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Abstract

Many West African countries are plagued with poor electricity. The abundance of solar irradiance 

over the region makes solar energy an attractive solution to the problem, but there is a dearth of 

information on how the ongoing solar dimming and global warming may alter the solar energy 

over the region in the future at various global warming levels. This study investigates the impact 

of climate change on photovoltaic power generation potential (PVP) over West Africa under four 

global warming levels (1.5°C; 2.0°C; 2.5°C and 3.0°C) and under the representative concentration 

pathway 8.5 (RCP 8.5) climate change scenario. Fourteen regional climate model simulations from 

the Coordinated Regional Climate Downscaling Experiment (CORDEX) were analysed for the 

study. The capability of the simulations to reproduce the PVP and climate variables over West 

Africa is quantified. The results show that the CORDEX simulation ensemble captures the spatial 

distribution and the annual cycle of climate variables and PVP over West Africa, though with few 

biases. The simulation and observation indicate that PVP over West Africa ranges from 8% to 

25% and the annual cycle is influenced by the seasonal variation of the monsoon system. The 

simulation ensemble projects a decrease of PVP over West Africa in the future and indicates that 

the magnitude of the decrease grows with warming levels. The maximum decrease in PVP 

projected over any country or zone in the region is less than 3.8% even for a warming level of 

3.0°C. Hence, the study suggests that ongoing global warming may have an influence on PVP over 

West Africa.

Keywords: Solar energy; Global warming; Global dimming, West Africa; Paris agreement

1. Introduction

Access to electricity is a big challenge in many West African countries. For example, more than 

40% of the population in Nigeria (the most populous country in Africa) have no access to 

electricity (IEA, 2017). In Senegal, more than 50% are without electricity. The percentage (about 

80%) is even higher in countries like Liberia, Sierra Leone, Niger, and Burkina Faso (IEA, 2014). 

The main reason for this problem is lack of infrastructures caused by financial issues and poor 

electricity production from hydropower and thermal power plants, which are the major sources of 

electricity generation. Some hydropower plants do shut down due to the lack of water. For 

instance, in 1998, unavailability of water in the Akosombo Dam led to electricity outages in Ghana, 

Togo, and Benin. As much happened in Nigeria in 2001 when the largest dam in the country 

(Kainji Dam) experienced drought. This also recurred in Senegal, Mali, and Guinea for years 
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(Gnansounou, 2008). The West African countries that generate their electricity from thermal 

power also experience power cuts due to the difficulty of fuel procurement (Gnansounou, 2008). 

Hence, the need to reduce the crippling impacts of lack of electricity on the socio-economic 

developments in West Africa has called for more studies on other sources of electricity, especially 

on more reliable and more environmentally friendly energy sources.

Solar energy is a good alternative source of electricity generation in West Africa, one of the 

sunniest regions in the world. In West Africa, the daily average solar radiation is estimated to be 

about 5-6 kWh m-2 throughout the year. Hence, to harness the potential solar energy for electricity, 

various countries are now building solar photovoltaic (PV) power plants, the most well-deployed 

and well-used solar energy technology for powering households, buildings, streetlights and 

community centres. For instance, at the end of 2017, Burkina Faso inaugurated one of the largest 

solar PV power plants in West Africa with 33 MW, and Senegal has an installed capacity of 50 

MW electricity from PV solar power. In addition, as part of climate change mitigation strategy, 

the Economic Community of West African States (ECOWAS) Members States, has decided to 

invest about 1,773 Million Euros in solar PV for electricity generation by 2030 (ECREEE, 2015). 

However, the success of this ambitious solar energy project depends on future climate, because 

the solar PV generation depends on climate variables like temperature and solar irradiance (Zhou 

et al., 2007). Given that PV power declines with an increase in solar cell temperature and 

cloudiness and also with a decrease in irradiance levels (Ishii et al., 2013), there is a concern that 

the ongoing global warming may have negative impacts of solar PV energy. Hence, there is a need 

for reliable information on the potential impacts of climate change on solar PV technology over 

West Africa. Such information will guide the policymakers on solar energy investment.

The need to mitigate the impacts of climate change in various socio-economic activities has led 

the United Nations Framework Convention on Climate Change (UNFCCC) to reach an agreement 

called the Paris Agreement. The Paris Agreement aims to reduce the global carbon footprint and 

keep the global mean temperature (GMT) rise below 2°C (and even further to 1.5°C) above the 

pre-industrial (PI) level (UNFCCC, 2015). To support the agreement, Hulme (2016) has advocated 

for more studies on the relative impacts global warming at 1.5 and 2°C global warming levels 

(GWLs) and few studies have evaluated the impacts over West Africa. For instance, Diedhiou et 

al  (2018) found that the projected increase in frequency and duration of heat waves over West 

Africa at 2.0oC GWL is much higher than that of 1.5oC. Kumi and Abiodun (2018) projected a 
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delay in the rainfall onset day and shorter length rainy season over most parts of West Africa at 

both warming levels, but the magnitude of the projection is higher at 2°C than at 1.5°C GWL by 

more than 10 days. In contrast, Klutse et al (2018) found no significant difference in the magnitude 

projected decrease consecutive wet days at 2°C than 1.5°C GWLs. In energy sector, Sawadogo et 

al (2019) projected an increase in wind power density (WPD) over West Africa and the increase 

in WPD increases with the warming levels. However, there is a lack of information on how global 

warming levels may impact the PV power generation potential (hereafter PVP) over the West 

Africa region.

Several studies have investigated the potential impacts of climate change on solar radiation (and 

on the PV power output) and found different results over various regions of the world (e.g., Burnett 

et al., 2014; Crook et al., 2011). While some studies projected that climate change may increase 

solar irradiance, others indicated that it may reduce the resource. For instance, Burnett et al. (2014) 

projected that climate change may increase solar irradiance (by 3.4% in the 2050s and 4.4% in the 

2080s) over the UK. Panagea (2014) also projected an increase (about 2-3 W/m2 in 2011–2050 and 

5 W/m2 in 2051–2100) over Greece. In contrast, Jerez et al (2015) project a decrease (up to 14% 

by 2050) over most of the part of Northern European countries, and Crook et al (2011) projected 

a decrease over the Western USA (2 - 3.5%) and over Saudi Arabia (5%) by the end of the century. 

