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Abstract 

Climate change is a global phenomenon of climate transformation of the planet. Climate change 

causes environmental degradation and decreases in agricultural production and incomes and 

therefore poses a significant threat to food security and sustainable livelihoods, as well as to socio-

economic stability. The approach to delineating impacts of climate extremes on crop production is 

complex and may involve the use of crop simulation models and, in some cases, the use of 

statistical techniques of equal complexity. The main objective of this study was to assess the impact 

of agroclimatic extremes on crop yields. In this research, two machine learning (ML) algorithms, 

namely logistic regression and Random Forest models, were used to assess the yield loss as a result 

of agroclimatic extremes. The input data included observed yields of cotton, maize, and millet and 

meteorological data (1990-2017) from the Sudanian and North Guinean zones of Mali. The growth 

of the digital age has made almost all human activities the source of ever-increasing amounts of 

information. machine learning techniques for data analysis can be understood as a problem of 

pattern recognition or, more informally, knowledge discovery and data mining. The agroclimatic 

extremes considered in this study are the late onset of the cropping season, early cessation of the 

cropping season, shorter duration of the rainy season, intra-seasonal heat waves, and seasonal 

rainfall deficit. While yield loss was the predictand, these agroclimatic extremes were considered 

as the predictors. When taken individually, a simple linear regression does not describe the 

relationship between the predictors and the predictand. When considered altogether in ML, such 

as random forest regression (RF) and logistic regression (LR) modelling, the relationship can be 

depicted as yield loss as a result of agroclimatic extremes. Our results showed that LCS and 

cropping season were dominant factors affecting yield. The LCS and cropping season were the 

most correlated indices. Predicting the occurrence of these agroclimatic extremes have the 

advantage of identifying suitable agricultural inputs and avoiding certain risks. However, RF 

showed much better performance compared to LR. Therefore, ML is useful and very robust tool 

to predict yields loss as a result of extreme climate events, especially when large-scale datasets are 

available. 

Keywords: Agroclimatic extremes, Crop Yield, Machine Learning, Logistic Regression, 

Random Forest, Modelling, Mali.  
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Résumé 

Le changement climatique est un phénomène global de transformation climatique de la planète. Il 

provoque une dégradation de l'environnement et une diminution de la production et des revenus 

agricoles et constitue donc une menace importante pour la sécurité alimentaire et les moyens de 

subsistance durables, ainsi que pour la stabilité socio-économique. L'approche pour délimiter les 

impacts des extrêmes climatiques sur la production agricole est complexe et peut impliquer 

l'utilisation de modèles de simulation de cultures et, dans certains cas, l'utilisation de techniques 

statistiques de complexité égale. L'objectif principal de cette étude était d'évaluer l'impact des 

extrêmes agroclimatiques sur les rendements des cultures. Dans cette recherche, deux algorithmes 

d'apprentissage automatique (en anglais : machine learning, ML), à savoir la régression logistique 

et les modèles de forêt aléatoire, ont été utilisés pour évaluer la perte de rendement due aux 

extrêmes agroclimatiques. Les données d'entrée comprenaient les rendements observés de coton, 

de maïs et de mil et des données météorologiques (1990-2017) des zones soudanienne et nord-

guinéenne du Mali. La croissance de l'ère numérique a fait de presque toutes les activités humaines 

la source de quantités toujours croissantes d'informations. Les techniques d'apprentissage 

automatique pour l'analyse des données peuvent être comprises comme un problème de 

reconnaissance de formes ou, de manière plus informelle, de découverte de connaissances et 

d'exploration de données. Les extrêmes agroclimatiques considérés dans cette étude sont le début 

tardif de la saison agricole, l'arrêt précoce de la saison agricole, la durée plus courte de la saison 

des pluies, les vagues de chaleur intra-saisonnières et le déficit pluviométrique saisonnier. 

Alors que la perte de rendement était le prédicteur, ces extrêmes agroclimatiques ont été considérés 

comme les prédicteurs. Prise individuellement, une régression linéaire simple ne décrit pas la 

relation entre les prédicteurs et le prédictant. Lorsqu'elle est considérée dans son ensemble dans la 

ML, telle que la modélisation par régression forestière aléatoire (RF) et par régression logistique 

(LR), la relation peut être décrite comme une perte de rendement résultant d'extrêmes 

agroclimatiques. Nos résultats ont montré que LCS et OCS étaient des facteurs dominants affectant 

le rendement. Le LCS et l'OCS étaient les indices les plus corrélés. Prévoir l'occurrence de ces 

extrêmes agroclimatiques a l'avantage d'identifier les intrants agricoles adaptés et d'éviter certains 

risques. Cependant, RF a montré de bien meilleures performances par rapport à LR. Par 

conséquent, ML est un outil utile et plus robuste pour prédire la perte de rendement à la suite 
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d'événements climatiques extrêmes, en particulier lorsque des ensembles de données à grande 

échelle sont disponibles. 

Mots clés : Extrêmes agroclimatiques, Rendement des cultures, Machine Learning, 

Régression logistique, Forêt aléatoire, Modélisation, Mali.   
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Introduction 

1. Context  

Climate change is the global phenomenon of climate transformation of the planet that has multiple 

consequences, which constitute a major socio-economic issue (USAID, 2014). It causes 

environmental degradation and a decrease in agricultural production and income, therefore 

constitutes a significant threat to sustainable food security and livelihood, and socio-economic 

stability (USAID, 2017). According to the Climate Change Risk Profile for West Africa by the 

USAID (2017), West Africa is one of the globally most jeopardized regions affected by increasing 

climate variability. The region largely depends on rainfed agriculture to sustain food security and 

livelihood. Therefore, every change in rainfall pattern (e.g., rainfall amount, intensity and timing), 

temperatures, and the effect of strong winds may likely affect farming systems (Alhassane et al., 

2013). According to Wilson & Minas (2017), the annual mean temperatures in West Africa, and 

particularly in the Sahel, have increased faster than the global trend, with increases of the annual 

mean temperature ranging from 0.2 °C to 0.8 °C per decade since the end of the 1970s in the 

Sahelo-Saharan, Sahelian and Sudanese areas.  

According to AGRHYMET (2010a), after the drought seasons of the 1970s and 1980s in West 

Africa, AGRHYMET has taken up the challenges faced by the West African countries, particularly 

those in the Sahel (e.g., Mali and Niger), suffering the effects of heavy rains and devastating floods. 

AGRHYMET (2010b) estimates that the damages and losses linked to these extreme hydro-

climatic events have caused costs of several million US$, which are higher than the costs linked 

to the implementation of adaptation strategies. For example, between 2000 and 2008, the costs of 

damage related to floods in the area governed by the Permanent Inter-State Committee against 

Drought in the Sahel (CILSS) were estimated to be between 39 and 80 billion US$; and for the 

minimum and maximum scenario for Mali to amount to 5,860,665 US$ (*1000) and to 12,029,353 

US$ (*1000), respectively. In addition, flood and drought events have undermined human systems 

(human and material losses), agricultural systems (submerged crops), and economic infrastructure 

(e.g., roads, bridges, dams destroyed). 

To ensure the accumulated adaptive capacity of smallholders and a transition of countries to 

climate-resilient development, the FAO (2016a) proposes a profound transformation of the global 
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food and agricultural system. It underlines the importance of the factor "time" and recommends 

actions to be taken now to ensure sustainable food and agriculture for future climate extremes. 

The Republic of Mali, like any other West African country, faces multiple pressures induced by 

climate (e.g., desertification, soil erosion, temperature rise, increase in floods) and demographic 

changes (Soumaré et al., 2020). Therefore, it must increase its capacity to develop agricultural 

strategies to ensure sustainable socio-economic balance, food security, and self-sufficiency. 

According to Ouedraogo (2013), beyond the socio-economic constraints (e.g., famine, the 

limitations on productivity and competitiveness) caused by frequent droughts, the rainy season 

generally results in a succession of wet and dry periods of varying duration, including false onset 

and early end of the cropping seasons. 

Speaking of climate change, experts address more questions about its impacts on forest biomass, 

water availability, and fluctuating crop yields as the direct cause of the increased rainfall 

variability. The wide variability in the intensity, frequency, and timing of annual or seasonal 

precipitation creates significant challenges for farmers (King et al., 2014). Beyond the above 

challenges, Salack et al. (2020) indicate that in the Sahel, agroclimatic extremes such as the false 

onset of the season, floods, and early cessation can create restrictive conditions for a good harvest 

for farmers. 

Agroclimatic extremes are extreme meteorological or climatic phenomena manifested by 

unexpected, unusual, severe meteorological conditions, i.e., beyond the threshold, and which 

weigh on agriculture. The impact of these "agroclimatic extremes" on crop yields in Mali has rarely 

been a topic of discussion. Understanding the relationship between these agroclimatic extremes 

and historical crop yields from 1990 to 2017 is essential to assess the sustainability of our 

agricultural production. 

The Observatoire du Sahara et du Sahel, OSS (2013) defined an agricultural drought as a situation 

where soil water and water reserves become insufficient to meet crop needs in a given region. 

The false onset is one of the factors that contribute to the drying out of the crops and soil (Ngoune 

Liliane & Shelton Charles, 2020). The dehydration can cause the soil impermeability, seeds 

desiccation , resulting in stagnation of germination, limitation of seedling root mobility, and the 

insolubility and/or unavailability of nutrients to plants by lack of water (Rawson & Macpherson, 

2000;  Fahad et al., 2017). Agricultural drought can also favor the proliferation of predators, such 
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as insects and other microorganisms that live on juvenile and distressed plants whose eggs below 

the ground just needed a wet and dry situation to hatch (Skendžić et al., 2021). 

Temperature variations have a significant impact on vegetative growth and grain yield depending 

on the type of crop.(Hatfield & Prueger, 2015). These effects are evident in a high rate of 

senescence (a physiological process that causes a slow degradation of cell functions), which 

reduces the ability of the crop to efficiently fill grains or fruits. 

The early cessation of rains is the discontinuity of rainfall during the rainy season. During the rainy 

season, the early cessation deprives the plants of their water requirement, during their growth and 

development, when crops will be in a water deficit to survive. This difficulty causes wilting and 

dieback of the plants and their exposure to be attacked by predators. This adversely affects the 

growth and development of crops and their production performance. 

The indicator of crop performance based on the availability of water to the crop during a growing 

season (Senay, 2004; Verdin & Klaver, 2002)  denotes the balance between all the water resources 

that the plants need and those that are leaving with respect to a specific area (steep slope) and a 

defined period,( hot and high evaporation zone). The Water Requirement Satisfaction Index plays 

a major role in determining the quantity of water available and is necessary to satisfy the plant's 

water requirement, considering other factors (e.g., evapotranspiration, soil field capacity of water 

loss. 

According to Dimitriadis & Goumopoulos (2008), the urgent need to increase agricultural 

production, especially on an increasingly small land suitable for agriculture, as well as the 

reduction of consumption of resources such as water and fertilizers vis-à-vis the environment, 

make the use of new techniques and methods a top priority. 

The growth of the digital age has made almost all human activities the source of ever-increasing 

amounts of information. This information often takes the form of computable data, i.e., data 

available in a format that can be processed by machine and, ultimately, reasoned (Vellido et al., 

2012). Advances in machine learning and simulation crop modelling have created new 

opportunities to improve prediction in agriculture (Baştanlar & Özuysal, 2014; Shakil Ahamed et 

al., 2015) These technologies have each provided unique capabilities and significant advancements 

in the prediction performance, however, they have been mainly assessed separately and there may 

be benefits integrating them to further increase prediction accuracy (Bengio, 2009). 
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This deluge of data is invading most scientific fields (Liakos et al., 2018). According to Liakos et 

al. (2018), agro-technology and precision agriculture, also known as digital agriculture, were born 

as new scientific fields that use data-intensive approaches to optimize agricultural productivity 

while minimizing environmental impact. The raw materials of complex data at different levels 

with increasing diversity of characteristics are used to attempt modelling using their wide range of 

methods and tools. (Vellido et al., 2012). 

The data collected in modern agricultural activities is provided by a variety of sensors which allow 

a better understanding of the operating environment and the operation itself, being able to produce 

data with high precision and decision making in a better time.(Liakos et al., 2018). The obtained 

models are meant to be a synthetic representation of the available, observed data that captures 

some of their intrinsic regularities 

or patterns. Therefore, the use of machine learning techniques for data analysis can be understood 

as a problem of pattern recognition or, more informally, of knowledge discovery and data mining  

Vellido et al. (2012) Making machine learning models interpretable. Precision agriculture is a suite 

of management strategies, technologies, and practices to solve the above problems. Precision 

agriculture applies technologies and principles that use the information to manage spatial and 

temporal variability to increase resource efficiency and minimize environmental degradation 

(Dimitriadis & Goumopoulos, 2008). 

2. Justification of the study 

Rainfed agriculture is susceptible to climate variability and extreme events, such as prolonged 

droughts and floods (Salack, 2016). According to Maiga et al. (2019)(Maiga et al., 2019), 

agriculture in Mali accounts for 36% of the gross domestic product (GDP) while employing about 

80% of the population estimated to be 20.3 million inhabitants in 2020 (UNFPA, 2020), with the 

majority engaged in subsistence farming. Subsistence farming in the Sahel, particularly in Mali, 

highly depends on rainfall. However, rainfed agriculture is experiencing major challenges due to 

the climatic extremes that negatively impact crop productivity. 

In Mali, crop productivity appreciation (consider good or bad in terms of the previous year's 

performance) is, in part, directly related to the frequency of agroclimatic extremes during critical 

growth phases of crop development. 

