall in
Niger by an average of 2 mm. CMORPH has also shown poor performances in West Africa
and Ethiopia (Jobar et al., 2011; Dinku et al., 2008). Very few studies have been conducted
in Burkina Faso. Dembélé and swart. (2016) evaluated the skill of SPDs (ARC2, CHIRPS,
PERSIANN, RFE, TAMSAT, and TRMM) with the 10 synoptic weather stations in Burkina
Faso. CHIRPS was found to be the best performing, while TAMSAT was found to be the worst.
In numerous research, CHIRPS was also among best-performing datasets (Beck et al., 2017,
Toté et al., 2015, Bayissa et al., 2017, Atiah et al., 2020)

1.3 Bias Correction of SPDs

1.3.1 Satellites -Rain Gauge Bias Correction Methods

Satellite Estimates are subject to different types of errors which errors arise from two sources: (1)
random error, which is inherent in measurement records (Tang et al., 2015), and (2) systematic
bias related to post-processing algorithms and procedures (Sadeghi et al., 2019). As described
in Smith et al., (2006), this systematic difference between satellite and terrestrial observations
is known as bias. Thus, they must be adjusted before being used as input data for hydrological
models or other applications (Gumindoga et al., 2019). Several “bias correction” techniques
have been developed in an attempt to improve SPDs and are discussed in detail in numerous
publications (Themeßl et al., 2011; Teutschbein and Seibert, 2012; Lafon et al., 2013; Chen
et al., 2013). Table 1.1 presents eight widely used methods. They can be classified into two
main categories: dynamic bias correction methods also called Spatio-temporal bias correction
methods such as Time and Space Variant (TSV), Fixed Time and Space (TSF), and Time
variable (TV). The other category concerns the statistical methods of correction which can
also be subdivided into linear methods, Nonlinear methods, and distribution-based methods as
described in table 1.1.
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1.3.2 Relative Advantages and Disadvantages of the most common
Correction Methods

Each of the bias correction approaches analysed individually has strengths and weaknesses.
Table 1.1 summarises the results of previous studies on the advantages and disadvantages of the
methods discussed in the previous section (1.3.1). From this table it can be seen that the linear
adjustment methods are able to adjust the mean (LS) as well as the frequencies and intensities of
the rainy days of the rainfall time series (LOCI). They are limited because they do not take into
account changes in the frequency distribution of rainfall. Non-linear (NL) and distribution-based
methods correct the mean as well as the variance of the estimated rainfall time series. Dynamic
methods have the advantage of correcting for both spatial and temporal aspects of the bias.

1.3.3 Intercomparison of bias Adjustment Methods

Researchers are still working on evaluating different bias correction methods and, to date, the
literature does not provide any references regarding the best bias correction technique (Goshine,
2020). Table 1.1 summarises the results of comparative studies of bias correction methods. Not
all methods generally improve all statistics and methods are often compared according to the
indicator targeted or to be improved. In general, linear methods can be considered the least
effective as they are designed to change only the mean and ignore any lack of correction for
rainfall occurrence. It is reported that the distribution-based approach has been more successful
in reproducing precipitation than both linear and non-linear approaches. Empirical quantile
mapping remains the most widely used bias correction and is also known to be the most
effective. Among the dynamic methods, TSV performed better than TSF and TV in the majority
of evaluation studies. Overall, when comparing EQM and other bias correction methods, EQM
is superior.
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Table 1.1: Summary of advantages, disadvantages, and intercomparison of bias corrections methods.
Statistical Bias correction Methods

Bias corr Methods Advantages Disavantages Intercomparaison references
1. Linear scaling (LS)
(Linear Methods)

- Simplest bias-adjusted method
- adjust perfectly the climate factors
when the monthly average values are
included.

– It does not correct the standard
deviation or variance and all
events are adjusted with the same
correction factor
- the number of the wet day is larger
than observed wet day

- the linear method showed the
weakest correction because it is
designed to modify only the mean.

(Teutschbein and Seibert 2012;
Lenderink et al., 2007; Lafon et al.,
2013)

2.Local intensity scaling (LOCI)
(Linear Methods)

- overcomes the limits of LS
- corrects wet-day frequency and
wet-day intensity.

- It does not capture the
different changes in the frequency
distribution of precipitation.
- No adjustment is made to the of
daily precipitation occurrence.

- the linear method showed the
weakest correction because it is
designed to modify only the mean

( Schmidli et al., 2006)

3.Power transformation (PT)
(Non-linear Method

- Corrects mean and standard
deviation (variance) of the
precipitation series
- events are adjusted non-linearly

- No adjustment is made to
the temporal structure of daily
precipitation occurrence.
- adjusts wet-day frequencies and
intensities only to some extend (d*)

- nonlinear BC schemes (power
transformation ) were most effective
in reproducing rainfall totals.
- The PT scheme was found to be
the best

(Leander and Buishand 2007;
Gumindoga et al., 2016; Soo et al.,
2020)

4.Empirical Quantile mapping
(EQM)
(Distribution based Method)

- corrects mean, standard deviation
(variance), wet-day frequencies and
intensities
- The cumulative distribution
function does not need prior
definition.
- it corrects quantiles and preserves
the extreme rainfall values

- the effectiveness of the QM is
influenced by the sample size that
is used to calculate PDFs. When
the sample size is insufficient, the
uncertainty enlarges, and vise verse.
- It may not capture the the temporal
structure of daily precipitation
occurrence.

- Quantile mapping shows the best
performance, particularly at high
quantiles.
- Distribution mapping performs the
best for both climate projections and
hydrological impact qualifications

(Themeßl et al., 2012; Alharbi
2019); Themeßl et al., 2011;
(Teutschbein and Seibert 2012;
Lenderink et al., 2007)

5.Gamma Quantile mapping
(GQM)
(Distribution based Method)

- corrects mean, standard deviation
(variance), wet-day frequencies and
intensities
- The occurrence of precipitations is
corrected by Local Intensity Scaling
method

- This accuracy is valid only
when the observed and modelled
precipitation data are -distributed
- No adjustment is made to
the temporal structure of daily
precipitation occurrence.(a*)

- offers the best combination of
accuracy and robustness
- The distribution-based methods
are consistently better than the
mean-based methods for both
precipitation projections and
hydrological simulations

(goshime, 2020; Omondi, 2017;
Lakew et al., 2020)
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Dynamic or Spatio-temporal Bias correction methods
Bias Corr Methods Advantages Disavantages Intercomparaison references
6. Time and space fixed (TSF) - advantages due to its ease of

implementation, which requires less
data entry
- more effective in correcting the
mean values of the satellite rainfall.

- deterioration of the monthly
agreement probably since
their temporal variation is too
pronounced to be ignored.
- can’t fully correct the systematic
error in rainfall frequency,
especially during wet day values

- The TSF and TSV manifest
poor performance even from the
uncorrected WaterGAP3 products.
- TSF correction shows low change
than TSV correction

(goshime, 2020; Omondi, 2017;
Lakew et al., 2020)

7. Time variable (TV) - advantages due to its ease of
implementation, which requires less
data entry

- can’t fully correct the systematic
error in rainfall frequency especially
during wet day values

- The TSC and SV manifest
poor performance even from the
uncorrected WaterGAP3 products

- (goshime, 2020; Omondi, 2017;
Lakew et al., 2020)

8. Time and space-variant (TSV) - advantages due to its ease of
implementation, which requires less
data entry
- apply correction over time and
space depending on the variability
of rainfall estimate
- removes all the cumulative rainfall
differences in the data set.

- can’t fully correct the systematic
error in rainfall frequency especially
during wet day values

- superior robustness of the TSV
correction
- TSV manifests significant the
improvement compared to the other
schemes
- TSV outperforming DT and the
rest of the bias schemes
- TSV correction shows noticeable
change than TSF correction.

(Habib et al., 2014; Stisen et al.,
2012 ; goshime, 2020; Omondi,
2017; Lakew et al., 2020)
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1.4 Merging of SPDs and rain gauges data

1.4.1 Satellites -Rain Gauge Blending Methods

Previous studies have shown that the approach of combining satellite precipitation datasets with
precipitation measurements would have many advantages (Duque-Gardeazábal et al., 2018,
Bhuiyan et al., 2019). In this regard, there have already been reflections by researchers to obtain
reliable and high resolution data by combining the two sources of precipitation data. Thus,
since the late 1990s, several mixed datasets (rain gauge and satellite, reanalysis) are available.
Table 1.2 shows eight data merging methods, some of which are very recent. The merging
methods can be classified as: adjustment methods; rain gauge interpolation methods using the
spatial association of satellites as additional information (e.g. KED and ordinary kriging) and
satellite-rain gauge integration methods (e.g. Bayesian and CoK). However, bias adjustment and
interpolation methods are widely used and tested than integration methods (Ochoa-Rodriguez
et al., 2019, Qiu et al 2020).