Over West Africa, using simulations from a general circulation model (ECHAM4), Huber et al 

(2016) projected a decrease in direct normal irradiance and global horizontal of about 20% and 

5% respectively in a period of 2035-2039. Bazyomo et al (2016) projected a general decrease of 

PV power generation in West African countries over a period of 2006-2045. However, given that 

the focus of their projection was over a specific time period, the results may be difficult for 

policymakers to apply in the framework of the Paris Agreement, which requires the information 

at specific warming levels (1.5°C and 2.0°C). Furthermore, their projections are based on 

simulations from a single model, whereas robust information for policymakers requires multi-

model ensemble mean projections. Also, there is a lack of information on how climate variables 

may contribute to the change in PVP over West Africa.

Hence, the present study aims to investigate the impact of climate change on PVP over West Africa 

at different global warming levels (1.5, 2.0, 2.5 and 3.0°C; under the representative concentration 

pathway 8.5 scenario, RCP8.5). The study analysed multi-model ensemble simulations from 

CORDEX and quantified the contribution of each variable in PVP equation to the projected 

changes in PVP over the subcontinent. The article is structured as follows. Section 2 describes the 
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data and methods used in the study, Section 3 presents and discusses the results, while Section 4 

presents the conclusion of the study.

2. Data and method

2.1 Study Area

The study covers the entire West African domain but also focuses on the climate zones and 

countries in West Africa (Fig. 1). Following Abiodun et al. (2012), we divided the subcontinent 

into three zones accordingly: Guinean zone (18W:18E, 4N:8N), Savannah zone (18W:18E, 

8N:12N), and Sahel zone (18W:18E, 12N:16N). At the country scale, we selected fourteen 

countries of the Member States of ECOWAS that have agendas to increase their electricity 

production with PV solar. For instance, Nigeria and Sierra-Leone target to increase their electricity 

capacity to 6,000 and 1,200 MW respectively by 2030 (ECREEE, 2016a; ECREEE, 2016b). 

Figure 1: West African domain showing the topography (in metres) and the climatic zones delineated as 
Guinea, Savannah, and Sahel zones. The names of the West African countries used in the study are 
indicated.

2.2 Data 

2.2.1 CORDEX dataset

The climate model simulations used for the present study come from the Coordinated Regional 

Climate Downscaling Experiment (CORDEX). CORDEX provides a framework to investigate 
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climate change impact scenarios at a regional scale (Nikulin et al., 2012). The spatial resolution of 

the CORDEX datasets is roughly 50km (0.44° x 0.44°). From the CORDEX datasets, we got daily 

surface-downwelling shortwave radiation (Rs; also called solar irradiance), air temperature (Ts), 

wind speed (Ws; at 10m above the ground level) and relative humidity (Rh). For the study, we 

used 14 simulation ensemble members obtained by downscaling by 9 Global Climate Models 

(GCMs) simulations with 3 Regional Climate Models (RCMs), as shown in Figure (2). To analyse 

the CORDEX simulations, we use the multi-model mean ensemble (henceforth Rmean). The 

Rmean is generally considered to have a better performance than an individual model (Samouly et 

al., 2018). The Rmean is formed by merging a number of models with equal weights and has been 

found to have a higher likelihood for a better score than any individual model (Wallach et al.,  

2016; Hagedorn et al., 2005). Moreover, the Rmean gives better results in terms of long-term 

climate change projection rather than an individual model (Houghton et al., 2001). 

2.2.2 Generation of the global warming levels

For the climate change projection, we use the RCP8.5 because it does not integrate any specific 

climate mitigation target (business as usual; Van Vuuren et al., 2011). The greenhouse gas 

emissions and concentrations in this scenario increase considerably over time, leading to a 

radiative forcing of 8.5 W/m2 at the end of the century (Riahi et al., 2011). For the climate change 

projection, we also use four global warming levels (1.5°C, 2.0°C, 2.5°C and 3.0°C; hereafter, 

GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) above the PI level (1881-1910). The GWL1.5, 

GWL2.0, GWL2.5, and GWL3.0 is defined when the GMT reaches 1.5, 2.0, 2.5, 3.0°C 

respectively above the PI levels. To compute the 30-year GWL for each GCM simulation, we use 

30-year centred at the year when GCM reaches the 1.5, 2.0, 2.5, 3.0°C in GMT relative to PI levels 

under the RCP 8.5 (Déqué et al., 2017). For the analysis, we used the same GWL period of the 

GCM to extract the 30-year of the GCM downscaled by the RCM using 1971-2000 as a control 

period. The names of the driving GCMs, the RCMs and the period of the GWLs used in this study 

are shown in Figure 2. 

 

 

 

Journal Pre-proof



6

Figure 2: The extracted 30-year global warming period based on the method of Deque et al. (2016) under 
the RCP 8.5 scenario. The written bold indicates the driving GCM and the written bracket indicates the 
downscaling RCM used in this study. Each line denotes the start year (the bottom), the middle year (the 
median of the line) and the end year (the top) of the warming level.

2.2.3 Observation datasets description
For the model evaluations, we used three types of dataset. The first data is derived from the CM 

SAF second edition of the Surface Solar Radiation Data Set-Heliosat Edition 2 (SARAH-2) 

(Pfeifroth et al., 2018); hereafter SARAH. SARAH is a product derived from satellite-observations 

of the visible channels of the MVIRI and the SEVIRI instruments onboard the geostationary 

Meteosat satellites. It covers 33 years (1983-2015) and has a spatial resolution of 0.05° by 0.05°. 

Many studies have demonstrated the quality of the SARAH data through the Baseline Surface 

Radiation Network (Müller et al., 2015; Stöckli and Stöckli, 2013). Secondly, we used the 

temperature variable from the Climatic Research Unit (CRU) to evaluate the temperature of the 

Rmean. CRU is a monthly high-resolution gridded data (0.5° x 0.5°) using station data with a 

period ranging from 1901 to 2016. Finally, we use the ERA-Interim reanalyses dataset from the 

European Centre for medium-range weather forecasts (ECMWF; Dee et al., 2011). The ERA-

Interim dataset has 0.75°x 0.75° horizontal grid size and extends from 1979 to the present date. 