According to the FAO (2021a), Agriculture continues to bear the brunt of the impacts of climate 

change, biological hazards, such as pests and epidemics, pose a serious risk to the life and health 
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of humans, animals and animals. plants.The occurrences of pests and diseases often coincide with 

extreme weather events and abnormal weather conditions (Rosenzweig et al., 2000).  Pests and 

diseases of plants and animals in general have always been a destabilizing factor for agriculture 

and a major threat to food security (FAO, 2021a). 

In all their phenological stages, crops are sensitive to variations to temperature extremes. 

Temperature is the main factor that controls the speed of the development of the crop ( 

Tshiabukole, 2018). In general, crop growth accelerates with increasing temperature, a 

phenomenon that is often described as a linear function of the daily mean temperature (FAO, 

2016a). Any adverse effect of heat stress on membranes leads to disruption of cell activity or death 

of the crop (Bazzaz & Sombroek, 1997). According to Sarr et al. (2012), the increases in minimum 

and maximum temperatures, high rainfall variability, intense droughts, false onset, early 

cessations, and floods constitute climatic extremes, subsequently risks to the agricultural system. 

Likewise, the increase in temperature can translates into a decrease in humidity, a decrease in the 

number of cold days and nights, and an increase in hot days and nights (Loko et al., 2013). 

According to AGRHYMET (2010a), ), the rise in temperature could decrease the duration of the 

phenological phases of cultures, as well as their cycles. Thus, the yields of crops such as millet 

and sorghum could be affected and cause a drop of more than 10% when the temperature increases 

by 2 ° C and of the order of 15 to 25% at 3 °C (AGRHYMET, 2009). 

Temperatures in West Africa, particularly in the Sahel, have risen more quickly than the global 

average, ranging from 0.2 °C to 0.8 °C per decade since the beginning of the 20th century 

(AGRHYMET, 2010b). 

Extremes such as false onset create inaccurate planning in the production cycle and increase 

farmers' number of working days. Subsequently, an additional purchase of seed and use of 

additional labor will be required. There is also the early cessation of the rains, which limits the 

productivity potential of crops due to water stress at critical stages of crop growth, development, 

and production. 

According to the National Institute for Agricultural Research (INRA, 2006), an agricultural 

drought refers to any lack of water that does not allow cultivated plants to express the yield 

expected in a favorable situation. Thus, agricultural droughts affect the entire lifespan of plants, 

respectively, crop growing cycle and therefore the quality of crops and harvested products. 

According to Hatfield & Prueger (2015), the leaves of a plant allow it to absorb gases from the 
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atmosphere through the stomata and capture the solar energy necessary for photosynthesis. An 

important consequence of reduced photosynthesis is the synthesis of toxic oxidizing compounds 

in cells. Drought also alters the nitrogen requirements of crops since these increase with the 

biomass produced. This results in a reduction in grains and, therefore, yield (Hatfield et al., 2014). 

On the other hand, floods can cause waterlogging of the soil and decrease the availability of oxygen 

necessary for the respiration of the plants. Anoxia leads to a slowing down or even a halt in the 

plant's metabolism (Trenberth, 2012). The roots stop functioning, which causes the stomata to 

close (i.e., blocking photosynthesis), resulting in the stop of nitrogen uptake. The germination rate 

can also be affected by  waterlogging of the soil. (Pérez-Ramos & Marañón, 2009). In addition to 

this, the possible loss of topsoil caused by water erosion should be noted as a potential for long-

term loss of water (Teixeira et al., 2013). 

Farmers with limited financial resources and few technological opportunities experience 

significant upheaval and financial loss for proportionately abrupt shifts in crop yields and 

productivity (Pennsylvania, 2018). Subsequently, coping with the challenges of climatic extremes 

is constraining the livelihood of subsistence farmers. Therefore, it has become increasingly 

important to understand better, assess, and predict the impacts of climate on crop growth, 

development, and yield. 

3. Objectives and scope of the thesis 

The main objective of this study is to assess the impact of agroclimatic extremes on crop yields 

(i.e., cotton, maize, and millet) as observed during the period 1990-2017 in the Sudanian and North 

Guinean zones of Mali. The study used machine learning (ML) Algorithms to model the patterns 

relating yield loss to the synchronous occurrence of a combination of several agroclimatic 

extremes such as late onset of the cropping season, early cessation of the cropping season, shorter 

duration of the rainy season, intra-seasonal heat waves, and seasonal rainfall deficit. 

The specific objectives are to: 

(1) identify and quantify the agroclimatic factors of high impacts in Mali 

(2) quantify the relationship between these extremes and cotton, maize and millet, fiber and 

grain yields observed for the period 1990-2017 

(3) use ML algorithms to predict yield loss as a result of the synchronous occurrence of 

agroclimatic extremes; 
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(4) Assess the performance of ML algorithms to diagnose the impact of agroclimatic extremes 

on crop yields in Mali. 

Following the introduction, this document is organized into three chapters, including state-of-the-

art (Chapter 1), Data and Methods (Chapter 2), and results and discussions (Chapter 3). Finally, a 

conclusion and perspectives are provided at the end of the document. 

4. Hypotheses and research questions: 

Research questions 

To test the hypotheses, the research answered the following questions: 

✓ What are the agroclimatic extremes influencing crop yields in Mali? 

✓ Are there separate and combined effects of agroclimatic extremes on yield? 

✓ Can machine learning depict yield loss induced by agroclimatic extremes? 

Hypotheses 

To answer the research questions, following hypotheses will be tested:  

i) Agroclimatic extremes affect crop yields in Mali, 

ii) The synchronized collective influence of agroclimatic extremes outweighs their 

individual and separated effects on grain yield of staple corps, and 

iii)  RF and LR models can predict yield loss as a result of agroclimatic extremes.  
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Chapter I: State-of-the-art 

1.1. Definition of agroclimatic extremes 

1.1.1. False onset of the cropping season 

Farmers usually aim to planting crops with the onset of the rainy season, but a clear demarcation 

of the onset can be difficult. Definitions often include a certain precipitation threshold, e.g., 20 

mm rain over three days, and no seven-day drought period after that (Pashiardis & Michaelides, 

2008). Sivakumar (1988) reported optimum soil moisture for planting. According to Soumaré 

(2008), the first rains in a new crop growing season are paramount in the crop growing cycle, thus 

also crop yields. However, the benefits of early planting may be negated in 'False onset' years, in 

which a wet period that encourages planting is followed by a drought that may reduce seedling 

density or necessitate replanting (Luna et al., 2011; Salack et al., 2020). Therefore, special attention 

should be paid to the role of the False onset of the cropping season in the quality of the cropping 

season.(Salack et al., 2020). The false onset of the cropping season event is a first rain followed 

by a period of drought (AGRHYMET, 2010a). 

According to Salack et al. (2020), the false onset of a cropping season refers to the erratic most 

distribution at the beginning of the rainy season, which involves a heavy rain event followed by a 

long dry spell. Its manifestation during a rainy season creates water stress conditions in the whole 

process of agricultural production, especially from planning and management to carry out 

agricultural activities  (Koufanou, 2019). The false onset, considered to be events that, can have 

negative impacts on agricultural production because it causes the topsoil to dry out, diverting 

germination or emergence of seedling Ati et al. (2002), or driving seedling abortion (Salack et al., 

2020), and the exposure of seeds and seedlings to predators (Luna et al., 2011; Skendžić et al., 

2021). This often forces farmers to resort to re-sowing, transplanting, or replanting to replace 

missing or lost seedlings. However, its identification and forecasting are of fundamental 

importance for the planning and management of agricultural activities. 

1.1.2. Heavy rain events 

Measures in the relative amount of annual rainfall delivered by significant, single-day precipitation 

events show change over time (FAO, 2002). Heavy rain events define as days with precipitation 

in the top 1 percent of all days. Heavy rain events are the most common causes of water stagnation, 
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waterlogging of shallow soils, water erosion of arable land in high runoff areas, and fungal 

infestation of some crop leaves and roots (Salack et al., 2015). 

Depending on its timing, severity, and previous environmental conditions, heavy rainfall events 

can provide much-needed relief from droughts and boost crop productivity, or it can exacerbate 

flooding on already saturated soils and decimate crops. 

1.1.3. Onset of the cropping season 

According to Stewart (1993), the onset of the cropping season is the most agriculturally relevant 

variable related to all the other seasonal variables. The amount of water available to plants depends 

on the onset of the cropping season, end of the cropping season, and length of the cropping season 

(King et al., 2014). 

According to Salack et al. (2020), the  Onset of the cropping season begins when the surface energy 

contrast between the ocean and the continent transforms the flow of tropical winds from the east 

and north-east (south of the equator) in a southwesterly flow, favoring the incursion of moisture 

from the ocean into the continent. Onset of the cropping season identification is based on daily 

analysis of the soil water balance over the initial growth stage (30 days) by identifying and 

quantifying the risk of failure of crop development (Mugalavai et al., 2008). The Onset of the 

cropping season determines the planting date, with planting too early possibly leading to crop 

failure and with planting too late leading to a reduced growing season and crop yield (Dodd & 

Jolliffe, 2001). 

1.1.4. Early cessation of the cropping season 

According to Mugalavai et al. (2008), the early cessation of the cropping season is based on the 

daily soil water balance analysis by identifying and quantifying the water stress in the root zone. 

The length of the growing season for a particular year is obtained from the difference between 

cessation and onset of that year. For Ed et al. (2013), the early cessation of the cropping season 

will result in the shortening of the growing season of crops; therefore, crops will not reach their 

stage of physiological maturity. Iortyom et al. (2017) reported that the early cessation of the rainy 

season has more effect on crop yield than the onset of the rainy season, especially when the harvest 

is approaching its fruiting stage, they require more water to the growth. Therefore, stopping early 

affects the development of the crop. 
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1.1.5. Water requirement satisfaction index 

The Water Requirement Satisfaction Index is an indicator of crop performance based on the water 

availability for the crop during a growing season. FAO, (1977, 1986) studies have shown that the 

WRSI can be linked to crop production using a crop-specific linear yield reduction function. 

Permanent or temporary stress linked to water deficit or its excess limit the growth and distribution 

of vegetation and the performance of cultivated plants more than any other environmental factor 

(Senay, 2004). 

1.1.6. Daily temperature range 

Temperature variations can take several configurations: average temperature changes (monthly 

and annual); changes in high daytime temperatures and low nighttime temperatures; and changes 

in the timing, intensity and duration of extremely hot or cold weather(Hatfield et al., 2011). The 

daily temperature range defines as the difference between the minimum and maximum temperature 

at a given day. 

In general, crops are most sensitive to high temperatures at their reproductive stage and the grain 

filling/fruit ripening stage (Hatfield et al., 2011). However, plants’ responses to each type of 

temperature alteration are species-specific and mediated by photosynthetic activity for biomass 

accumulation. The latter is responsible for plant growth and changes of phenological and 

morphological characteristics occurring during plant development. Thus, each type of heat stress 

affects the growing time and overall plant productivity. Adapting to these effects will require 

different types of responses (Wahid et al., 2007). 

1.1.7. Drought and wet stress 

The wet season is the time of year when most of a region's average annual rainfall occurs. In the 

West African Sahel, the cumulative rainfall of extremely wet days and the maximum number of 

consecutive wet days have increased since the late 1980s, indicating that extreme rainfall events 

have become more frequent during the last decades (Salack et al., 2016). The soil is strongly 

affected by extreme precipitation (Priori et al., 2021). If it is too wet, it clogs the ground. The 

nutrients in the soil can be leached or drained, thus will not be available to the roots of the plants 

(Indoria et al., 2020). This leads to poor growth and overall poor health and can also lead to 

bacteria, fungi, and mold growth in the soil. Wet stress results from an imbalance between the 

supply provided by soil water and the amount needed by the plant as determined by the 
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atmosphere, assuming complete plant cover (Allen et al., 1998). Wet stress arises from a lack of 

water supply concerning the water contained in the soil becoming insufficient for the needs of the 

plants, the rate of intense transpiration, which can contribute to a sharp reduction in the level of 

water contained in the cells of the plants (Rahman & Hasegawa, 2012). The dry season is a yearly 

period of low rainfall. Seasonal drought occurs in climates with well-defined annual rainfall (i.e., 

unimodal rainfall regime) and dry seasons like Mali (Sahelian climate). 

It is recognized when temperatures induce high rates of evaporation and transpiration. Even 

frequent showers may not provide enough water to restore the amount lost; This leads to water 

deficiency, water deficit in the soil, and affects crop yields. According to Fortier (2021), a soil 

water deficit is a measurement index that makes it possible to differentiate between the field 

capacity and the actual soil moisture content. 

1.1.8. Heat Stress  

Temperature is a primary factor affecting the rate of plant development (Hatfield & Prueger, 2015). 

Therefore, heat stress has been recognized as a significant threat to food supply and security 

(Teixeira et al., 2013). Furthermore, crops and vegetation are among the most vulnerable systems 

to climate change, particularly climate extremes (Sun et al., 2019). 

The rate of growth and development of plants depends on the surrounding temperature. Each 

species has a specific temperature range represented by a minimum, maximum, and optimum 

(Hatfield & Prueger, 2015). The responses to temperature differ among cultivated species 

throughout their life cycle and are mainly phenological responses, i.e., stages of plant development 

(Hatfield et al., 2014). 

The stresses of low and high temperatures have a detrimental effect on plants. Temperature 

increases can lead to yield reductions of between 2.5% and 10% for several agronomic species 

throughout the 21st century (Hatfield et al., 2011). Decreasing or increasing temperatures above 

specific thresholds during the growing season triggers cold and heat stress for various crops, 

limiting their growth and metabolism and leading to significant crop losses (Wahid et al., 2007). 