1.4.2 Relative Advantages and Disadvantages of some blending Methods

Table 1.2 shows some of the methods commonly used to merge data between satellites and rain
gauges or between radar and rain gauges. It also indicates the advantages and disadvantages
of using these methods. Merging methods have relative strengths and weaknesses, which may
make them more or less suitable for a given domain (since domains have different physical
characteristics). Methods that seem easier to implement quickly, for example, kriging with
external drift (KED) and mean field bias. Others give a good visual impression of precipitation
map estimates in sparse area gauges, such as co-located cokriging (ColCOK) and the dual kernel
smoothing algorithm. On the other hand, some require a fairly dense network of rain gauges,
such as ordinary kriging. Others are more suitable for small domains, such as the K-nearest
neighbor local polynomial. Some cannot be applied to very fine time scales (e.g. daily) in
which case the Bayesian approach or gives very high biases at these time scales (Kriging with
External Drift (KED)). The most difficult to achieve is regression kriging as it is a mixture of
two methods.
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1.4.3 Intercomparison of Merging Methods

Table 1.2 summarises the results comparing merging methods. The methods belonging to the
bias adjustment category, generally show the lowest performance. They are outperformed by
the interpolation category or integration category such as regression kriging and Bayesian.
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Table 1.2: Summary of advantages, disadvantages, and intercomparison of Merging methods.
Dynamic methods or Spatio-temporal methods Bias correction

Blending Methods Advantages Disavantages Intercomparaison references
1. Ordinary kriging (OK)
(Interpolation category)

- useful in regions with a well-
distributed network of gauges

- no changes in data-sparse regions
compared to raw SPDs
- usefulness in sparse gauges
regions
- Assumes daily rainfall is
continuous in space
- prones to larger errors at smaller
time steps

- (OK) has the lowest performance
than RK.

(Chappell et al 2013, Verdin et al
2016; McKee, 2015; Hengl et al.,
2007 , Pham et al., 2019)

2.Kriging with external drift
(KED)
(Interpolation category)

- The KED technique seems
to be computationally more
straightforward

- prones to larger errors at smaller
time steps due to the presence of
these fluctuations.

-KED was determined to provide the
best representation
- KED and Bayesian have similar
performances which are superior to
MFB

- (Hengl et al., 2007; Goudenhoofdt
and Delobbe 2009; Ochoa-
Rodriguez et al., 2015)

3. Regression kriging (RK)
(Interpolation category)

- regression kriging is a mixed
interpolation technique
- no danger of instability like KED
- the ability to extend the
method to a broader range of
regression techniques and to allow
separate interpretation of the two
interpolated components.

- it is more complex technique and,
if misused, can give even worse
estimates than straightforward
ordinary kriging
- RK requires a large number of
sample points to fit the regression
model.
- prone to larger errors at smaller
time steps due to the presence of
these fluctuations.

- RK model was superior over OK,
SK, MLR and IDW
- RK was supereior over OK, KED
and COK.
- (RK) has a higher performance
than OK.

(Goovaerts, 1997; ; Goovaerts,
1999; Hengl et al., 2004 and
Sumfleth et al., 2008; Simbahan et
al., 2006; Hengl et al., 2007, Pham
et al., 2019)

4.Double-kernel smoothing
algorithm
(Interpolation category)

- shows good visual performance in
a sparse stations area
- error does not increase
significantly when the rain gauge
network density is reduced

– - DS delivered the most consistent
improvement over the satellite data
set followed by the MBC method

- (Duque-Gardeazábal et al., 2018;
Nerini et al., 2015)

5. Mean Field Bias
(Bias adjustment category)

- The simplest and fastest these
methods
- smoothens the fluctuations that can
be identified in individual gauges

- - - LB and CM are better methods
than MFB.
- MFB correction method provided
the greatest.

- (Giarno et al., 2020, Qiu et al.,
2020; McKee, 2015; Giarno et al.,
2018)
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Dynamic methods or Spatio-temporal methods Bias correction
Blending Methods Advantages Disavantages Intercomparaison references
6. Bayesian approach
(Integration category)

- it has a good ability to represent
wet events.

- invalid at finer temporal scales
(i.e.,daily) due to the Gaussian
assumption
- its Gaussian assumption can
result in negative estimates of
precipitation in very dry regions

Bayesian approach outperforms
MFB

- (Verdin et al., 2016; Wang et al.,
2013)

7. Collocated cokriging
(Integration category)

- improves the visual impression of
the rainfall map estimates
- minimizes the variance of
estimation by solving a simple
kriging system.

- overestimate daily rainfall only
slightly

- ColCOK technique, provides
good agreement compared with BK
gauges and TRMM alone.

- (Teng et al., 2017)

8.Co-kriging (COK)
(Interpolation category)

-Improves estimates using related
secondary information

- blended estimate has a spatial
structure very similar to the
satellite-derived estimates.

- The LP model captures the
spatial variability very well than Co-
kriging.

(Verdin, 2013)
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1.5 Summary of gaps based on literature review

Based on this review, in Africa, the Enhancing National Climate Services (ENACTS) approach,
has been implemented in eight countries at the national level. These countries are Mali, Ghana,
Gambia, Ethiopia, Rwanda, Tanzania, Zambia, and Madagascar, where data from the stations’
network were combined with data from satellite rainfall estimates (Dinku et al ., 2016). All
then benefited from improved availability, quality, and access to climate data. As can be seen,
none of these studies have been carried out in Burkina Faso at the national level to produce fine
spatial resolution rainfall data with a long time series. Thus, it is necessary to provide improved
rainfall Data sets that can represent both a good temporal and spatial distribution for Burkina
Faso. Unlike merging satellites and gauges directly like in many studies this study proposes
steps before Merging: (1) an evaluation of SPDs, (2) bias correction. Going through steps (1)
and (2) aims to reduce the systematic error before the merging step (3). The choice of Methods
to conduct steps (1), (2), and (3) is discussed in section III.4 and takes into consideration the
review above to significantly minimize the bias.

Nabassebeguelogo Juste GARBA | ED-ICC | U-JKZ | Republic of Burkina Faso Page 21



Chapter 2

Methodology

2.1 Study Area

2.1.1 Geographic location

Burkina Faso is a country in the center of West Africa, which covers an area of 274,000km2,
a landlocked country in the heart of West Africa. It is located between 9°20 and 15°05 North
latitude, 5°30 West longitude and 2°20 East longitude and shares these borders with six other
countries ( Mali, Niger, Ivory Coast, Ghana, Togo, Benin). see figure 2.1.

Figure 2.1: Study area location within Africa and distribution of rain gauges used in this study
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2.1.2 Climatology

The rainfall regime of the Sahelian climate is characterised by the alternation of a short rainy
season and a long dry season. This seasonal rhythm depends on the Saharan winds and the
oceanic monsoons that circulate from the Saharan high pressure to St. Helena High. In the
dry season, the continental trade wind, a hot and dry wind also called Harmattan, blows over
the whole of Burkina Faso from October to March in a north-easterly direction. From March
onwards, the overheated Sahara becomes a low-pressure area that sucks in oceanic air masses.
The Harmattan is then replaced by the Boreal Trade Wind, a humid air flow blowing in a south-
westerly direction. The position of the two annual rainfall isohyets (600mm and 900mm) makes
it possible to define the three climatic zones as shown in Figure 2.1. Thus, the country can be
divided into three main climatic zones which are:

• The Sahelian zone in the north is characterized by an annual rainfall of less than 600mm.
The rainy season (with an average rainfall of less than 600mm/year). The rainy season
begins in the Sahelian zone in June or early July and ends in September. The average
number of rainy days is 110.

• The Sudano-Sahelian zone in the center is characterized by an annual rainfall of between
600 and 900 mm; the rainy season begins between May and June with an average number
of rainy days equal to 150 days.

• The southern Sudanian zone where annual rainfall is between 900 and 1200 mm. The
rainy season starts slowly from the end of March to the beginning of April in this zone
with an average number of rainy days between 180 and 200 days (PANA, 2007).

Rainfall is abundant during the July-August-September quarter when more than 60% of the
annual total is recorded.

