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Abstract 

Global Sea Level Rise (SLR), especially caused by global warming, highly threatens the 

coastal countries by causing coastal erosions, biodiversity loss, coastal flooding, etc. The study 

of shoreline dynamics is a key aspect of coastal area management, and is useful for reducing 

risk and vulnerability to climate change within coastal ecosystems. Artificial Intelligence (AI) 

is an efficient approach to this type of problem because of its advanced multidimensional data 

extraction and computational tools. This study uses AI methodologies combined with Remote 

Sensing (RS) and Geographic Information Systems (GIS) tools to perform a spatiotemporal 

analysis of the shoreline dynamics of the Republic of Benin from 2001 to 2021. Preprocessed 

multispectral and multitemporal Landsat 5, 7 and 8 surface reflectance images as well as the 

NASA Shuttle Radar Topography Mission (SRTM) digital elevation data were extracted from 

the Data Catalog of Google Earth Engine (GEE). Then, the cloud computing platform of GEE 

was used to perform binary (Sea Water / Non-Sea Water) supervised image classification. The 

Machine Learning algorithms used were Support Vector Machines (SVM) and Random Forest 

(RF). QGIS was used to extract historical shorelines from the respective classified images in 5-

year intervals. Net Shoreline Movement (NSM), End Point Rate (EPR), Linear Regression Rate 

(LRR) and Weighted Linear regression Rate (WLR) were the shoreline change statistics derived 

from Digital Shoreline Analysis System (DSAS), a plugin of ArcGIS. Then, the Kalman Filter 

model, implemented in the DSAS plugin, was used to provide a “beta” forecast of the shoreline 

shape respectively for the years 2031 and 2041, with a confidence interval of 90%. A 

geostatistical analysis of the results mainly showed, for the study period, a clear coastal erosion 

trend at average rates of -2.17 ± 0.28 m (EPR), -1.51 ± 1.68 m (LRR). A sectorial and deeper 

analysis revealed that, in terms of NSM, the West side of the Port infrastructure underwent more 

accretion (41.67% against 25.71% at the East) while the East side experienced more erosion 

(74.29% against 58.33% at the West). Assuming a Business-as-Usual (BaU) scenario, the 

projected highest erosion values were found to be -226.42 m (2031) and -146.14 m (2041) in 

the locality of Avloh plage (Grand-Popo), -68.11 m (2031) and -182.55 m (2041) in the locality 

of Hillacondji (Grand-Popo), -146.14 m (2031) and -307.30 m (2041) in the locality of 

Agblangandan (Cotonou). Finally, a web application was designed and implemented to facilitate 

an easy data access and visualization of results by non-experts and decision makers.  

Key words: Erosion; Machine Learning; Shoreline; Remote Sensing; Kalman Filter; Benin.
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Introduction 

Climate change –  the change in the state of the climate that can be identified (e.g., by 

using statistical tests) by changes in the mean and/or the variability of its properties and that 

persists for an extended period, typically decades or longer (IPCC, 2018) – is one of the major 

planetary threats identified in the 21st century. There are many ways to characterize this 

phenomenon. Global warming, the most known characterization of climate change, is due to 

the increase of the concentration of atmospheric Green House Gases (GHG), mainly driven by 

anthropogenic forces. Global warming results in phenomena such as ocean warming, land ice 

melting, increase of climate extreme events occurrences, etc. Both ocean warming and land ice 

melting combined, result in Sea Level Rise (SLR) (Cazenave & Le Cozannet, 2013). SLR 

occurs in two (02) ways: thermal expansion that causes water to expand as it warms (Church, 

2001), and land ice melting that causes to the retreat of glacier and thinning of ice at the poles 

(McGuire, 2017). This dilatation of the water induced by the rise in its temperature, is one of 

the major drivers of the coastal erosion (Leatherman et al., 2000). Concretely, climate change  

was reported to accelerate the global SLR at a rate of 0.084 ± 0.025 mm / year within the 25 

years preceding 2017  (Nerem et al., 2018). Researchers have projected that half of the global 

sandy beaches are likely to disappear by the end of the 21st century (Vousdoukas et al., 2020). 

Indeed, as the most settled parts of the world, coastal zones frequently experience hazards 

directly or indirectly linked to SLR. As a result, there is an increase in the frequency of 

occurrences of coastal disasters such as floods, erosion, cyclones, typhoons, tsunamis, etc.  

African coasts are not exempted from these phenomena.  

According to Croitoru et al. (2019), coastal zone degradation in Benin Republic, Cote 

d’Ivoire, Senegal and Togo, costs USD 3.8 billion / year, an equivalent of 5.3% of their Gross 

Domestic Product (GDP).  It is estimated that approximately 500,000 people are affected 

annually by the impact of flooding and coastal erosion in West Africa (World Bank, 2022). 

Thus, Benin Republic subject to these coastal hazards, has been experiencing shoreline 

spatiotemporal fluctuation under the influence of climate change during the last decades 

(Degbe, 2017). For a better management of Benin Republic’s coastal areas, there is the need to 

monitor the shoreline dynamics and to forecast its future behavior. The current study aims to 

help in the management of climate change impacts on Benin Republic coastal areas. This will 

be done by using Artificial Intelligence (AI) tools to assess and predict shoreline dynamics. The 

study is articulated around 3 main points. First, the spatiotemporal shoreline dynamics of Benin 



AI-based spatiotemporal assessment of the Benin Republic shoreline dynamics and prediction   

 

Proposed by DEGBEY C. David                       EDICC                                   2021-2022  2 

Republic from 2001 to 2021 will be evaluated in terms of magnitude and direction. Second, 

assuming a Business-as-Usual (BaU) scenario, an AI-based prediction model will be used to 

forecast the next shoreline shape, for 10 and then 20 years. Third, a web application was built 

to show the different results, in order to improve decision making.  

Problem statement  

At the state of the art, there is actually no open access African historical shoreline data 

portal as in the case of the USA with the USA Geological Survey Group (USGS) Coastal 

Change Hazards Portal and National Oceanic and Atmospheric Administration (NOOA) Digital 

Coast. This is due to the lack of data in this region of the planet. The existing data sources are 

private raw satellite images database and usually not for free. These images are not processed 

to the level of a shoreline data portal. 

Additionally, few authors integrated up to 6 additional computed bands to perform 

binary (Sea water / Non - Sea water) image classification (Abdelhady et al., 2022; Alicandro et 

al., 2019, Casse et al., 2012). Most of them limited the work to maximum 02 computed bands 

additionally to the raw ones (Toure et al., 2019). 

In the literature, Remote Sensing (RS) and AI-based historical shoreline spatiotemporal 

change assessment is also poorly documented, especially in Africa. Many authors worked on 

shoreline change assessment but most of them manually digitized the shorelines and the 

baseline for the work. In other cases, they used semi-automatic embed Geographic Information 

System (GIS) classification tools (Assogba, 2018; Degbe, 2017). This kind of methodology 

highly affect negatively the accuracy of the binary classification, and thus, the final change rates 

accuracy.  

To fill up the previous highlighted gaps, a methodology was proposed in this study to 

reconstitute the historical changes of shoreline over Benin Republic coast since 2001, and to 

attempt its horizon 2031-2041 forecast, using high resolution RS images and AI approach.  

Research questions 

In the scope of this study, the main research question that will be addressed is: How has 

the Benin Republic shoreline shape changed over the last 20 years in terms of magnitude and 

rate? From this major research question, it can be derived the following specific ones:  

• Specific Research Question 1: What is the general trend in the evolution of Benin 

Republic shoreline dynamics during the past 20 years? 
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• Specific Research Question 2: Assuming a Business-as-Usual scenario, what will be 

the shoreline shape at horizons 2031 and 2041? 

• Specific research question 3: How to better communicate historical and forecast 

shoreline positions to non-expert targets? 

Research hypotheses  

The main hypothesis related to the main research question is that: Over the last 20 years, 

Benin Republic shoreline has undergone complex dynamics. Regarding the three (03) previous 

specific research questions, here are the specific hypotheses to be confirmed: 

• Specific Research Hypothesis 1: During the last 20 years, Benin Republic shoreline 

has undergone significant variations in terms of magnitude and direction. 

• Specific Research Hypothesis 2: Assuming a Business as Usual scenario, Benin 

Republic shoreline projected at horizons 2031 and 2041, is such a way that there is 

erosion in some places and accretion in other. 

• Specific Research Hypothesis 3: Historical and forecast shoreline positions in Benin 

Republic, can be communicated to non-expert targets via an open-access web 

application. 

Research objectives 

Our main objective in this study, is to analyze historical and projected shoreline dynamics 

along Benin Republic coast over the years. This objective can be broken down into the 3 

following specific objectives corresponding to each research question: 

• Specific research objective 1: Evaluate Benin Republic shoreline dynamics over the 

last 20 years. 

• Specific research objective 2: Forecast Benin Republic shoreline position at horizon 

2031 and horizon 2041, assuming a Business as Usual scenario. 

• Specific research objective 3: Build a web application to communicate historical and 

forecasted shoreline positions in Benin Republic to non-experts. 
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Chapter 1: Literature review 

In this chapter, an overview of the concepts and taxonomy used in this thesis, has been 

described. This chapter starts with a section about concepts and generalities on shoreline, 

proceeds with an overview of AI and RS and ends with the state of the art concerning the topic 

of this study.  

1.1. Shoreline Concepts 

1.1.1. Generalities and data sources overview 

Ideally, shoreline is the imaginary line that coincides with the physical interface of land 

and water (Dolan et al., 1980). In spite of this simple definition, in practice it is a challenge to 

clearly identify this line. In reality, the shoreline position is in continuous change  over the time, 

because of cross-shore and alongshore sediment movement in the littoral zone and especially 

because of the dynamic nature of water levels at the coastal boundary (e.g., waves, tides, 

groundwater, storm surge, setup, runup, etc.) (Boak & Turner, 2005). There are many data 

sources for shorelines. The main ones are: Historical Land-Based Photographs, Coastal Maps 

and Charts, and Remote Sensing (RS). Since RS is the data source used in this study, its main 

types were highlighted: 

1.1.1.1. Multispectral/Hyperspectral Imaging 

Satellites now provide near-continuous monitoring of many of the world’s shorelines 

(Morton, 1991). Traditional multispectral satellite-flown instruments, such as Landsat, SPOT, 

etc., generate a discrete signal in a limited number of broadbands (Cracknell, 1999). 

Hyperspectral imaging provides wide and continuous spectral coverage (Richards & Jia, 1999). 

The advantages of multispectral/hyperspectral imagery are the large areas that can be covered 

and the detailed spectral information provided. Shorelines may be derived from visibly 

discernible coastal features (using true- or false-color imagery) or by the application of digital 

image-processing techniques. This data source is the one used in the scope of the present study. 

1.1.1.2. Microwave Sensors and Video Imaging 

Data from the microwave range of wavelengths can be collected using airborne side-

looking airborne radar or spaceborne synthetic aperture radar (Cracknell, 1999). Information 

about the point on the ground is calculated based on the return period of the signal and signal 

strength (Richards & Jia, 1999). Large spatial areas can be covered using radar technology, but 

the cost is high (Richards & Jia, 1999). 
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The advent of digital imaging technology has enabled higher-frequency and continuous 

images of the coast to be collected in the visible wavelengths. These systems have the capability 

to monitor detailed changes in the coastal system, as well as providing long-term shoreline 

change information (at a given time). 

1.1.2. Shoreline indicators overview 

Because of the dynamic nature of the idealized shoreline boundary, for practical purposes 

coastal investigators have typically adopted the use of shoreline indicators. A shoreline 

indicator is a feature that is used as a proxy to represent the ‘‘exact’’ shoreline position. 

Individual shoreline indicators generally fall into one of two categories. Classifications in the 

first group are based on a visually discernible coastal feature, whereas classifications in the 

second group are based on a specific tidal datum. The most common shoreline indicators used 

have been reported by Boak & Turner (2005). Among these indicators, the chosen one for this 

study, is the Color Band Divergence (CBD) shoreline. Used by Aarninkhof (2003), it 

differentiates pixels based on the reflectance properties of ‘‘wet’’ and ‘‘dry’’ regions based on 

a divergence of the relative intensity in the Red Green Blue (RGB) spectrum.  Its advantages 

are that it determines an objective shoreline, repeatable (scientifically valid) and automated 

(Boak & Turner, 2005).  

1.1.3. Shoreline detection techniques  

To each shoreline detection technique, commonly two steps are required to identify a 

shoreline. The first is to select and define a shoreline indicator as a proxy for the land-water 

interface. The second step of shoreline identification involves the detection of the chosen 

shoreline indicator within the available data source (Boak & Turner, 2005). Both steps 1 and 2 

can induce errors (Stockdon et al., 2002). All of the shoreline detection techniques depend on 

the chosen data sources. An overview of the main techniques is provided below. 

1.1.3.1. Aerial photography, LIDAR aerial beach surveys and video imaging 

Today, drones are most commonly used for this purpose. Software is available for 

georectification of the images and extraction of the shoreline. Digital Elevation Maps (DEMs) 

of the beach can be obtained by airborne Laser Imaging Detection And Ranging (LIDAR) at 

low water. High costs are an impediment for frequent surveys. The video cameras are installed 

at a fixed location at sufficient height for covering a coastal stretch of up to 2 km length. Argus 

video monitoring technique enables the detection of shoreline evolution and beach width, 

erosional and accretional sediment volumes of the intertidal beach, subtidal beach bathymetry 
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and wave run-up (Holman et al., 1993). 

1.1.3.2. Satellite images 

Publicly available optical satellite images have a progressive increasing resolution and 

decreasing revisit period which make them suitable for shoreline detection. A refined version 

of the sub-pixel resolution shoreline detection technique has been developed by Liu et al. (2017) 

and later augmented with the addition of an image classification component to refine the 

detection of the sand/water interface. In this way the horizontal Root Mean Square Error 

(RMSE) can be reduced to less than about 10 m. Satellite images constitute the chosen detection 

technique in this study. That is why it is important to have an overview of RS and AI for the 

image classification component stated a few lines above. 