In addition, it damages cell division and amyloplast replication in cereals, resulting in reduced 

crop yields. 

Crops sensitive to the photoperiod would interact with temperature, causing a disruption of 

phenological development (Hatfield & Prueger, 2015). In general, extremely high temperatures 

during the breeding phase will affect pollen viability, fertilization, and kernel or fruit formation 
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(Hatfield et al., 2011). Chronic exposures to extreme temperatures are detrimental during the 

reproductive stages of development and reduce yield potential during pollination, the initial stage 

of grain or fruit set (Hatfield & Prueger, 2015). 

1.2.  Modeling the effects of weather and climate extremes on crops 

According to Feng et al. (2018), the standard methods of exploring climate-yield relationships are 

crop (simulation) modeling and statistical analysis. Crop models that take into account - in addition 

to crop - multiple climatic factors, , soil, and management parameters, can promote a better 

understanding of the crop response to climate (Rosenzweig et al., 2014). The main advantage of 

using a crop model is that it completely characterizes the cropping system. If crop models are 

accurately calibrated with observed data, they can be applied to simulate possible interactions with 

management to better cope with predicted climate changes (Liu et al., 2009). However, most crop 

models perform poorly in dealing with the effects of extreme weather events on crop growth and 

development (Moriondo et al., 2011). This poor performance is related to the simplified 

description of specific processes, leading to inaccurate results. In addition, crop models require 

several years of experimental data to train and calibrate in the local environment (Chen et al., 

2010), and recalibration should be performed when used in other regions. 

Due to these limitations in crop models, some linear statistical models, such as multiple linear 

regression, have been widely used to characterize the relationship between yields and climate 

variables (Tebaldi & Lobell, 2008). Linear models are easy to handle and inexpensive to calculate 

(Feng et al., 2018). With the increasing availability and improving quality of observed data, linear 

models generally perform well. Innes et al. (2015) suggested a superior performance of linear 

models compared to crop models to identify climate-yield relationships. However, linear models 

are unable to detect nonlinear relationships or identify factors with multicollinearity. 

Multicollinearity occurs when two or more explanatory variables in a multiple regression model 

are strongly linearly correlated, resulting in incorrect coefficient estimates in the multiple 

regression (Siegel, 2016). Over the past decades, ML algorithms have gradually gained wide 

attention and are applied in many fields such as agriculture. ML methods can assess the nonlinear 

and hierarchical relationships between predictors and response using a whole learning approach 

(Shalev-Shwartz & Ben-David, 2014). They generally work well in prediction compared to the 

traditional linear regression model. Everingham et al. (2015) reported that ML is superior to 

temporary and time-consuming approaches.  
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Chapter II: Data and Methods 

 2.1. Description of the study area 

Ensuring food security is the first step in achieving sustainable development for any nation 

(Soumare, 2004). Food security has always been at the forefront of the development objectives of 

successive governments in Mali (CSA-Mali, 2017). Agricultural production in Mali, as in most 

countries of the Sahel, takes place under complex and uncertain natural conditions (Soumaré et al., 

2020). The first limiting factor for the development of crops is the climate and particularly 

agroclimatic extremes. The study area offers the most potential for Mali and is the leading 

agricultural region in Mali. The crop cultures concerned by this study are of paramount importance 

because of their multiple uses for the Malian population and the Malian government. All parts of 

these crops are used either for human food (grains) and livestock (grains, stems, leaves), the 

construction of sheds, fences, fuel (stems), canning bag (fiber of cotton stems), crafts (stems), and 

exports (cotton fibers). While the weight of climatic constraints on agricultural development was 

sufficiently emphasized in Sudano-Sahelian Africa, studies have rarely considered the impact of 

climatic extremes on crop yields (Roudier et al., 2011). These are the different factors and 

arguments that motivated the choice of this area in addition to the availability of agricultural and 

climatic data. Delimited by the borders of Guinea and Côte d'Ivoire to the south, Burkina Faso to 

the east, and the Niger River to the north, the Mali South zone is the breadbasket of the country. It 

feeds nearly a third of the Malian population (Warner, 2018). 

This study is carried out in the south of Mali, in the Sudanese and Sudano-Guinean climatic zones. 

The study area is located between 10° and 14.5° North latitudes and 4° and 11° West longitudes 

(Soumaré et al., 2020). This zone covers an area of 134,518 km2. In the study area, 3,346 

administrative villages are located. Approximately 4,108,849 inhabitants live here. The villages 

are spread over 244 municipalities (CMDT, 2018). The study area covers the entire administrative 

region of Sikasso and part of the administrative regions of Kayes, Koulikoro, and Ségou (Figure 

1). 

The climate in Mali is influenced by the seasonal mobility of the continental, dry and warm air 

mass coming from the Sahara (Harmattan) and the humid air mass coming from the Saint Helena 

anticyclone to the south. west (maritime trade winds) (Blanchard, 2011). Their convergence gives 

rise to the Intertropical Convergence Zone (ITCZ), which moves from south to north following 

the sun's movement. In January, the ITCZ is in the south of the area, the Harmattan dominates, and 
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the climate is dry and hot. The maritime trade winds become loaded with moisture during the hot 

season as they pass over the ocean and the equatorial zone. Their reinforcement moves the front 

towards the north of the country. During the rainy season, the humid air mass gives rise to rains 

when it cools by elevation (Soumaré, 2008). 

The rainy season begins when the humid air masses associated with the monsoon reach the country. 

It runs from March to October. In this period, the ITCZ is in the north of the country towards 17° 

N latitude. The dry season lasts from November to March. Its duration is variable, like that of the 

rainy season, depending on the latitudinal position. It varies from 12 months in the Saharan part, 

which the humid air masses rarely reach, to 6 months in the pre-Guinean zone (Soumare, 2004). 

According to the FAO classification in 2011, Mali-South is located in the dry to sub-humid 

agroclimatic zone framed by a semi-arid fringe in the north and humid to sub-humid in the south 

(Soumare, 2004). It lies between isohyets of 600 mm in the north and can exceed 1,200 mm in the 

south (Figure 1). 

 

Figure 1: Distribution of the long-term (1990-2020) average annual rainfall (mm) over Mali.  
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Source: European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 is the fifth generation ECMWF 

reanalysis for the global climate and weather for the past 4 to 7 decades  

According to Blanchard (2011), the southern zone of Mali belongs to the Sudanese domain 

comprising two agroecological zones. The Sahel-Sudanian zone is characterized by the cultivation 

of millet, sorghum, cotton, and legumes. The natural vegetation is composed of wooded to shrub 

savannah. In the Sudano-Guinean zone (900 to 1,200 mm/year of rainfall during 80 days), the 

cultivation of cotton, maize, and legumes is accompanied by scattered distributed of dry cereals. 

The vegetation is characterized by a mosaic of shrub or tree savannas, and woodland forests 

(Figure 2), as illustrated by the ecological zones of Mali. 

 

Figure 2: The Global Land Cover map of Mali; Source: Global Land Cover 2000  

The relatively flat terrain of these zones (Sahelo-Sudanese and Sudano-Guinean) in Mali was 

affected by vertical movements, which gave rise to the Mandingo plateau (located between the 

Senegal river near Medina then bends towards the West until the vicinity of Farabana (around 14 

12’lat. N.) 21km from “La Faleme”; from this point the boundary runs south-east, for more than 

200km, to Dabia (12 45 ’lat N; 13 30’ long W.) (Chudeau, 1921)), and the Dogon plateau ((14 ° 
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34 ’N), located in the Mopti region, is located between the central Niger delta to the west and the 

Seno plain to the south-east (Diallo, 2017)) (Keita, 2000). The sedimentary formations of the area 

are various. The Koutiala region is based on extensive, homogeneous, and thick formations of 

siliceous sandstone with rolled quartz seeds, characteristic of the Koutiala sandstones. To the 

south, the Sikasso region is based on fine-grained rounded quartz sandstones and ferruginous and 

clayey cement (Dakoure, 2011). 

The soil formation results from the topography, lithology and climate action, time of evolution, 

and land use/cover and management). In this area of Mali, soils are formed from the underlying 

sandstones (with the exception of the western area in Mali-South). These soils result from the deep 

weathering of rocks under the action of the Quaternary period, characterized by an alternation of 

rainy and arid periods (Blanchard, 2011). The minerals of the basement rock have undergone 

profound reworking and were altered by mono-siallitization. 

In the study area, the climate (heavy rain and heat) causes a separate migration of clays and iron 

hydroxides, which accumulate in separate layers (Dosso & Ruellan, 1993). Reduced vegetation 

protects the soil less, and soil erosion processes cause lateral transfer of material and large areas 

of colluvial deposits during the dry period of the season. Without insufficient drainage and a low 

slope, colluvium accumulates without being drawn into the hydrographic network (Traore, 2000). 

The soils of the Mali-south zone (Figure 3) correspond to the CPCS (Commission de Pédologie et 

de Cartographie des Sols) classification to tropical ferruginous soils (little or no leached and 

leached), to Lixisols according to the revised legend of the FAO (2015), or Alfisols according to 

the soil taxonomy (Keita, 2000). 
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Figure 3: Pedological map of Mali.  

Source: European Soil Data Centre (ESDAC). 

(ACha = Haplic Acrisols ; ACpl= Plinthic Acrisols; ARbr= Brunic Arenosols; ARpr= Protic Arenosols ; ARwl= Hypoluvic 

Arenosols; CMeu= Eutric Cambisols ; CMvr= Vetric Cambisols ; FL= Undifferentiated Fluvisols ; FLeu = Eutric Fluvisols ; 

GL= Undifferentiated Gleysol; GYhaye= Haplic Gypsisols; LP= Undifferentiated Leptosols ; LPli= Lithic Leptosols ; LVgl= 

Gleyic Luvisols; LXha= Haplic Luvisols; NTdy= Dystric Nitisols; NTeu= Eutric Nitisols; PLsc= Solodic Planosols; PTpt= 

Petric Plinthosols; PTpx= Pisoplinthic Plinthosols; RGeu= Eutric Regosols; SC= Undifferentiated Solonchak; SChaty= Haplic 

Solonchaks; VRha= Haplic Vertisols ; VRpe= Pellic Vertisols ; WR= Water body, Source : Jones et al. (2013))  
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2.2. Crop yield and Climatic Data sets 

Agricultural data (cotton, maize, and millet) were collected from the different subsidiary (districts) 

over the last 27 years from 1990 to 2017 from the General Directorate of the Compagnie malienne 

pour le développement du textile (CMDT; www.cmdt-mali.net). Additional climatic datasets 

comprising including rainfall temperature and solar radiation were provided by the Competence 

Centre of the West African Science Service Center for Climate Change and Adapted Land Use 

(WASCAL; www.wascal.org) and Mali-Météo (www.malimeteo.ml). These data are from 1990 

to 2017. Not having obtained temperature data (minimum and maximum) for some areas where 

yield data was collected, we had used the closest climate stations to fill this temperature data gap 

for analysis. 

The different figures (4 to 12) below represent the correlation between the total surfaces and total 

production over a period of time for cotton, maize and millet in Fana, Kita and Koutiala 

respectively. This correlation does not stand for the causality, but only association between the 

two variable and the direction of variation of one compared to another (Chesneau, 2018). The plein 

line represent the regression line, which is to interpret the direction of the association, positive, 

negative or neutral. If the line is parallel to the x of axis, it means the neutral meaning that the two 

variables are not related in any way. Its shift clockwise or anticlockwise means the negative and 

positive association respectively. 

 

Figure 4: Historical characteristics of cotton yields (Kg/ha) over time and space (ha) of Fana district 

 

http://www.cmdt-mali.net/
http://www.wascal.org/
http://www.malimeteo.ml/
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Figure 5: Historical characteristics of maize yields (Kg/ha) over time and space (ha) of Fana district 

In Fana, the surfaces dedicated to cotton has been stable over the two decades while the total yield 

of the same crop has relatively been increased. This stability of surfaces of arable lands may be 

due to the urbanization and lack of surface for more arable land. This pressure on lands is because 

Fana is one of the city the closest to CMDT zones to the capital city of Mali, thus leading to 

occupation of lands for other activities such housing and business. The increase in total cotton 

yield may be explained by the improvement in cotton sector: research, extension services, 

motivation of farmers for the cash crop. 

Both maize total surfaces and total yield decrease over the same period of time. This may be due 

to the abandonment of maize production for other crop that bring more incomes or requires less 

effort. At the same time the surface of millet as well as its total yield increase. The millet is less 

demanding in term of water, fertilization and production costs compared to maize, thus pushing 

more farmers to choose this crop over the maize. The millet is more appreciated than maize since 

it constitutes the most consumed cereals in this area. This cereal has also benefited more promotion 

as it tolerates the drawback of climate change than other cereals locally produced. Chauvin et al. 

have found the similar trend since 2012 between cash crops and staple foods in sub-Saharan Africa. 
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Figure 6: Historical characteristics of millet yields (Kg/ha) over time and space (ha) of Fana district 

 

Figure 7: Historical characteristics of cotton yields (Kg/ha) over time and space (ha) of Kita district 

 

Figure 8: Historical characteristics of maize yields (Kg/ha) over time and space (ha) of Kita district 
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Figure 9: Historical characteristics of millet yields (Kg/ha) over time and space (ha) of Kita district 

In Kita, the results of correlation analysis between the surfaces and total yields of the three crops 

are I contrast with the results observed in Fana. All three crops have decreasing yield along the 

considered time yet the cotton and maize have increased in surfaces. The extension of cotton and 

maize production may be imputable to the income benefit drawn from the cotton and promotion 

of maize as crop to ensure food security in the area. The letter crop is one of the most valued staple 

foods, thus taking over the millet though both, maize and millet are promoted. The decline in 

production in general may be caused by the pressure on agricultural lands since the same lands are 

always used for production. This lack of fallow and its negative subsequent results on agriculture 

in noticed by OECD & FAO (2016). 