Figure 2.2 shows the anomaly time series plots of the three selected representative weather
stations (i.e. Dori, Ouagadougou and Bobo Dioulasso) located in the Sahelian, Sudano-Sahelian
and Sudanian zones respectively, for the period 1981 to 2021. They show the high interannual
variability of rainfall and the severe droughts that occurred in the Sahelian regions during the
1970s and 1980s. Negative anomalies are much more observed in Dori and Ouagadougou,
reflecting the high vulnerability of the Sahelian zone compared to the more southern regions.
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Figure 2.2: Precipitation anomaly time series plots of the three selected representative weather
stations

2.2 Data

2.2.1 Rain Gauges data

The rainfall data used in this study were provided by the National Meteorological Agency
of Burkina Faso (ANAM), Climatology Service. These data come from synoptic stations,
Agrometeo stations and climatological stations and rainfall stations observed over the period
from 2001 to 2014. Although the number of stations is relatively good, their distribution over
the territory is not uniform. A summary of these ground measurements, the name of the station,
its longitude and its latitude are given in appendix 3. The quality control of rainfall data from
each station consists of checking the coordinates and identifying missing values. Stations with
large data gaps between the selected validation period were excluded from the analysis. Only
those with at least 95% of daily data available were retained for the study, i.e. 4857 out of 5113
days of data. Thus, of the 134 stations received from the National Meteorological Agency, only
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97 stations were found to be reliable and compliant with the above criteria. The distribution
of these stations over the climate zones is shown in Figure 2.3 as follows : 15 stations in the
Sahelian zone; 59 stations in the Sudano-Sahelian zone and 25 stations in the Sudanian zone.

Figure 2.3: Spatial distribution of rain gauges used in this study

2.2.2 Satellite Precipitation datasets

Validation and inter-comparison of seven satellite rainfall datasets were carried out at daily and
monthly scales. The satellite data are available on the Internet and were downloaded from the
servers of the data producing institutions. Table 2.1 below gives more details on these different
data sets. The seven satellite datasets selected for validation have spatial resolutions ranging
from 0.04° to 0.5°. The choice was made based on the length of the series and also on the
results of previous studies showing the reliability of these datasets. The motivation for the study
period (2001-2014) is based on the wish to have a large number of satellite datasets to compare
since they do not have the same start date. ARC2 and RFE had 8 and 1 days of missing data
respectively over the study period. A summary of the satellite rainfall datasets used in this study
is presented in Table 2.1. They are : CHIRPS V2; ARCv2; RFEv2; PERSIANN-CDR; TRMM
-3B42V7; GPCP V3.1; TAMSAT V3.1).

• The CHIRPS datasets, developed by the US Geological Survey (USGS) and the Climate
Hazards Group at the University of California are blended products which combine

Nabassebeguelogo Juste GARBA | ED-ICC | U-JKZ | Republic of Burkina Faso Page 25



2.2. DATA Chapter 2. Methodology

global climatologies, satellite observations and in-situ rainfall observations from Global
Telecommunications system (GTS). CHIRPS incorporates 0.05 of resolution starting in
1981 to near-present.

• ARCv2 is produced by the National Oceanographic and Atmospheric Administration
Climate Prediction Center (NOAA-CPC) and provides daily rainfall data over Africa. It
is very similar to RFEv2 except the 30 minutes is replaced by the 3-hourly IR data. The
RFEv2 is also provided by NOAA-CPC for Famine Early Warning Systems Network to
assist in disaster-monitoring activities over Africa.

• RFEv2 is also provided by NOAA-CPC for Famine Early Warning Systems Network to
assist in disaster-monitoring activities over Africa. RFEv2 has been operational since
2001 and uses rainfall estimates from PM sensors, IR data from METEOSAT and daily
rainfall from the GTS reports. Daily rainfall estimates were obtained at 0.1 of spatial
resolution by merging these sources.

• PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks - Climate Data Record) were developed by the Center for
Hydrometeorology and remote sensing at the University of California (Ashouri et al.,
2015). It uses an artificial neural network approach to merging the IR and PM data and
the rainfall estimates are based on the infrared brightness temperature image provided by
geostationary satellites (Hsu et al.,1997). The rainfall estimates in PERSIANN algorithm
are available at 0.25 of spatial resolution for the latitude band 60N-60S from 01/01/1983
to 12/31/2015 (delayed present).

• The latest version of TRMM product (3B42V7) was developed by the National
Aeronautics and Space Administration (NASA). This product was obtained from the
TRMM Multisatellite precipitation analysis (TMPA) algorithm which combines Infrared
(IR) and Passive Microwave (PM) data retrievals. TRMM rainfall estimates incorporates
gauge data for bias correction from several sources including national and regional
meteorological services. The TRMM-34B2 datasets contain a gridded, TRMM-adjusted,
merged infrared precipitation (mm/hr) and RMS precipitation-error estimate, with a
3-hour temporal resolution and 0.25-degree spatial resolution.

• GPCP 0.5 degre V3.1 : The Global Precipitation Climatology Project (GPCP) is a
community-based activity of the Global Water and Energy Exchange (GEWEX) project
in the World Climate Research Programme (WCRP). The latest release, labeled V3.1,
represents a significant improvement over the V3.0 and is considered stable but has
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known limitations. The GPCPV3.1 dataset provides a gridded (Level 3) homogeneously
processed record of global precipitation estimates at 0.5° spatial and monthly temporal
resolution. The current data span is (1983-2019) for the monthly and (June
2000-December 2019) for the daily with the potential to extend this record in the future.
Inputs consist of GPM IMERG in the span 55°N-S, and TOVS/AIRS estimates, adjusted
climatologically to IMERG, outside 55°N-S. The Daily estimates are scaled to
approximately sum to the Monthly value at each 0.5° grid box.

• TARCAT v3.1 is produced by TAMSAT (the Tropical Applications of Meteorology using
SATellite data and ground-based observations) research group of the University of Reading
and is based on Meteosat TIR CCD. TAMSAT rainfall estimates are provided at 0.0375
x 0.0375 degree spatial resolution ( 4km) for all land points on the African continent,
including Madagascar. Data are are available from Jan 1983 to near-real time at daily
, pentadal (5-day), dekadal (10-day) , monthly, seasonal (Dec-Feb, Mar-May, Jun-Aug,
Sep-Nov) time steps.

Figure 2.4. shows an overview of all data used in this study. It is a visual and spatial
representation of the mean annual precipitation (2001-2014) for the ARC, CHIRPS,
PERSIANN, RFE, TARCAT, TRMM 3B42 and TRMM 3B42 datasets and gauges. The
general north-south gradient of precipitation was captured by all analysed datasets.
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Figure 2.4: overview of mean yearly precipitation of seven Satellite-based precipitation datasets
and stations data from 2001 to 2014.
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Table 2.1: Summary of selected satellite rainfall datasets for this study
Satellite
Databases

Temporal
and Spatial
resolution

Temporal
coverage

Spatial
coverage

Type of data References Link

PERSIANN-
CDR

Daily
(0.25°∼27km)

1983 to
present

Near global Satellites,
Gauge

Ashouri et
al.2015

https://chrsdata.
eng.uci.edu/

TAMSAT
V3.1

Dekadal,
daily,monthly
(0.0375°∼4km)

1983 to
present

Africa TIR, gauge Maidment
et al.2014

http:/iridl.ldeo.columbia.
edu/SOURCES/

TRMM
3B42

3hourly,daily
(0.25°∼27km)

1998 to
present

Near global TIR, VIS,
MW,
radar, gauge

Huffman et
al.2010

https://disc.gsfc.
nasa.gov/datasets
TRMM3B42Daily7/

ARC V2.0 Daily,monthly
(0.1°∼10km)

1983 to
present

Africa Satellites,
Gauge

Novella et
al 2013

http:/iridl.ldeo.columbia.
edu/SOURCES/

RFE V2.0 Daily
(0.1°∼10km)

2001 to
present

Africa Satellite,
gauge

Herman et
al.1997

http:/iridl.ldeo.columbia.
edu/SOURCES/

CHIRPS
V2.0

Daily
(0.05°∼5km)

1981 to
present

Near global Satellite,
Gauge

Funk et
al.2015

http:/iridl.ldeo.columbia.
edu/SOURCES/

GPCP
L3V3.1

Daily,monthly
(0.5°∼50km)

1983 to
2019

Global PMW-IR-
Rain gauge

Huffman et
al.2021

https://disc.gsfc..
nasa.gov/datasets?keywords.
=GPCP%203.1&page=1

2.3 Tools

The various analyses required the use of several tools. These tools were used for data
downloading, data processing, formatting, plotting, statistical calculations etc. A brief
description of these tools is as follows:

• Python programming language: Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics. Python libraries: Numpy, Pandas,
Matplotlib,

• R programming language: R is a programming language and open-source software for
statistics and data science supported by the R Foundation for Statistical Computing.
Libraries used: openair, CDT. . .