1.1.4. Shoreline prediction methods 

Modeling shoreline position, shape and geomorphology is quiet challenging because of 

the numerous complex drivers needed to consider (waves, tides, wind, water heights, etc.). This 

is why, there are not too many methods to forecast them. In this study, two interesting ones are 

presented: 

1.1.4.1. The Bruun’s rule 

The Bruun’s rule gives a linear relationship between SLR and shoreline recession based on 

equilibrium profile theory, which asserts that shore face profile maintains an equilibrium shape, 

and as sea level rises the increasing accommodation space forces this equilibrium profile 

landward and upward to preserve its shape related to the new sea level. It predicts coastal 

recession to be as much as 10 to 50 times SLR, depending on the slope of the beach. This 

method is empirical but in a context of climate change, it is the ideal one to use. The 

mathematical formula of the Bruun’s rule is: 

𝑅 =  
𝑆𝐿

ℎ + 𝐵
=

𝑆

𝑡𝑎𝑛𝛽
 (1) 

 

Where, R[m] is shoreline recession; S[m] is sea level rise; L[m] is the horizontal length of the 

bottom affected by the sea level rise, h[m] is the depth of closure, B[m] is the dune height above 

sea level, β[rad] is the average slope of the active profile. 

But the disadvantage of this method is the data availability constraints. Actually, to 

compute reliable value of S it must have been installed a set of highly accurate instruments for 

in situ data collection for many years. Even with RS, S value accurate measurement is still 
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difficult since the high-resolution sensors images are available not too long ago and are still not 

available in some areas in Africa. This is the reason why the Kalman Filter method was chosen.    

1.1.4.2. The Kalman Filter 

Proposed by Rudolf E. Kálmán in 1960, Kalman filtering, is an algorithm that uses time 

series measurements, including statistical noise and other inaccuracies, to produce estimates of 

unknown variables that tend to be more accurate than those based on a single measurement 

alone, by estimating a joint probability distribution over the variables for each timeframe 

(Figure 1). It is a statistical and iterative method in comparison to the Bruun’s rule. 

 
Figure 1: Kalman Filter algorithm flowchart 

In our case, the shoreline forecasting calculation is done by using the Kalman Filter, as 

developed by Long & Plant (2012), to forecast future shoreline positions by combining 

observed shoreline positions with model-derived positions. The Digital Shoreline Analysis 

System (DSAS) Kalman Filter approach is initialized with the Linear Regression Rate (LRR) 

calculated by DSAS (Figure 2), it then estimates the shoreline position and change rate for every 

10th month of a year and provides an estimate of positional uncertainty at each time step. 
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                    Figure 2: Comparison between Kalman Filter forecast and LRR 

Source: (Himmelstoss et al., 2021) 

The model begins at the first timestep (the date of the earliest survey) and estimates the 

shoreline position for each successive time step until another shoreline observation is 

encountered. Whenever a shoreline observation is encountered, the Kalman Filter performs an 

analysis to minimize the error between the modeled and observed shoreline positions to improve 

the forecast, including updating the rate and uncertainties (Long & Plant, 2012). The updated 

rate is then used to predict the shoreline position for each successive time step until another 

survey date is reached and again the new data are assimilated into the model. This process is 

repeated until the desired forecast date is reached. The measurement error is estimated by using 

the shoreline positional uncertainty associated with each shoreline used in the analysis. 

1.1.5. Shoreline change and sea level rise  

As stated, waves and tides are part of the numerous drivers of shoreline change. SLR 

(derived from these drivers) is one of the most significant effects of climate change. High 

projected rates of future SLR have captured the attention of the scientists. A projected SLR of 

18-59 cm by 2100, which was given by the Intergovernmental Panel on Climate Change (IPCC) 

Assessment Report Four (AR4), can be understood as the lower limit of the possible increase. 

Figure 3 shows the projected rate of Global Mean Sea Level (GMSL) rise and its contributions 

as a function of time for the four Representative Concentration Pathways (RCP) scenarios. 
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Figure 3: Projected sea level rise for the 21st century 

Source: (Church & Gregory, 2019) 

 

The primary direct physical consequence of SLR, among others, is inundation. Inundation 

increases the rate of shoreline recession or retreat by raising the mean water level upon which 

the tides, waves and storm surges can attack the beaches, bluffs, embayments and barrier islands 

of the world's coastlines. As global projections of inundation and recession, it is estimated that 

the total shoreline length which would be inundated or otherwise affected by a rise in sea-level 

is 1 m (Tsyban et al., 1990). 

1.2. The use of Artificial Intelligence in Remote sensing 

1.2.1. Overview of the Artificial Intelligence 

A branch of Computer Science named Artificial Intelligence (AI) pursues creating the 

computers or machines as intelligent as human beings. AI is “The science and engineering of 

making intelligent machines, especially intelligent computer programs” (McCarthy, 1989). AI 

is a way of making a computer, a computer-controlled robot, or a software think intelligently, 

in the similar manner the intelligent humans think.  

AI is currently in a new hype phase because of Machine Learning (ML), a technology 

that helps computers learn from data. Having a computer learn from data means not depending 

on a human programmer to set operations (tasks), but rather deriving them directly from 

examples that show how the computer should behave. ML builds its cognitive capabilities by 
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creating a mathematical formulation that includes all the given features in a way that creates a 

function that can distinguish one class from another. Artificial Neural Networks (ANNs) are 

the most popular ML algorithms today. The invention of (A)NN took place in the 1970s but 

they have achieved huge popularity due to the recent increase in computation power.  

 

Figure 4: Simple Artificial Neural Network illustration 

ANNs are capable of (machine) learning and they need to be trained. There are globally 3 

ways to train ANNs machines to learn: Supervised Learning (detailed in the following lines), 

Unsupervised Learning (Appendix 5), and Reinforcement Learning (Appendix 6). Since it is 

the one used for this study, the Supervised Learning process was described. It involves a 

“teacher that is scholar than the ANN itself”. The teacher feeds some example data about which 

the teacher already knows the answers. For example, in pattern recognizing field, the ANN 

comes up with guesses while recognizing. Then the teacher provides the ANN with the answers. 

The network then compares its guesses with the teacher’s “correct” answers and adjusts 

according to errors. In the scope of the current study, only the supervised classification will be 

used. Figure 5 illustrates the supervised learning process. 

Supervised machine learning is the search for algorithms that reason from externally 

supplied instances to produce general hypotheses, which then make predictions about future 

instances. The main purpose of supervised learning is to build a simple and unambiguous model 

of the allocation of class labels in terms of predictor features. The resulting classifiers are then 

used to classify class labels of the testing instances where the values of the predictor features 

are known, to the value of the class label which is unknown (Reddy & Babu, 2018). The features 

are the descriptive attributes, and the label is what is attempted to be predicted or forecasted. 

Further in Chapter 2, the labels and features in the case of our study, were emphasized. 
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Figure 5: Supervised learning process 

 

1.2.2. The use of AI in Remote Sensing for Earth observation 

Remote Sensing (RS) is the science of obtaining information about an object, area, or 

phenomenon through the analysis of data acquired by a device that is not in contact with the 

object, area, or phenomenon under investigation (Congalton, 2015). The objective of RS is to 

collect large amounts of Earth images datasets. The most common RS systems measure 

reflected visible light, but they can also measure electromagnetic radiation that is invisible to 

the human eye, e.g. UltraViolet (UV), Infra Red (IR) or microwave radiation. Earth Observation 

(EO) means information collected from Earth observing satellites, which is obviously done by 

RS. Another AI field was then introduced: Computer Vision (CV). CV enables computers and 

systems to derive meaningful information from digital images, videos and other visual inputs, 

and take actions or make recommendations based on that information (IBM, 2022).  

The latest innovation to capturing accurate data over large areas from satellite imagery 

has been the combined utilization of ML and CV. ML models succeed in many fields related to 

obtaining large amounts of image data to aid in pattern recognition and create algorithms 

through computer systems. AI can improve the analysis of large areas of interest, classify 

objects, detect and monitor land use, data fusion, cloud removal, and spectral analysis of 

environmental changes from satellite or aerial imagery. Particularly the ML Image supervised 

classification was used for that purpose in this study. A supervised ML classification algorithm 

requires a training sample for each class, that is, a collection of data points known to have come 

from the class of interest. The classification is thus based on how “close” a point to be classified 

is to each training sample. The training samples are representative of the known classes of 
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interest to the analyst. The three basic steps (Figure 6) involved in a typical supervised 

classification procedure are as follows: 

 

 
Figure 6: Supervised image classification 

Source: (Lillesand et al., 2004) 

 

1.3. State of the art 

1.3.1. Previous related studies 

Many authors investigated the use of RS to assess shoreline change over a certain time 

range. For instance, Deabes (2017) used the Model Builder in ArcGIS to design and develop an 

automated technique to calculate the shoreline change rates along the Nile Delta Coast in Egypt. 

It was sorted out from this study that the shoreline of Rosetta retreated at an average rate of 60 

m/year, Burullus bulge at 6 m/year and Damietta (Ras El-Bar) at 6 m/year. This study even 

allows to deduce that protection structures didn’t solve erosion problem. In the scope of their 

study, Aedla et al. (2015) developed an automatic shoreline detection method using histogram 

equalization and adaptive thresholding techniques, and combined it with DSAS in order to 

monitor shoreline dynamics along Mangalore coast (India). It was found that The Bengre spit, 

Northern sector of Netravati-Gurpur river mouth is under accretion with an average of 2.95 

m/year and maximum accretion obtained is 8.51 m/year while on the Southern sector, the Ullal 

spit is under erosion with an average rate of -0.56 m/year. 
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Some of the existing works combined AI and RS to improve the shoreline detection and 

monitoring. For example, using an image processing approach and a supervised Random Forest 

(RF) image classification, Njutapvoui et al. (2022) showed that the Cameroon estuary is 

disturbed by different levels of erosion at some places, and accretion at others, and also by weak 

internal variations. When conducting a study on monitoring and analysis of coastline change 

and erosion prediction in Tabanan regency, an Indian coastal region, it was shown that this 

region underwent an average of 13.96 m coastline change with an average rate of coastal erosion 

of 1.99 m/year (Aryastana et al., 2018). These results were achieved by performing a high-

resolution SPOT (5/6/7) satellite imagery analysis. Studying shoreline change since 1984, all 

along to 2016, (Luijendijk et al., 2018) applied pixel-based supervised classification and found 

out that 25% of the worldwide sand beaches have already underwent a rate of erosion of more 

than 0.5 m/year. The same study pointed out an area of 28,000 km2 of land swallowed by the 

sea. In his PhD thesis, (Faye, 2010) analyzed the shoreline dynamics along the coast from 

Mauritania to Guinea Bissau, and found an erosion of over 47 km (70%) of the coast and 

accretion of over 20 km (30%). On another plan, in order to identify shoreline changes from 

2012 to 2021 and to forecast the shoreline position after 10 years, Dey et al. (2021) used DSAS 

tool and multitemporal satellite images (Sentinel 2). The results showed that the pattern of the 

rate of change was more or less the same for the 3 chosen statistical indicators. The same study 

used Kalman Filter model to predict 10-year further shoreline positions. The same plugin DSAS 

combined with the shoreline change rate velocity formula was used to perform coastline 

dynamics analysis and predictions along the Dakar’s region coast (Pouye et al., 2022). As 

results of this study, it was shown that the western and southern coasts record respectively a 

rate of about 0.21 and -0.11 m/year. In 2030, the average rates of retreat of -4.4, -2.1 and -1.1 

m/year were estimated respectively in the northern, western and southern coasts. 

Some studies were also conducted more or less on the same study area as the present one. 

It is the case for instance of the one conducted by Assogba (2018), which used DSAS to map 

the dynamics of the coastline in Cotonou between 2013 and 2018 and forecast a trend for 2025. 

It was found from this study that prior to the construction of the coastal defense structures in 

2013, the coastline advanced at the West part of the Port and receded at the East part of the Port 

at a rate of more than 10 m/year. This study was only narrowed to Cotonou (18 km of coast), 

the capital city. Also Ozer et al. (2017) investigated coastline change trends between 2000 and 

2015 in Togo and Benin Republics. They analyzed coastal dynamics using very high Google 

Earth resolution images to find that 34% of the coastlines are stable, while accretion is recorded 
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only upstream of harbor infrastructures (14%) and, the remaining 52% coastlines undergo 

erosive processes, sometimes up to -10 m/year. In the same vein, it was shown that the coastal 

sectors most threatened by erosion is the East of Cotonou with a mean velocity of approximately 

-9 ± 0.03 m/year at Donatin and approximately -30 ± 0.03 m/year at the East (at the level of the 

bridge toll), the sectors of Djondji with -2 ± 0.03 m/year and the sectors between Hillacondji 

and Agoué with -5 ± 0.03 m/year (Degbe et al., 2017). Another study analyzed the role of 

erosion and accretion in shoreline changes along the coast between Cape Coast and Sekondi in 

Ghana (Dadson et al., 2016). They used aerial photographs, satellite images, and topographical 

maps to achieve the results showing that the sea advanced inland between 1972 and 2005, which 

is attributed mainly to intense erosion. The study further reveals that, in the past five years, the 

shoreline had been retreating mainly due to increased accretion. In another study, Arjasakusuma 

et al. (2021) investigated shoreline changes in East Java Province Indonesia from 2000 to 2019 

using Random Forest (RF) and GMO maximum entropy (GMO-Maxent) for image 

classification and DSAS tool to compute change rate indicators. It was mainly found that coastal 

erosion happened mostly in the mangrove and aquaculture areas. A different study used a 

methodology involving the interpretation of different RS data types between 1987 and 2012 to 

quantify the shoreline displacement rate. From this study, it was found that the average rate of 

the calculated erosion is in the order of 24 mm/year whilst extreme rates of 1 m/year were also 

observed in specific positions (Vassilakis et al., 2017). 