 

Figure 10: Historical characteristics of cotton yields (Kg/ha) over time and space (ha) of Koutiala district 
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Figure 11: Historical characteristics of maize yields (Kg/ha) over time and space (ha) of Koutiala district 

 

Figure 12: Historical characteristics of millet yields (Kg/ha) over time and space (ha) of Koutiala district 

Regarding all crops, the case in Koutiala is an exception. The three crops have all increased in 

surfaces and total yields over the observation time. Nevertheless, the cotton has the smallest yield 

increase compared to the millet and maize. The latter has the biggest increase in the surfaces 

followed by the millet. This because Koutiala is the most industrialized zone after the capital city, 

Bamako. It also called as the “capital of white gold, the cotton” due to its experience and its place 

in national cotton production. Therefore, Koutiala has benefited all new techniques and 

technologies that are introduced in the country. Thanks to cotton, the other crops, millet and maize, 

benefit all needed inputs for crop production. It is also because of the diversification programs by 

CMDT, Government and other stakeholders in the area has always promoted cereal production. 

Though underfunded the agriculture (both cash crops and staple foods) has been improved thanks 

to allocation of high budget, extension services, infrastructures, technologies, laws, policies and 

business environment (FAO, 2021b). 
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Figure 20 represents the study area. It is located in the south of Mali. Initially, this study aimed to 

model all the main crops (i.e., cotton, maize, millet, and sorghum) produced in the study area. 

However, for reasons of availability of data for a long series, we had been obliged to use to consider 

the zones having data series between 1990 and 2017. As indicated in Figure 20, we had three types 

of data that come from: of each sector. 

 

Figure 13: Location map of meteorological stations and agricultural data sources. Source: IER (Institut d’Economie 

Rural)  

There are a total of 28 sectors which are alienated between 3 subsidiaries (districts) (subsidiary 

Center (Fana), Western subsidiary (Kita), North-eastern subsidiary (Koutiala)). of CMDT 

(Compagnie Malienne de Développement du Textile). At the level of the southern subsidiary 

(Sikasso), only the sectors of the Bougouni sub-subsidiary (called Bougouni cooridination). No 

sector of Sikasso subsidiary was concerned for lack of a series of data consistent with the period 

studied (1990 to 2017) for agricultural and climatic data. There was little area in which we could 

find all the data (agricultural, rainfall, temperatures, solar radiation). 

A Python script with the NearestNeighbors and shapely.geometry packages has been developed to 

allow assignment of synoptic stations to the area without synoptic station data, at a distance of 100 
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km. NearestNeighbors arranges the unsupervised instruction of the nearest neighbors. It acts as a 

seamless interface with three distinct nearest neighbor algorithms: BallTree, KDTree, and a habit-

based brute force algorithm in sklearn.metrics.pairwise (Goldberger et al., 2004). Shapely is a 

Python package for set-theoretic analysis and manipulation of planar features using (via Python's 

ctypes module) functions from the well-known and widely deployed GEOS library (Gillies, 2018). 

Since some agricultural production areas did not have climate data, use of data from stations near 

each agricultural production area was made to fill this climate data gap. This condition is motivated 

by the fact that OMM (2017) in its “WMO Guidelines for the Calculation of Climate Normals” 

says that It is possible to use a composite series of data obtained from a set of stations of this type 

for the calculation of climatic normals. The fundamental condition to be fulfilled is that the merged 

data set is homogeneous, either because the sites taken into account are sufficiently similar, or 

because the necessary adjustments have been made. These data consisted of temperatures (min 

and max) and solar radiation. All sectors had agricultural (yield) and rainfall data. These two have 

not been awarded. 
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2.3. Algorithmic computation of extreme Agroclimatic Indices 

The indices that are the subject of this study are listed in Table 1. There are six of them. It is the calculation of these indices that allowed 

us to test and train the random forest (RF) models and logistic regression (LR) models. The Onset cropping season, end of cropping 

season are expressed in Julian day, the False onset of the cropping season in week number (Week of the year). The crop yield anomaly 

was defined according to a peasant perception which has the method of comparing the yield of the current season with the previous 

season. If the yield the current season is higher than that of the previous season, this means that the production is positive, in the contrary 

case the negative or deficit season. The Heat Wave number is expressed in number of times when the temperature threshold is exceeded 

during the season, if the number is less than or equal to 0, it is considered that there is no heat stress cropping season, and if it is greater 

than 0, it is considered that there is a Heat cropping season. 

Table 1: Algorithmic computation of extreme Agroclimatic Indices  

Indicators Definition (mathematical expression) Unit Thresholds Tag name Variables References 

Onset of 

cropping 

season 

Planting date: The date after May 1st when rainfall accumulated over 3 consecutive 

days is at least 20 mm and when no dry spell within the next 30 days exceeds 20 days.  

Julian day Inter-seasonal OCS 

anomaly:  

If OCS < 0 ➔ Late Onset  

If OCS > 0 ➔ Early Onset  

OCS Daily rainfall 

(mm) 

Sivakumar (1988) 

modified by Salack 

et  al. (2016)  

End of the 

cropping 

season 

End date: The date after September 1st when no rain occurs over a period of 20 

consecutive days. 

Julian day ECS anomaly:  

If ECS < 0 ➔ Early 

cessation  

If ECS > 0 ➔ Late 

Cessation 

ECS  Sivakumar (1988) 

Length of the 

cropping 

season  

Length of the cropping season is the result of subtracting the date of ECS in Julian 

day from the date of OCS in Julian day. 

𝐿𝐶𝑆 = 𝑂𝐶𝑆 − 𝐸𝐶𝑆 

Number (#)  LCS   

False onset of 

the cropping 

season 

The false onset is the day after March 15th (before July 15th), when the first efficient 

rainfall (FER) is followed by a dry spell of at least 10 days (xDS).  

Extraction algorithm  

1) between March 15th and July 15th, extract the date for which rainfall ≥ 9.75 mm 

(FER). and its corresponding week number. 2) From the date of the FER, extract the 

start date (STDATE) and the week number of the dry spell ≥ 10 days (xDS). If 

Week 

number 

(Week-of-

the-year) 

FER = 9.75 mm/day 

xDS >= 10 days 

 

FON Daily rainfall 

(mm) 

Koufanou (2019) ; 

Salack et al. 2020) 
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STDATE is the FER date are in the same week or their week numbers differ by 1 or 

2, then the FER date is a false onset. 

𝐹𝑂 =  {   
1 𝑖𝑓 𝑥𝐷𝑆 − 𝐹𝐸𝑅 ≤ 2;    𝑡ℎ𝑒𝑛 𝐹𝑎𝑙𝑠𝑒 𝑂𝑛𝑠𝑒𝑡 

 
0 𝑖𝑓 𝑥𝐷𝑆 − 𝐹𝐸𝑅 > 2; 𝑡ℎ𝑒𝑛  𝑁𝑜 𝐹𝑎𝑙𝑠𝑒 𝑂𝑛𝑠𝑒𝑡 

 

Dry / Wet 

stress  

 

 

 

 

 

Inter-seasonal crop yield anomaly: 

∆Xi = X(i) – X(i-1) 

∆𝑋i = first difference of Yield (𝑋) at year i, 

𝑋(i) = value of time series 𝑋 at year i 
𝑋(i−1) = value for the (i − 1)th year 

 

Not 

Available  

 

Inter-seasonal crop yield 

anomaly: 

If ∆X ≤ 1 dry season 

 ➔ Yield loss 

If ∆X ≥ 0  

➔ wet season 

 

 

 

 

 

 

 

Daily rainfall 

(mm) 

Katz and Glantz 

(1986); Lebel and 

Ali (2009) 

; Salack et al. 2020) 

 

Heat Wave 

Number  

1. Daily Heat Stress (DHS) 

𝐷𝐻𝑆 =

{
 

 
   

0.0  for 𝑇𝑚𝑒𝑎𝑛   < 𝑇𝑐𝑟𝑖𝑡
𝑇𝑑𝑎𝑦 − 𝑇𝑐𝑟𝑖𝑡

𝑇𝑙𝑖𝑚 − 𝑇𝑐𝑟𝑖𝑡
  for   𝑇𝑐𝑟𝑖𝑡  ≤  𝑇𝑚𝑒𝑎𝑛 < 𝑇𝑙𝑖𝑚  

1.0  for 𝑇𝑚𝑒𝑎𝑛   ≥ 𝑇𝑙𝑖𝑚 

 

Where 

Tmean =  
(Tmax + Tmin)

2
 

                    Tcrit           Tlim 

Cotton           30 °C         38 °C 

Maize            30 °C         35 °C 

Millet            35 °C         42 °C 

Sorghum       35 °C         40 °C 

2. Seasonal Heat Wave Number (HWN) 

𝐻𝑊𝑁𝑠𝑒𝑎𝑠𝑜𝑛 =  ∑𝐷𝐻𝑆

𝐸𝑅𝑆

𝑂𝑅𝑆

 𝑤ℎ𝑒𝑛 𝐷𝐻𝑆 = 1 

HWNseason = cumulative number of DHS per season between Onset (ORS) and 

cessation (ERS) of the rainy season 

DHS = Daily Heat Stress only when Tmean ≥ Tlim 

Number (#) Inter-seasonal HWN 

anomaly: 

 

If HWN ≤ 0 ➔ Little to 

no Heat Stress cropping 

season  

 

If HWN > 0 ➔ Heat stress 

cropping season 

HWN Daily 

minimum & 

maximum 

temperatures 

(oC) 

Teixeira et al. 

(2013); USAID 

(2014) 

USAID (2014); 

Fakhri Bazzaz et al. 

(1997) 

Crop yield 

anomaly 

Inter-seasonal crop yield anomaly: 

∆Xi = X(i) – X(i-1) 

∆𝑋i = first difference of Yield (𝑋) at year i, 

𝑋(i) = value of time series 𝑋 at year i 
𝑋(i−1) = value for the (i − 1)th year 

 

Kg Inter-seasonal crop yield 

anomaly: 

If ∆X ≤ -50 Kg 

 ➔ Yield loss 

If ∆X ≥ +50 Kg  

➔ Yield gain I <= 1.5 wet 

season 

 

CYA 

Total Yield of 

individual 

crops (Cotton, 

Maize, Millet) 

Own definition 

adapted based on 

field experiences 
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2.4. Logistic and Random Forest Multi-Linear Regression Models 

2.4.1. Logistic Regression Model 

Logistic regression analysis is a popular and widely used analysis similar to linear regression 

analysis, except that the result is dichotomous (Tatum et al., 2013). Logistic regression is one of 

the models of multivariate analysis. It measures the association between the occurrence of an event 

(qualitative explained variable or predictand) and the factors likely to influence it (explanatory 

variables or predictors) (El Sanharawi & Naudet, 2013). The contribution of each independent 

variable (Table 1) was assessed through relative importance measures calculated with Python. It 

is used to explain the relationship between a continuous dependent variable (crop yield) and two 

or more independent variables (agroclimatic extremes Table 1) (Feng et., 2018). 

Crop yield is affected by climatic and non-climatic factors. To separately assess the effect of 

climate on yield variation, an increase in yield by factors other than climate should be excluded. 

In this study, a first difference method (Lobell & Asner, 2003), was used. This method is easy to 

implement and can minimize the influence of non-climatic factors, helping to explain climate-crop 

yield relationships. All-time series of crop yields anomaly (CYA) were calculated using the first 

differences approach using Equation 1: 

Equation 1: De – trending method 

∆𝑋(𝑡) = 𝑋(𝑡) − 𝑋(𝑡−1), 𝑡 = 1990, 1991,… , 2017  

where ∆𝑋(𝑡) denotes the first difference of X at year t, ∆𝑋(𝑡) denotes the values of times series X 

at year t and 𝑋(𝑡−1) is the value for the (t-1)th year.  

Logistic regression (LR) model explains the relationship between one continuous dependent 

variable and two or more independent variables. A variety of statistical techniques were used to 

develop crop-climate relationship, forecast models. The most common method is multiple linear 

regression, and random forest (RF) methods. However, when the predictand (crop yield) is "yes" 

or "no", binary logistic regression (BLR) often is employed (Shafer & Fuelberg, 2008). The BLR, 

also known as the binomial logit model, is an estimation technique for equations with dummy 

dependent variables that avoids the unboundedness problem of the linear probability model by 

using a variant of the cumulative logistic function (Wooldridge et al., 1997). 

Yield loss is defined when CYA is less or equal to -50 kg (Table 1). Hence, we define binary 

predictands according to the nonlinear equation (Shafer & Fuelberg, 2008; Lawson, 2018; Salack 

et al., 2020). 
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Equation 2: Logit link function 

ln (
𝑃𝑖
1 𝑃𝑖

) = 𝑏0 + 𝑏1 + 𝑥1 +⋯+ 𝑏𝑘𝑥𝑘 

Equation 3: Relationship between the predictors 

𝑃𝑖 = 
exp (𝑏0 + 𝑏1 + 𝑥1 +⋯+ 𝑏𝑘𝑥𝑘)

1 + exp (𝑏0 + 𝑏1 + 𝑥1 +⋯+ 𝑏𝑘𝑥𝑘)
 

The where Pi is the predicted probability resulting from the set of candidate predictors (x1, x2, . . 