• Climate Data Operator: CDO is a collection of command line operators for manipulating
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and analyzing climate and NWP model data. Supported data formats are GRIB 1/2,
netCDF 3/4, SERVICE, EXTRA and IEG.

• Bash script: A Bash script is a plain text file that contains a series of commands. These
commands are a mixture of commands that we would normally type ourselves on the
command.

• QGIS: Quantum GIS (QGIS) is an open-source geographic information system (GIS) that
implements a wide range of functions for accessing, viewing, displaying, editing, printing
and analyzing geospatial data.
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2.4 Methods

The different steps for providing an improved gridded rainfall dataset are described in the
following flowchart (figure 2.5):

Figure 2.5: Flowchart of the Methodology

Methodology Overview

1. The first step: SPDs the gridded data is extracted at stations location so that at each station
location we have two types of data: the satellite data and rain gauge data. This way of
doing evaluation has been used rather than interpolating the gauge measurements into a
gridded data sets which could result in high biases (Dembélé and Zwart 2016).
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2. Then, the series from station data and extracted from gridded are used to compute the
validation performances such as below (3.4.1.2). At the end of this step, the best SPDs
for each time scale should be identified.

3. In the third step the systematic biases in best-performing SPDs will be removed with the
empirical Quantile Mapping (EQM) and Time and space-variant (TSV) approaches.

4. Finally the Regression kriging (RK) and the Mean Field Bias (MFB) algorithms will be
applied to blend the bias-adjusted SPDs and rain gauge sets.

2.4.1 Validation of Satellite precipitation datasets

2.4.1.1 Validation process

Verification methods were based on continuous statistics, categorical statistics and the taylor
diagram. The continuous validation statistics chosen in this study are: root mean square error
(RMSE), standard deviation, and Pearson correlation (r), bias, mean absolute error).
Categorical statistics include Probability of Detection (POD) and False Alarm Rate (FAR). All
these statistical indicators are well known to be very effective in the evaluation of Satellite
precipitation datasets. In summary, the implementation of verification statistics makes it
possible to assess how SPDs differ from reference data. All statistics will be calculated for pair
comparisons (SPDs and rain gauges). Some of the above statistics, such as the centered root
mean square error (centered RMSE), standard deviation (Sd), and Pearson’s correlation (r), are
summarized in Taylor’s diagram (Taylor, 2001). This diagram is necessary for a visual
evaluation, especially in situations where the comparison is made between several SPDs.
Taylor (2001) uses these statistics to represent the degree of similarity between two sets of data.
One dataset will be called "reference" which is the observation data from rain gauges and
another dataset represents the estimates or models. The objective is to quantify the degree of
resemblance between the estimates and the reference data.

2.4.1.2 Validation Statistics

Person’s Correlation (r)

Pearson’s coefficient (r) is an index reflecting the strength of the association (a linear relationship)
between two continuous variables. For example in this study, it indicates whether the satellite-
based estimates match the gauge-based observation. The value of r varies from -1 to 1 (In the
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Taylor Diagram r ranges from 0 to 1 ). The two extreme values respectively indicate that there is
a strong positive and negative relationship between two variables. The value 0 means that there
is no relationship between the two variables. The formula is given in the equation (2).

The root mean square error (RMSE)

The root mean square error (RMSE) is the standard deviation of the residuals (equation 3).
Residuals are a measure of how far from the regression line data points are; RMSE is a
measure of how to spread out these residuals. In other words, it tells you how concentrated the
data is around the line of best fit. RMSE is considered an excellent general purpose error
metric for numerical predictions. It is the most famous error metric used in precipitation and
rainfall verification studies. The RMSE is always positive and a value of 0 (rarely achieved in
practice) would indicate a perfect fit to the data. A smaller RMSE value indicates better
accuracy than a higher RMSE value. RMSE has a direct relationship with the correlation
coefficient. In other words, if the R Pearson is 1, the RMSE will be 0, because all of the points
lie on the regression line, indeed there are no errors.
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Mean Error (ME)

The Mean Error(ME) is the average of all the errors in a set, see equation (4). An “error” in
this context is an uncertainty in a measurement, or the difference between the measured value
(satellites data) and “true” value (rain gauge data).

Standard deviation

The standard deviation is a statistic that measures the dispersion of a dataset relative to its
mean (equation 5). It shows you how much your data is spread out around the mean or average.
The lower the standard deviation, the closer the data points tend to be to the mean (or expected
value ). Conversely, a higher standard deviation indicates a wider range of values (more data
scatter).

The bias

The bias is a measure of how the average magnitude of satellite precipitation compares to the
observation of precipitation on the ground. The bias indicates whether the satellite data
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overestimated or underestimated the precipitation. A value of 1 is the perfect score. A bias
value greater (less) than 1 indicates an overall overestimation (underestimation) by the satellite
of precipitation amounts on the ground. The formula is given in the equation (6).

Probability of Detection (POD)

Probability of Detection (POD) indicates what fraction of the rainfall occurrences are correctly
detected by the considered satellite algorithms. A higher POD value (equal to 1) means the
analyzed dataset can represent all occurrences and 0 means no occurrences are detected (Conti
et al., 2013). The formula is given in the equation (7).

The False Alarm Ratio (FAR)

The False Alarm Ratio (FAR) indicates what fraction of the number of rainfall occurrences
detected by the considered estimation datasets when the reference dataset is not indicating
rainfall. The FAR value close to 0 means satellite estimates do not reproduce any false
occurrences and 1 if all registered occurrences do not correspond to observed data (Conti et al.,
2013). The formula is given in the equation (8).
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2.4.2 Bias adjustment

In this study, daily and monthly precipitation were the main variables subject to bias correction.
The objective is to adjust the gridded data (satellite rainfall estimates) by the station data. As
seen in the literature section, several algorithms are used to correct specific errors in the gridded
data. In this study, the best SPDs identified from verification were corrected using two Bias
Correction schemes, namely TSV and EQM.

2.4.2.1 Empirical Quantile mapping

To implement the QM method, two empirical CDFs are calculated. The method of calculating
empirical CDFs is explained by Wilks.(2011). The QM method adjusts the distribution of daily
satellite precipitation (Ps) with the distribution of daily rain gauge precipitation (Po) using a
transfer function (h), see equations (9.1 and 9.2). The description of QM is shown in figure 2.6
where the arrow represents the corrections of the QM method.

Figure 2.6: Schematic of the quantile mapping method. Adapted from Kim et al.(2016)
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2.4.2.2 Time and space-variant bias correction

The bias correction factor is computed for every gauge station. In this method, it is defined as
the ratio of the sum of the gauge observations to the satellite estimations as shown in the
equation (10.1). If the bias is assumed to be heterogeneous in space (independent and normally
distributed), the bias factor at the station locations is interpolated to the grid of the gridded data
using Inverse Distance Weighting (IDW) method (equation 10.2). Finally, the adjusted SPDs
are generated by multiplying the entire domain of raw SPDs by this correction factor value
interpolated, see equation (10.3). For daily data, a centered time window of 5 days will be
added to take into account the variability.
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2.4.3 Merging Approach

This section is the final step in the process of producing the improved dataset in terms of spatial
and temporal resolution and accuracy. It consisted of combining the bias-corrected datasets with
the ground observations. Based on the literature review, in terms of performance and widespread
use, this study proposed to apply the Mean Field Bias method of bias adjustment category, and
regression kriging also called "kriging after detrending" from the integration category. MFB
remains one of the most widely used merging methods for operational applications and by many
national meteorological services (Goudenhoofdt and Delobbe, 2016). The two methods need
to be compared in the context of Burkina Faso to provide conclusive evidence of their relative
performance. Then, two interpolation methods were each applied to these mixing methods.
Shepard’method (malvic et al., 2020) and modified Spheremap scheme (Scham et al. 2013
Becker et al., 2013) were used for interpolation. In summary, four approaches were selected for
the satellite-gauges combination in this study. A description of these methods is given in the
next sections.