In addition to the gaps of previous studies mentioned, projection or forecast regarding 

future shoreline dynamics is also less documented. However, some authors put an emphasis on 

the shoreline prediction with different methods. For instance, using the Bruun’s rule, Patil & 

Deo (2020) found that future recession of shorelines along the Indian coastline might vary 

between 14.10-29.22 m and 21.05-45.40 m up to the year 2100 for RCP4.5 and RCP8.5 

respectively. It is also the case of the study of Hilton et al. (2020) who developed a shoreline 

prediction model, forced by synthetic waves to investigate whether forecasts can be improved 

when the synthetic wave generation algorithm is informed by relevant climate indices. The 

results of this study showed that improved seasonal predictions of shoreline changes are 

possible if climate indices are known a priori. In the same vein, Banno & Kuriyama (2014) 

developed a shoreline change model considering the effects of the wave regime, sea level, and 

time heterogeneity in order to predict future shoreline positions along the Hasaki coast in Japan. 

The prediction results (from 2008 to 2095) showed that the shoreline would retreat 

approximately 20 m by the end of this century due to the rise in sea level. 
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The majority of the previous studies doesn’t include neither the median of image 

collections nor the combination of the Automated Water Extraction Index non-shadow 

(AWEInsh), Normalized Difference Built-up Index (NDBI) and slope bands to improve the 

accuracy of the image classification. The current work will combine these features to point out, 

if any, improvement on the shoreline evolution prediction. 

1.3.2. Existing regional projects and solutions 

In terms of projects, the main one including Benin Republic is the West African Coastal 

Areas Management Program (WACA) involving all West African countries working together 

to address challenges posed by their shrinking coastline. It was developed by the World Bank 

Group in partnership with the program’s ultimate beneficiaries. This program targets 16 West 

African countries (Gulf of Guinea). The WACA program provides countries with access to 

technical expertise and finance to manage sustainably coastal zones, dealing with erosion and 

hazardous flooding. It was approved by the World Bank in April 2018 with a credit of USD 120 

million and a grant of USD 70 million from the World Bank's International Development 

Association (IDA); and a grant of USD 20.25 million from the Global Environment Facility 

(World Bank, 2018). The project contributes to the Sustainable Development Goal (SDG) 13 

(Climate Action) by allowing climate change action, awareness-raising, and human capacity in 

climate change mitigation and adaptation and SDG 14 (Life Below Water) by allowing 

sustainable management and protection of marine and coastal ecosystems. Apart from the 

WACA project, in Benin Republic, there are other projects like the Early Warning System 

(EWS), and Gestion Intégrée de la Zone Côtière (GIZC) which contribute significantly in 

mitigating shoreline retreat in this country. 

In terms of software solutions, there is no public open access regional application, 

platform or data portal helping for coastline monitoring in West Africa. On a global scale, there 

are some platforms like the USGS Coastal hazards portal which is an open access data portal 

on USA historical data on extreme storms, SLR, shoreline historical positions. Two web 

applications can be mentioned in this domain. “CoastSat” is an open-source Python software 

toolkit that enables the user to obtain time-series of shoreline position at any sandy coastline 

worldwide from 30+ years of publicly available satellite imagery. “CASSIE” is an open-source 

JavaScript web tool for automatic shoreline mapping and analysis using satellite imagery. The 

main limitation of the previous tools, is that they highly depend on the satellite images 

availability of the study area, hence the need of the proposed web application of this work. 
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Chapter 2: Materials and methods 

In this chapter, the materials and methods used for conducting this work, were described. 

After a presentation of the study area, a justification of the choice of the area is done, before 

describing the data collection methods, techniques and justification. This chapter ends by 

providing details on the change rate statistics chosen for the geostatistical analysis.  

2.1.  Study area characteristics 

2.1.1. Study area location   

Located in West Africa, Benin Republic is part of the 16 coastal countries that are located 

along the Gulf of Guinea: Angola, Benin, Cameroon, Cote d'Ivoire, Democratic Republic of 

Congo, Republic of Congo, Guinea, Equatorial Guinea, Guinea-Bissau, Gabon, Nigeria, Ghana, 

São Tomé and Principe, Togo and Sierra Leone. The study area chosen is the Benin Republic 

coastal area, especially the shoreline, which is 125 km long. For the sake of easiness of 

illustration, the study area was circumscribed to the area between latitudes 6°09’N to 6°39’N 

and longitudes 1°30’E to 2°50’E as shown on Figure 7. The coastal zone of Benin Republic is 

the same as its southern part. This southern part comprises 05 coastal districts which are located 

all along the coast of Benin Republic. Right following lines are devoted to giving some 

important characteristics of our study area. 
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Figure 7: Study area 
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2.1.2. Climate and Hydrography 

In terms of climate, the whole country’s climate is hot and humid. But specifically, 

annual rainfall in the coastal area averages is 1300 mm. Benin Republic (including the coastal 

zone) has two rainy and two dry seasons per year (Sarr et al., 2015). The principal rainy season 

is from April to late July, with a shorter less intense rainy period from late September to 

November. The main dry season is from December to April, with a short cooler dry season from 

late July to early September. Temperature and humidity are high along the tropical coast. In 

Cotonou, the capital city located right in the south (coastal area) the average maximum 

temperature reaches 31°C, while the minimum is 24°C. A dry wind from the Sahara called the 

Harmattan blows from December to March, when grass dries up, other vegetation turns reddish 

brown, and a veil of fine dust hangs over the country, causing the skies to be overcast. Southern 

Benin experiences two wet seasons differing in duration and coinciding with the northern and 

southern passages of the Inter Tropical Convergence Zone (ITCZ) across the region.  

Concerning water sheds, the hydrographic network of Benin is very dense. It is crossed 

by many rivers. The main ones are the Niger, the Volta, the Mono, the Couffo and the Ouémé. 

The last three ones are the inland waters which are closest to the shoreline. The Couffo 

communicates with the Atlantic Ocean through the lake Ahémé, the Ouémé through the Nokoué 

lake (via the Cotonou and Lagos channel), while the Mono flows directly in the Atlantic Ocean. 

2.1.3. Flora and Fauna 

Concerning plant biodiversity, in Benin in general, 03 types of vegetation are 

distinguished: tree savannah in the Sudanese regions of the North, savannah in the Center with 

trees like Mahogany, Iroko and Samba, and the Forest in the South. But particularly, the flora 

of the Beninese littoral environment is part of the plant landscape of Dahomey-Gap determined 

by savannah formations interspersed between the Guinean-Cameroonian-Congolese forest 

blocks at the East and Guinean at the West. There are many marshy formations of the submerged 

environments of southern Benin. In the brackish environment, these are the mangrove with 

Rhizophora Racemosa and Avicennia africana and the meadows with Paspalum and Typha 

(Tossou et al., 2008). 

Three types of faunal species contribute to the functioning of Benin Republic coastal 

ecosystems: the aquatic fauna (crustaceans, whales, dolphins, African manatees and 04 different 

turtles’ species), terrestrial fauna (royal pythons, cane rats, the burrowing squirrel, monkeys, 

bush pigs) and avian fauna (Antea Belgium nv, 2017). The terrestrial fauna is composed mainly 

of mammals and reptiles. As for mammals dependent on humid ecosystems, the species 
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identified are various: the (Tryonomys swinderianus), (Cercopithecus aethiops) and the 

(Potamocherus porcus), and the wild cat or Haret (Felis silvestris). The hippopotamus 

(Hippopotamus amphius) can be seen along the Mono River. As for avian fauna, according to 

the work of Adjakpa et al. (1996), 168 species of birds have been identified in areas wetlands 

of southern Benin. All this shows the richness of the coastal flora and fauna biodiversity of 

Benin Republic coastal area.  

2.1.4. Demographics  

The littoral zone of Benin is today home to around 60% of the population of Benin out of 

8% of the total area of the country (Antea Belgium nv, 2017). It therefore exerts a strong 

attraction on the hinterland, due to the presence of the major cities of Cotonou, Porto-Novo, 

Abomey-Calavi, Ouidah, and major equipment and economic infrastructures of the country 

such as the port, the airport, the highway, the luxurious hotels, etc., are located there. These two 

major features are in conflict with the problematic land and coastal erosion. According to 

Institut National de la Statistique Appliquée et l’Analyse Economique (INSAE, 2019), the 

population will continue to increase, given the current high fertility rate, meaning 4.9 children 

per woman.  

2.1.5. Socio-economic activities  

The littoral zone represents the economic “lung” of the country, because sheltering the 

main cities, the port and airport infrastructures and many industries. The populations carry out 

various activities: agriculture, fishing, salt production, trade, exploitation of careers, etc.  

In tourism sector, the Benin coastal area is characterized by the presence of major tourist 

attractions, irrationally exploited. According to (Antea Belgium nv, 2017), the number of people 

working in tourism is 21,935, up to 35,000 (by integrating the informal sector), supporting 

nearly indirectly 206,500 people.  

Agriculture occupies an important place in the economy of the coastal zone. More than 

80% of the surfaces sown are devoted mainly to maize and cassava. Palm crops, coconut tree 

and pineapple, are also important. Vegetable products, such as eggplant, melon, onion, tomato, 

carrot, watermelon, etc., are also grown. 

Salt production is also an important economic activity for coastal populations. The area 

of salt marshes in the littoral zone was estimated at more than 83 ha in 2001 (Antea Belgium 

nv, 2017). For the preparation of the brine, the salt farmers mainly use mangrove wood because 

of its slow burning, even when green (Adounkpè et al., 2021). 

The sector of sea transport and port tends to be the most economically worthy one. Vessel 
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traffic data indicates that several vessels are sailing and/or docking at the Port Autonome de 

Cotonou (PAC), including small fishing boats, which vary from rowing boat to those with 

outboard motors, as well as large vessels.  

In the fishery and aquaculture sector, the traditional ponds or fish holes practiced in 

southern Benin and exploited by peasant-fish farmers, once represented the most important 

method of fish production. The production of these fish holes, generally poorly known, is 

estimated at 650 tons / year in some regions (Antea Belgium nv, 2017). Fishing plays a vital 

role given its contribution to reducing unemployment and meeting the protein needs of 

populations. Lake Nokoué is home to approximately 100,000 people and inland fishing on this 

lake contributes over 40% of animal protein consumed in Benin (Antea Belgium nv, 2017). 

Concerning industrial and mining activities, the agroindustry sector includes oil mills, 

soap factories, breweries, industries textiles, mirror factories, pasta factories and many bakeries. 

The building materials industry covers cement plants and sheet metal manufacturing units 

wavy. Extractive activities are represented by lagoon sand quarries. Indeed, in order to curb 

coastal erosion, the Beninese State issued, in October 2008, the decree No. 2008-615 to prohibit 

the collection of beach sand, while recommending, by the same decision, the exploitation of 

lagoon sand.  

2.1.6. Justification of the study area choice 

Based on the brief previous presentation of Benin Republic characteristics, this study area 

was chosen mainly because it constitutes a very important and strategic source of income of the 

country. Indeed, through the “Port Autonome de Cotonou”, Port traffic was increased to 5,152 

million tons in 2005 before modernization work in 2008-2010 (Antea Belgium nv, 2017). The 

port of Cotonou provides a significant part of the import-export traffic with the landlocked 

countries of West Africa (Mali, Burkina-Faso and Niger).  

In terms of demography, the demographic and urban dynamism of the five coastal 

municipalities (Figure 7) is worrying. In fact, in these districts in full demographic explosion, 

the viable space for urbanization is at dominance constituted by low-lying coastal strips 

threatened by the risk of coastal erosion and flood. Concerning the coastal ecosystem, the 

richness of the Benin Republic can be sorted out from the short presentation above. It means 

that potential coastal erosion or flooding can lead to the loss of all the different species listed 

above. About all the socio-economic activities (fishery, agriculture, etc.) done by the costal 

population, it is obvious that coastal erosion and flood represent a major threat for them.  

In sum, the main threats on Benin coastal area are erosion and flood. Considering the 
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variety of Benin coastal ecosystems, it appears crucial to monitor the littoral zone in order to 

anticipate and mitigate this biodiversity loss.  

2.2. Data collection  

For this work, data from two satellites sensors were used. The specifications of the image 

collections used are mentioned in Table 1. The acquisition was made through the Google Earth 

Engine (GEE) Data Catalog. GEE is currently the most popular free and open online satellite 

images data catalog.  First, Landsat 5, 7 and 8 image collections were acquired. The data 

provider for our Landsat images is the USGS, the largest and open-access Landsat archive. The 

data from these 03 Landsat sensors are basically available between 1984 and 2022. Because of 

non-availability of exploitable Landsat images before 2001, the study was set to start from 2001. 

Surface Reflectance images were used because unlike Top of Atmosphere images, they are 

obtained from direct reflectance of radiations from different surface phenomena.  

These images were chosen because they are a substantial improvement in the absolute 

geolocation accuracy of the global ground reference dataset, which improves interoperability 

of the Landsat archive through time.  

Second, the 30-meter resolution Digital Elevation Model (DEM) data from the Shuttle 

Radar Topography Mission (SRTM) was used (Farr et al., 2007). The SRTM is the most 

complete, highest-resolution, global level digital elevation model currently available for 

free scientific use. The SRTM project was a joint endeavor of National Aeronautics and 

Space Administration (NASA), and the German and Italian Space Agencies (JPL-Caltech) 

and was produced in February 2000.  