From the ECMWF website, we retrieved surface wind speed (10m above the ground level) and 
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relative humidity which has been computed from dewpoint and specific humidity. The selected 

period for the three datasets (SARAH, CRU and ERA-Interim) ranges from 1985 to 2014. For the 

rest of the study, the three datasets are referred to as observations. The observations and 

simulations datasets were remapped to 0.44° x 0.44° grid points and presented on the annual and 

monthly average.

2.3 Method 

The impact of climate change of PVP  was considered by including the Rs, Ts, Ws and Rh over 

the West Africa region and its three climatic zones. Fig. 3 exhibits an overview of the study 

methodology. The evaluation and projection over a climatic zone are done by averaging the values 

over the grid points within the climatic zone.

Figure 3: Flow chart of research methodology to characterize the impact of climate change on PV power 
generation potential over West Africa.
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2.3.1 PV power generation potential (PVP)

The PV power generation is defined as the amount of energy received from the sunshine at the 

Earth’s surface and converted into electricity through PV cells, modules and arrays. It results from 

the PVP multiplied by the nominal PV power installed capacity (in Watts). The PVP describes the 

performance of the PV cells regarding their nominal power capacity according to the actual 

ambient conditions and it is dimensionless (Jerez et al., 2015). Besides that, the PVP depends on 

the solar resource available at the location, the air temperature, wind speed, cloud cover, aerosols, 

the spectral distribution of incident radiation, the angle of incidence of radiation, and operational 

efficiencies of system components (Kafka and Miller, 2019). For this study, we use only the solar 

irradiance (at the plane of the array), the temperature, the wind speed and the relative humidity to 

quantify the PVP over the study domain. Following Mavromatakis et al (2010), the PVP can be 

expressed as : 

          (1)𝑃𝑉𝑃(𝑡) = 𝑃𝑟(𝑡).
𝑅𝑠(𝑡)
𝑅𝑠𝑆𝑇𝐶

where Rs is the surface-downwelling shortwave radiation at the location site, RsSTC is the solar 

irradiance of 1000W/m2 at standard test conditions (STC).  is the performance ratio; it 𝑃𝑟(𝑡)

accounts for changes of the PV cells efficiency due to changes in their temperature (Jerez et al., 

2015) and defined as:

    (2)𝑃𝑟(𝑡) = 1 + 𝛾.[𝑇𝑐𝑒𝑙𝑙(𝑡) ― 𝑇𝑆𝑇𝐶]

where Tcell is the PV cell temperature and TSTC is the ambient air temperature at STC i.e. 25 °C.  𝛾

is constant and depends on the type of PV cells.  In this paper, we use a monocrystalline silicon 

solar panels for the simulations because it is the most used PV solar technology in West Africa; 

the value of  is taken as -0.005 °C-1 (Jerez et al., 2015). We suppose that the technology will 𝛾

remain the same in the future. Tcell is modelled as a function of Rs, Ws, Ts, and Rh (TamizhMani 

et al., 2003):

    (3)𝑇𝑐𝑒𝑙𝑙(𝑡) = 𝑐 + 𝑐1.𝑅𝑠(𝑡) + 𝑐2.𝑇𝑠(𝑡) + 𝑐3.𝑊𝑠(𝑡) + 𝑐4.𝑅ℎ(𝑡)

with c = 1.57°C; c1 = 0.0289°C/W/m2; c2 = 0.961; c3 = -1.457°C/m/s; and c4= 0.109°C/Rh% 

where c, c1 , c2 , c3  and c4  are system-specific regression coefficients determined by TamizhMani 

et al (2003).
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We chose this model because it includes the influence of wind speed and relative humidity in 

calculating the impacts of temperature on PV cells. Other models based their calculations of solar 

cell temperature on solar irradiance and ambient temperature alone (Crook et al., 2015), meanwhile 

some studies (Bhattacharya et al., 2014; Kazem et al., 2012) have shown that the solar cell 

temperature is sensitive to ambient wind speed and relative humidity as well. For instance, 

Mekhilef et al (2012) showed two scenarios through which humidity can influence PV cell 

performance: through effect of water vapour particles on solar irradiance and through the humidity 

ingression to the solar cell enclosure.  The authors showed that an increase in relative humidity 

can reduce the performance of PVP because water droplets on the cell reflect the solar irradiance. 

On the other hand, an increase in wind speed cools the cells, thereby improving the PV cell 

efficiency. Hence, choosing the model helps us to obtain a more reliable cell temperature and to 

compare the contribution of the two additional variables on the cell temperature. Moreover, the 

model has been developed and evaluated using field measurements of modules (i.e. cell) 

temperature, ambient temperature, wind speed, wind direction and relative humidity from the 

weather station. TamizhMani et al (2003) showed that the correlation between the model results 

and observation is more than 0.9. Jerez et al (2015) have also used the model to project impacts of 

climate change on PV power generation over Europe.

 
The Rmean projections in PVP, Rs, Ws and Rh are expressed in relative terms by making the 

difference between each GWL and the reference period (1971-2000) and then dividing with the 

historical period of each grid point. However, the projection Ts is expressed in the absolute terms 

by obtaining the difference between each GWLs and the reference period. All the simulations were 

compared to the reference datasets before making the climate change projection. 

2.3.2 Induced changes in PVP

To compute the contribution of each variable to the projected changes in PVP, we substituted the 

(2) and (3) into the equation (1) and can be expressed as:

𝑃𝑉𝑃(𝑡) = 𝛽1.𝑅𝑠(𝑡) + 𝛽2.𝑅𝑠(𝑡)2 + 𝛽3.𝑅𝑠(𝑡).𝑇𝑠(𝑡) +

                   (4)                                          𝛽4.𝑅𝑠(𝑡).𝑊𝑠(𝑡) +  𝛽5.𝑅𝑠(𝑡).𝑅ℎ(𝑡)

where 𝛽1 = 1.11715.10 ―3 (𝑊 𝑚2) ―1; 𝛽2 =  ― 1.45.10 ―710 ―3 (𝑊 𝑚2) ―2; 