., xk), rainfall, rainy days, relative humidity, daily temperature range, wind speed, and solar 

radiation. The quantity on the left of equation (2) is the logit link function, which relates the log 

of the odds ratio (p/1-p) to a linear combination of predictors (Shafer & Fuelberg, 2008; Rajeevan 

et al., 2012). The parameters (b0, b1, . . . , bk) are estimated by maximizing a log-likelihood 

function using iterative methods (Wilks, 2006). Equation (3) guarantees that the probabilities are 

bounded within the interval (0, 1), and the relationship between the predictors and the response 

variable follow Bernoulli distributions (Lawson, 2018, Salack et al., 2020). 

2.4.2. Random Forest Model 

Random forest (RF) model  is an ensemble learning algorithm based on classification and 

regression trees (Feng et al., 2018). Random forests are a combination of tree predictors such that 

each tree depends on the values of a random vector sampled independently, and with the same 

distribution for all trees in the forest. The generalization error for forests converges to a limit as 

the number of trees in the forest becomes large. The generalization error of a forest of tree 

classifiers depends on the strength of the individual trees in the forest and the correction between 

them (Breiman, 2001). 

The RF consists of many independent trees, where each tree is generated by bootstrap samples, 

leaving a number of the aggregate sample for validation. Each tree split is determined using a 

random subset of the predictors for each node. The final result is the average of the results of all 

trees. RF can explore nonlinear and hierarchical relationships between predictors and response. It 

has been applied in agricultural studies, showing high precision and an ability to model complex 

interactions between variables (Feng et al., 2018). However, this method behaves like a "black 

box" since individual trees cannot be examined separately, and it does not calculate regression 

coefficients or confidence intervals (Cutler et al., 2007). 
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The Random Forest consists of a set of independent decision trees. Due to the double random 

selection, each tree has a fragmented view of the problem: 

✓ Randomly select and replace observations (rows in the database) (called tree bagging), 

✓ Random selection of variables (database columns) (called feature sampling). 

All these independent decision trees come together. The random forest prediction on unknown 

data is the average of all trees (or votes, in the case of classification problems). 

The basic idea of this algorithm is quite intuitive. 

Random forest works on the same principle: Random Forest uses a few simple estimators (with 

lower individual quality) instead of a complex estimator that can do it all. Each estimator has a 

fragmented view of the problem. Then put all of these estimates together to get a big picture of the 

problem. It is the combination of all these estimators that makes the prediction very efficient. 

2.4.3 Model Output Statistics  

According to Roebber (2017), it is possible (in an approach conceptually similar to the Taylor 

diagram) to exploit the geometric relationship between four measures of dichotomous forecast 

performance: probability of detection (PoD), false alarm ratio, or its opposite, the success ratio 

(SR), bias and critical success index (CSI; also known as the threat score). 

For good forecasts, PoD, SR, bias, and CSI approach unity, such that a perfect estimate lies in the 

upper right of the diagram. Deviations in a particular direction will indicate relative differences in 

PoD and SR, and consequently bias and CSI. Immediate visualization of differences in 

performance is thus obtained. Optimal increases in accuracy are obtained by moving at 45 degrees, 

that is, by maintaining unbiased forecasts through simultaneous increases in detection and 

reductions in false positives. Skill is assessed by plotting the forecast quality measure relative to a 

reference forecast (climatology, persistence, or any other desired baseline). 

The influence of sampling variability is estimated using a form of resampling with replacement 

bootstrapping from the verification data. The 95th percentile range for SR and PoD is plotted as 

"cross-hairs" about the verification point, and simultaneously displayed variation in bias and CSI. 

Several new samples of the same size as the original can be created using the sampling frequencies 

of observed and forecast "yes" and "no" entries (i.e., the marginal frequencies), and the 25th and 

95th accuracy measures are computed from these "climatological" samples to generate the 

95th percentile range. 
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The mean absolute prediction error (MAE), the mean squared error (MSE), the coefficient of 

determination (R2) and the Lin concordance correlation coefficient (LCCC) (Lin, 1989; Nickerson, 

1997) . These indices were calculated according to the following formula. The LME measures the 

average prediction bias, and the MSE represents the sample standard deviation of the differences 

between the predicted and observed values. The LCCC represents the extent to which predicted 

and observed values follow the 45° line across the origin. The forecasts become more precise as 

MAE and RMSE approach 0 and R2 and LCCC approach 1. 

Equation 4: Mean Squared Error 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛

𝑖=1
 

Equation 5: Root-Mean-Squared Error 

𝑅𝑀𝑆𝐸 = √ 
1

𝑛
∑ (𝑃𝑖  − 𝑂𝐼)2

𝑛

𝑖=1
 

Equation 6: Coefficient of Determination (R2) 

𝑅2 = 

(

 
∑ (𝑂𝑖 − 𝑂 )
𝑛
𝑖=1  (𝑃𝑖 − 𝑃 )

 √∑ (𝑂𝑖 − 𝑂)
2

𝑛
𝑖=1  √∑ (𝑃𝑖 − 𝑃)

2
𝑛
𝑖=1 )

 

2

 

Where Pi and Oi are the predicted and observed values, respectively; O and P express the mean of 

the observed and predicted values, respectively; n is the number of samples; σP and σO are the 

variances of the predicted and observed values; and r is the Pearson correlation coefficient between 

the predicted and observed values.   
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Chapter III: Results and Discussion 

3.1. Identification and quantification of agroclimatic extremes of strong impacts in Mali 

A pairwise correlation analysis was performed on each crop for each village. The results of this 

analysis show variation from one village to another, but mainly two variables were correlated. The 

Seasonal rainfall was correlated with many variables such as Onset of cropping season, End of 

cropping season, and temperature. The Seasonal rainfall and Onset of cropping season were 

correlated at more than 50% level in village performing maize such as Bougouni, Dogo, Garalo 

(Bougouni sub-subsidiary), Fangaso, Karangaso, Kimparana (Koutiala subsidiary) while, 

Koumantou and Yanfolila (Bougouni sub-subsidiary). It was also correlated to End of cropping 

season in most of the villages dominated by diversification of maize, cotton, and millet. This the 

case in Djidian, Kita, Kokofata and Sebekoro. The Seasonal rainfall was correlated to Tp in maize 

production in only Kolondieba. 

Using Logistic Regression analysis, every variable having a correlation of more than 40% was 

dropped since this value is considered to be high enough to affect yields us suggested by Chalil 

(2020). In this line, the maize production was positively affected the variables Crop yield anomaly 

(CYA) and Effective First Rain at 10% significant level in Bougouni. An additional unit of 

Effective First Rain will increase the CYA by a coefficient of 0.00551 in this village. The CYA 

was negatively affected by Onset of cropping season and Effective First Rain at 5% level and by 

the Tp at 1% in Karangana. A unit of increase in these three variables will decrease the CYA in 

Karangana by 0.01110, 0.0205 and 0.0184, respectively. The Effective First Rain that affected the 

CYA positively at 5% level in Koumantou by a coefficient of 0.00583. 

There is no significant value for millet (Table 2) for its resistance to different climatic factors and 

its adaptability. This is confirmed by Vintrou (2012) and Kouressy et al. (2008), who explain that 

millet is well suited to this area because it is resistant and has a short growth cycle of around 90 

days. Vintrou (2012) explains that the timing of a specific phenological stage of millet can vary 

from year to year due to variations in the start of the planting season. 

The opposite results between maize villages and the villages of crop diversification can be 

explained by the role of cash crop and staple food. In the monoculture, maize benefits more 

attention from farmers, while in crop diversification zones more attention is given to cotton, which 

is the main cash crop in the area (FAO, 2017). Additionally, cotton production has historically 
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required more attention in research related to climate adaptation, tolerance and resistance done by 

CMDT, the highest institution in charge of cotton in Mali, and its partners (Camara, 2016; Soumare 

& Havard, 2017). According to Robichaud (2009), cotton is produced for commercial purposes 

and regenerates significant financial resources. Furthermore, the acquisition of agricultural 

subsidies is conditional on cotton production (Vintrou, 2012). This motivates the attention given 

to its production and the reservation of arable land to produce this crop. 

Surprisingly, neither in cotton production (Table 2) nor millet production (Table 3), the CYA was 

affected by any climate factors. The resistance of millet can explain this to the climate variabilities. 

As well as the cotton is concerned, the reason for the absence of CYA is that more research has 

been vulgarized in the cotton production system for more resistance and tolerance of this cash crop 

to climate change effects. Additionally, cotton production benefits more infrastructures and 

extension services since it is the highest contributor to the Malian agricultural products export 

(Bagayoko, 2014; IER et al., 1999). Many studies have seen crop diversification as the best way 

to counter the adverse effects of climate change by improving environmental aspects and socio-

economic benefits (Kiani et al., 2021). 

Table  2: Correlation coefficients between cotton yield and individual agroclimatic parameters. 

 Note: *, ** and *** means 10%, 5% and 1% respectively. 

Stations OCS ECS FO HW Rtot LCS 

Djidian -0.11 -0.10 0.04 -0.06 -0.07 0.00 

Kita -0.18 0.02 -0.01 -0.13 -0.27 0.04 

Kokofata -0.19 0.00 0.10 -0.21 -0.21 0.15 

Sebekoro -0.19 -0.12 -0.11 -0.13 -0.17 0.02 
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Table  3: Correlation coefficients between maize yield and individual agroclimatic parameters 

Stations OCS ECS FO HW Rtot LCS 

Bla 0.04 0.20* 0.28* 0.14 0.10 0.47* 

Bougouni 0.03 0.20* 0.12 0.08 0.06 -0.05 

Djidian -0.20* 0.24* -0.10 -0.08 -0.03 0.01 

Dogo 0.01 0.05 0.08 0.33* 0.27* -0.15 

Fangasso 0.03 0.23* 0.27* 0.18 0.05 0.09 

Garalo -0.04 0.00 -0.17 0.06 0.10 0.00 

Karangana -0.07 0.02 -0.03 0.24* 0.27* 0.09 

Kimparana -0.03 0.21* 0.24* 0.16 0.15 0.05 

Kita -0.08 0.19 -0.01 -0.10 -0.24 0.10 

Kokofata -0.04 0.05 -0.13 0.08 0.07 0.07 

Kolondieba -0.01 -0.05 -0.24* 0.41* 0.13 0.05 

Konseguela 0.08 0.11 0.20* 0.21 0.01 0.01 

Koumantou 0.04 0.07 -0.10 0.37* 0.19 0.09 

Koutiala 0.02 0.15 0.29* 0.10 0.17 0.07 

Molobala -0.04 0.08 0.26* 0.24* 0.07 0.00 

Mpessoba 0.08 0.13 0.27* -0.04 0.15 0.02 

Sebekoro -0.21* 0.16 -0.17* -0.02 -0.17 0.10 

Yanfolila 0.08 0.09 -0.22* 0.26* -0.12 0.08 

Yorosso -0.07 -0.08 0.04 0.04 0.19 0.04 

Zebala 0.02 0.29* 0.30* 0.09 0.23* 0.11 

 

Table  4: Correlation coefficients between millet yield and individual agroclimatic parameters 

Stations OCS ECS FO HW Rtot LCS 

Djidian -0.12 -0.04 -0.11 0.19 0.09 -0.06 

Kita -0.14 -0.03 -0.07 -0.01 -0.06 -0.04 

Kokofata -0.08 0.14 -0.15 0.07 0.07 -0.03 

Sebekoro -0.09 0.06 -0.24 0.18 0.05 -0.07 
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3.2. Prediction of yield loss resulting from the synchronous occurrence of agroclimatic 

extremes  

  

Figure 14: Random Forest model (Anomalous Predictors) and Logistic regression model (Anomalous Predictors) 

In this performance diagram Figure 21a, the PoD values for cotton are almost perfect as three of 

the four points are between 0.62 and 0.77, and one point exactly on the perfect value which is (1). 

Its success Ratio (1-FAR), which represents the success rate is also important because three of the 

four points are between 0.66 and 0.75, and one point out of 1 (the perfect value) as its PoD. Its 

critical success index is of an important value and is between 0.50 and 1. For the Bias, two of the 

four points are exactly on the angle of 45°, one on 44.9 degrees is (0.91) and the last 45° either a 

little above 45° or (1.1). 

As for millet in the same figure 21a of the performance diagram, the PoD for millet is estimated 

between 0.80 to 0.89, of which three of the four points are located between 0.85 and 0.89, including 

two points on the same value (0.89). Its success Ratio is between 0.77 and 0.89, with three of the 

four points between 0.83 and 0.8. The critical success index is between 0.65 and 0.78. All values 

are moderately above 45°, which should not be considered an overestimate. 

The maize with sixteen points scattered between 0.50 and 0.83 for the PoD, the majority of which 

are between 0.55 and 0.70. Its Success Ration is between 0.50 and 0.90, including a large number 

of values between 0.70 and 0.80. The points are also scattered between 0.50 and 0.85 for its critical 
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success index, including a large number of values located between 0.50 and 0.70. Most of the 

points are around the 45° angle, including two values on the 45° angle. 

Figure 21b represents the logistic regression (LR) model (AP) graph on which the cotton values 

are distributed for the PoD between 0.75 and 87. They constitute two groups of the same number, 

including two values between 0.85 and 0.88 and the other two between 0.78 and 0.80. Its Success 

Ratio is between 0.55 and 0.65 of which all the values are almost grouped at the same level. Its 

critical success index is between 0.49 and 0.60, of which three of four points are located between 

0.52 and 0.60. All values are grouped together above the appreciation angle (45°) in the 

overestimation zone, unlike the cotton values distribution of the random forest (RF) model (AP). 