Table 1: Summary of Image Collections used  

Satellite/

Sensor   

Acquisition period Specifications / 

Spatial resolution 

Temporal 

resolution 

Data 

provider  Start End 

Landsat5

TM 

1984-03-16 

16:18:01  

2012-05-05 

17:54:06 

Surface 

Reflectance / 

30 m 

24 days 

USGS 
Landsat7

ETM+ 

1999-05-28 

01:02:17  

2022-04-06 

14:30:01 
16 days 

Landsat8

OLI 

2013-03-18 

15:58:14 

-  
8 days 

SRTM 2000-02-11 

00:00:00   

2000-02-22 

00:00:00 

Digital elevation / 

30 m 

- NASA/USGS/

JPL-Caltech 
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 Many of the studies in the literature, directly choose often the most exploitable image per 

year (Aryastana et al., 2018; Dey et al., 2021). The study area which is Benin Republic coastline 

is located around latitude 6°~7°N. Because of its geographic position, satellite images of this 

region are persistently full of cloud during the whole year. Thus, the originality of the current 

work is to combine all the available images (cloud contaminated) and apply the median function 

in order to retrieve the most representative clean and cloud-free images. It is an alternative 

solution in case of non-availability of clean representative single image per year, which is the 

case for this study. Details about the application of this function are provided in the data 

processing section (section 2.3). Added to that, the purpose of the choice of Landsat and SRTM 

was globally motivated by the extraction of some bands which are required to pursue our 

analysis. Details are provided about the different extracted bands, in the next lines. 

2.3. Data processing and analysis  

In this section, first, a general workflow of the methodology that was followed in the scope 

of this study was proposed (Figure 8). Then after this overall architecture, each great block has 

been detailed.  

2.3.1. Description of the general methodology 

First of all, after acquiring all types of image collections, the data was preprocessed. It is 

the first great block to be detailed encompassing a lot of functions. The purpose of our data 

preprocessing is to check the availability and exploitability of the acquired data like done by 

many authors (Arjasakusuma, 2021; Assogba, 2018; Hackman et al., 2017). This is a crucial 

step in any data analysis. It allows to have as output clean datasets, fulfilling the necessary 

requirements to proceed.  

Thus, the output preprocessed (atmospherically and geometrically) images were now 

ingested in the second great block to be broken down: the supervised classification block. This 

block encompasses the 2 different classification algorithms used. Here a binary classification 

was performed. The two defined classes are: The Sea Water class (Class 1) and the Non-Sea 

Water class (Class 2). So, the labels are “Class 1” and “Class 2”. The outputs from this block 

are the classified images.  

These outputs were then ingested in the third great block to be detailed: the Geographic 

Information System. From this last block, the different final results were obtained. The different 

results were now compiled and presented via a GEE web application interface. 

 



AI-based spatiotemporal assessment of the Benin Republic shoreline dynamics and prediction   

 

Proposed by DEGBEY C. David                       EDICC                                   2021-2022  23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to implement this methodology, a set of resources have been used. Table 2 

mention the different resources used, the hardware infrastructure hosting each of them, as well 

as their respective purpose. 
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Figure 8: General workflow 
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Table 2: Resources used 

Resource Platform location/infrastructure Purpose 

Google Earth Engine Online (Cloud) • Images acquisition 

• Images preprocessing 

• Web application building 

QGIS 

Local machine  

  

• Random sampling 

• Vectorization 

ArcGIS • Shoreline extraction 

• Shoreline forecast 

R • Statistical Data Analysis 

• Data visualization  

Google Earth Pro Online • Historical georeferenced 

images extraction  

 

2.3.2. Block 1: Image preprocessing 

In this section, the preprocessing block was detailed. Figure 9 shows the specific flowchart 

of the image preprocessing block. 09 subblocks were necessary in this block. They have been 

detailed in the following lines. 

2.3.2.1. Cloud masking  

Most of the studies directly used the USGS provided single images with the constraining 

cloud contamination (Arjasakusuma et al., 2021; Assogba, 2018). But for the current study, a 

customized cloud masking function was developed, that allowed to mask all the cloud 

contaminated pixels on each image of the collection. The developed function uses as arguments 

the QA-bands (QA_PIXEL and QA_PIXEL Bit Mask) to extract information about cloudy pixels 

and mask them (source code in Appendix 1). 

2.3.2.2. Scaling factor and offset applying  

A function was then designed to apply the scaling factors and the offset to each of the 

Landsat images within each collection. This subblock has the role to produce a much more 

natural brightening/darkening effect than simply adding an offset to the pixels, since it preserves 

the relative contrast of the image better. The scale factor of the used collection is 0.0000275 

and the offset is -0.2.  
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Figure 9: Images preprocessing flowchart 
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2.3.2.3. Band selector  

This subblock is part of the critical ones in our process. Here, a function was designed to 

select the required optical bands in function of the satellite generation. From the Landsat 

images, 06 original bands were selected to proceed: Blue, Green, Red, Near Infra Red (NIR), 

Short-Wave Infra Red 1 (SWIR1) and Short-Wave Infra Red 2 (SWIR2). The specifications of 

the selected bands are reported in Table 3. The only band of the DEM collection was also 

selected. All the selected bands, were used to compute additional bands which are further 

detailed in this section. All the different selected bands (raw and computed) represent the 

features of our machine learning classifier. From this subblock, there are 03 lists of images 

datasets outputs.  

2.3.2.4. Filtering and Merging 

The next subblock designed is the filter function. The 03 outputs from the previous step 

are ingested in this subblock to be filtered considering 02 filter criteria. The block checks if the 

images belong to the selected time range (2001-2021) and if the cloud contamination threshold 

(< 20%) is reached. The outputs of this stage are 03 new filtered images datasets. 

As indicated by its name, the Merging subblock has the role to merge the 03 last outputs 

into one to be able to proceed with the next stage.  

2.3.2.5. Median  

The median subblock function is important because it helps us to use all the available 

images within a certain year and to retrieve the median pixel values of the different features on 

each image.  

2.3.2.6. Additional features computation  

To proceed with our analysis, the computation of some important indices was required. 

Even the choice of the satellite missions depended on them. Four additional indices were 

computed in order to improve the accuracy of the image classification. Added to these 04 

indices, the slope using the DEM raster data was also computed. Table 3 shows the computation 

method for each of them.  
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Table 3: Selected bands specifications and computation 

Selected Bands Spectral 

range (µm) 

Computation formula Spatial 

resolution 

Blue (B) 0.45 - 0.52 - 

30 m 

Green (G) 0.52 - 0.60 - 

Red (R) 0.63 - 0.69 - 

Near Infrared (NIR) 0.77 - 0.90 - 

Short Wave Infrared 

1 (SWIR1) 

1.55 - 1.75 - 

Short Wave Infrared 

2 (SWIR2) 

2.08 - 2.35 - 

NDVI - 𝜌𝑁𝐼𝑅 − 𝜌𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑅
       (2) 

NDBI - 𝜌𝑆𝑊𝐼𝑅1 − 𝜌𝑁𝐼𝑅

𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅
 (3) 

NDWI - 𝜌𝐺 − 𝜌𝑁𝐼𝑅

𝜌𝐺 + 𝜌𝑁𝐼𝑅
 (4) 

AWEInsh - (4 × (𝜌𝐺 − 𝜌𝑆𝑊𝐼𝑅1) − (0.25 × 𝜌𝑁𝐼𝑅 + 2.75 × 𝜌𝑆𝑊𝐼𝑅1))

(𝜌𝐺 + 𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅)
 (5) 

 

Elevation - - 

Slope - 

𝑠 = tan−1 (√(
𝑑𝑧

𝑑𝑥
)

2

+ (
𝑑𝑧

𝑑𝑦
)

2

) (6) 

 

Where the 𝜌𝑖 represents surface reflectance value of the band i. 

For the slope computation, the rate of change in the x direction for cell e is calculated with the 

following algorithm: 

𝑑𝑧

𝑑𝑦
=

(
(𝑔 + 2ℎ + 𝑖)

𝑤𝑔ℎ𝑡1
−

(𝑎 + 2𝑏 + 𝑐)
𝑤𝑔ℎ𝑡2

)

2 × 𝑥𝑐𝑒𝑙𝑙𝑠𝑖𝑧𝑒
 (7)

 

Where wght1 and wght2 are the horizontal weighted counts of valid cells (Appendix 4). 
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2.3.2.7. Importance of the computed indices   

The computed indices and the slope band are added on images as new bands. They 

represent the different features to be considered by the classifier. All of them were used to 

stretch the presence of water over the study area.  

 Normalized Difference Vegetation Index (NDVI) 

NDVI quantifies vegetation by measuring the difference between Near Infra Red (which 

vegetation strongly reflects) and Red light (which vegetation absorbs). It is a common graphical 

indicator used to analyze RS measurements by assessing whether or not the observed target 

contains live green vegetation. It can help to differentiate water from land. For example, 

negative values of NDVI are associated to the “Water” class (Ya’acob et al., 2014). 

 Normalized Difference Built-up Index (NDBI)  

NDBI uses the NIR and SWIR1 bands to emphasize manufactured built-up areas. It is 

ratio based to mitigate the effects of terrain illumination differences as well as atmospheric 

effects. This index is provided as feature to train the machine learning classifier to classify 

pixels on which there are Built-up areas in Class 2 (Non-Sea Water). For instance, (Watik & 

Jaelani, 2019) proposed that pixels NDBI values comprised between -1 and -0.01 can be 

classified as “Water”.  

 Normalized Difference Water Index (NDWI)  

NDWI is used to highlight open water features in a satellite image, allowing a water body 

to “stand out” against the soil and vegetation. It is calculated using the Green-NIR combination, 

which allows it to detect subtle changes in water content of the water bodies. It is the index by 

excellence to detect water bodies on a satellite image. From the classification proposed by 

(Gulácsi & Kovács, 2015), if a NDWI pixel is comprised between 0.5 and 0.7, this pixel is 

classified in the “Water” class. 

 Automated Water Extraction Index non-shadow (AWEInsh) 

AWEInsh was created to reduce the confusion between water and non-water pixels, as well 

as dark surfaces included in urban background areas. The subscript “nsh”, or non-shadow, 

means that the index is best suited for areas where shadows are not present or pose no problems 

for classification. This index performance surface water detection was used as done by Worden 

& de Beurs (2020). As defined in the same study, positive value of AWEInsh corresponds to 

“Water” class pixels.  
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 Slope computation  

The slope derived from the DEM raster data was used to facilitate the elimination of 

confusion between water pixels and pixels containing high elevation shadows like done by 

(Worden & de Beurs, 2020). The function ee.Terrain.slope() predefined in GEE functions 

catalog, was used for this purpose.  

2.3.2.8. Adding bands and year selection functions 

Then, the preprocessing was continued by developing a function to add the different 

computed and extracted parameters to the filtered image datasets. After that, another function 

was designed to select the individual year chosen for the work. This is the last step of the 

preprocessing phase. The output from this subblock and thus from the preprocessing stage, is a 

set of 05 clean, exploitable, cloud-free median images ready for the next stage. 

2.3.3. Block 2: Supervised image classification 

In this section the different steps for the image classification were detailed. As stated few 

lines above, a binary classification was performed. The 2 classes are the Sea Water class (Class 

1) and Non-Sea Water (Class 2). The features used to train the classifier are composed of the 

07 original bands of the image collections and the 05 additional computed parameters (Table 

3). Here, there are 05 main subblocks. But the whole process is a loop iterating for each of the 

05 output images from the block 1. Figure 11 illustrates the block 2.  

2.3.3.1. Random Sample points collection  

This is also a critical stage for the accuracy of the classification. Our sampling was done 

in QGIS. A total of 500 random sample points over the study area was generated (Figure 10). 

Then, each of the random points were scrutinized to be assigned a label (Class 1 or Class 2). It 

is also important at this stage to have a very good knowledge of the field of the study area. If 

eventually, a point does not fit perfectly with one or the second class, this point is simply deleted 

and replaced by a new one. The purpose of this caution is to not confuse the classifier. For each 

year, the 500 points were overlaid on a historical Google Earth Pro image to assign a label to 

each of them according to respective year.  
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Figure 10: Sampling points for classifier training 

Legend: 

 

 

2.3.3.2. Split function  

This subblock was designed to split the random point dataset into two points datasets. 

The first one is the training dataset which chosen here representing 70% of the whole dataset 

and the remaining 30% are reserved for the model testing. The two points datasets are the 

outputs of this subblock. 
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2.3.3.3. Predefined/Trained Classifier Model  

The classifier Model is the central subblock of our work. This allowed us to generate the 

classified image. The used classifiers here are RF and SVM.  

 Principle of RF image classification 

Decision trees (DT) are arguably the most intuitive classification algorithms and provide 

BLOCK 2 
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data (70%) 
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data (30%) 

i = i+1 (increment to the next year) 

Random Sample points collection 

Split function (70/30) 

Img_Input_(i) 

While i ∈ 

{2001;2006;2012;2016;2021} 
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Model (RF & SVM) 
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metrics (RF & SVM) 

Confusion matrix, Validation Kappa,  
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If NOT satisfying  
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Figure 11: Supervised image classification flowchart 
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a good entry point into the applied side of things concerning image classification. Principally, 

the DT is not more than a set of decision-rules which converts continuous information, such as 

spectral information from an image, into discrete thematic information, such as a land cover 

class. Each pixel will be assigned to a land cover class if its spectral information (or spectral 

transformations like vegetation indices) fits certain criteria. The name “Decision Tree” comes 

from its structure, which is organized hierarchically in simple binary (yes/no) decisions. 

  

(a) DT image classification using NDVI (b) RF image pixels classification 

Figure 12: RF Image classification illustration 

Source: Humboldt-Universität zu Berlin, 2021 
 

RF consists of a large number of individual decision trees that operate as an ensemble. 

Each individual tree in the RF spits out a class prediction and the class with the most votes 

becomes our model’s prediction. RF takes advantage of this by allowing each individual tree to 

randomly sample from the dataset with replacement, resulting in different trees. This process is 

known as bagging. The idea behind using many decision trees (i.e. an ensemble) is that many 

base learners can come to one strong and robust decision compared to a single DT. RF uses 

self-learning decision trees. These trees automatically define rules at each node based on a 

training dataset. RF seeks to minimize the heterogeneity of the two resulting subsets of the data 

created by the respective rule. Many trees may produce different class labels for the same data 

point. The final class assignment of each image pixel is thus based on the majority vote.  

 Principle of SVM image classification  

SVM constructs a hyperplane in multidimensional space to separate different classes. 

SVM generates optimal hyperplane in an iterative manner, which is used to minimize an error. 