𝛽3 =  ― 4.805.10 ―6 (𝑊 𝑚2.℃) ―1; 𝛽4 =  7.285.10 ―6 (𝑊 𝑚2.𝑚/𝑠) ―1; 𝑎𝑛𝑑

 𝛽5 =  ― 5.45.10 ―7 (𝑊 𝑚2.𝑅ℎ%) ―1
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With the first order of Taylor expansion, the total change in PVP ( ) due to the contribution 𝛥𝑃𝑉𝑃

of changes in each term in the equation (4) can be expressed as:

                                                (5)𝛥𝑃𝑉𝑃 = 𝛥𝑅𝑠_𝑃𝑉𝑃 +  𝛥𝑇𝑠_𝑃𝑉𝑃 +  𝛥𝑊_𝑃𝑉𝑃   +  𝛥𝑅ℎ_𝑃𝑉𝑃 

where ;: 𝛥𝑅𝑠_𝑃𝑉𝑃 = 𝛥𝑅𝑠 (𝛽1  +  2𝛽2. 𝑅𝑠 + 𝛽3.𝑇𝑠 +    𝛽4.𝑊𝑠 +  𝛽5.𝑅ℎ)

             𝛥𝑇𝑠_𝑃𝑉𝑃 = 𝛽3.𝑅𝑠.𝛥𝑇𝑠;

           ; and 𝛥𝑊𝑠_𝑃𝑉𝑃 = 𝛽4.𝑅𝑠.𝛥𝑊𝑠

            𝛥𝑅ℎ_𝑃𝑉𝑃 =  𝛽5.𝑅𝑠.𝛥𝑅ℎ;

So, the total change in  due to the contribution of change in temperature  is 𝛥𝑃𝑉𝑃 (𝛥𝑇𝑠_𝑃𝑉𝑃)

obtained by:

      (6)𝛥𝑃𝑉𝑃 =  𝛥𝑇𝑠_𝑃𝑉𝑃 

A similar analysis can be used to isolate the other terms from Equation (5). Table 1 summarized 

all the parameters used; with their meaning and unit.

Table.1 Different parameters with their meaning and units used in this study 
Parameter Meaning Unit

𝑅𝑠 Solar irradiance 𝑊 𝑚2

𝑇𝑠 Air temperature °𝐶

𝑊𝑠 Surface wind speed 𝑚 𝑠

𝑅ℎ Relative humidity %

𝑃𝑉𝑃 PV power generation potential dimensionless

𝛥𝑅𝑠 Change in solar irradiance 𝑊 𝑚2

𝛥𝑇𝑠 Change in air temperature °𝐶

𝛥𝑊𝑠 Change in surface wind speed 𝑚 𝑠

𝛥𝑅ℎ Change in relative humidity %

𝛥𝑃𝑉𝑃 Change in PV power generation potential dimensionless

𝛥𝑅𝑠_𝑃𝑉𝑃 The total   due to the contribution of 𝛥𝑃𝑉𝑃 𝛥𝑅𝑠 dimensionless

𝛥𝑇𝑠_𝑃𝑉𝑃 The total   due to the contribution of 𝛥𝑃𝑉𝑃 𝛥𝑇𝑠 dimensionless

𝛥𝑊𝑠_𝑃𝑉𝑃 The total   due to the contribution of 𝛥𝑃𝑉𝑃 𝛥𝑊𝑠 dimensionless

𝛥𝑅ℎ_𝑃𝑉𝑃 The total   due to the contribution of 𝛥𝑃𝑉𝑃 𝛥𝑅ℎ dimensionless
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3. Results and discussions

3.1 Model evaluation

The Rmean reproduces well the spatial distribution of solar irradiance (Rs), surface temperature 

(Ts), wind speed (Ws), and relative humidity (Rh) over West Africa (Fig. 4). For each variable, 

the spatial correlation between the simulated and observation annual mean is high (significant at 

95% of confidence level), ranging from 0.90 in Ts to 0.99 in Rh. Furthermore, the Rmean exhibits 

a low spatial mean bias deviation (MBD), varying from -2.6% in Rs to -15% in Rh with a low root 

mean square deviation (RMSD) over the region. The simulations capture the latitudinal variation 

of variables. In agreement with observation, the Rmean simulate the minimum Rs, Ts and Ws over 

the Guinea coast and maximum values over the Sahel zone. While the minimum Rs (about 160 

W/m2) over the Guinea zone can be attributed to cloudiness from deep convection and land-sea-

breeze that may intercept the incoming solar radiation (Knippertz et al., 2011), the maximum Rs 

(about 300 W/m2) over the Sahel zone may be due to cloud free-conditions over the zone for most 

of the year (Parker and Diop-Kane, 2017). Nevertheless, the lower Ts over Guinea (compared to 

that over the Sahel zone) may be due to the lower Rs and more vegetation cover (i.e. more 

evapotranspiration induced cooling) over the zone. The weaker Ws over Guinea (compared to that 

over the Sahel) may be due to the stronger frictional drag on the monsoon flow over the zone. The 

simulation and observation agree that, in contrast to Rs, Ts and Ws, a maximum Rh (> 66%) is in 

the Guinea zone and a minimum Rh (< 34%) in the Sahel zone. The maximum Rh over Guinea is 

because the moisture laden monsoon air is advected into the sub-continent through the Guinean 

zone, and the monsoon flow loses some of its moisture (through rainfall) before reaching the Sahel 

zones.

Despite the good performance of the Rmean (in reference to the observation), there are some 

notable biases in the simulation (Fig. 4). For instance, the Rmean underestimates the Rs over most 

part of West Africa (by up to 20 W/m2 along the Guinea coast and the eastern part of the Sahel 

zone) and overestimates it over the western Sahel (by up to 10 W/m2) (Fig. 4b). This bias suggests 

that the RCMs overestimate the cloudiness over the Guinea coast and underestimate it over the 

western Sahel. However, the largest negative biases in the Rs are located over the mountainous 

areas (like the Jos Plateau in Nigeria and the Fouta Djallon mountain in Guinea), suggesting that 

the RCMs may be too active in simulating orographic cloud (Aguilar et al., 2010), or in triggering 

deep convection over the mountains. Several studies have shown that cloud representation is still 
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a major challenge in climate models (Tang et al., 2018; Palmer, 2016;  Solomon et al., 2009). 