The values of the millet are distributed for the PoD between 0.81 to 0.88, which means a good 

probability of detection, on the four values of the millet the three are very close and aligned 

between 0.85 and 0.88. Its success ratio is between 0.55 and 0.70, the three out of four values of 

which are between 0.65 and 0.70. Its critical success index is between 0.52 and 0.65. The logistic 

regression (LR) model's millet values (AP) are a little off the 45° angle and are located in the 

overestimated area, unlike the random forest (RF) model (AP). 

The maize has a bit scattered values but the majority are around the 45° angle with four values on 

the 45° angle line and two slightly below the appreciation zone. Its PoD is between 0.42 and 0.79 

with the majority between 0.45 and 0.65 which is a little above the random forest (RF) model (AP). 

Its Success Ration is between 0.45 and 0.79, most of which are between 0.45 and 0.65, which is 

also lower than the random forest (RF) model (AP). The critical success index is between 0.30 and 

0.63, the largest number of values being between 0.30 and 0.45. 

In summary, the two models are all good and allow meaningful exploitation of the geometric 

relationship between four performance measures. Although both models are good, the random 

forest (RF) model (AP) performs better than the logistic regression (LR) model (AP) model, given 

the proximity of each performance measure closer to the best score for each of the performance 

measures and the distribution around the angle 45° from the different values. 
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3.3. Evaluation the performance of ML algorithms to diagnose the impact of agroclimatic 

extremes on crop yields in Mali 

  

Figure 15: Random Forest model (Dichotomic Predictors) and Logistic regression model (Dichotomic Predictors) 

Figure 15a shows the performance graph of the Random Forest model (Dichotomic Predictors). In 

this graph, cotton has its PoD values between 0.65 and 0.90 of which three of the four values are 

between 0.65 and 0.72, and the last value is the last with a value of 0.85. This indicates that the 

cotton's PoD is efficient because its value is greater than 0.50 and close to 1 (the best score). The 

values of its Success Ratio are between 0.59 and 0.85, of which three of the four values are 

distributed between 0.59 and 0.70 and the last value with a value of 0.85. Its Success Ratio is also 

good, and close to the value of the best score (1). Its critical success index is between 0.49 and 

0.54 for the three values out of four and the last one a little closer to 1 or 0.8. Like the other 

performance measures (PoD and SR), the cotton critical success index is also important and is 

closer to the best score which 1. 

The PoD of millet for Figure 15a, the values are scattered and are between 0.65 and 0.85 of which 

three of the four values are distributed over the values 0.77, 0.81 and 0.85, this distribution of the 

different values all have values greater than 0.5 then the PoD can be considered good because it is 

close to the best score 1. For its Success Ratio, its values are distributed between 0.63 and 0.78, 

including three of the four values between 0.71 and 0.78. This too can be considered good 

performance given the arrangement of the values of the different values beyond 0.50. The values 
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of its critical success index are between 0.48 and 0.70, of which two of the four values are placed 

on 0.7 and one on 0.60. All four values are located more or less above the 45° angle but three of 

the four values are very close to the 45° angle but all are in the area where the performance is 

considered good. 

For the maize, the performance measure of the PoD shows a distribution of values between 0.43 

and 0.81 including a significant distribution of values between 0.43 and 0.65. Its Success Ratio 

values are divided into three groups, giving a group of values located between 0.50 and 0.60 and 

the second group of points numbering 7 out of 16 all out of 0.70 and the last group between 0.75 

and 0.90. As for their positioning with respect to the 45° angle, they constitute two groups, most 

of which are close to the 45° angle, one value on the 45° angle, and four values in the area 

considered to be slightly underestimated. 

In figure 22b, we have the random forest (RF) model (DP), where the cotton values are distributed 

between 0.65 and 0.82 of PoD, the four values of which are all located in this interval without a 

significant difference, this also explains a high probability of detection but does not reach the PoD 

of the random forest (RF) model (DP) which is between 0.65 and 0.90. The values of its Success 

Ratio are distributed between 0.63 and 0.70, like its PoD, its values almost form a cluster around 

these values. These SR values are also slightly lower than those of the random forest (RF) model 

(DP). The cotton critical success index for the logistic regression (LR) model (DP) is between 0.49 

and 0.59, there is no great distance between the four values, still maintain their almost cluster 

formation but still slightly lower than the values of the random forest (RF) model values (DP). All 

values are slightly above the 45° angle but remain in the area deemed to be good performance. 

Regarding millet, the values of its PoD located between 0.85 and 0.92 of which two of the four 

values are superimposed because they have the same values. These values are higher than those of 

the random forest (RF) model (DP) for millet. The values of his Success Ratio are distributed 

between 0.63 and 0.75 and three of the four values are in the range of 0.70 and 0.75. For the SR 

the two models are almost the same with a slight strong SR from the random forest (RF) model 

(DP). The values of the critical success index are between 0.49 and 0.59 and the greatest number 

of values are between 0.69 and 0.72. The values are distributed above the 45° angle and three of 

the four points are outside the assessment zone. 
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As for the maize, the PoD values are distributed between 0.42 and 0.85, most of which are between 

0.57 and 0.77. The value of his SR points is also distributed between 0.45 and 0.80, a large number 

of values are between 0.55 and 0.75. The distribution of the value of the critical success index 

values is between 0.30 and 0.75 and most of the values are between 0.40 and 0.65. The values are 

near what all lie around the 45° angle. 

The results obtained showed significant regression, Success Ratio and Probability of Detection 

PoD’s between the observed yields and the impacts of agroclimatic extremes. In view of these 

results, it can be argued that increasing agroclimatic extremes are expected to trigger yield 

declines, and the associated impacts will likely lead to production losses and contribute to food 

insecurity and economic losses affecting production systems agricultural (Wu et al., 2015). This 

can be confirmed by the comments of Salehnia et al. (2020) and Bazzaz & Sombroek (1997) who 

report that extreme variability in agroclimatic extremes can impact yield either by lengthening the 

effective growing season in the case of a low, and in the opposite case of a low probably reducing 

the length of the effective growing season for the temperature case. And often even, impact 

agricultural productivity USAID, (2017) and devastate all production. As for the FAO (2016), an 

increase in these impacts would make it almost impossible for an adequate adaptation by the 

agricultural sectors in many places and would lead to drastic drops in productivity. It also emerges 

from Nassourou et al., (2018) research that the early end of the rains is cited as the most critical 

risk by 33% of farmers in western Niger and prolonged dry spells (20%).  
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Conclusion 

Regarding climate variability, the exposure of agricultural yields to agroclimatic extremes 

contribute to declining production and productivity which can trigger risks of food insecurity and 

motivate immigration and unemployment. The LCS and OCS were the most correlated indices. 

Predicting the occurrence of these agroclimatic extremes have the advantage of identifying suitable 

agricultural inputs and avoiding certain risks such as false onset, identifying the optimal sowing 

periods, and anticipating sowing in the fields. swamps. And choose photosensitive cultures. 

The introduction of machine learning has dramatically improved the accuracy of diagnoses of the 

relationship between agroclimatic extremes and yield, overcome the shortcomings of the linear 

model in processing correlated predictors, revealed new information on the different effects of 

similar climatic factors on crop yields. In addition, the comparison between machine learning and 

the linear model ensured the robustness of our results. Our results showed that LCS and OCS were 

dominant factors affecting yield. Overall, the variability of crop yields in the study area was mainly 

caused by dry season, while a wet season during growing seasons did not have a noticeable effect 

as they did not were not noticed frequently. The results of this study show that agroclimatic 

extremes impact crop yields on the basis of both. The performance of all models is good and very 

close, but random forest (RF) model (AP) and logistic regression (LR) model (DP) models are 

preferred. In addition, these forecasting models require a large amount of data for a more efficient 

assessment of performance quality. This is a relevant result as agriculture in Mali is heavily 

dependent on rain and extreme climatic factors can negatively affect crop yields which can lead to 

food insecurity. 
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Recommendations 

Crop yield is well affected by climatic and non-climatic factors. In these studies, to separately 

assess the effect of climate on yield variation, an increase in yield by factors other than climate 

was excluded. 

Therefore, it is necessary to extend the series of crops, other climatic factors (like WSRI) and other 

non-climatic ones like soil, fertilization… to better understand, the level of impact of each factor 

on the yield; 

Data sharing between students and national structures via WACAL should be strongly encouraged 

and strengthened. 
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Appendix 

Logit prediction code in R 

################Model, anomalies des prediteurs################ 

  model1<-glm(data_train_rd~.,data=data_train_pred2, 

              family = binomial(link = "logit")) 

  exp(coef(model1)) # regression coefficients 

  anova(model1, test = "Chisq") #significance level of each predictor 

  ############End of model building############ 

  data_test_pred <- data_test[,-c(3,6)] 

  data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

  fo_test <- data_test$FO # faux departs ==> dichotomic 

  data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

  for(n in 1:ncol(data_test_pred)){ 

    data_test_pred2[,n] <- diff(data_test_pred[,n],lag = 1) #%>% as.data.frame() 

  } 

  #data_test_pred2 <- 

as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-1,8])) 

  data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

  #### Prediction values 

  predi1a<-predict(model1,data_test_pred2,type = "response") 

  ## Performance 

  pred<-round(predi1a,0) ### predicted response 

  obs<- data_test_rd ### observed response 

  ####contingency table 

  ##number of hits 

  a<-length(which(pred==1 & obs==1)) 

  ##number of false alarms 

  b<-length(which(pred==1 & obs==0)) 

  ##number of misses 

  c<-length(which(pred==0 & obs==1)) 

  ##number of correct negatives 

  d<-length(which(pred==0 & obs==0)) 

  ###verification indices 

  tab<-matrix(c(a,c,b,d),ncol = 2) 

  ##generate verification indices 

  ind<-table.stats(tab) 

  #pdf(paste(workdir,"/Performance_logit_orig.pdf",sep=""), 

  #   width=8,height=8,paper="special") 

  ##performance diagram 

  points(1-ind$FAR, ind$POD, pch=16,col= "orange", cex=3) # Bakel 

  #performance.diagram(main="Ouahigouya") 

  #points(1-ind$FAR, ind$POD, pch=16,col= "red", cex=3) # Ouahi 

} 

legend("bottomright",legend = c("Maize","Millet", "Cotton"),#, 

       #  "Mango","Bolgatanga","Dano"), 

       col=c("blue","black","orange"), #,"black","grey","brown"), 

       pch = c(16,16,16),cex=1.2) 

dev.off() 

### plotting reliability diagram 

#} 
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Logit prediction non anomalies code in R 

################Model, anomalies des prediteurs##### 

model1<-glm(data_train_rd~.,data=data_train_pred2, 

            family = binomial(link = "logit")) 

exp(coef(model1)) # regression coefficients 

anova(model1, test = "Chisq") #significance level of each predictor 

############End of model building############ 

data_test_pred <- data_test[,-c(3,6)] 

data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

fo_test <- data_test$FO # faux departs ==> dichotomic) 

#  } 

### identification of all the extremes & compound events 

data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

data_test_pred2[,1] <- ifelse(diff((data_test_pred$ECS.Jld.-

data_test_pred$OCS.Jld.),lag = 1)<=0,1,0) 

data_test_pred2[,2] <- ifelse(diff((data_test_pred$ECS.Jld.),lag = 1)<=0,1,0) 

data_test_pred2[,3] <- ifelse(diff((data_test_pred$Tp),lag = 1)>0,1,0) 

data_test_pred2[,4] <- ifelse(diff((data_test_pred$RR.Season),lag = 1)<=0,1,0) 

#data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-

1,8])) 

data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

#### Prediction values 

predi1a<-predict(model1,data_test_pred2,type = "response") 

## Performance 

pred<-round(predi1a,0) ### predicted response 

obs<- data_test_rd ### observed response 

####contingency table 

##number of hits 

a<-length(which(pred==1 & obs==1)) 

##number of false alarms 

b<-length(which(pred==1 & obs==0)) 

##number of misses 

c<-length(which(pred==0 & obs==1)) 

##number of correct negatives 

d<-length(which(pred==0 & obs==0)) 

###verification indices 

tab<-matrix(c(a,c,b,d),ncol = 2) 

##generate verification indices 

ind<-table.stats(tab) 

##performance diagram 

points(1-ind$FAR, ind$POD, pch=16,col= "black", cex=3) # Bakel 

} 

### training data 

dd <- read.csv2(paste(workdir,"Djidian_Cotton.txt",sep="/"), 

                head=T,dec=".",sep="",na.strings =c("","NA")) 

### testing data 

fdirect <- list.files(workdir,pattern = "_Cotton.txt") 

fnames <- substr(fdirect,1,7) 

for(ii in 1:length(fdirect)){ 

  dd2 <- read.csv2(paste(workdir,fdirect[ii],sep="/"), 

                   head=T,dec=".",sep="",na.strings =c("","NA")) 