The core idea of SVM is to find a maximum marginal hyperplane that best divides the dataset 

into classes. SVM classification is essentially a binary (two-class) classification technique, 
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which has to be modified to handle the multiclass tasks in real world situations for instance the 

derivation of land cover information from satellite images (Anthony et al., 2007). The 1AA 

approach represents the earliest and most common SVM multiclass approach (Melgani & 

Bruzzone, 2004) and involves the division of an N class dataset into N two-class cases. If say 

the classes of interest in a satellite image include water, vegetation and built up areas, 

classification would be affected by classifying water against non-water areas i.e. (vegetation 

and built up areas) or vegetation against non-vegetative areas i.e. (water and built up areas). 

This approach is the one implemented in GEE and is the one used for our work. 

 

Figure 13: Image classification by SVM 

In this subblock the two classification algorithms were performed. The output of this stage 

is a set of 05 study area classified images for each model (RF and SVM). The results classified 

images are illustrated on Figure 16 further in chapter 3. Then, to proceed with the shoreline 

extraction, choosing one model was compulsory. That is the purpose of the next subblock. 

2.3.3.4. Classification accuracy metrics computation  

In this subblock, the accuracy metrics for the comparison between the two classifiers 

RF and SVM were computed in the case of our study. A total of 06 accuracy metrics were 

computed for this purpose: Confusion matrix, Validation Kappa, Total Overall Accuracy, 

Training Kappa, Validation overall accuracy, to be compared to each other for both classifiers 

(Table 5).  

2.3.4. Block 3: Geographic Information System (GIS) processing  

In this block, the different steps to achieve the final results were detailed. Figure 14 

illustrates the different subblocks composing the third block. Here is their detailed description. 
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2.3.4.1. GIS vectorization toolbox 

At this step, two of the vectorization tools of the GIS toolbox were first used. The first 

one is the Raster to Polygon tool. Each of the classified image is ingested in this tool. The idea 

is to transform the raster data into a polygon shapefile retrieving only the contours derived from 

the different pixels’ colors geometrical limit. This gives us a set of polygons. The second tool 

used is the Polygons to Polylines tool. This one allowed us to derive only lines from the polygon 

shapefile. After a manual cleaning of the result polylines file, each of the 05 historical shorelines 

could now be isolated by overlaying the result file on a Google Earth Pro historical image of 

the study area. The output of this stage is a set of 05 (2001, 2006, 2012, 2016, 2021) historical 

shorelines over the chosen study area.  

2.3.4.2. Digital Shoreline Analysis System (DSAS) plugin 

The DSAS (version 5) software is a plugin added to ArcGIS Desktop (version 10.7) 

enabling the end user to calculate rate-of-change statistics from a time series of vector shoreline 

positions. It provides an automated method for establishing measurement locations, performs 

rate calculations, provides the statistical data necessary to assess the reliability of the rates, and 

includes a beta model for forecasting shoreline position. 

Before using it, DSAS requires a first step of default setting where many default settings 

are provided. The most important ones are the metadata (General information, contact 

informations of the author and the institution, etc.) and the default uncertainty for the shoreline 

change rate computation. It was set here at ± 10 m. The uncertainty setting step is very important 

and is highly dependent on the reliability of our historical shorelines. the level of uncertainty 

was set at 10 m in this study. 
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The second step of the DSAS tool consists in supplying the required inputs. A personal 

geodatabase and the different fields are noted in the DSAS user’s guide (Himmelstoss et al., 

2021). Then the different shoreline layers (to be mandatory merged in one single shoreline 

shapefile) and the baseline layer were specified. In our case, to run DSAS, the 2001 shoreline 

BLOCK 3 

DSAS plugin 

• DSAS tool parametrization 

• Supplying the required inputs: 

➢ Geodatabase 

➢ Shorelines layers 

➢ Baseline layer 

• Transects casting 

• Run DSAS for statistics computation 

GIS Toolbox: 

• Raster to Polygon (Vectorization) 

• Polygon to Polyline 

Historical shorelines extraction  

Forecast Model (Kalman Filter): 

• Model parametrization  

• Feeding the model with inputs  

Future shorelines extraction  

Outputs: change rate indicators  

• Net Shoreline Movement (NSM) 

• End Point Rate (EPR) 

• Linear Regression Rate (LRR) 

• Weighted Linear Regression Rate (WLR) 

Outputs: Projected shorelines  

• 2031 shoreline position and shape 

• 2041 shoreline position and shape  

Outputs: Historical shorelines 

• 2001 shoreline shape and position 

• 2006 shoreline shape and position 

• 2012 shoreline shape and position 

• 2016 shoreline shape and position  

• 2021 shoreline shape and position 

ANALYSIS AND INTERPRETATION 

Figure 14: GIS use flowchart 
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was chosen as a baseline since it is really adjacent to all the extracted historical shorelines and 

given that 2001 is an ideal starting point for our analysis.   

The next step is the transects casting. At this step many parameters are provided to the 

tool. But the most important are highlighted:  

Maximum search distance: This value (in meters) is set by the user to establish a single 

search distance for all baseline segments. This value was set at 50 m in our case 

Transect space: This value allows the user to specify distance (in meters) between 

transects along the baseline. Spacing depends on the scale of the data and the intended scale of 

the output rate information. Since the study area is the whole Benin Republic shoreline, for the 

sake of fast computing and analysis, it was found appropriated to set this value at 1000 m. 

Smoothing distance: The user-specified smoothing value can facilitate an orthogonal 

transect/shoreline intersect by creating a supplemental baseline (not visible to the user) at the 

provided smoothing length, with the transect location at the midpoint. The intent of smoothing 

is to prevent transects from intersecting one another when the baseline has a curve. In our case, 

it was specified at 500 m.  

Confidence Interval: The user specifies the confidence interval representing the degree of 

confidence up to which the rate computation is reliable. Here, 90% was selected for that. 

After providing all the needed information for the DSAS default settings, its 

parametrization and the transects casting, the next step was to run the change rate indicators 

computation. In the scope of our analysis, 04 shorelines change rate indicators has been 

selected. The summary of the DSAS tool parametrization for change statistics computation is 

recorded in Table 4.  

Table 4: Summary report of DSAS parametrization 

Shoreline dates used 

• 1/1/2006 

• 1/1/2012 

• 1/1/2016 

• 1/1/2021 

Baseline layer  2001 shoreline  

Shoreline layer  2006, 2012, 2016, 2021 merged shoreline layers  

Rate types run 

• Net Shoreline Movement (NSM) 

• End Point Rate (EPR) 

• Linear Regression Rate (LRR) 

• Weighted Linear regression Rate (WLR) 

Confidence Interval (CI) selected 90 % 
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Uncertainty 10 m 

Transect spacing length (m) 1000 m 

Smoothing distance (m) 500 m 

Coordinate system WGS_1984_UTM_Zone_31N 
 

2.3.4.3. Chosen change indicators  

In order to evaluate the dynamics of historical shorelines, 04 significant indicators were 

picked:  

• Net Shoreline Movement (NSM) 

The NSM is defined as the distance between the oldest and the youngest shorelines for each 

transect. This statistic was chosen to highlight the extent of change in the shoreline shape 

between 2001 and 2021 regardless the in-between (or intra time range) fluctuation. This gives 

an idea especially of the net distance of beach lost during the last 20 years. 

• End Point Rate (EPR) 

The EPR is calculated by dividing the distance of shoreline movement by the time elapsed 

between the oldest and the most recent shoreline. The major advantages of the EPR are the ease 

of computation and minimal requirement of only two shoreline dates. It is a very great 

advantage in our case regarding the scarcity of satellite images over the chosen study area. This 

gives a rough idea of the average rate of which beach was swallowed during the last 20 years. 

• Linear Regression Rate (LRR) 

LRR is determined by fitting a least-squares regression line to all shoreline points for a 

transect (Figure 15.a). The regression line is placed so that the sum of the squared residuals 

(determined by squaring the offset distance of each data point from the regression line and 

adding the squared residuals together) is minimized. The LRR is the slope of this line. (Dolan 

et al., 1991; Crowell et al., 1997). 

• Weighted Linear regression Rate (WLR) 

For shorelines rate-of-change statistics, greater emphasis is placed on data points for which 

the position uncertainty is smaller. The Figure 15.b shows an example of the WLR calculation. 

The weight (w) is defined as a function of the variance in the uncertainty of the measurement 

(e) (Genz et al., 2007) and is given by the formula: 

𝑤 =  
1

𝑒2
 (8) 

 

where e is the shoreline uncertainty value. 
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(a) (b) 

Figure 15: LRR and WLR illustrations 

Source: (Himmelstoss et al., 2021) 

2.3.4.4. Shoreline forecast 

The last subblock of the third block is the forecast block.  The model used here to forecast 

the shorelines is the Kalman Filter (section 1.1.4.2.). This model is implemented in DSAS tool. 

The assumption here is the Business-as-Usual scenario.  It means that the model assumes that 

the rates of shoreline change (derived few lines above) will be the same in the future. So, no 

special infrastructure is installed to prevent erosion or shoreline retreat.  

The first step is the model parametrization.  Then 10-year and 20-year forecast options 

were selected. In our case, both checkboxes were checked so both terms forecasts were 

performed to enable a very careful decision making.    

The next step is to provide the forecast model inputs. The Kalman Filter is initialized by 

using the LRR calculated previously by DSAS. It is mandatory to have already run rate 

calculations that include a Linear Regression as one of the rate metrics computed.  From this 

subblock, 2031 and 2041 shoreline positions and shape were then extracted. All the results were 

now compiled for further analysis and interpretation detailed in chapter 3.  

2.3.4.5. Web application GEE 

In order to develop the GEE application, the platform code editor was used to write a 

JavaScript code to define the interface, the buttons, widgets and actions (events) to perform 

when each button is clicked on. The result interfaces are presented in the chapter 3 (Results and 

discussion). 
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Chapter 3: Results and discussion  

After applying the general methodology workflow and all its components,  many results 

were obtained. In this chapter, the different results issued from the previous data processing 

described, were presented. The results are presented in a chronological order in such a way that 

they match with the different steps presented in the previous chapter. The results presentation 

is followed by a discussion section to highlight the interpretation of the main results.  

Results 

3.1.1. Testing models results 

3.1.1.1. Performance testing of the 2 classifiers RF and SVM 

The first result achieved was the comparative table of the accuracy indicators of the two 

classifiers (Table 5). Then the RF classifier was selected over the SVM one. RF was found to 

be more suitable than SVM for this binary Class1/Class2 classification using the features 

specified above. The choice was based on an analysis of Table 5. The choice is based also the 

comparative analysis of the result classified images (Figure 16). Details are provided about the 

choice in the discussion section (section 3.2.1.) 

Table 5: Accuracy indicators for both RF & SVM 

Sample n Training n Testing n RF SVM RF SVM RF SVM RF SVM

2021 497 356 141 1.000 0.988 1.000 0.973 0.993 0.974 0.986 0.943

2016 500 360 140 1.000 0.997 1.000 0.993 0.993 0.993 0.984 0.984

2012 462 324 138 0.997 0.988 0.992 0.970 0.993 0.993 0.984 0.984

2006 487 346 141 1.000 0.991 1.000 0.980 0.993 0.993 0.984 0.984

2001 499 353 146 0.994 0.907 0.987 0.794 0.945 0.959 0.862 0.898

Testing Indicators
Inputs (numbers)

TOA TK VOA VK

 

Where: TOA = Training Overall Accuracy; TK = Training Kappa; VOA = Validation Overall Accuracy; 

VK = Validation Kappa 

3.1.1.2.  Classification testing of the chosen RF Model 

In this section, testing metrics were computed to assess the performance of the selected 

RF classifier model itself. The results are reported in Table 6. An Overall Accuracy of 63.16% 

and a kappa coefficient of 53.26% for year 2021, were obtained. This means that the RF 

classification performed globally well. The difference between the Overall Accuracy and the 

kappa coefficient was not too big. It means that few pixels were successfully classified due to 

chance factor.  
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Table 6: Accuracy assessment of the RF classifier (2021) 

Class 1 Class 2 Total User's accuracy

Class 1 42 25 67 62.69% 44.08%

Class 2 31 54 85 63.53% 55.92%

Total 73 79 152

Producers' Accuracy 57.53% 68.35%

48.03% 51.97%

ACCURACY METRICS

OA 63.16%

CA 21.17%

kappa 53.26%

Reference Values

Classification 

Values

 

Where OA = Overall Accuracy; CA = Chance Agreement   

 

3.1.2. Classified images 

Using AI classification algorithms (RF and SVM classifier), the classified images were 

obtained for each of the selected 05 years (Figure 16). The choice of the RF algorithm (over the 

SVM one) to proceed with the methodology was also based on these classified images.  
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Figure 16: Classified images for both SVM and RF algorithms 

Non-sea water  Classes:  
Sea water  
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It is important to notice that images of the year 2011 were either inexistent or 

unexploitable. They were replaced by the year 2012 which is most useable. Even 2012 images 

originally presented some gaps. It is due to a common error related to the dysfunction of the 

Sky Line Corrector (SLC) which occurred on the satellite Landsat 7 from 31st of May 2003. For 

this purpose, a gap correction using the focal_mean function in GEE, was developed in our 

code. This function applies a morphological mean filter to each band of an image using a named 

or custom kernel. Figure 17 shows for RF in 2012 classified images respectively at the top, the 

classified image without the fill-gap function (17.a) and at the bottom the classified image with 

applied fill-gap function (17.b).  