Nevertheless, the discrepancies between the simulated and observed Rs might also be explained 

by shortcomings in the satellite observation that have been reported in previous studies  (Amillo 

et al., 2018; Urraca et al., 2017; Riihelä et al., 2015). While the RCMs overestimate Ws over the 

Guinea and Savannah zones and underestimate it over the Sahel region (Fig. 4c), they 

underestimate Ts and Rh over the entire West Africa. The largest Ts bias is located in the Sahel 

zone and the lowest in the Guinea and Savannah zones. The opposite is the case for Rh bias. 
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Figure 4: The spatial distribution of the annual averages of solar irradiance (Rs), surface temperature (Ts), 
surface wind speed (Ws) and relative humidity (Rh) as observed (left column) and simulated (Rmean; right 
column) over West Africa. The correlation (r), mean bias deviation (MBD) and root mean square deviation 
(RMSD) between the observed and simulated fields are indicated in the brackets, while the simulation 
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biases are depicted with contours. All the correlations are statistically significant at 95% confidence 
interval.

Figure (5) shows that the RCMs (Rmean) replicate the observed annual cycle of the variables (Rs, 

Ts, Ws, and Rh) over each climate zone. The monthly correlation between the simulated and 

observed cycle is strong (r > 0.7) and significant (at 95% confidence level) for all the variables. In 

addition, the performance of Rmean varies with different variables and over different zones as 

well. The Ws shows a higher RMSD of 30% over the Guinea zone while the Rs shows the lowest 

RMSD of 4.9% over the Sahel zone. However, the RCMs captures the maxima and the minima of 

the Rs, Ts, Ws and Rh over each zone, although with different magnitude. Over the Guinea zone, 

in agreement with observation, the Rmean simulates the Rs and Ts maxima with Rh minimum in 

the dry season December–February, before the arrival of the moist monsoon flow (Sylla et al., 

2015) and shows Rs and Ts minima and Rh maximum in peak wet season (August, during the 

monsoon flow). However, in general, the MBD shows that the Rmean underestimate the observed 

value of the variables over the different zones. For instance, the Rmean underestimates the 

observed Rs minimum (by more than 50 W/m2) and underestimates Rh throughout the year (by 

about 20%) except in the Sahel zone, and overestimates the wind speed in all months (by about 1 

m/s) over the Sahel at less than 0.5 m/s over the Guinea and Savannah zones. The annual cycles 

of these variables over the Savannah and Sahel zones are similar to those over the Guinea zone, 

except that both observation and Rmean indicate that Rs and Ts maxima with Rh minima over the 

Savannah zone occur a month later than their counterparts over the Guinea zone, and those over 

the Sahel zone also occur a month later than their counterparts over the Savannah zone. This is 

consistent with the northward movement of the pre-monsoon condition over West Africa 

(Cornforth, 2012). The magnitude of the Rmean biases over the Savannah-Sahel zones is also 

comparable to those over the Guinea coast. These results agree with those in previous studies (e.g. 

Abdullahi et al., 2017; Gilani et al., 2011) that showed that high temperature goes with high solar 

radiation while high relative humidity reduces the solar radiation. 
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Figure 5: The observed and simulated annual cycle of solar irradiance (Rs), surface temperature (Ts), 
surface wind speed (Ws) and relative humidity (Rh) over the three West African zones (Guinea, Savannah 
and Sahel). The simulation spread is in grey while the simulation mean (Rmean) and observed values are 
in black and red lines, respectively. The correlation (r), mean bias deviation (MBD) and root mean square 
deviation (RMSD) between the observation and Rmean is indicated in the bracket. The asterisk (*) 
indicates the correlations that are statistically significant (at 95% confidence level). 

The Rmean also replicates the spatial distribution of PVP over West Africa, with a high correlation 

value (r=0.95) and a low RMSD (5.6%; Fig. 6a & b).  In agreement with observation, Rmean 

locates the highest PVP over the Sahel region (19.53-28.75%) and the lowest over the Guinea zone 

(13.05-24.75%). The pattern mostly follows the spatial distribution of Rs, and to an extent, that of 

Ts. The major shortcoming in the spatial distribution of the simulated PVP is the positive bias 

(about 1%) over the western part of the Sahel zone and the negative bias over the western part of 
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the Guinea zone (about 0.5%). Nonetheless, the Rmean underestimates the observed PVP over 

West Africa with a value MBD of -5.5%. Over the zones (Guinea, Savannah, and Sahel), the 

observed annual cycle of PVP mimics that of Rs, showing the highest PVP (24.89%, 27.15%, 

29.28%, respectively) in February when clear sky gives room for maximum Rs and the lowest 

values (24.89%, 27.15%, 29.28%, respectively in August when the presence of clouds reduces the 

Rs to the minimum). The Rmean realistically reproduces this annual cycle, but with a larger 

amplitude than observed; while it overestimates the maximum values, it underestimates the 

minimum values. These biases are consistent with those in the simulated Rs. Nevertheless, the 

simulated annual mean of PVP over the country is in good agreement with the observation. While 

the observed values fall within the interquartile of the model spread over most of the countries, all 

the RCMs underestimate the mean observed of the PVP over Liberia, Serra-Leone and Guinea-

Bissau (Fig. 6f). This may due to the different biases in the simulated variables used in computing 

the PVP. However, the simulations and the observation agree that the highest PVP is in Niamey 

(25.98%) and the lowest value is in The Gambia (14.85%). The good agreement between the 

simulations and observation on the spatio-temporal variation of Rs, Ts, Ws and PVP suggest that 

the simulations capture the necessary atmospheric processes (e.g. monsoon systems) that control 

PVP variation over West Africa. 
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Figure 6: The climatology of PV power generation potential during the reference period (1971-2000) as 
observed and simulated. The contours in panel (b) show the simulation bias. The panels (c-d-e) show the 
spread of the simulated PV power generation potential over the three zones (Guinea, Savannah, and 
Sahel). The correlation (r), mean bias deviation (MBD) and root mean square deviation (RMSD) between 
the observation and Rmean is indicated in the bracket.  Panel (f) shows the same over the countries. Each 
boxplot indicates the minimum, 1st quartile, median, 3rd quartile, and maximum of RCMs. 