• Regression kriging with Spheremap (RK- Spheremap)

• Regression kriging with Shepard (RK- Shepard)

• Mean Field Bias with Spheremap (MFB - Spheremap)

• Mean Field Bias with Shepard (MFB- Shepard)

2.4.3.1 Regression-kriging

Regression kriging is a spatial interpolation technique that combines regression of the dependent
variable (target variable) on the predictors with kriging of the prediction residuals. In other
words, regression kriging is a hybrid method that combines a deterministic model (a simple
or multiple linear regression model) with (a statistical model) ordinary kriging of prediction
residuals (Odeh et. al., 1995; Goovaerts et al., 1997). In the case of the blending of satellite
and rain gauge data, the deterministic or regression model consists of estimation by modeling
the relationship between the target (station data) and auxiliary (satellite data) environmental
variables at the sample locations and applying it to ungauged locations. Next, the statistical
method performs the interpolation of regression residuals at station locations over the entire grid
using ordinary kriging. Finally, RK combines these two approaches: statistical adjustment and
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modeling (Hengl et al., 2007; De Vera et al., 2021). the first part of the right side of equation
(11.1) represents the regression and the second part represents the kriging of the residual.

2.4.3.2 Mean field bias

Mean-field bias technique has been widely used for merging radar and gauges data. It became
a standard method of merging satellite estimates and gauges data. Mean Field Bias (MFB)
correction assumes the existence of a uniform multiplicative error in the field of the satellites. A
simple multiplicative factor is therefore used to uniformly correct the domain of the satellites. It
is then multiplied at each pixel of the precipitation estimates by remote sensing. The correction
factor in this method is defined as the ratio of the sum of the gauge observations to satellites
estimates (equation 12):
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Chapter 3

Results and Discussion

3.1 Results

3.1.1 Validation of Satellite-Based Precipitation Datasets

The performance of the SPDs was assessed at different spatial (for each climate zone) and
temporal (daily and monthly) scales over the period 2001-2014. The metrics calculated and
presented in the tables are not calculated in the same way as those in the Taylor diagram. In
the tables, all metrics are calculated for each station before the average per metric is calculated.
In the Taylor diagrams, in addition to incorporating the standard deviation, the averages of the
daily and monthly data were first calculated before calculating the metrics. The scatter plots
showing the distribution of satellite and rain gauge data are given in appendix 1 and appendix 2.

3.1.1.1 Validation at daily time scale

Most of the SPDs performed poorly on daily rainfall estimates. The statistics used to compare
the rain gauge data with the seven satellite data sets are presented in Table 3.1. Considering the
8 missing days in the ARC2 and one day in the RFE, the number of value pairs compared over
14 years is 5104. Thus the validation carried out by climatic zone is as follows:

• The Sahelian Zone
Over the Sahelian zone, all SPDs overestimate rainfall (bias>1), except for CHIRPS and
PERSIANN-CDR which underestimate it, see Table 3.1.a. The ARC2 shows the best
correlation (r = 0.807). The best bias (0.975) and worst correlation (0.622) are observed
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with CHIRPS while the worst bias is for RFE (1.132). PERSIANN has the highest value
of RMSE (3.307) and FAR (0.289). The smallest FAR (0.203) is for GPCP. The TAMSAT
presents the best score for the RMSE (2.418) and POD (0.737) while TRMM-3B42 has the
worst POD. Summarising all the statistics, it appears that TAMSAT is the most efficient in
reproducing precipitation in the Sahelian zone followed by RFE. GPCP showed the worst
performances.

• The Soudano-sahelian Zone
The SPDs that overestimate and underestimate rainfall in the Sudano-Sahelian zone are
the same as those in the Sahelian zone (Table 3.1.b). CHIRPS shows the best bias (0.974)
and the lowest correlation (0.690). The GPCP has the lowest performance for the bias
(1.117), the RMSE (3.675), and the POD (0.752). The worst FAR (0.208) and best POD
(0.821) are for PERSIANN-CDR. On the other hand, TAMSAT shows the best score
for the correlation (r=0.869) and the RMSE (2.116). The best FAR (0.13) is shown by
TRMM-3B42. Based on these statistics the TAMSAT database is also the most appropriate
database for the Sudano-Sahelian zone.

• The Soudanian Zone
In this zone of Burkina Faso, according to Table 3.1.c, all SPDs underestimated the rainfall
amounts (bias<1). ARC2 presented the best correlation (r = 0.308) and the worst bias
(0.715), while CHIRPS has the worst performances for the correlation (0.242) and also for
POD (0.742). The best bias (0.828) and the worst RMSE (12.646) are shown by GPCP.
The best RMSE (12.201) is for TAMSAT. PERSIANN-CDR shows the best POD (0.817)
and the worst FAR (0.218). TRMM-3B42 has the best FAR (0.120). In short, TAMSAT
has the best performance of all the others in the Sudanian zone followed once again by
RFE.

The Taylor diagram (Figure 3.1) is plotted by considering the spatial average of the daily
precipitation values of the stations in each climate zone. The Taylor diagram (Taylor, 2001)
summarizes the geometric relationship between the correlation coefficient, the standard deviation
of the series, and the centered root mean square error. Statistics for eight models were computed,
and color was assigned to each SPD considered. The position of each point appearing on the
plot quantifies how closely that SPD matches observations. In the Sudanian zone, the SPDs
show very poor performance compared to the other zones with correlations less than 0.65 and
centered mean square errors greater than 0.85 mm/day. TAMSAT datasets have shown the best
agreement with rain gauge data in all climatic zones, followed by RFE. However, GPCP showed
the weakest performance. The diagram confirms therefore the results of table 3.1.
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Figure 3.1: Taylor diagram for the three climatic zone obtained from spatial averaged of daily
data
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Table 3.1: Statistical indicators for daily time scale
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3.1.1.2 Validation at monthly time scale

Monthly validation was also performed using the same statistical approaches as for the daily
time scale. The performance of all Datasets in capturing observed precipitation was better
at the monthly scale than the daily scale. Statistical metrics such as POD and FAR were not
computed for the monthly time scale, as they aim to assess the abilities of the SPDs to capture the
occurrence of events which are less significant for the monthly time scale. Table 3.2 summarizes
the performance of the SDPs. The number of pairs of values compared over the 14 years is 168,
which means that no missing months were recorded.

• The Sahelian Zone
All SPDs overestimate the amount of rainfall (Bias > 1) except CHIRPS and TAMSAT
which underestimate it (Bias< 1). The SPDs correlated well compared to daily time scale
with correlation coefficient values ranking from 0.966 to 0.984; Bias didn’t show major
changes (0.976 to 1.131) compared to daily time scale, see table 3.2.a. On the other hand,
RMSE values at monthly scale show high values from 11.371 to 18.005. The best score for
correlation (0.984), Bias (0.976) and RMSE (11.371) were observed for CHIRPS. While
TAMSAT has the worst performances for correlation (0.966) and the RMSE (18.005).
RFE presents the worst bias (1.131). To summarize, CHIRPS has the best performances
for the Sahelian zone.

• The Soudano-sahelian Zone
The SPDs that overestimate and underestimate rainfall in soudano-sahelian zone are the
same as those in Sahelian zone, see table 3.2.b. The best Bias (0.934), RMSE (9.454)
were presented by CHIRPS. However the the worst scores for the Correlation (0.98), and
the RMSE (17.131) have been detected with ARC2. GPCP has the worst bias (1.097)
and the best correlation (0.994). Based on these performances, CHIRPSV2 has the best
agreement with gauge data over Soudano-sahelian Zone.

• The Soudanian Zone
The PERSIANN-CDR and GPCP overestimated rainfall amount (bias<1) (table 3.2.c).
PERSIANN-CDR exhibited the best scores for all metrics (corr=0.988;
bias=1.017;RMSE=13.658) whereas ARC2 performed poorly. PERSIANN-CDR,
therefore is the most suitable for this zone.

The Taylor diagram, drawn by considering the spatial average of the monthly precipitation values,
is presented in Figure 3.2 very close points are observed in all the climatic zones compared to
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figure 3.1. This indicates a high precision in the estimation of the monthly data than the daily
ones. The analysis of the monthly Taylor diagram indicates that CHIRPS presents the best
performances in the Sahelian and Sudano-Sahelian zone followed by TRMM-3B42. In the
Sudano-Sahelian zone, PERSIANN-CDR is the most efficient followed by CHIRPS.