 

 

 

(a) 2012 classified image without correction   

 

 

(b) 2012 classified image with correction   

Figure 17: Applying fill_gap corrector function to 2012 image  

3.1.3. Extracted historical shorelines 

Through the proposed methodology, the historical shorelines respectively for the years 

2001, 2006, 2012, 2016, and 2021, were reconstituted. Figure 18 shows the various shorelines 

for the corresponding years. The image was zoomed over the region located between the 

latitudes 7°4’23.16”N and 7°4’54.48”N on one hand and the longitudes 2°38’47.759”E and 

2°39’59.072”E on the other, to make it more visible. At a larger scale the shorelines are 

confused. 
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Figure 18: Extracted historical shorelines 

3.1.4. Casted transects  

After obtaining the 05 historical shorelines, the change rate indicators were computed. For 

that purpose, transects were casted all along the Benin Republic coast (Figure 19). The 

parametrization gives us a total of 132 casted transects. The background image used is a 

hillshade shapefile to emphasize the contrast with the transects. As specified above, the 

transects are spaced 1000 m between each other. The image was zoomed out to cover a region 

between latitudes 6°52’47.64”N and 7°14’45.6”N on one hand and longitudes 1°45’18.0”E and 

2°58’12”E on the other, to make all the study area transects visible.  

 

Figure 19: Transects applied on the whole study area 
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3.1.5. Computed change rate statistical indicators values 

After casting transects, and running the DSAS tool, the different values of the change rate 

indicators were computed. In Appendix 3, the whole table for all indicators was provided and 

also the summary reported provided by DSAS. Two types of statistical indicators are computed. 

The first one is NSM, which is a net value.  Details concerning the NSM indicator were provided 

some lines above (section 2.3.4.3). Table 6 gives the summary of the main values of the NSM 

statistical indicators.  

Table 7: NSM statistics summary 

Rate indicator       NSM

Total Number of transects 132

Average Distance (m) -31.41

Percentage of transects with negative distance (%) 62.88

Maximum negative distance (m) -1997.2

Maximum negative distance Transect ID 97

Average of all negative distances (m) -63.21

Percentage of transects with positive distance (%) 37.12

Maximum positive  distance (m) 167.05

Maximum positive distance Transect ID 112

Average of all positive distances (m) 22.45  

 

EPR, LRR, and WLR, which are rates (% values), were also computed as well. The main 

statistics of these 3 indicators, were chosen to be reported. The summary of the results of the 

03 change rate statistics is reported in Table 7. Table 7 is analyzed further in discussion 

paragraph. All the statistical indicators values were subset from the great change rate datasets 

and the summary report provided directly by DSAS after running. 

Table 8: EPR, LRR and WLR statistics 

Rate indicator       EPR       LRR       WLR

Total Number of transects 132 132 132

Average rate ± reduced n uncertainty (m/yr) -2.17±0.28 -1.51±1.68 -2.73±8.68

Percentage of erosional transects (%) 62.88 54.96 66.41

Maximum value erosion (m/yr) -133.15 -120.06 -201.65

Maximum value erosion Transect ID 97 97 97

Average of all erosional rates (m/yr) -4.34 -4.31 -5.71

Percentage of accretional transects (%) 37.12 45.04 33.59

Maximum value accretion (m/yr) 11.14 20.38 44.53

Maximum value accretion Transect ID 112 92 92

Average of all accretional rates (m/yr) 1.5 1.92 3.17  



AI-based spatiotemporal assessment of the Benin Republic shoreline dynamics and prediction   

 

Proposed by DEGBEY C. David                       EDICC                                   2021-2022  45 

3.1.6. Shoreline forecasts 

The obtained shoreline horizon forecasts (10 and 20 years) are displayed as a polyline 

feature class. They represent the forecasted location of the shoreline at the selected time frame. 

The forecasted shoreline horizon line is displayed with the associated shoreline forecast 

uncertainty. The shoreline forecast uncertainty (10 and 20 years) displayed as a transparent 

polygon feature class, can be considered as the band of uncertainty for the forecasted shoreline 

horizon line. The 10-year (Figure 19.a) and 20-year (Figure 19.b) forecast were individually 

illustrated in order to highlight in a suitable way the same confidence interval (90%) 

respectively associated with each one of them.  

 

 

 

 

Figure 20: Obtained forecast of shorelines 

(a) 

(b) 
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3.1.7. The Web application: BenShoreApp 

In order to provide an easy access and visualization of our results, a GEE web application 

was designed and implemented. The solution was named “BenShoreApp” and is available on 

URL: https://david91.users.earthengine.app/view/benshoreapp. This solution is meant to help 

decision makers and non-expert targets to be aware of the severe erosion impacts caused by 

Climate Change along Benin Republic coast, and to take anticipatory measures. In this section, 

the main functionalities of the application are described. 

3.1.7.1. Homepage 

When the user types the required URL, he is automatically redirected to the home page of 

the application (Figure 21). The homepage presents 06 buttons. Each button was labeled 

explicitly such a way that the label corresponds to a specific functionality. The Zoom, Places 

Search and Plan/Satellite View original functionalities of GEE are conserved in the application. 

 

Figure 21: Homepage of the web application 

 

3.1.7.2. “Perform images classification” button 

When the user clicks on the “Perform images classification” button, the system runs the 

RF image classifier model background (importing all the required assets for the computation) 

and automatically shows finally the RF classified image of each of the 5 years of the study 

period. Figure 22 shows an example of “Perform images classification” use case.  

 

 

https://david91.users.earthengine.app/view/benshoreapp
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Figure 22: "Perform images classification" button results interface 

3.1.7.3. “Generate Benin historical shorelines” button  

When the user clicks on the “Generate Benin historical shorelines” button, the system 

automatically displays the 05 historical shorelines extracted from the 05 classified images 

obtained with the previous button. Figure 23 shows an example of the “Generate Benin 

historical shorelines” use case. Different colors are arbitrary assigned to the different shorelines 

to distinguish them: dark green (2001), yellow (2006), black (2012), purple (2016), and pink 

(2021). 

 

 

Figure 23: "Generate Benin historical shorelines" results interface 
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3.1.7.4. “Generate Benin future shorelines” button  

When the user clicks on the “Generate Benin future shorelines” button, the system 

automatically displays the 02 future shorelines forecasted previously with DSAS plugin. Figure 

24 shows an example of the “Generate Benin future shorelines” use case. 02 different colors 

are arbitrary assigned to the different shorelines to distinguish them: blue (2031), red (2041). 

 

Figure 24: "Generate Benin future shorelines" results interface 

3.1.7.5. “Shoreline statistical indicators” 

When the user clicks on the “Shoreline statistical indicators” button, the system 

automatically creates and displays a left panel, allowing him to choose the type of indicator he 

wants to display the charts. Figure 25 shows an example of the use case of the EPR statistical 

indicator plots display. All the displayed plots are zoomable and interactive. Each of the transect 

can be selected to see the value of the indicator and the number of the transect. It allows the 

user to identify at glance, the extreme values and the outliers of the series.  
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Figure 25: "Shoreline statistical indicators" results interface 

3.1.7.6. “Results per district” button  

The “Results per district” button allows the user to zoom automatically to one of the 05 

coastal districts of Benin Republic. It helps the decision maker or the non-expert to focus 

directly visualize the erosion and accretion change on a particular district on the coast of Benin.  

3.1.7.7. “Classify district per level of erosion” button 

When the user clicks on the “Classify district per level of erosion” button, the system 

automatically displays a classification of the 05 coastal districts in a growing order of erosion 

impact, from the least to the most affected district (Figure 26). The district classification 

prompts with a legend box to distinguish the different classes of erosion impacts: dark green 

(Least eroded), light green (Fairly eroded), yellow (Eroded), orange (Strongly eroded), red 

(Most eroded). 

 

Figure 26: "Classify districts per level of erosion" results interface 



AI-based spatiotemporal assessment of the Benin Republic shoreline dynamics and prediction   

 

Proposed by DEGBEY C. David                       EDICC                                   2021-2022  50 

Analysis and Discussion  

In this section, the main results previously presented are analyzed and then discussed. The 

discussion is also presented in a chronological order.  

3.1.8. Choice of RF classifier 

Some reasons led us to choose RF classifier over SVM one. The first one is the validation 

indicators assessment. Indeed, Table 5 retraces the different validation indicators for the two 

classifiers. For all the years, it is visible that the TOA is greater for RF than for SVM, meaning 

that the Training Overall Accuracy is better in the RF classifier case.  For the years 2021 and 

2016, the TOA is up to 1 (approximately). In terms of TK, the remark is also the same. This 

means that RF classifier was better trained (with more samples considered) than the SVM one. 

Considering VOA and VK, none of the values of VOA and VK are up to 1. However, only for 

year 2001, SVM values of VOA and values of VK are greater than RF ones. In all the other 

cases, RF values are still better (closer to 1 than SVM ones).  

The second reason is the quick visual analysis of the classified images from the two 

classifiers. In fact, the analysis was pursued up to display the classified images from the two 

algorithms (Figure 16). It appears that the RF result images are most exploitable than SVM 

ones. The two previous listed reasons, added to the fact that RF is widely used in the literature 

in terms of image classification, were our motivations to choose RF over SVM to proceed in 

the work. 

Our results are in the same vein with those of (Adugna et al., 2022) who found that RF 

outperformed SVM yielding 0.86 (Overall Accuracy) and 0.83 (Validation kappa), which are 

1-2% and 3% higher than the best SVM model, respectively. These also confirm the findings 

of (Sheykhmousa et al., 2020) which is that the maximum average accuracy is achieved with 

RF for Land Use Land Cover (LULC) with approximately 95.5% and change detection with 

about 93.5% for SVM classification. 

3.1.9. Analysis of the change rate statistical indicators  

Our analysis was based on the summary table (Table 8), and 03 kinds of data visualizations: 

the bar plot, the trend curve and the indicator mapping over the whole study area. The analysis 

was done per indicator. 

3.1.9.1. NSM results analysis  

The first indicator addressed is the NSM. At a first glance, for a total of 132 generated 

transects, the average distance of which the shoreline has moved over the past 20 years is -31 
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m. The minus sign is to emphasize that it is an inland movement. This is an average over the 

whole study area. The maximum negative distance is obtained at transect no 97 and is up to -

1997.2 m, almost 2 km. This is quickly highlighted on Figure 27 which shows the NSM bar 

diagram over the whole study area. This value caught our attention. Then by overlaying a base 

map (Google maps), this transect was identified as located in the Port of Cotonou.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: NSM histogram on the whole study area 

Due to the complexity of this zone (artificial shoreline, man-made activities), to deepen 

the analysis, the study area was (longitudinally) split in two cells excluding Transect no. 97. 

This methodology was based on the study of (Assogba, 2018). Cell 1 covers the Benin Republic 

Coast line between latitudes 1°37’32”E and 2°26’36”E while Cell 2 covers it from 2°26’55”E 

to 2°42’44”E. The further analysis for all the indicators, are performed on the whole study area, 

and both on Cells 1 and 2. In the case of the NSM indicator, Figure 28 shows the bar diagrams 

for Cell 1 (resp. (a)) and Cell 2 (resp. (b)). 
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Then, the new highest negative value (which is not in the area of the Port of Cotonou) of 

NSM of both Cell 1 and Cell 2 is -169.94 ± 10 m, located in Cell 1 at Transect no. 38. This 

transect is located in the department of Mono, the district of Grand Popo, in the sector of Avloh 

and the locality “Nakoue plage”, more exactly 3.78 km far before the famous beach place called 

“Embouchure du Roy”, coming from the district of Ouidah (Figure 29). It means that this 

location is the most affected by erosion in terms of NSM.  

The highest positive value of NSM was 167.05 m, at the Transect no. 112. It falls in the 

department of Oueme, precisely in the town of Ekpe.  

Next, all the NSM values were plotted on the whole study area to do a mapping of how 

NSM is spatially distributed over it. This led us to Figure 30. 09 classes of NSM were identified. 

The NSM values vary from the highest negative NSM (red color) to the highest positive ones 

(blue color). It appears from Figure 30 that the district of Littoral is the one which underwent a 

high NSM spatial density over the last 20 years. 

 

(a) (b) 

Figure 28: NSM histogram on cell 1 and on cell 2 
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Figure 29: Localization of the highest NSM erosion 

On Figure 30, 03 important red color transects are identified there especially in the sector 

of Fidjrosse around the airport. It is followed by the district of Abomey-Calavi, especially in 

the sector of Godomey where 03 orange transects were found. Some little parts of the town of 

Grand Popo are also affected by NSM especially 02 red transects (among which the highest 

NSM previously discussed).  

 

 

Figure 30: NSM mapping over Benin Republic coast 

In terms of backward shoreline retreat, Hillacondji, and Ekpe are the locations where an 

important density of “blue” transects was found with around 04 “blue” transects. It means that 

these locations experience high Net Shoreline backward movement (accretion) over the last 20 

years.  
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3.1.9.2. EPR results analysis  

The second indicator addressed is the EPR. At a first glance, for a total of 132 generated 

transects, the average EPR of which the shoreline has changed over the last 20 years is -2.17 

m/year with an uncertainty of ±0.28 m/year. The uncertainty here is relatively weak showing 

that the EPR was calculated with a high accuracy. The minus sign is to emphasize that it is a 

forward inland movement over the whole study area. The maximum negative EPR is obtained 

at transect no. 97 and is up to -133.15 m/year. Thus, for the same reasons as for NSM, the same 

methodology of analysis was conducted here. Figure 31 shows the EPR bar diagram over the 

whole study area. 

Figure 31: EPR histogram on the whole study area 

Globally, it can be observed more eroded transects (~63%) than the accreted ones (~37%) 

on the whole study area clearly showing an erosion trend. In the case of the EPR indicator, 

Figure 32 shows the bar diagrams for Cell 1 (resp. (a)) and Cell 2 (resp. (b)). 

The highest negative value (which is not in the area of the Port of Cotonou) of EPR of both 

Cell 1 and Cell 2 is -17.40 m/year, located in Cell 1 at Transect no. 1. This transect is located 

in the department of Mono, the district of Grand Popo, in the sector of Agoue and the locality 

Hillacondji, more precisely at the border Benin-Togo.  
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Figure 32: EPR histogram on Cell 1 and on Cell 2 

This locality is followed by the locality of Fidjrosse (Transect 37) around the airport of 

Cotonou which also experienced a high EPR.  

The highest positive value of EPR is 11.14 m/year at the Transect no. 112. This transect 

location has already been discussed above. It means that in terms of EPR, the locality of Ekpe 

is also the one experiencing the highest accretion. 