  ### Split data into training & testing subset 

  dd$Yield_kg <- ifelse(is.na(dd$Yield_kg), mean(dd$Yield_kg, na.rm = 

TRUE),dd$Yield_kg)  

  dd$Tp <- ifelse(is.na(dd$Tp), mean(dd$Tp, na.rm = TRUE),dd$Tp)  

  dd$FO <- ifelse(is.na(dd$FO)|dd$FO>1,0,dd$FO) 

  dd$RR.Season <- ifelse(is.na(dd$RR.Season), mean(dd$RR.Season, na.rm = 

TRUE),dd$RR.Season)  

  dd2$Yield_kg <- ifelse(is.na(dd2$Yield_kg), mean(dd2$Yield_kg, na.rm = 

TRUE),dd2$Yield_kg)  

  dd2$Tp <- ifelse(is.na(dd2$Tp), mean(dd2$Tp, na.rm = TRUE),dd2$Tp)  
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  dd2$FO <- ifelse(is.na(dd2$FO)|dd2$FO>1,0,dd2$FO) 

  dd2$RR.Season <- ifelse(is.na(dd2$RR.Season), mean(dd2$RR.Season, na.rm = 

TRUE),dd2$RR.Season)  

  # Remove unwanted columns 

  data_train <- as.data.frame(dd[,-c(1,3,5:7)]) 

  data_test <- as.data.frame(dd2[,-c(1,3,5:7)]) 

    ### extract the predictors from training data 

  data_train_rd <- ifelse(diff(data_train$Yield_kg,lag = 1)<=0,1,0) # anomalies des 

rdts ==> dichotomic 

  fo_train <- data_train$FO # faux departs ==> dichotomic 

  data_train_pred <- data_train[,-c(3,6)] 

  data_train_pred2 <- matrix(NA,nrow(data_train_pred)-1,ncol(data_train_pred)) 

  data_train_pred2[,1] <- ifelse(diff((data_train_pred$ECS.Jld.-

data_train_pred$OCS.Jld.),lag = 1)<=0,1,0) 

  data_train_pred2[,2] <- ifelse(diff((data_train_pred$ECS.Jld.),lag = 1)<=0,1,0) 

  data_train_pred2[,3] <- ifelse(diff((data_train_pred$Tp),lag = 1)>0,1,0) 

  data_train_pred2[,4] <- ifelse(diff((data_train_pred$RR.Season),lag = 1)<=0,1,0) 

   

  #  } 

  # data_train_pred2 <- data_train_pred 

  data_train_pred2 <- as.data.frame(cbind(data_train_pred2,fo_train[-

length(fo_train)])) 

  #Use the glm function with different link function to fit your predictant 

  ################Model, anomalies des prediteurs##### 

  model1<-glm(data_train_rd~.,data=data_train_pred2, 

              family = binomial(link = "logit")) 

  exp(coef(model1)) # regression coefficients 

  anova(model1, test = "Chisq") #significance level of each predictor 

  ############End of model building############ 

  data_test_pred <- data_test[,-c(3,6)] 

  data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

  fo_test <- data_test$FO # faux departs ==> dichotomic 

  ### identification of all the extremes & compound events 

  data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

  data_test_pred2[,1] <- ifelse(diff((data_test_pred$ECS.Jld.-

data_test_pred$OCS.Jld.),lag = 1)<=0,1,0) 

  data_test_pred2[,2] <- ifelse(diff((data_test_pred$ECS.Jld.),lag = 1)<=0,1,0) 

  data_test_pred2[,3] <- ifelse(diff((data_test_pred$Tp),lag = 1)>0,1,0) 

  data_test_pred2[,4] <- ifelse(diff((data_test_pred$RR.Season),lag = 1)<=0,1,0) 

  #data_test_pred2 <- 

as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-1,8])) 

  data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

  #### Prediction values 

  predi1a<-predict(model1,data_test_pred2,type = "response") 

  ## Performance 

  pred<-round(predi1a,0) ### predicted response 

  obs<- data_test_rd ### observed response 

  ####contingency table 

  ##number of hits 

  a<-length(which(pred==1 & obs==1)) 

  ##number of false alarms 

  b<-length(which(pred==1 & obs==0)) 

  ##number of misses 

  c<-length(which(pred==0 & obs==1)) 

  ##number of correct negatives 

  d<-length(which(pred==0 & obs==0)) 

  ###verification indices 

  tab<-matrix(c(a,c,b,d),ncol = 2) 

  ##generate verification indices 

  ind<-table.stats(tab) 

 } 

legend("bottomright",legend = c("Maize","Millet", "Cotton"),#, 
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       pch = c(16,16,16),cex=1.2) 

dev.off() 

### plotting reliability diagram 

#} 
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Random Forest prediction code in R 

################Model, anomalies des prediteurs##### 

attach(data_train_pred2) 

#model1<-glm(data_train_rd~.,data=data_train_pred2, 

#            family = binomial(link = "logit")) 

model1<- train(rd ~ ocs + ecs + hw + rrtot + fo, #Pclass + Sex + SibSp + 

               #Embarked + Parch + Fare, # Survived is a function of the variables we 

decided to include 

               data = data_train_pred2, # Use the train data frame as the training 

data 

               method = 'rf',# Use the 'random forest' algorithm 

               trControl = trainControl(method = 'cv'), # Use cross-validation 

               number = 5) # Use 5 folds for cross-validation 

############End of model building############ 

data_test_pred <- data_test[,-c(3,6)] 

data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

fo_test <- data_test$FO # faux departs ==> dichotomic 

data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

for(n in 1:ncol(data_test_pred)){ 

  data_test_pred2[,n] <- diff(data_test_pred[,n],lag = 1) #%>% as.data.frame() 

} 

#data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-

1,8])) 

data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

#### Prediction values 

#predi1a<-predict(model1,data_test_pred2,type = "response") 

predi1a <- as.numeric(predict(model1, newdata = data_test_pred2)) 

## Performance 

# pred<- ifelse(predi1a <1 | predi1a > 1,0,1) ### predicted response 

pred<- ifelse(predi1a <1 | predi1a > 1,1,0) ### predicted response 

obs<- data_test_rd ### observed response 

####contingency table 

##number of hits 

a<-length(which(pred==1 & obs==1)) 

##number of false alarms 

b<-length(which(pred==1 & obs==0)) 

##number of misses 

c<-length(which(pred==0 & obs==1)) 

##number of correct negatives 

d<-length(which(pred==0 & obs==0)) 

###verification indices 

tab<-matrix(c(a,c,b,d),ncol = 2) 

##generate verification indices 

ind<-table.stats(tab) 

##performance diagram 

points(1-ind$FAR, ind$POD, pch=16,col= "black", cex=3) # Bakel 

#performance.diagram(main="Ouahigouya") 

#points(1-ind$FAR, ind$POD, pch=16,col= "red", cex=3) # Ouahi 

} 

### training data 

dd <- read.csv2(paste(workdir,"Djidian_Cotton.txt",sep="/"), 

                head=T,dec=".",sep="",na.strings =c("","NA")) 

fdirect <- list.files(workdir,pattern = "_Cotton.txt") 

fnames <- substr(fdirect,1,7) 

for(ii in 1:length(fdirect)){ 

  dd2 <- read.csv2(paste(workdir,fdirect[ii],sep="/"), 

                   head=T,dec=".",sep="",na.strings =c("","NA")) 

  ### Split data into training & testing subset 

  dd$Yield_kg <- ifelse(is.na(dd$Yield_kg), mean(dd$Yield_kg, na.rm = 

TRUE),dd$Yield_kg)  

  dd$Tp <- ifelse(is.na(dd$Tp), mean(dd$Tp, na.rm = TRUE),dd$Tp)  
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  dd$FO <- ifelse(is.na(dd$FO)|dd$FO>1,0,dd$FO) 

  dd$RR.Season <- ifelse(is.na(dd$RR.Season), mean(dd$RR.Season, na.rm = 

TRUE),dd$RR.Season)  

  dd2$Yield_kg <- ifelse(is.na(dd2$Yield_kg), mean(dd2$Yield_kg, na.rm = 

TRUE),dd2$Yield_kg)  

  dd2$Tp <- ifelse(is.na(dd2$Tp), mean(dd2$Tp, na.rm = TRUE),dd2$Tp)  

  dd2$FO <- ifelse(is.na(dd2$FO)|dd2$FO>1,0,dd2$FO) 

  dd2$RR.Season <- ifelse(is.na(dd2$RR.Season), mean(dd2$RR.Season, na.rm = 

TRUE),dd2$RR.Season)  

  # Remove unwanted columns 

  data_train <- as.data.frame(dd[,-c(1,3,5:7)]) 

  data_test <- as.data.frame(dd2[,-c(1,3,5:7)]) 

  data_train_rd <- ifelse(diff(data_train$Yield_kg,lag = 1)<=0,1,0) # anomalies des 

rdts ==> dichotomic 

  fo_train <- data_train$FO # faux departs ==> dichotomic 

  data_train_pred <- data_train[,-c(3,6)] 

  data_train_pred2 <- matrix(NA,nrow(data_train_pred)-1,ncol(data_train_pred)) 

  for(n in 1:ncol(data_train_pred)){ 

    data_train_pred2[,n] <- diff(data_train_pred[,n],lag = 1) #%>% as.data.frame() 

  } 

  data_train_pred2 <- as.data.frame(cbind(data_train_rd,data_train_pred2,fo_train[-

length(fo_train)])) 

  colnames(data_train_pred2) <- c("rd","ocs","ecs","hw","rrtot","fo") 

  # Converting ‘Survived’ to a factor 

  data_train_pred2$rd <- factor(data_train_pred2$rd) 

  #Use the glm function with different link function to fit your predictant 

  ################Model, anomalies des prediteurs##### 

  attach(data_train_pred2) 

  #model1<-glm(data_train_rd~.,data=data_train_pred2, 

  #            family = binomial(link = "logit")) 

  model1<- train(rd ~ ocs + ecs + hw + rrtot + fo, #Pclass + Sex + SibSp + 

                 #Embarked + Parch + Fare, # Survived is a function of the variables 

we decided to include 

                 data = data_train_pred2, # Use the train data frame as the training 

data 

                 method = 'rf',# Use the 'random forest' algorithm 

                 trControl = trainControl(method = 'cv'), # Use cross-validation 

                 number = 5) # Use 5 folds for cross-validation 

  ############End of model building############ 

   

  data_test_pred <- data_test[,-c(3,6)] 

   

  data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

  fo_test <- data_test$FO # faux departs ==> dichotomic 

   

  data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

   

  for(n in 1:ncol(data_test_pred)){ 

    data_test_pred2[,n] <- diff(data_test_pred[,n],lag = 1) #%>% as.data.frame() 

  } 

  #data_test_pred2 <- 

as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-1,8])) 

  data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

  #### Prediction values 

  #predi1a<-predict(model1,data_test_pred2,type = "response") 

  predi1a <- as.numeric(predict(model1, newdata = data_test_pred2)) 

  ## Performance 

  #pred<- ifelse(predi1a <1 | predi1a > 1,0,1) ### predicted response 

  pred<- ifelse(predi1a <1 | predi1a > 1,1,0) ### predicted response 

  obs<- data_test_rd ### observed response 

   

  ####contingency table 
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  ##number of hits 

  a<-length(which(pred==1 & obs==1)) 

  ##number of false alarms 

  b<-length(which(pred==1 & obs==0)) 

  ##number of misses 

  c<-length(which(pred==0 & obs==1)) 

  ##number of correct negatives 

  d<-length(which(pred==0 & obs==0)) 

  ###verification indices 

  tab<-matrix(c(a,c,b,d),ncol = 2) 

  ##generate verification indices 

  ind<-table.stats(tab) 

  points(1-ind$FAR, ind$POD, pch=16,col= "orange", cex=3) # Bakel 

} 

 

legend("bottomright",legend = c("Maize","Millet", "Cotton"),#, 

       col=c("blue","black","orange"), 

       pch = c(16,16,16),cex=1.2) 

dev.off() 

### plotting reliability diagram 

#} 
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Random Forest prediction no anomalie code in R 

################Model, anomalies des prediteurs##### 

attach(data_train_pred2) 

#model1<-glm(data_train_rd~.,data=data_train_pred2, 

#            family = binomial(link = "logit")) 

model1<- train(rd ~ ocs + ecs + hw + rrtot + fo, #Pclass + Sex + SibSp + 

               #Embarked + Parch + Fare, # Survived is a function of the variables we 

decided to include 

               data = data_train_pred2, # Use the train data frame as the training 

data 

               method = 'rf',# Use the 'random forest' algorithm 

               trControl = trainControl(method = 'cv'), # Use cross-validation 

               number = 5) # Use 5 folds for cross-validation 

############End of model building############ 

data_test_pred <- data_test[,-c(3,6)] 

data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

fo_test <- data_test$FO # faux departs ==> dichotomic 

data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

### identification of all the extremes & compound events 

data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

data_test_pred2[,1] <- ifelse(diff((data_test_pred$ECS.Jld.-

data_test_pred$OCS.Jld.),lag = 1)<=0,1,0) 

data_test_pred2[,2] <- ifelse(diff((data_test_pred$ECS.Jld.),lag = 1)<=0,1,0) 

data_test_pred2[,3] <- ifelse(diff((data_test_pred$Tp),lag = 1)>0,1,0) 

data_test_pred2[,4] <- ifelse(diff((data_test_pred$RR.Season),lag = 1)<=0,1,0) 

#data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-

1,8])) 

data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

#### Prediction values 

#predi1a<-predict(model1,data_test_pred2,type = "response") 

predi1a <- as.numeric(predict(model1, newdata = data_test_pred2)) 

## Performance 

pred<- ifelse(predi1a <1 | predi1a > 1,1,0) ### predicted response 

obs<- data_test_rd ### observed response 

####contingency table 

##number of hits 

a<-length(which(pred==1 & obs==1)) 

##number of false alarms 

b<-length(which(pred==1 & obs==0)) 