Figure 3.2: Taylor diagram for the three climatic zones obtained from spatial averaged of monthly
values.
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Table 3.2: Statistical indicators for monthly time scale
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Figure 3.3 shows the comparison between the average amounts of precipitation per month of the
97 stations selected for this study (reference) with the Seven satellite estimate datasets. All seven
capture precipitation patterns considerably well, especially the peak of precipitation in August.
During the dry season (October to April), almost all satellite rainfall datasets tend to overestimate
the amount of rainfall. During the rainy season (May to September), they underestimate it except
PERSIANN-CDR and GPCP. ARC2 is the one that underestimates the most and therefore the
least effective. However, CHIRPS and PERSIANN-CDR show relatively better skills compared
to others.

Figure 3.3: Comparison of monthly precipitation captured by satellites precipitation estimates
datasets with rain gauge.

3.1.2 Bias Adjustment of Satellite-Based Precipitation Datasets

Two SPDs were adjusted using two bias adjustment methods: the choice of these SPDs was
based on the validation of the seven SPDs above (section 4.1.1). Therefore, TAMSAT V3.1 and
CHIRPSV2 datasets were used for daily time scale and monthly timescale respectively. The
application of two bias adjustment approaches aims to determine the most effective, i.e the one
that best reduces the systematic errors of the SPDs for the study area.

3.1.2.1 Analysis of bias adjustment methods for daily rainfall accumulations

Table 3.3 presents the 14-year average values of bias, RMSEs, MEs, and CORRs of the original
TAMSAT datasets, TAMSAT bias-corrected datasets with empirical quantile mapping (EQM)
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and time spatial variant ( TSV). these metrics show that the quality of two bias corrected datasets
has been improved over uncorrected. The EQM outperforms the TSV on all metrics except FAR:
its correlation is much better (0.286) against 0.15 for the TSV. It also shows superior performance
in terms of ME, Bias, RMSE and POD. However, its FAR (0.589) is slightly lower than that
of TSV (0.581). The bias correction approaches are both necessary and effective, but EQM is
remains the best for daily data. It has improved the correlation coefficient by 94.5% (from 0.147
to 0.286), the Bias by 10.3% (from 0.875 to 0.965) and the RMSE by 3.0% (from 26.494 to
25.708).

Taylor diagram (Figure 3.4) is also used to find out how well the corrected datasets match
the gauge-based precipitation. EQM has improved significantly the correlation (around 0.88)
and centered root mean square error (0.5). The EQM corrected dataset is followed by the
TSV corrected dataset in terms of performance, which shows a slight improvement over the
uncorrected dataset.

Table 3.3: Summary of daily bias correction statistical indicators
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Figure 3.4: Taylor Diagram of daily data spatial average

Figure 3.5.a compares daily average rain gauge data with uncorrected TAMSAT datasets.
TAMSAT dataset captures the rainfall trend observed during the dry season. But it
underestimates the amount of precipitations from 200 to 260 days (Julian days) "wet months".
In November (300 to 330), the rainfall is also systematically underestimated. Figure 4.5.b then
compares the average daily rain gauge data with the Bias corrected TAMSAT datasets using
EQM. This figure shows slight improvements in the overestimation of rainy days compared to
the figure 3.5.a.

Figure 3.5: Comparison of daily average rain gauge data with uncorrected TAMSAT and bias-
adjusted TAMSAT datasets over the period 2001-2014.
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3.1.2.2 Analysis of bias adjustment methods for monthly rainfall accumulations

The performances of bias corrected datasets with EQM presented in Table 3.4. According
to these metrics, the two bias correction methods added value to the uncorrected dataset.
Comparing the methods, the dataset corrected with TSV has a slightly better correlation (0.921),
bias (1.001), ME (0.046) and RMSE (34.686) than those of EQM, which are in the same order:
0.919, 0.991, -0.598 and 35.058. TSV methods has improved the correlation coefficient by 0.5%
(from 0.916 to 0.921), the Bias by 2.4% (from 0.977 to 1.001) and the RMSE by 2.8% (from
35.654 to 34.986).

In the Taylor diagram (figure 3.6), all metrics have been computed based on the monthly mean
value. The diagram shows three clustered points very close to each other. The EQM-corrected
dataset shows a slightly higher correlation, while the TSV-corrected dataset shows the same
standard deviation as the reference. This result, which shows that the EQM is the most effective
bias correction being closer to the reference, may seem to contradict the results of Table 3.4.
This discrepancy is due to the differences in the methods of calculating the metrics already
explained in section 3.1.1.

Table 3.4: Summary of monthly bias correction statistical indicators

Nabassebeguelogo Juste GARBA | ED-ICC | U-JKZ | Republic of Burkina Faso Page 50



3.1. RESULTS Chapter 3. Results and Discussion

Figure 3.6: Taylor Diagram of monthly data spatial average

Figure 3.7 compares monthly average rain gauge data with uncorrected CHIRPS and bias-
adjusted CHIRPS datasets. Although the uncorrected TAMSAT precipitation patterns closely
resemble the rain gauge data patterns, it underestimates the July to November "wet months"
precipitation (Figure 3.7.a). After the bias correction the two curves are now very similar
(Figure 3.7.b). The overestimations during July-October period have therefore been adjusted.

Figure 3.7: Comparison of monthly average rain gauge data with uncorrected CHIRPS and
bias-adjusted CHIRPS datasets over the period 2001-2014.

3.1.3 Merging of Satellite-Based Precipitation Datasets

3.1.3.1 Analysis of merging methods for daily Datasets

Table 3.5 presents the performance of the four merged precipitation datasets, assessed using
categorical and continuous statistical indicators. As the statistics show, each merging method
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reduced all systematic errors compared to the unmerged dataset, which means that they are
all effective. They all have a high correlation (0.999). Regression-sphere kriging provided the
largest reduction in ME(-0.003), Bias (0.999), RMSE (1.175), FAR(0), and the largest increase in
POD (1). It is closely followed by MFB-Spheremap which also shows significant improvements
in RMSE(1.201), POD(0.998), and FAR(0). The two methods RK-Shepard and MFB-Shepard
perform the worst due to their high scores in RMSE (1.22; 1.208 respectively) and FAR (0.012;
0.005 respectively). The RK-Spheremap merging approach improved the correlation by 71.4%
(from 0.286 to 0.999), the bias by 3.4% (from 0.965 to 0.999) and the RMSE by 95.4% (from
25.708 to 1.175).

In the Taylor diagram (figure 3.8), the methods are validated in terms of standard deviation,
correlation, and centered RMSE. It shows a very high degree of agreement between merging
methods and reference data, with RK-Sphermap regression Kriging being the most reliable.

Figure 3.9 shows a visual overview of the improvement made by merging the bias-corrected
datasets with the rain gauge data. In Figure ( 3.9.a), unmerged dataset shows underestimations of
the daily cumulative rainfall in some periods. After merging (Figure 3.9.b) with RK-Spheremap
method, they could be corrected and the merged dataset match the rain gauge data quite well.

Table 3.5: Summary of daily merging statistical indicators
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Figure 3.8: Taylor Diagram of daily data spatial average

In the figure 3.10 some examples of days have been considered, one in the dry season and the
other in the wet season. The objective is to show through a comparison of rain gauge data, raw
TAMSAT data and merged data, the effectiveness of data sets merging. On December 31, 2010
for example, TAMSAT estimated false rains. This could be corrected through the merging of
these data and that of the rain gauges. Similarly, the day of July 29, 2010 was rainy, however
TAMSAT recorded only low rain. This has also been corrected by merging.

Figure 3.9: Average of daily rain gauges data over 2001–2014, compared to TAMSAT unmerged
data and TAMSAT merged
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Figure 3.10: Comparison of daily rainfall (mm) for 29 july 2010 and 31 December 2010 between rain gauge, original TAMSAT and final data sets
merged
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3.1.3.2 Analysis of merging methods for monthly datasets

At the monthly scale, all merging methods generated highly correlated datasets (r =1) with the
rain gauge data, and conciderably reduced biases (bias=1), see table 3.6. Regression kriging -
Spheremap again outperformed the other methods with the lowest values of ME (0) and RMSE
(0.042). It outperformed MFB-Spheremap only because of its low RMSE value. On the other
hand, MFB-Shepard remained the worst performer with the highest ME (-0.002) and RMSE
(1.306). As previously, the RMSE was significantly reduced in all methods (i.e. 34.686 to less
than or equal to 1.306). These results suggest that the Regression Kriging - Spheremap mixture
method is the most appropriate for combining rainfall data and satellite estimates. This method
improved the correlation coefficient by 7.9% (from 0.921 to 1), the bias by 0.1% (from 1.001 to
1) and the MSE by 99.87% (from 34.686 to 0.042).