3.2 Climate change projection

3.2.1 Projected changes in PVP and climate variables.

The simulation ensemble projects a decrease in the PVP over West Africa, except along the coastal 

and mountainous areas where it projects an increase (Fig 7). These changes are statistically 
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significant at 95% over the whole region under the GWLs. However, the magnitude of the change 

varies over the region and increases non-linearly with increasing GWLs (Fig 7a-d). At GWL1.5, 

the decrease is about 0.72% north of 16oN and less than 0.72% south of this latitude. In general, 

the PVP decreases by 0.5% between GWL1.5 and GWL2.0 but by 0.4% between GWL2.0 and 

GWL2.5 (Fig 7). So, at GWL2.5, a decrease of about -1.5% is projected north of 16oN and about 

1.35% is projected south of this latitude. The result is consistent with previous studies that have 

shown that climate change may reduce the PV power output over West Africa. For example, Huber 

et al. (2016) projected a general decrease in PVP over West Africa. They used an ECHAM4 

(GCM) coupled with the aerosol-climate model for the future period of 2035-2039 compared to 

the past period (1995-1999). Using eight regional climate models (CORDEX), Bazyomo et al. 

(2016) also projected a decrease of PVP over the West African countries. 

The projected changes in PVP (hereafter, ∆PVP) can be explained by the corresponding changes 

the four climate variables (hereafter, ∆Rs, ∆Ts, ∆Ws and ∆Rh; Fig. 7). Among the four, ∆Rs has 

the highest spatial correlation (r > 0.93) with ∆PVP (Fig. 6e-h). The spatial distribution of ∆Ts 

also has a high but negative spatial correlation (|r| ≥ 0.82) with ∆PVP, although the magnitude of 

the correlation reduces with GWLs (Fig. 7i-l). However, the strong negative spatial correlation 

between the changes in Ts and PVP indicates that an increase in Ts contributes to the projected 

decrease in PVP. This is consistent with previous studies that report that an increase in temperature 

leads to a decrease in PVP (Wild et al., 2015; Jerez et al., 2015;  Dubey et al., 2013; Fesharaki et 

al., 2011). Hence, in addition to the influence of solar dimming, the maximum increase in Ts over 

the Sahel could also induce the maximum decrease in PVP over the zone. In contrast to ∆Rs and 

∆Ts, ∆Ws and ∆Rh are poorly correlated with ∆PVP (Fig. 7). The correlation between ∆Ws and 

∆PVP ranges from -0.18 (at GWL1.5) to 0.47 (at GWL2.5), while the correlation between ∆Rh 

and ∆PVP ranges from -0.02 (at GWL2.0) to 0.21 (at GWL3.0). Nonetheless, ∆Ws and ∆Rh are 

only significant (at 95% confidence level) at GWL2.0 and GWL3.0, where an increase in Ws 

(maximum: 4.7%) and a decrease in Rh (maximum: 6.4%) are projected over the Sahel. The 

direction of changes in Ws and Rh are not consistent with that of PVP, in that, the projected 

increase in Ws and decrease in Rh over the Sahel zone would increase the PVP. This suggests that 

the influence of change Rs and Ts dominate the projected change in PVP.

The Rmean project a general decrease in Rs and Rh while an increase in Ts and Ws over the region. 

As in ∆PVP, ∆Rs generally decreases (up to 1%) over West Africa with a little increase along the 
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coastal zones and mountainous areas at all the GWLs; at GWL3.0, the maximum decrease is 

located in the Guinean zone (2.02%), the minimum decrease is in the Sahel zone (1.43%). 

Counterintuitively, global warming may reduce solar irradiance over West Africa. This reduction 

(known as solar dimming) is due to the feedback of the global warming change Rs through in 

cloud cover and aerosols. For instance, some studies have projected an increase in precipitation 

and cloud cover over the Guinea zone (Sylla et al.,  2010) under the warmer climate and a higher 

concentration of aerosols over the Sahel (Touré et al., 2012). On the other hand, an increase in Ts 

over West Africa is projected with the increase GWLs, but the regional warming rate is higher 

than the global rate, especially at north 12oN, where warming is more than 1.2oC per 1oC GWL; 

the rate is even more at east Sahel (> 1.3oC per 1oC GWL). This pattern is consistent with previous 

studies (e.g., Sylla et al., 2016; Abiodun et al., 2012) that attributed the lowest warming rate along 

the coast to the cooling effect of the monsoon air from the ocean. The cooling effect, which 

decreases inland, may be weak or absent over the Sahel zone. Nonetheless, the increase in Ws can 

be attributed to the projected stronger temperature gradient over West Africa (i.e. Abiodun et al., 

2012; Sawadogo et al., 2019), while the decrease in Rh can be due to high saturated mixing ratio 

in the projected warmer climate (i.e. Abiodun et al., 2012). 
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Figure 7: Projected changes in PV power generation potential (PVP) of the model ensemble mean, solar 
irradiance (Rs), surface temperature (Ts), wind speed (Ws), and relative humidity (Rh) over West Africa 
under the four global levels (GWL1.5, GWL2.0, GWL2.5, and GWL3.0). The area where the changes are 
statistically significant (at 95% confidence level) are indicated with dots. The contour lines indicate the 
difference between the GWL15 and each corresponding GWLs. The correlation between the PVP pattern 
and other variables is shown in brackets.

Figure (8) reveals that the projected decrease in PVP (i.e. negative ∆PVP) over West Africa does 

not occur throughout the year. A positive ∆PVP is projected in April to May over the Guinea zone, 

in May and July over the Savannah and the Sahel zone (Fig. 8a - 8c). However, while the negative 

∆PVP can be as much as -2.8% (in November–January; Fig. 8c), the maximum positive ∆PVP is 

about 2.41% over the Sahel and the Savannah zones (in July; Fig. 8c). The month variation of 

∆PVP is better coupled with ∆Rs, ∆Ws and ∆Rh than with ∆Ts (Fig. 8). This implies that the 

impacts of the regional warming on PV over each zone are minimal in months when the monsoon 
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system arrives over the zones. The figure shows that these periods are associated with positive 

∆Rs and ∆Ws and negative ∆Rh. The negative ∆Rh suggests drier condition and less cloudiness 

because the warmer atmosphere would require more moisture to reach saturation and produce 

clouds. And the positive ∆Rs is consistent with less cloudiness as a decrease in cloudiness will 

allow more insolation to reach the surface. All these changes would tend to induce a positive ∆PVP 

during this period. Hence, the arrival of the monsoon system plays a crucial role in modulating the 

impact of global warming on the seasonal variation distribution of ∆PVP.
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Figure 8: Projected changes of the model ensemble mean in the annual cycle distribution over different 
West African zones under the four GWLs (GWL1.5, GWL2.0, GWL2.5, and GWL3.0): (a-c) shows for the PV 
power generation potential (PVP); (d-f) for the solar radiation (Rs); (g-i) for the air temperature (Ts); (i-k) 
for the Ws and (i-n) for the Rh

3.2.2 Projected changes in PVP over West African countries

The simulation ensemble projects a decrease in PVP over all the selected countries (Fig. 9). 