##number of misses 

c<-length(which(pred==0 & obs==1)) 

##number of correct negatives 

d<-length(which(pred==0 & obs==0)) 

###verification indices 

tab<-matrix(c(a,c,b,d),ncol = 2) 

##generate verification indices 

ind<-table.stats(tab) 

##performance diagram 

points(1-ind$FAR, ind$POD, pch=16,col= "blue", cex=3) # Bakel 

} 

### training data 

dd <- read.csv2(paste(workdir,"Djidian_Millet.txt",sep="/"), 

                head=T,dec=".",sep="",na.strings =c("","NA")) 

### testing data 

fdirect <- list.files(workdir,pattern = "_Millet.txt") 

fnames <- substr(fdirect,1,7) 

for(ii in 1:length(fdirect)){ 

  dd2 <- read.csv2(paste(workdir,fdirect[ii],sep="/"), 

                   head=T,dec=".",sep="",na.strings =c("","NA")) 

  ### Split data into training & testing subset 
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  dd$Yield_kg <- ifelse(is.na(dd$Yield_kg), mean(dd$Yield_kg, na.rm = 

TRUE),dd$Yield_kg)  

  dd$Tp <- ifelse(is.na(dd$Tp), mean(dd$Tp, na.rm = TRUE),dd$Tp)  

  dd$FO <- ifelse(is.na(dd$FO)|dd$FO>1,0,dd$FO) 

  dd$RR.Season <- ifelse(is.na(dd$RR.Season), mean(dd$RR.Season, na.rm = 

TRUE),dd$RR.Season)  

  dd2$Yield_kg <- ifelse(is.na(dd2$Yield_kg), mean(dd2$Yield_kg, na.rm = 

TRUE),dd2$Yield_kg)  

  dd2$Tp <- ifelse(is.na(dd2$Tp), mean(dd2$Tp, na.rm = TRUE),dd2$Tp)  

  dd2$FO <- ifelse(is.na(dd2$FO)|dd2$FO>1,0,dd2$FO) 

  dd2$RR.Season <- ifelse(is.na(dd2$RR.Season), mean(dd2$RR.Season, na.rm = 

TRUE),dd2$RR.Season)  

  # Remove unwanted columns 

  data_train <- as.data.frame(dd[,-c(1,3,5:7)]) 

  data_test <- as.data.frame(dd2[,-c(1,3,5:7)]) 

  ### extract the predictors from training data 

  data_train_rd <- ifelse(diff(data_train$Yield_kg,lag = 1)<=0,1,0) # anomalies des 

rdts ==> dichotomic 

  fo_train <- data_train$FO # faux departs ==> dichotomic 

  data_train_pred <- data_train[,-c(3,6)] 

  #data_train_pred2 <- matrix(NA,nrow(data_train_pred)-1,ncol(data_train_pred)) 

  ### identification of all the extremes & compound events 

  data_train_pred2 <- matrix(NA,nrow(data_train_pred)-1,ncol(data_train_pred)) 

  data_train_pred2[,1] <- ifelse(diff((data_train_pred$ECS.Jld.-

data_train_pred$OCS.Jld.),lag = 1)<=0,1,0) 

  data_train_pred2[,2] <- ifelse(diff((data_train_pred$ECS.Jld.),lag = 1)<=0,1,0) 

  data_train_pred2[,3] <- ifelse(diff((data_train_pred$Tp),lag = 1)>0,1,0) 

  data_train_pred2[,4] <- ifelse(diff((data_train_pred$RR.Season),lag = 1)<=0,1,0) 

  data_train_pred2 <- as.data.frame(cbind(data_train_rd,data_train_pred2,fo_train[-

length(fo_train)])) 

  colnames(data_train_pred2) <- c("rd","ocs","ecs","hw","rrtot","fo") 

  # Converting ‘Survived’ to a factor 

  data_train_pred2$rd <- factor(data_train_pred2$rd) 

  #Use the glm function with different link function to fit your predictant 

  ################Model, anomalies des prediteurs##### 

  attach(data_train_pred2) 

  #model1<-glm(data_train_rd~.,data=data_train_pred2, 

  #            family = binomial(link = "logit")) 

  model1<- train(rd ~ ocs + ecs + hw + rrtot + fo, #Pclass + Sex + SibSp + 

                 #Embarked + Parch + Fare, # Survived is a function of the variables 

we decided to include 

                 data = data_train_pred2, # Use the train data frame as the training 

data 

                 method = 'rf',# Use the 'random forest' algorithm 

                 trControl = trainControl(method = 'cv'), # Use cross-validation 

                 number = 5) # Use 5 folds for cross-validation 

   ############End of model building############ 

  data_test_pred <- data_test[,-c(3,6)] 

  data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

  fo_test <- data_test$FO # faux departs ==> dichotomic 

  data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

  ### identification of all the extremes & compound events 

  data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

  data_test_pred2[,1] <- ifelse(diff((data_test_pred$ECS.Jld.-

data_test_pred$OCS.Jld.),lag = 1)<=0,1,0) 

  data_test_pred2[,2] <- ifelse(diff((data_test_pred$ECS.Jld.),lag = 1)<=0,1,0) 

  data_test_pred2[,3] <- ifelse(diff((data_test_pred$Tp),lag = 1)>0,1,0) 

  data_test_pred2[,4] <- ifelse(diff((data_test_pred$RR.Season),lag = 1)<=0,1,0) 

  #data_test_pred2 <- 

as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-1,8])) 

  data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

  #### Prediction values 
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  #predi1a<-predict(model1,data_test_pred2,type = "response") 

  predi1a <- as.numeric(predict(model1, newdata = data_test_pred2)) 

  ## Performance 

  # pred<- ifelse(predi1a <1 | predi1a > 1,0,1) ### predicted response 

  pred<- ifelse(predi1a <1 | predi1a > 1,1,0) ### predicted response 

  obs<- data_test_rd ### observed response 

  ####contingency table 

  ##number of hits 

  a<-length(which(pred==1 & obs==1)) 

  ##number of false alarms 

  b<-length(which(pred==1 & obs==0)) 

  ##number of misses 

  c<-length(which(pred==0 & obs==1)) 

  ##number of correct negatives 

  d<-length(which(pred==0 & obs==0)) 

  ###verification indices 

  tab<-matrix(c(a,c,b,d),ncol = 2) 

  ##generate verification indices 

  ind<-table.stats(tab) 

  #pdf(paste(workdir,"/Performance_logit_orig.pdf",sep=""), 

  #   width=8,height=8,paper="special") 

  ##performance diagram 

  points(1-ind$FAR, ind$POD, pch=16,col= "black", cex=3) # Bakel 

  #performance.diagram(main="Ouahigouya") 

  #points(1-ind$FAR, ind$POD, pch=16,col= "red", cex=3) # Ouahi 

} 

### training data 

dd <- read.csv2(paste(workdir,"Djidian_Cotton.txt",sep="/"), 

                head=T,dec=".",sep="",na.strings =c("","NA")) 

### testing data 

fdirect <- list.files(workdir,pattern = "_Cotton.txt") 

fnames <- substr(fdirect,1,7) 

for(ii in 1:length(fdirect)){ 

  dd2 <- read.csv2(paste(workdir,fdirect[ii],sep="/"), 

                   head=T,dec=".",sep="",na.strings =c("","NA")) 

  ### Split data into training & testing subset 

  dd$Yield_kg <- ifelse(is.na(dd$Yield_kg), mean(dd$Yield_kg, na.rm = 

TRUE),dd$Yield_kg)  

  dd$Tp <- ifelse(is.na(dd$Tp), mean(dd$Tp, na.rm = TRUE),dd$Tp)  

  dd$FO <- ifelse(is.na(dd$FO)|dd$FO>1,0,dd$FO) 

  dd$RR.Season <- ifelse(is.na(dd$RR.Season), mean(dd$RR.Season, na.rm = 

TRUE),dd$RR.Season)  

  dd2$Yield_kg <- ifelse(is.na(dd2$Yield_kg), mean(dd2$Yield_kg, na.rm = 

TRUE),dd2$Yield_kg)  

  dd2$Tp <- ifelse(is.na(dd2$Tp), mean(dd2$Tp, na.rm = TRUE),dd2$Tp)  

  dd2$FO <- ifelse(is.na(dd2$FO)|dd2$FO>1,0,dd2$FO) 

  dd2$RR.Season <- ifelse(is.na(dd2$RR.Season), mean(dd2$RR.Season, na.rm = 

TRUE),dd2$RR.Season)  

  # Remove unwanted columns 

  data_train <- as.data.frame(dd[,-c(1,3,5:7)]) 

  data_test <- as.data.frame(dd2[,-c(1,3,5:7)]) 

  ### extract the predictors from training data 

  data_train_rd <- ifelse(diff(data_train$Yield_kg,lag = 1)<=0,1,0) # anomalies des 

rdts ==> dichotomic 

  fo_train <- data_train$FO # faux departs ==> dichotomic 

  data_train_pred <- data_train[,-c(3,6)] 

  #data_train_pred2 <- matrix(NA,nrow(data_train_pred)-1,ncol(data_train_pred)) 

  ### identification of all the extremes & compound events 

  data_train_pred2 <- matrix(NA,nrow(data_train_pred)-1,ncol(data_train_pred)) 

  data_train_pred2[,1] <- ifelse(diff((data_train_pred$ECS.Jld.-

data_train_pred$OCS.Jld.),lag = 1)<=0,1,0) 

  data_train_pred2[,2] <- ifelse(diff((data_train_pred$ECS.Jld.),lag = 1)<=0,1,0) 

  data_train_pred2[,3] <- ifelse(diff((data_train_pred$Tp),lag = 1)>0,1,0) 
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  data_train_pred2[,4] <- ifelse(diff((data_train_pred$RR.Season),lag = 1)<=0,1,0) 

  data_train_pred2 <- as.data.frame(cbind(data_train_rd,data_train_pred2,fo_train[-

length(fo_train)])) 

  colnames(data_train_pred2) <- c("rd","ocs","ecs","hw","rrtot","fo") 

  # Converting ‘Survived’ to a factor 

  data_train_pred2$rd <- factor(data_train_pred2$rd) 

  #Use the glm function with different link function to fit your predictant 

  ################Model, anomalies des prediteurs##### 

  attach(data_train_pred2) 

  #model1<-glm(data_train_rd~.,data=data_train_pred2, 

  #            family = binomial(link = "logit")) 

  model1<- train(rd ~ ocs + ecs + hw + rrtot + fo, #Pclass + Sex + SibSp + 

                 #Embarked + Parch + Fare, # Survived is a function of the variables 

we decided to include 

                 data = data_train_pred2, # Use the train data frame as the training 

data 

                 method = 'rf',# Use the 'random forest' algorithm 

                 trControl = trainControl(method = 'cv'), # Use cross-validation 

                 number = 5) # Use 5 folds for cross-validation 

  #exp(coef(model1)) # regression coefficients 

  #anova(model1, test = "Chisq") #significance level of each predictor 

  ############End of model building############ 

  data_test_pred <- data_test[,-c(3,6)] 

  data_test_rd <- ifelse(diff(data_test$Yield_kg,lag = 1)<=0,1,0) # anomalies des rdts 

==> dichotomic 

  fo_test <- data_test$FO # faux departs ==> dichotomic 

  data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

  ### identification of all the extremes & compound events 

  data_test_pred2 <- matrix(NA,nrow(data_test_pred)-1,ncol(data_test_pred)) 

  data_test_pred2[,1] <- ifelse(diff((data_test_pred$ECS.Jld.-

data_test_pred$OCS.Jld.),lag = 1)<=0,1,0) 

  data_test_pred2[,2] <- ifelse(diff((data_test_pred$ECS.Jld.),lag = 1)<=0,1,0) 

  data_test_pred2[,3] <- ifelse(diff((data_test_pred$Tp),lag = 1)>0,1,0) 

  data_test_pred2[,4] <- ifelse(diff((data_test_pred$RR.Season),lag = 1)<=0,1,0) 

  #data_test_pred2 <- 

as.data.frame(cbind(data_test_pred2,fo_test[length(data_test[,8])-1,8])) 

  data_test_pred2 <- as.data.frame(cbind(data_test_pred2,fo_test[-length(fo_test)])) 

  #### Prediction values 

  #predi1a<-predict(model1,data_test_pred2,type = "response") 

  predi1a <- as.numeric(predict(model1, newdata = data_test_pred2)) 

  ## Performance 

  # pred<- ifelse(predi1a <1 | predi1a > 1,0,1) ### predicted response 

  pred<- ifelse(predi1a <1 | predi1a > 1,1,0) ### predicted response 

  obs<- data_test_rd ### observed response 

  ####contingency table 

  ##number of hits 

  a<-length(which(pred==1 & obs==1)) 

  ##number of false alarms 

  b<-length(which(pred==1 & obs==0)) 

  ##number of misses 

  c<-length(which(pred==0 & obs==1)) 

  ##number of correct negatives 

  d<-length(which(pred==0 & obs==0)) 

  ###verification indices 

  tab<-matrix(c(a,c,b,d),ncol = 2) 

  ##generate verification indices 

  ind<-table.stats(tab) 

  ##performance diagram 

  points(1-ind$FAR, ind$POD, pch=16,col= "orange", cex=3) # Bakel 

} 

legend("bottomright",legend = c("Maize","Millet", "Cotton"),#, 

       #  "Mango","Bolgatanga","Dano"), 

       col=c("blue","black","orange"), #,"black","grey","brown"), 
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       pch = c(16,16,16),cex=1.2) 

dev.off() 

### plotting reliability diagram 

#} 