The Taylor diagram (Figure 3.11) again confirms the results of Table 3.6 although the methods
of calculating the statistics in this diagram are different. It shows completely overlapping points.
The correlation of the methods is the same and the values of the standard deviation and the
centred RMSE are very close. The RK-Spheremap comes out on top of the other methods
although almost all of them perform well.

Table 3.6: Summary of monthly merging statistical indicators

Figure 3.12 shows the comparison between the rainfall data and the unmerged data (3.12.a) on
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Figure 3.11: Taylor Diagram of monthly data spatial average

the one hand and the rainfall data and my data after fusion on the other hand (3.12.b). The two
graphs are very similar. Indeed, after the bias correction, the monthly time series had improved
a lot. This is why the graphs do not show any apparent change, however, the statistics have
improved according to Table 3.6.

Figure 3.12: Average monthly rain gauges data over 2001–2014, compared to CHIRPS unmerged
data and CHIRPS merged

Similar to figure 3.10, some examples of months have been also considered in figure 3.13, one
in the dry season and the other in the wet season. In December 2010, TAMSAT estimated false
rains. This could be corrected through the merging of these data and that of the rain gauges.
Likewise, in September corrections have been made, see figure.
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Figure 3.13: Comparison of monthly rainfall (mm) for September 2010 and December 2010 between rain gauge, original TAMSAT, and final data
sets merged
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3.1.4 Summary of the main results of the study

Table 3.7: Summary of enhancements to the TAMSAT daily dataset for Burkina Faso
Bias Correction Merging Total

Metrics Original Bias corr percen Bias corr Merged percen percent
CORR 0.147 0.286 94.5% 0.286 0.999 71.4% 85.2%
BIAS 0.875 0.965 10.3% 0.965 0.999 3.4% 12.4%
RMSE 26.494 25.708 3% 25.708 1.175 95.4% 95.6%

Table 3.8: Summary of enhancements to the CHIRPS monthly dataset for Burkina Faso
Bias Correction Merging Total

Metrics Original Bias corr percen Bias corr Merged percen percent
CORR 0.916 0.921 0.5% 0.921 0.999 7.9% 8.4%
BIAS 0.977 1.001 2.4% 1.001 0.999 0.1% 2.3%
RMSE 35.654 34.686 2.8% 34.686 0.042 99.87% 99.9%

3.2 Discussion

• Evaluation of SPDs.
According to the analyses, the performance of satellite precipitation datasets for the
monthly time step is better than the daily ones. As indicated by previous studies (Dembélé
and Zwart 2016), the performance of satellite estimates improves with increasing time
steps. Indeed, errors at smaller time scales (overestimates and underestimates) compensate
when aggregated to a larger time step. Moreover, the results of the evaluation show that
TAMSAT, which performs best on a daily time step, performs less well on a monthly
time step. Indeed, for a given database, the algorithms that capture daily events are
different from those that capture monthly events. This is why the aggregation of daily data
gives different values than the monthly values directly provided by the same database.
Therefore, a database may have the best algorithms for daily estimates and the worst
algorithms for monthly or seasonal estimates. The results of this study are different from
those of Dembélé and Zwart (2016) who also worked on the evaluation of SPDs in Burkina
Faso. They found that CHIRPS performed better at the daily time step while TAMSAT
performed better in the present study. This discrepancy can be explained by differences
in the data used in the two studies. The present study considered 97 stations in the
assessment, compared to ten (synoptic) stations in Dembélé and Zwart (2016). Moreover,
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the CHIRPS data already contain synoptic station data (i.e. satellite data merged with
synoptic stations). Therefore, is therefore logical that an evaluation of the CHIRPS data
with synoptic stations as reference shows that CHIRPS is the best. The originality of
this evaluation compared to previous studies lies in the consideration of different climatic
zones instead of considering the whole country as a homogeneous zone (Beck et al, 2017,
Toté et al 2015, Bayissa et al, 2017, Atiah et al, 2020). The validation results of SPDs are
very often divergent as the performance of these SPDs is highly dependent on the region
and the local climate system as highlighted by some authors (e.g. sun et al 2017).

• Bias correction of SPDs
Quantile mapping and space-time variable are the two methods applied to the datasets in
this study to remove bias. TVS performed poorly on the daily time scale, as it slightly
improved Corr, ME, RMSE, Bias and FAR compared to EQM. The high performance of
EQM is due to the principle based on empirical cumulative point distribution functions
(ecdfs) constructed daily.Therefore, it has the ability to perfectly match the CDF of the
daily precipitation estimate with the CDF of the observed daily precipitation
distribution.The results obtained are then similar to those of the literature, which also
attests to the fact that the QEM is recognised as a powerful method for reducing the
systematic bias of precipitation estimates from regional climate models. Therefore, it has
consistently demonstrated the best skill (Yang et al. 2016; Themeßl et al. 2011, 2012;
Alharbi 2019). However, against all expectations, the validation of the monthly time step
gave unexpected results since EQM performs poorly in front of TSV. (Oruc et al. 2022)
in his analysis also found that the Delta (DT) method slightly outperformed the other bias
correction techniques (EQM and GQM) for the monthly timescale. Also contrary to the
results of our studies, sometimes the uncorrected SPDs can outperform the
bias-corrected SPEs in the reproduction of rainfall depths. This means that there is a
deterioration of some statistics after the bias correction. A similar result is shown in (
Omodi 2017; Teng et al 2015) for southern Murray where bias correction gave poor
results. Additional errors can therefore be introduced by some bias correction
techniques, indicating how inefficient bias correction methods can be.

• Merging of SPDs
Merging take advantage of the benefits of remote sensing and the rain gauge to achieve
better results, compared to using them individually. This would mean that the technique
is considered advantageous when it provides better quality outputs than both data sets
(i.e. in terms of spatial and temporal, accuracy and event occurrences). In this study,
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the merging of satellite precipitation products with precipitation measurements gives
satisfactory results as confirmed by Duque-Gardeazábal et al. (2018) and Bhuiyan et
al. (2019). All the approaches presented very close scores and none of them had lower
scores than the original data. RK and MFB belong to the interpolation and bias correction
category of merging methods respectively. Ochoa-Rodriguez et al. (2019) and Qiu et al.
(2020) ranked the categories of merging methods from the best to the worst performing
as follows: integration category; interpolation category and bias correction category. The
results of this study which ranks RK above the others are confirmed by the performances
ranking. On the other hand, Lakew et al.(2020) suggest that it is then not necessary to
merge the MSWEP data set with the sparsely located rain gauges data over on the Nile. A
simple bias correction is sufficient as the merged data performed worse than the corrected
ones.
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Conclusion

This study aimed to improve the gridded precipitation data over Burkina Faso. To achieve
this, an evaluation was first conducted to identify the most suitable SPDs as an alternative to
the in situ data from rain gauges. The validation by climate zone showed that tamsat v3.1
is the best for reproducing station rainfall data for all zones at the daily scale, followed by
rfev2. But for the monthly scale analysis, the Chirps V2.0 dataset showed the best estimates
for the Sahelian and Sudano-Sahelian zones ahead of TRMM-3B42. Over the Sudanian zone,
Persisian-CDR best reproduced the rainfall data from the rain gauges. The GPCP performed
worst in all validation tests performed at daily time step, while Arc2 and Tamsat were among
the worst performers at monthly time step. Two bias correction schemes have been applied
to remove bias from the TAMSATV3.1 and CHIRPS V2.0 estimates. The empirical quantile
mapping and the space-time variant were used individually to correct these datasets. Both
showed improved statistics compared to the original data when assessing the corrected datasets.
However, EQM shows a significant improvement compared to TSV at the daily scale while TSV
was more appropriate for the monthly scale. The four Merging techniques RK-Spheremap, RK-
Shepard, MFB-Spheremap, and MFB-Shepard have been proven to increase accuracy, primarily
by reducing root mean square error (RMSE), mean error (ME), the bias, and increasing the
correlation. The best blending method in descending order in this study is RK-Spheremap, MFB-
Spheremap, RK-Shepard, MFB-Shepard. This order is the same for both daily and monthly time
steps. After the bias correction and merging steps, the following improvements were observed:
An improvement in the correlation of the daily data of 85.2%, the Bias of 12.4% and the RMSE
of 95.6%. For the monthly data, the correlation coefficients are improved by 8.4%, the bias
by 2.3% and the RMSE by 99.9%. Based on the results, the proposed approach that combines
the three steps (SPD assessment, SPD bias correction and datasets merging) has therefore the
potential to significantly improve the quality of precipitation estimates by satellite for operational
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applications. It could be a good alternative to help forecasters, agencies, organizations and other
entities in their work with the population and research (studies of drought, flooding, cropping
calendars, etc). Verification of the hypothesis of this research:

• Based on the results of the validations performed, the first assumption stating that as the
time step of the evaluation increases, the performance of the SPDs improves is accepted.
Indeed, satellite estimates at monthly time scale are more accurate than the daily time
scale.