However, the level of agreement among the simulations on the projection (which is a measure of 

the robustness of the projections) varies over the countries. For example, at GWL1.5, while less 

than 75% of the simulations agree on the decrease in Sierra-Leone and Liberia, more than 75% of 

the simulations agree on it over other countries. The discrepancy among the simulations on the 

projection may be attributed to the differences in the simulation configuration (Jerez et al., 2018; 

Giorgi, 2010). Nonetheless, the robustness of the projection over all the countries increases with 

increasing GWLs, such that, at GWL3.0, more than 75% agree on the decrease over all the 

countries. The magnitude of the projected decrease also varies over the countries. Among the 

countries, Niger is projected to experience the largest decrease (about -2.13% at GWL1.5 and 

about -3.59% at GWL3.0). This is coherent with the study of Bazyomo et al. (2016) that indicated 

Niger to have the highest decrease in West Africa by 2045. However, the magnitude of the 

decrease of PVP differs with the results of Bazyomo et al (2016) where the maximum decrease of 

the mean trend is about 0.032% /year or 1.28% for the period of 2006-2045. In general, the results 

of Bazyomo et al. (2016) in the PVP projection are lower than our results.

The magnitude of the decrease in PVP projected over the West African countries is much lower 

than the one projected in Europe and similar to some region in the world. For instance, using 

EURO-CORDEX simulations, Jerez et al (2015) projected -14% decrease over some Northern 

European countries. In addition, with the HadGEM1, California (~ -2%), Nevada (~ -3.5%), 

Algeria (~ -1%), Saudi Arabia (~ -5%) and Australia (~ -0.5%) may experience a decrease in PVP. 

On the other hand, some countries like China, Spain, and Germany may know an increase in the 

PVP (Crook et al., 2011). This suggests that the impact of climate change on PVP varies according 

to the regions with different magnitudes. Even if our results show a similar magnitude in the 

change of the PVP compared to other regions, the results of this study should be taken with care 

due to the model errors and uncertainties in the projection. However, with the ongoing project over 

the region at the large scale for electricity production, decision-makers should take into account 
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the future decrease of the PVP in their agenda. In addition, the sector of solar energy may be driven 

by the joint economic impact of climate change and technology development. To compensate the 

losses due to the impact of climate change, we need to install more solar plants or even to go for 

higher efficiency cost-effective solar cells that may allow to use the same land and infrastructure, 

by replacing the modules that have 15-20 years life expectancy.

Figure 9: Projection of annual mean PV power generation potential (PVP) over the West African countries 
under the four GWLs (GWL1.5, GWL2.0, GWL2.5, and GWL3.0. Each boxplot indicates the minimum, 1st 
quartile, median, 3rd quartile, and maximum of the RCMs.
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3.2.3 Total change in PVP due to the contribution of  Rs, Ts, Ws and Rh

The spatial distribution of the total change in PVP ( ) due to the contribution of change in 𝛥𝑃𝑉𝑃

temperature  exhibits the largest contribution over West Africa (Fig.10 e-h). This (𝛥𝑇𝑠_𝑃𝑉𝑃)

contribution increases as the warming level increases. Moreover, at all warming level, the high 

magnitude of the contribution is in the Sahel region, whereas low magnitude in the Guinea zone. 

For instance, over the Sahel the GWL1.5 (-0.632%), GWL2.0 (-0.93%), GWL2.5(-1.26%) and 

GWL3.0 (-1.58%) is higher than the GWL15 (-0.53%), GWL2.0 (-0.79%), GWL2.5 (-1.06%) and 

GWL3.0 (-1.32%) over the Guinea zone. This study reveals that as the global warming level 

increases, the increase in local temperature over the region contributes to decreasing the PVP. The 

results of this study are in lines with previous studies showing that the increase in temperature 

drops the efficiency of the solar cells; hence the PVP (Fesharaki et al., 2011; Radziemska, 2003). 

It why some studies advocate to reduce the vulnerability of the PV cells performance to the 

ambient temperature (Jerez et al., 2015; Patt et al., 2013). The general decrease in Rs also 

contributes to the total change in PVP over the region. The  due to the contribution of change 𝛥𝑃𝑉𝑃

in solar irradiance  exhibits a positive value along the coastal area and mountainous (𝛥𝑅𝑠_𝑃𝑉𝑃)

zones and negative value elsewhere (Fig.10 a-d). Also, the contribution of  increases 𝛥𝑅𝑠_𝑃𝑉𝑃

with the warming level. For example, over the Sahel zone, the  contributes about -0.24% 𝛥𝑅𝑠_𝑃𝑉𝑃

under GWL1.5 while -0.54% under GWL3.0. On other hands, the contribution of  𝛥𝑊𝑠_𝑃𝑉𝑃

(Fig.10 i-l) and  (Fig.10 m-p) have an insignificant effect on the total change the PVP 𝛥𝑅ℎ_𝑃𝑉𝑃

under the various warming level. This could be explained either by the small contribution of Ws 

and Rh used in equation 3 or to the small changes of the projection of both variables. Overall, this 

suggests that the total change in PVP may come from the change in Rs and Ts but mostly to the 

change of Ts.
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Figure 10: Projection of ensemble mean of the total change in PVP due to the contribution:  change in 
solar irradiance  (a-d); change in temperature  (e-h); change in wind speed (𝛥𝑅𝑠_𝑃𝑉𝑃) (𝛥𝑇𝑠_𝑃𝑉𝑃) (𝛥𝑊𝑠_