Next, all the EPR values were plotted on the whole study area to do the mapping of how 

EPR is spatially distributed over it. This led us to Figure 33. 09 classes of EPR were identified. 

The EPR values vary from the highest negative EPR (red color) to the highest positive ones 

(blue color). It appears from Figure 33 that the department of Littoral is the one which 

underwent a high EPR spatial density over the last 20 years.  

 

 

Figure 33: EPR mapping over Benin Republic coast 

On Figure 33, 03 important red color transects are also identified there especially in the 

sector of Fidjrosse around the airport. It is followed by the district of Abomey-Calavi, especially 

(a) (b) 
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in the sector of Godomey where 03 “orange” transects can be found. This transects distribution 

is similar to the NSM ones in terms of erosion. However, in terms of accretion, there are some 

significant differences. A higher density of EPR can be observed in the locality of Djondji in 

the district of Ouidah and most at in the Benin -Togo border localities Hillacondji and Agoue, 

in the district of Grand-Popo.  A minimum of 07 “blue” transects was recorded in this area, 

meaning that these two locations experience high accretion in terms of EPR from 2001 to 2021. 

3.1.9.3. LRR results analysis  

The third indicator used was the LRR. For a total of 132 generated transects by DSAS, the 

average LRR of which the shoreline has changed for the study time range is -1.51 m/year. with 

an uncertainty of ±1.68 m/year. The uncertainty here is still weak but more important than the 

EPR one. So, the calculation was made with an acceptable accuracy. The maximum negative 

LRR is obtained at Transect no. 97 as expected, and is up to -120.06 m/year. Figure 34 shows 

the LRR bar diagram over the whole study area.  

 

Figure 34: LRR histogram on the whole study area 

Globally, it can be observed more erosion erosional (~55%) transects than accretional ones 

(~45%), but the percentage is more balanced than EPR’s one. In this case again, the study area 

was split in two. Figure 35 shows the LRR bar diagrams for Cell 1 (resp. (a)) and Cell 2 (resp. 

(b)). 
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The highest negative value (which is not in the area of the Port of Cotonou) of LRR of 

both Cell 1 and Cell 2 is -13.65 m/year, located in Cell 1 at Transect no. 38. This transect has 

already be discussed previously (section 3.2.2.1). It means that the locality of Fidjrosse, around 

the airport of Cotonou, also experienced a high LRR over time.  

The highest positive value of LRR is 14.09 m/year at the Transect no. 112. This transect 

has already be discussed previously. It means that in terms of LRR, the locality of Ekpe is also 

experiencing the highest accretion. 

 

 

      (a)           (b) 
 

Figure 35: LRR histogram on Cell 1 and on Cell 2 

Next, all the LRR values were plotted on the whole study area to do a mapping of how 

LRR is spatially distributed over it. This led us to Figure 36. 09 classes of LRR were also 

identified according to some thresholds. It appears from Figure 36 that the department of 

Littoral is the one which underwent a high LRR spatial density over the last 20 years. Here, in 

the same sector of Fidjrosse around the airport, only 02 “red” transects were identified. But the 

difference here is that it is followed by the district of Grand Popo, especially in the sector of 

Avloh where 02 other “red” transects can be found. This transects distribution is slightly 

different from the 02 first ones. 
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Figure 36: LRR mapping over Benin Republic coast 

Considering accretion, the same high “blue” LRR transects density can be observed in the 

localities of Hillacondji (Grand-Popo) and Ekpe (Seme-Kpodji). It was recorded a minimum of 

07 “blue” transects in the first locality and 02 in the second one, meaning that these two 

locations underwent high accretion in terms of LRR from 2001 to 2021. 

3.1.9.4. WLR results analysis  

The last indicator computed was the WLR. It is the Weighted LRR as explained in the 

previous chapter (section 2.3.4.3). For a total of 132 generated transects by DSAS, the average 

WLR of which the shoreline has changed for the study time range, is -2.73 m/year. with an 

uncertainty of ±8.68 m/year. The uncertainty here is now enough important than the LRR one. 

It can be explained by the fact that the LRR uncertainty has been also weighted to calculate the 

WLR. So, the calculation was made with more or less, a weak accuracy. The maximum negative 

WLR is to -201.65 m/year (Transect no. 97). Figure 37 shows the WLR bar diagram over the 

whole study area. Globally, more erosion erosional (~66%) transects than accretional ones 

(~34%) was observed. Here, the difference between erosion and accretion rates has been 

accentuated again as for EPR. This confirms the erosion trend.  
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Figure 37: WLR histogram on the whole study area 

In this case again, the study area was split in two. Figure 38 shows the WLR bar diagrams 

for Cell 1 (resp. (a)) and Cell 2 (resp. (b)). 

  
 

 

Figure 38: WLR histogram on Cell 1 and on Cell 2 

The highest negative value (which is not in the area of the Port of Cotonou) of WLR of 

both Cell 1 and Cell 2 is -11.19 m/year, located in Cell 1 at Transect no. 38. This transect has 

already be discussed previously (section 3.2.2.1). It means that the locality of Fidjrosse, around 

the airport of Cotonou which also experienced a high WLR over the study period.  

The highest positive value of LRR is 15.79 m/year at the Transect no. 112. This transect 

has already be discussed previously. It means that in terms of WLR, the locality of Ekpe is also 

(a) (b) 
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the one experiencing the highest accretion. 

Next, all the WLR values were plotted on the whole study area to do a mapping of how 

WLR is spatially distributed over it. This led us to Figure 39. 09 classes of WLR were also 

identified according to some thresholds. It appears from Figure 39 that the department of 

Littoral is the one which underwent a high WLR spatial density for the study period. Here, in 

the same sector of Fidjrosse around the airport, 06 “red” transects were identified. This 

highlights the fact that this area is dangerously eroded. The difference here is that it is not 

followed by any second district undergoing the same kind of erosion rate. This transects spatial 

distribution is different from the 03 first ones. 

 

 

Figure 39: WLR mapping over Benin Republic coast 

Considering WLR accretion, the high “blue” LRR transects density can be observed in the 

localities of Hillacondji (Grand-Popo) and Ekpe (Seme-Kpodji). But the difference here, is that 

05 “blue” transects were recorded in the first locality and only 02 in the second, meaning that 

these 02 locations underwent high accretion in terms of WLR from 2001 to 2021. Finally, the 

study area split allowed us to examine the shoreline dynamics per Cell. The maximum rates per 

cell, are summarized in Table 9. 

Table 9: Shoreline dynamics comparison between Cell 1 and Cell 2 

 Cell 1 Cell 2 

Erosion Accretion Erosion Accretion 

Max  Percent Max  Percent Max  Percent Max  Percent 

NSM 

[m] 

-169.02 58.33% 81.07 41.67% -199.94 74.29% 167.05 25.71% 

EPR  

[m/year] 

-17.40 57.29% 5.40 42.71% -2.15 71.43% 11.14 28.57% 

LRR  

[m/year] 

-13.65 51.04% 20.38 48.96% -9.66 62.86% 14.09 37.14% 

WLR  

[m/year] 

-12.74 67.71% 44.53 32.29% -16.07 54.29% 15.69 45.71% 
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A quick analysis of Table 9 shows that over the last 20 years, Cell 2 has been more affected 

by shoreline retreat than Cell 1 while in terms of accretion, Cell 1 was more concerned than 

Cell 2. This result is in line with the results of (Assogba, 2018; Degbe, 2017) who both found 

that the erosion is more accentuated at the East side of the Port infrastructure. These results are 

also in concordance with those of (Yang et al., 2021) which revealed that shoreline in Cell 1 

showing accretion by recovering 1.20 km2 of surface area and in contrast, 3.67 km2 of Cell 2 

disappeared due to coastal erosion, although it has groynes for protection against erosion. 

Concerning the localities, Hillacondji (Grand-Popo) is the locality experiencing more 

accretion in Cell 1 and the localities of Fidjrosse (Cotonou), Ganhi (Cotonou) are the ones 

experiencing more erosion in Cell 1. This can be explained by the inefficiency of the 

infrastructure installed against erosion since 1962 at the East side of the Port (known as the 

groynes of Siafato) by the government of Benin Republic and which has been rehabilitated 

recently in 2017 (Antea Belgium nv, 2017) via the project WACA.  

But in terms of rate of changes, few authors investigated erosion rate all along the Benin 

Republic coast, due to the scarcity of exploitable data over this region. Many of them either 

investigated only some critical coastal area like South West (Balle et al., 2021; Degbe et al., 

2017). Thus, the average erosion on Cell 1 is -2.21 ±3.55 m/year which is slightly different from 

the results of (Balle et al., 2021) who found an average erosion of -0.75 m/year. At the East side 

(Cell 2), a rate of -2.17 ± 0.28 m (at the sector of Ganhi) was found and it contrasts with the 

findings of Degbe et al. (2017), which show that the maximum erosion at the East was -30 ± 

0.03 m (at the sector of Ekpe). 

3.1.9.5. Trend of the 3 rates  

A trend analysis was performed in order to see the general evolution trend of the different 

rates which were previously computed. This is shown in Figure 40. As it can be seen, EPR, 

LRR and WLR are following the same trend globally both in erosion (negative values) and 

accretion (positive values) domains. This same rates trend finding is concordant with (Dey et 

al., 2021). However, while EPR and LRR are more or less in the same proportion, WLR is 

changing in a higher proportion. This is explained by the “Weight” applied to this indicator.  
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3.1.9.6. Uncertainty and accuracy measurement for LRR and WLR 

Our methodology to measure the uncertainty and accuracy of LRR and WLR, was based 

on the one of Dey et al. (2021). As stated previously, the uncertainty value given to DSAS in 

general is 10m. Then, the r-square statistical method and Standard error method were used to 

evaluate respectively the accuracy and the error estimation of these two indicators. For the first 

purpose (accuracy measurement), Linear Regression Rate square (LR2) and Weighted Linear 

Regression Rate square (WR2) were extracted from the statistical indicators table (Appendix 

3). However, for the second purpose (error estimation), Linear Square Error (LSE) and 

Weighted Linear Square Error (WSE) were extracted from the same table.  

04 classes were defined to classify the r-square values in order to finally measure the 

accuracy of these two indicators computation. Table 10 reports the results of accuracy 

classification of the transects. 

Table 10: LRR and WLR Accuracy assessment 

Accuracy Class R-square values interval 

Change Rates indicators  

Number of Transects (Percentage) 

LR2 WR2 

High accuracy  𝑟2𝜖 [0.6; 1] 72 (54.55%) 70 (53.03%) 

Moderate accuracy  𝑟2𝜖 ]0.4; 0.6[ 13 (9.85%) 16 (12.12%) 

Low accuracy 𝑟2𝜖]0; 0.4] 33 (25.00%) 31 (23.48%) 

No Relationship  𝑟2 = 0 14 (10.60%) 15 (11.37%) 

Different Rates Trends 

Figure 40: EPR, LRR and WLR trends over the whole study area 
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For the LR2 method, ~55% of the LRR transects are measured with a high accuracy 

while ~11% of them have their value equal to 0. For the WR2 method, ~53% of the transects 

are measured with a high accuracy and ~11% have their r-square values equal to 0. 

3.1.10. Shorelines forecast results analysis  

The obtained 10-year and 20-year shorelines vector shapefiles were overlaid on GEE 

base map. This map is actually the 2022 most recent open georeferenced satellite image 

available (provided by CNES, Airbus/Landsat, Copernicus/Maxar Technologies). The idea is 

to identify the regions which are effectively threatened by erosion by 2031 and by 2041 if 

nothing is done (BaU scenario). Three main regions are identified as potentially highly eroded 

by the two horizons fixed (Figure 41). The forecast shoreline for 2031 is in green color and the 

one for 2041 is in red color.  

First, the coastal town of Hillacondji is the locality which undergoes the most future 

erosion (Figure 41.c). The red line is “ahead” of the green one meaning that the erosion is getting 

worse from 2031 to 2041. The region covered by the erosion is very large (almost all along the 

coastal town). The maximum erosion is estimated to be 68.11 m (2031) and 182.55 m (2041). 

The second coastal town which is projected to experience a very high future erosion is 

the locality of Avloh plage (Figure 41.b). Here an heterogenous configuration can be observed. 

The red is “ahead” of the green one in some places, “behind” in some other places and 

“confused” in some places again.  The maximum erosion is estimated to be 226.42 m (2031) 

and 146.14 m (2041). 

The last coastal town which is projected to undergo a high future erosion is the locality 

of Agblangandan in the department of Littoral (Figure 41.a). At this level, an heterogenous 

configuration can be also observed. It means that the red line is “ahead” of the green one in 

some places, “behind” in some other places and “confused” in some places again. The 

maximum erosion is estimated to be 146.14 m (2031) and 307.30 m (2041). 

During our research period, no previous study related to the Benin Republic shoreline 

forecast could be found. We believe our study will serve as one of the pioneer studies in matter 

Benin Republic future shorelines forecast.  

 



AI-based spatiotemporal assessment of the Benin Republic shoreline dynamics and prediction   

 

Proposed by DEGBEY C. David                       EDICC                                   2021-2022  64 

  

    (a) 

  

    (b) 

 

    (c) 

Figure 41: Projected high eroded areas (2031 and 2041) 
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Conclusion, perspectives and recommendations  

Spatiotemporal assessment of shoreline change plays a key role in efforts to build coastal 

climate resilience. In this study, the combined use of AI and RS allowed us to accurately assess 

past and projected shoreline dynamics of Benin Republic from 2001 to 2021. The potentiality 

and the usefulness of satellite geo-spatiotemporal images was demonstrated as an alternative to 

aerial photographs in scientific studies. 02 supervised image classification algorithms (RF and 

SVM) were implemented and, based on a comparative analysis of their results, RF emerged the 

best with better overall accuracies for each of the selected 5 years (Table 5). The RF classified 

images for the years 2001, 2006, 2012, 2016, and 2021 were used to extract the historical 

shoreline positions for the respective years. An in-depth multitemporal analysis of these 

historical data revealed a net erosion trend over the Benin coast. It was found that Sea water 

(Atlantic Ocean) has moved inland of 169.94 m landward the country during the 20 years study 

period, at a rate of -2.17 m (EPR) and -1.51 m (LRR). Cumulatively, the shoreline part located 

before the Port infrastructure was less affected by erosion than the part located after. Therefore, 

our first hypothesis is confirmed. Then, the shorelines respectively for years 2031 and 2041 

were forecasted and revealed complex dynamics (erosion and accretion) all along the Benin 

coastline. Then, our second hypothesis is confirmed. This projection showed that the localities 

of Hillacondji, Agblangandan and Avloh plage were expected to be the most vulnerable to 

coastal erosion under the Business-as-Usual scenario. All the results achieved in this study were 

compiled in a single source code to be displayed via a free and open access web application to 

enhance coastal management decision making and climate change impacts education purposes. 