• The second assumption is that the bias-corrected data set has a significantly reduced
systematic bias with MQE compared to TSV. This hypothesis is half-tested as it is accepted
for the daily time step but rejected for the monthly time scale.

• The third assumption is the following: The reliability of the bias-corrected data sets is
improved by merging them with the rain gauge observations. It is accepted for all time
scales and all methods, even for the worst ones.

Perspectives

In a future study, the proposed assessment could be performed to assess the accuracy of satellite
products in capturing extreme precipitation events. In general, all satellite products exhibit many
errors in extreme precipitation estimates, as mentioned by Jiang et al. (2019). In response to
climate change, improving the accuracy of SPDs on the quantity and frequency of extreme events,
especially in extreme precipitation, is key to anticipatory strategies such as flood forecasting and
drought monitoring. On the other and, there is a need to conduct study on the impact of rain
gauge density on Merging performance in Burkina Faso. The maintenance of meteorological
stations is very expensive and this survey could guide the minimum number of stations to be
kept and seriously maintained in order to obtain quality data when it comes to merging these rain
gauges with satellite data. As a long term perspective, it is planned to carry out similar study
on temperature because Burkina Faso has only 10 reliable temperature measurement points.
Although the temperature is a continuous variable, this network is insufficient. A similar study
would avail temperature datasets for decision making and heat wave monotoring in the country.
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Appendix

Appendix 1: Scatter plots of daily data

Figure 3.14: Scatter plots of daily data between the rain gauge observations and the satellites
precipitation datasets
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Appendix 2: Scatter plots of monthly data

Figure 3.15: Scatter plots of monthly data between the rain gauge observations and the satellites
precipitation datasets

Appendix 3: list of weather stations
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Table 3.9: List of stations involved in this study, their coordinates and data availability on the
study period (2001-2014)
ID Stations Longitude Latitude Number of observations Data avaibility(
1 Ouagadougou aero -1.512393 12.356415 5114 100
2 Ouarkoye -3.666936 12.095299 5114 99.37
3 Baraboule -1.851861 14.207478 5114 99.98
4 Aribinda -0.867899 14.227154 5114 98.81
5 Gorgadji -0.517171 14.034129 5114 98.83
6 Gorom Gorom -0.23464 14.443475 5114 97.54
7 Dori -0.036463 14.033881 5114 100
8 Di Sourou -3.405409 13.164027 5114 98.18
9 Kassoum -3.301386 13.07371 5114 98.79
10 Toeni -3.183169 13.439303 5114 95.81
11 Tougan -3.071034 13.065523 5114 98.18
12 Kiembara -2.726192 13.240201 5114 99.41
13 Ouahigouya -2.416512 13.565299 5114 100
14 Gourcy -2.354984 13.196727 5114 99.94
15 Titao -2.072084 13.767296 5114 99.98
16 Seguenega -1.966787 13.437844 5114 98.81
17 Pobe Mengao -1.765525 13.90174 5114 99.39
18 Tema Bokin -1.803654 13.002054 5114 100
19 Bourzanga -1.55029 13.673307 5114 97.03
20 Barsalogho -1.057686 13.41711 5114 99.98
21 Tougouri -0.525729 13.312797 5114 98.81
22 Dakiri -0.255089 13.291822 5114 100
23 Sebba 0.525059 13.44342 5114 97.03
24 Tansila -4.388455 12.418673 5114 100
25 Solenzo -4.083315 12.179734 5114 98.79
26 Nouna -3.85968 12.731276 5114 99.98
27 Dedougou -3.481938 12.463666 5114 100
28 Sourou Gassan -3.202195 12.821941 5114 95.21
29 Safane -3.229567 12.129048 5114 97.03
30 Toma -2.893941 12.760481 5114 98.81
31 Tiogo -2.689818 12.178328 5114 97.56
32 Reo Agri -2.458194 12.308788 5114 98.22
33 Yako -2.264181 12.958272 5114 95.01
34 Nanoro -2.194683 12.686784 5114 99.96
35 Saria -2.157301 12.268978 5114 97.52
36 Kindi -2.040228 12.435306 5114 99.39
37 Bousse -1.897604 12.660495 5114 98.71
38 Kokologho -1.882237 12.194405 5114 98.18
39 Tanghin Dassouri -1.717807 12.269062 5114 99.39
40 Kamboince -1.548466 12.456776 5114 98.79
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ID Stations Longitude Latitude Number of observations Data avaibility(
41 Mane -1.346356 12.984888 5114 97.61
42 Kombissiri -1.332234 12.053305 5114 95.78
43 Guilongou -1.307974 12.613202 5114 96.99
44 Korsimoro -1.069292 12.828292 5114 97.63
45 Mogtedo -0.834057 12.285242 5114 98.77
46 Zorgho -0.609076 12.246673 5114 99.98
47 Boulsa -0.568152 12.663798 5114 96.44
48 Koupela -0.353174 12.182407 5114 99.96
49 Bogande -0.160714 12.979046 5114 100
50 Piela -0.132112 12.70382 5114 98.22
51 Bilanga -0.027002 12.545484 5114 98.22
52 Fada Ngourma 0.364598 12.045793 5114 100
53 Yamba 0.33621 12.295897 5114 98.81
54 Gayeri 0.488548 12.651833 5114 100
55 Farako Ba -4.332049 11.094406 5114 98.75
56 Bobo Dioulasso -4.322019 11.162578 5114 100
57 Bondoukuy -3.750286 11.868359 5114 98.79
58 Koumbia -3.6961 11.236369 5114 99.96
59 Bereba -3.680498 11.621707 5114 96.54
60 Hounde -3.521113 11.486433 5114 99.39
61 Wona -3.42946 11.971107 5114 97.56
62 Dano -3.066343 11.147352 5114 97.57
63 Boromo -2.929275 11.744512 5114 100
64 Boura -2.506202 11.039217 5114 99.39
65 Thiou Koudougou -2.197553 11.951494 5114 99.39
66 Betare -1.375108 11.433402 5114 98.2
67 Po -1.146324 11.180598 5114 100
68 Manga -1.071816 11.662119 5114 97.11
69 Niaogho -0.771272 11.773527 5114 96.97
70 Garango -0.547514 11.804819 5114 99.39
71 Ouargaye 0.057861 11.504821 5114 98.81
72 Pama 0.704708 11.247395 5114 100
73 Mahadaga 1.778134 11.73859 5114 96.44
74 Baguera -5.424457 10.531927 5114 99.39
75 Loumana -5.346318 10.578826 5114 99.98
76 Sindou -5.163608 10.660583 5114 99.39
77 Soubakaniedougou -5.002553 10.474577 5114 100
78 Orodara -4.926081 10.97948 5114 96.97
79 Niangoloko -4.908429 10.271126 5114 99.9
80 Banfora Agri -4.763896 10.638829 5114 98.79
81 Sideradougou -4.252861 10.67638 5114 99.98
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ID Stations Longitude Latitude Number of observations Data avaibility(
82 Ouo -3.846168 10.398932 5114 97.59
83 Kampti -3.458564 10.142647 5114 97.01
84 Gaoua -3.166372 10.385551 5114 100
85 Batie -2.918969 9.880645 5114 95.81
86 Leri -3.384891 12.763163 5114 100
87 Botou 2.049382 12.664599 5114 97.61
88 Ndorola -4.725886 11.782906 5114 97.63
89 Kouka -4.337164 11.905404 5114 95.87
90 Vallee DuKou -4.233336 11.132045 5114 100
91 Fara -2.762335 11.520394 5114 99.43
92 Beregadougou -4.727879 10.747085 5114 100
93 Ouangolodougou -4.805891 10.069083 5114 99.98
94 Bitou -0.29983 11.25929 5114 95.19
95 Nobere -1.201876 11.559971 5114 100
96 Bingo -1.834 12.30855 5114 96.3
97 Namoungou 0.658177 12.040254 5114 95.29
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