 (i-l) and change in relative humidity  (m-p) over the West African countries under the 𝑃𝑉𝑃) (𝛥𝑅ℎ_𝑃𝑉𝑃)
four GWLs (GWL1.5, GWL2.0, GWL2.5, and GWL3.0

Among the seven components of ∆PVP in Equation (5),  and have the largest ∆𝑅𝑠_𝑃𝑉𝑃 ∆𝑇𝑠_𝑃𝑉𝑃  

contributions to ∆PVP (Fig.11). The contributions from other components  (∆𝑊𝑠_𝑃𝑉𝑃, ∆𝑅ℎ_𝑃𝑉𝑃)

are negligible. That is why their plots are overlaid and close to zero. However, the characteristics 

of  and differ. For instance, in the annual cycles,  features positive ∆𝑅𝑠_𝑃𝑉𝑃 ∆𝑇𝑠_𝑃𝑉𝑃  ∆𝑅𝑠_𝑃𝑉𝑃

values in some seasons and negative in others, while features negative values ∆𝑇𝑠_𝑃𝑉𝑃  

throughout the year. So, the contributions of and  to ∆PVP are additive in ∆𝑇𝑠_𝑃𝑉𝑃  ∆𝑅𝑠_𝑃𝑉𝑃

some seasons but opposite in other seasons. In addition, while the magnitude of  is ∆𝑅𝑠_𝑃𝑉𝑃

virtually invariant with the increasing GWLs, that of increases with the increasing of ∆𝑇𝑠_𝑃𝑉𝑃  

GWLs. At GWL1.5, the negative contribution of to ∆PVP is lower than the positive ∆𝑇𝑠_𝑃𝑉𝑃  

contribution from  in some seasons, making ∆PVP to be positive. But, at GWL3.0, the ∆𝑅𝑠_𝑃𝑉𝑃

negative contribution overwhelms the positive contribution of  throughout the year.∆𝑅𝑠_𝑃𝑉𝑃
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Figure 11: Projected annual cycle of the contribution of each term to the projected change PV power 
generation potential over different West African zones and under various global warming levels.

4. Conclusion

To understand the potential impacts of climate change on the PVP over West Africa, we have 

analysed 14 RCM simulations from the CORDEX dataset at specific global warming levels under 

the RCP8.5 climate scenario. The capability of the simulations to reproduce climate variables (i.e. 

solar irradiance, ambient air temperature, surface wind speed, and relative humidity) which 

influence the efficiency of solar panel cells was evaluated by comparing the simulations with 

observations (SARAH and CRU) and reanalysis data. The projected changes in PVP (i.e. ∆PVP) 

and climate variables (i.e. ∆Rs, ∆Ts, ∆Ws and ∆Rh) were obtained at four GWLs (1.5 °C, 2.2 °C, 

2.5 °C, 3.0 °C), and the spatio-temporal relationship between the ∆PVP and of ∆Rs, ∆Ts, ∆Ws 

and ∆Rh was examined. The relative contribution of each component in the equation (5) to ∆PVP 

was analysed. The results of the study can be summarized as follow:

● The CORDEX simulation ensemble mean reproduces well the spatial distribution of 

climate variable (Rs, Ts, Ws and Rh) and PVP over West Africa, but it underestimates Rs 

over most part of West Africa over the eastern Sahel and overestimates it over the western 

Sahel.

● The ensemble mean captures the annual cycle of the climate variables and PVP over each 

climate zone shown. For all the variables, the simulation ensemble spread encloses the 
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observed curves. In agreement with observation, the simulations show that the seasonal 

cycle of PVP is controlled by the monsoon system.

● The CORDEX simulations projected a decrease in PVP over the whole of West Africa and 

indicate the magnitude of the increases with the increasing GWLs. The decrease is mainly 

due to projected solar dimming and increased regional temperature following global 

warming. However, the spatial distribution of ∆PVP is more influenced by ∆Ts than by 

∆Rs.

● The annual cycle of ∆PVP shows an increase (or least decrease) in PVP during the arrival 

of the monsoon system over each zone because, following the global warming, the onset 

of the monsoon system features stronger wind, drier condition, less cloudiness, and more 

radiation. The budget of ∆PVP shows that during the arrival of the monsoon system, the 

magnitude of ∆Rs_PVP (positive) is more that of ∆Ts_PVP (negative), especially at 

GWL1.5

● More than 75% of the simulations agree on the decrease in PVP over most of the selected 

countries, especially at GWL3.0. A maximum decrease is projected over Niger.

 The results of this paper can be improved in many ways. For instance, given that the PVP 

projection over West Africa is very sensitive to the uptake and removal of atmospheric dust by dry 

and wet convective systems (respectively), high-resolution simulations could give a better 

representation of the convections and their vertical transport of atmospheric dust. In addition, 

simulations that account for moist chemistry in the clouds may also give a better representation of 

the chemical processes in the clouds. Studies (Zang et al., 2016; Jantsch et al., 1991) have shown 

that the tilting angle of the solar panel influences PV efficiency. This was not accounted for in the 

present study. So, incorporating such factors into future studies can improve the robustness of the 

PVP projection. Furthermore, the focus of our study has been on the impact of climate change on 

PV, but there are other solar panel technologies. So, understanding the impacts of climate change 

on other technology, like concentrated solar power (CSP), will help put the results into a better 

perspective and provide a guide for technology with the least climate change impacts.

Finally, the model biases (seen in reference climate simulation) may impact the future projections 

and produce uncertainty in the projection. Understanding how to identify and reduce the influence 

model biases in future climate projections requires further investigation. Nevertheless, the present 

study has shown that global warming may reduce the PVP over West Africa in the future, although 

the projected maximum decrease is less than 3.8%.
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 The CORDEX dataset simulates well climate variables needed for calculating PVP over 
West Africa.

 A decrease in PVP is projected over West Africa due to both global warming and global 
dimming.

 The magnitude of the decrease grows with global warming levels. 
 The arrival of monsoon over each zone weakens the projected decrease in PVP by 

reducing cloudiness.
 Decreased PVP is projected over most of the selected countries, with a maximum 

decrease of 3.8%  at warming level of 3.0°C.
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