The easiness in the use of the web application facilitates the communication of our results to 

decision makers and non-experts. Therefore, our third objective is also confirmed. 

Due to the restricted dedicated budget and time constraints, this work has some limitations. 

First, we could not have access to images from satellites such as SPOT and QuickBird which 

have very high spatial resolution. This problem, coupled with the problem of persistent thick 

clouds in the available Landsat images, resulted in classified images with lower accuracies than 

expected. Second, the study was severely limited by the non-availability of adequate 

oceanographic data (e.g., sea level, wave, tides) covering the study region over the study period 

to enable the identification of correlations between the shoreline retreat and the SLR. The third 

constraint encountered was the non-availability of free and open access satellite data over the 

study region before the year 2000. As a result, our analysis was limited to the last two decades 
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with no possibility for extension.  

The perspectives from our work are that, in studies that consider coastline changes over 

the short-term, it is best to use the 10 m resolution Sentinel 2 optical images (from 2015) instead 

of Landsat images for better accuracy if very high-resolution images are not available. 

However, for studies that require high temporal accuracy, high-resolution aerial photographs 

(before the year 2000) is the only available option. Such long-term studies will help to identify 

the Sea Level critical threshold at which severe erosion impacts were observed.  

In the current context of the increase of the occurrences of coastal floods, and coastal 

erosion events in West Africa, we highly recommend making use of the results and 

methodologies of this study in the implementation of the Early Warning System to allow 

decision makers and coastal populations to be aware of the future effects of climate change on 

coastal zones based on different scenarios. We encourage the use of the web application 

developed to help in the preservation of biodiversity and socioeconomics activities such as 

fishery and vegetable gardening from coastal hazards. We also strongly recommend a 

continuous (monthly) erosion monitoring along the coast of Benin. Concretely, we suggest the 

installation of tides, sea level, and waves measurements equipments and the acquisition of 

multispectral drones for a permanent monitoring of the phenomenon. 
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2 5.40 6.99 7.10 81.07 0.54 127.00 0.73 57.80 
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5 3.82 4.41 5.80 57.34 0.05 70.35 0.22 29.35 
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19 0.28 0.17 -0.08 4.14 0.44 34.45 0.62 13.29 

20 0.39 0.34 -0.20 5.85 0.58 40.63 0.77 13.97 

21 0.50 0.55 0.05 7.48 0.41 8.34 0.52 4.22 

22 0.14 0.24 -0.87 2.06 0.80 27.57 0.88 14.09 

23 0.39 0.58 -0.62 5.87 0.44 23.00 0.60 9.16 

24 -0.06 0.11 -1.19 -0.83 0.40 3.61 0.50 1.74 

25 -0.52 -0.34 -2.14 -7.75 0.66 31.72 0.82 10.80 

26 0.32 0.52 -0.39 4.79 0.43 23.73 0.60 11.62 
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https://code.earthengine.google.com/?scriptPath=users%2Fdavid91%2FICC_THESIS%3ALUC_Cotonou
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32 -1.10 -0.63 -1.31 -16.53 0.39 5.86 0.50 2.49 

33 -1.38 -0.65 -1.15 -20.74 0.66 10.90 0.82 3.73 

34 -0.36 0.66 0.41 -5.43 0.56 35.01 0.75 16.29 

35 2.85 3.18 7.34 42.82 0.98 14.62 0.98 5.31 

36 -0.14 -0.36 2.59 -2.08 0.32 12.21 0.41 5.12 

37 -8.86 -9.24 -2.39 -132.96 0.43 18.05 0.56 8.92 

38 -11.27 -13.65 -11.19 -169.02 0.25 18.43 0.37 7.02 

39 0.34 -0.02 -1.10 5.09 0.07 23.95 0.26 12.19 

40 -0.31 0.11 -5.09 -4.67 0.31 20.48 0.41 9.12 

41 1.35 2.53 -0.44 20.30 0.52 9.41 0.71 3.30 

42 2.12 2.76 0.40 31.81 0.60 30.10 0.79 13.43 

43 -0.19 0.89 -0.88 -2.78 0.69 6.05 0.83 2.28 

44 -1.05 -0.23 -2.17 -15.72 0.59 28.99 0.78 10.39 

45 -1.85 -1.08 -3.03 -27.68 0.28 7.69 0.38 2.46 

46 -1.07 -0.48 -2.25 -16.07 0.04 21.67 0.19 8.99 

47 -0.74 -0.17 -1.72 -11.13 0.54 29.99 0.73 15.32 

48 -1.10 -0.48 -2.19 -16.45 0.36 15.05 0.43 4.80 

49 -0.53 0.07 -2.07 -7.99 0.04 13.63 0.18 6.34 

50 -0.48 0.35 -2.09 -7.25 0.11 19.96 0.28 10.21 

51 -0.79 -0.34 -2.25 -11.82 0.08 19.83 0.27 10.17 

52 -0.90 -0.77 -3.14 -13.52 0.07 25.02 0.26 12.64 

53 -0.40 -0.12 -1.97 -5.95 0.28 7.72 0.38 2.70 

54 -0.46 -0.24 -2.34 -6.93 0.12 24.37 0.31 10.14 

55 0.33 0.59 -1.42 4.94 0.66 13.87 0.82 5.80 

56 0.29 0.48 -0.99 4.42 0.11 19.12 0.30 9.62 

57 -0.36 -0.13 -1.03 -5.39 0.11 18.36 0.27 9.38 

58 4.47 4.40 2.95 67.04 0.53 27.89 0.72 8.97 

59 0.88 1.12 1.24 13.22 0.35 14.64 0.42 4.66 

60 0.43 0.59 0.11 6.46 0.38 7.38 0.45 2.46 

61 1.08 1.07 0.68 16.26 0.70 13.70 0.84 6.27 

62 0.34 0.29 0.27 5.05 0.11 22.47 0.28 11.49 

63 0.45 0.50 0.02 6.81 0.02 17.85 0.12 7.89 

64 -1.88 -1.90 -3.55 -28.17 0.11 27.76 0.29 14.23 

65 -4.64 -4.47 -7.60 -69.62 0.13 20.70 0.32 9.26 

66 -1.56 -1.69 -2.13 -23.41 0.13 18.02 0.32 8.50 

67 -1.03 -1.08 -1.69 -15.38 0.54 6.23 0.74 3.18 

68 -1.82 -1.60 -3.68 -27.27 0.05 31.92 0.20 12.31 

69 -1.98 -2.39 -2.08 -29.67 0.17 9.18 0.33 4.67 

70 0.56 -0.10 -0.31 8.38 0.06 52.16 0.24 22.53 

71 -0.62 -0.92 -1.57 -9.23 0.94 12.86 0.96 4.17 

72 -1.26 -1.51 -2.36 -18.88 0.00 3.65 0.02 1.64 

73 1.15 0.90 -0.42 17.32 0.01 11.03 0.04 5.52 

74 -0.56 -0.64 -1.16 -8.34 0.94 16.83 0.94 5.38 

75 -0.17 -0.17 -0.20 -2.55 0.04 9.12 0.17 4.66 

76 -2.51 -2.47 -3.05 -37.71 0.07 30.94 0.26 14.77 

77 -3.71 -3.65 -4.02 -55.64 0.85 7.37 0.89 2.47 
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78 -4.39 -4.12 -4.77 -65.89 0.39 0.32 0.48 0.14 

79 -2.59 -2.20 -3.80 -38.82 0.05 29.71 0.20 12.71 

80 -1.97 -1.60 -3.44 -29.62 0.78 36.89 0.88 12.82 

81 -2.85 -2.59 -4.29 -42.78 0.70 17.46 0.84 5.85 

82 -3.68 -3.22 -5.65 -55.25 0.02 12.67 0.08 5.81 

83 -4.03 -3.99 -6.14 -60.51 0.01 2.12 0.04 0.67 

84 -4.64 -4.65 -7.77 -69.62 0.52 16.04 0.71 5.19 

85 -5.45 -5.42 -8.27 -81.69 0.03 10.28 0.15 5.14 

86 -5.96 -5.91 -8.71 -89.33 0.02 11.05 0.07 4.85 

87 -6.49 -6.99 -10.50 -97.40 0.01 5.35 0.04 1.70 

88 -5.83 -6.30 -9.54 -87.46 0.03 8.97 0.13 3.66 

89 -5.10 -5.43 -7.95 -76.52 0.00 5.94 0.02 2.31 

90 -5.58 -6.07 -7.83 -83.70 0.15 14.38 0.32 6.60 

91 -5.12 -5.54 -7.54 -76.83 0.91 17.48 0.93 5.57 

92 1.76 20.38 44.53 26.45 0.03 9.01 0.12 4.50 

93 -7.38 -8.43 -11.24 -110.77 0.14 19.56 0.32 8.99 

94 -8.70 -9.42 -12.74 -130.52 0.22 1.62 0.36 0.56 

95 0.09 0.46 1.02 1.33 0.06 20.16 0.24 6.42 

96 -1.77 -1.70 -0.95 -26.49 0.70 7.37 0.86 2.96 

97 -133.15 -120.06 -201.65 -1997.23 0.65 31.67 0.81 12.80 

98 -0.64 -1.27 -2.32 -9.63 0.01 6.86 0.05 2.40 

99 -10.67 -9.66 -16.07 -160.00 0.02 11.63 0.07 5.53 

100 1.05 1.00 0.46 15.76 0.01 4.09 0.03 1.93 

101 -13.33 -8.91 -14.52 -199.94 0.04 9.50 0.16 4.80 

102 -1.37 -0.57 -3.45 -20.51 0.00 15.30 0.02 5.10 

103 -0.37 -0.20 -0.80 -5.51 0.19 5.46 0.35 2.80 

104 -5.32 -3.88 -5.65 -79.74 0.23 4.74 0.36 2.07 

105 -2.15 -0.93 -2.67 -32.22 0.03 6.10 0.16 3.08 

106 -2.54 -1.79 -1.85 -38.10 0.02 4.99 0.07 2.23 

107 -2.68 -0.25 0.80 -40.16 0.77 20.41 0.86 9.10 

108 -4.41 -3.29 -2.59 -66.08 0.33 22.57 0.41 8.03 

109 1.49 2.14 0.63 22.40 0.00 6.95 0.02 2.22 

110 -1.60 -0.75 -0.52 -24.07 0.00 11.36 0.01 3.63 

111 -1.76 -0.71 -1.90 -26.34 0.74 12.94 0.86 5.85 

112 11.14 14.09 15.79 167.05 0.19 8.33 0.35 2.89 

113 4.89 5.97 6.62 73.37 0.01 9.18 0.04 3.60 

114 0.37 1.41 0.86 5.51 0.53 6.84 0.73 2.40 

115 -0.87 -0.40 -0.75 -13.09 0.22 4.47 0.36 1.68 

116 -3.69 -3.98 -6.35 -55.29 0.38 19.79 0.43 6.49 

117 -2.28 -2.58 -2.78 -34.23 0.06 36.74 0.25 18.68 

118 -2.81 -3.22 -3.73 -42.15 0.59 19.81 0.77 9.99 

119 -1.69 -1.88 -1.86 -25.32 0.00 14.76 0.01 4.91 

120 -0.54 -0.72 0.69 -8.10 0.51 767.26 0.68 250.61 

121 -0.07 0.12 1.37 -1.04 0.00 22.49 0.01 7.18 

122 0.36 0.34 1.04 5.44 0.06 24.45 0.25 12.47 

123 -5.75 -4.96 -2.84 -86.22 0.00 22.55 0.00 7.32 
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124 0.87 1.32 0.77 13.01 0.00 24.27 0.01 7.71 

125 0.51 1.21 0.41 7.60 0.05 51.55 0.20 18.25 

126 -0.09 0.95 1.49 -1.34 0.00 29.60 0.00 9.41 

127 -4.35 -3.61 -6.25 -65.26 0.00 40.16 0.00 13.87 

128 -0.17 0.02 0.20 -2.59 0.18 17.14 0.34 6.24 

129 0.31 0.67 1.44 4.62 0.64 39.05 0.81 13.47 

130 -0.23 0.04 1.01 -3.48 0.00 50.46 0.00 19.57 

131 -0.29 -0.11 0.71 -4.31 0.00 52.26 0.00 19.23 

132 -2.10 -1.67 -1.60 -31.56 0.60 106.17 0.79 36.68 

 

Appendix 4: Computation of the slope in a digital image 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/how-slope-works.htm 

Appendix 5: Unsupervised Learning  

It is required when there is no example data set with known answers. For example, searching 

for a hidden pattern. In this case, clustering i.e. dividing a set of elements into groups according 

to some unknown pattern is carried out based on the existing data sets present.  

 
Figure 42: Unsupervised Learning illustration 

Source: Van Loon, 2018 

Appendix 6: Reinforcement Learning  

This strategy built on observation. The ANN decides by observing its environment. If the 

observation is negative, the network adjusts its weights to be able to make a different required 

decision the next time. 

 

Figure 43: Reinforcement Learning illustration 

Source: Van Loon, 2018 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/3d-analyst/how-slope-works.htm
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