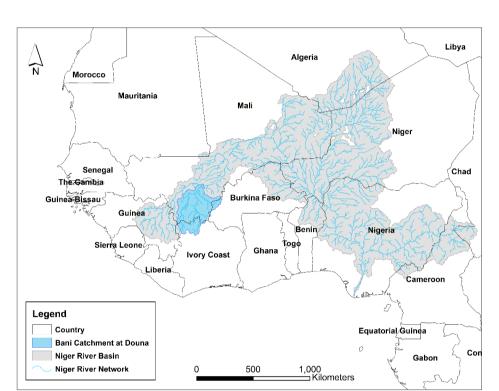
Catchments Classification: Multivariate Statistical Analysis for Physiographic Similarity in the Niger Basin

Jamilatou Chaibou Begou^{1,2,*}, Seifeddine Jomaa³, Sihem Benabdallah⁴, Pibgnina Bazie², Abel Afouda¹ and Michael Rode³


- ¹Graduate Research Program (GRP) Climate Change and Water Resources, West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), Université d'Abomey-Calavi, Cotonou, Benin, jamilabegou@yahoo.fr, aafouda@yahoo.fr


 ² Centre Regional AGRHYMET, Niamey, Niger, p.bazie@agrhymet.ne
- ³ Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research UFZ, Magdeburg, Germany, seifeddine.jomaa@ufz.de, michael.rode@ufz.de
- ⁴ Centre de Recherche et des Technologies des Eaux (CERTE), Soliman, Tunisia, sihem.benabdallah@certe.rnrt.tn
- *Correspondence: jamilabegou@yahoo.fr, Tel.: +227-9136-7854.

1. Introduction and Objectives

- Hydrological similarity between catchments is an essential concept in regionalization (Blöschl, 2001; Harman and Sivapalan, 2009; Wagener et al., 2007) and could be derived by a classification scheme.
- For a regionalization perspective, catchment classification consists in the search of hydrologically similar gauged catchment(s), from which hydrological information can be transferred to the ungauged catchment.
- Objectives:
- Determine a physiographic and climatic similarity between catchments located on the Bani basin.
- Determine the dominant factors that control this similarity.

2. Material and methods

- Catchment: Bani (Niger basin)
- Outlet: Douna
- Area: 100,000 Km²
- Annual precipitation: 1050 mm
- Annual discharge: 184 m³ s⁻¹

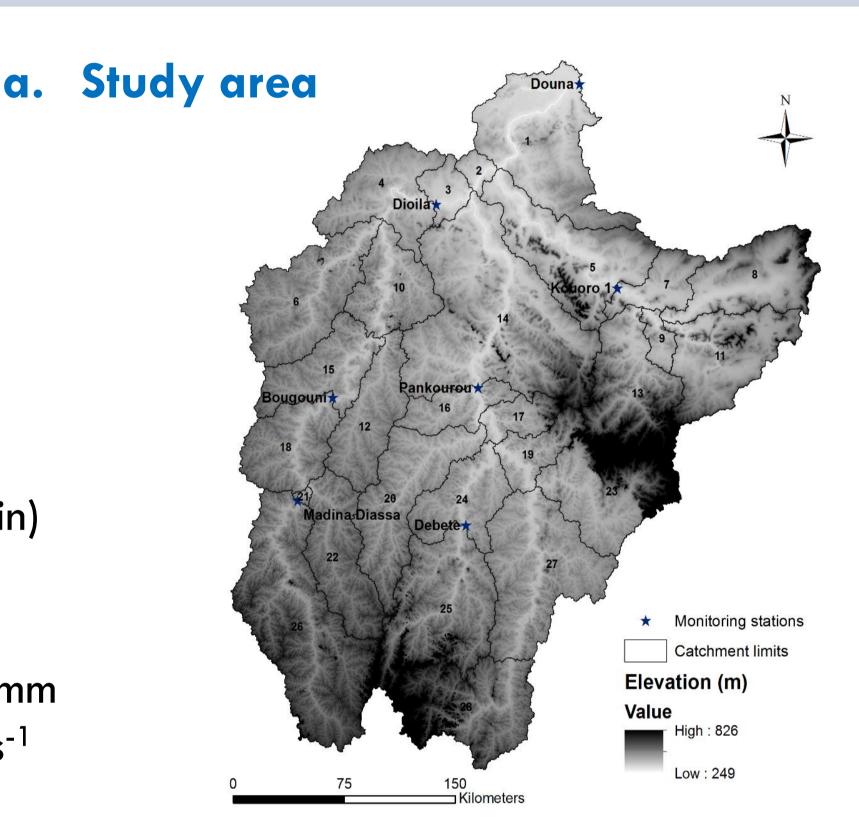


Figure 1. Location and Digital Elevation Model of the Bani basin.

b. Input catchments and catchments' attributes

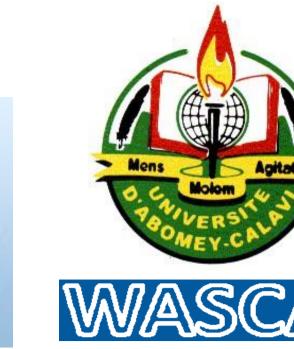
- 28 nested catchments ranging in size from 92 km² to 10,910 km²,
- 16 physiographic and climatic descriptors.

Table 1. Summary of catchment attributes (CAs).

Attribute	Description	Units
Slo1	Subbasin slope	%
Len1	Longest path within the subbasin	m
SII	Field slope length	m
Csl	Subbasin tributary reach slope	m
Wid1	Subbasin tributary reach width	m
Dep1	Subbasin tributary reach depth	m
Lat	Latitude of the subbasin centroid	dd
Long	Longitude of the subbasin centroid	dd
Elev	Mean elevation of the subbasin	m
ElevMin	Minimum elevation of the subbasin	m
ElevMax	Maximum elevation of the subbasin	m
Shape_Leng	Subbasin perimeter	m
Shape_Area	Subbasin area	m^2
* P	Average annual precipitation on the subbasin	mm

c. Hierarchical Clustering on Principal Components (HCPC)

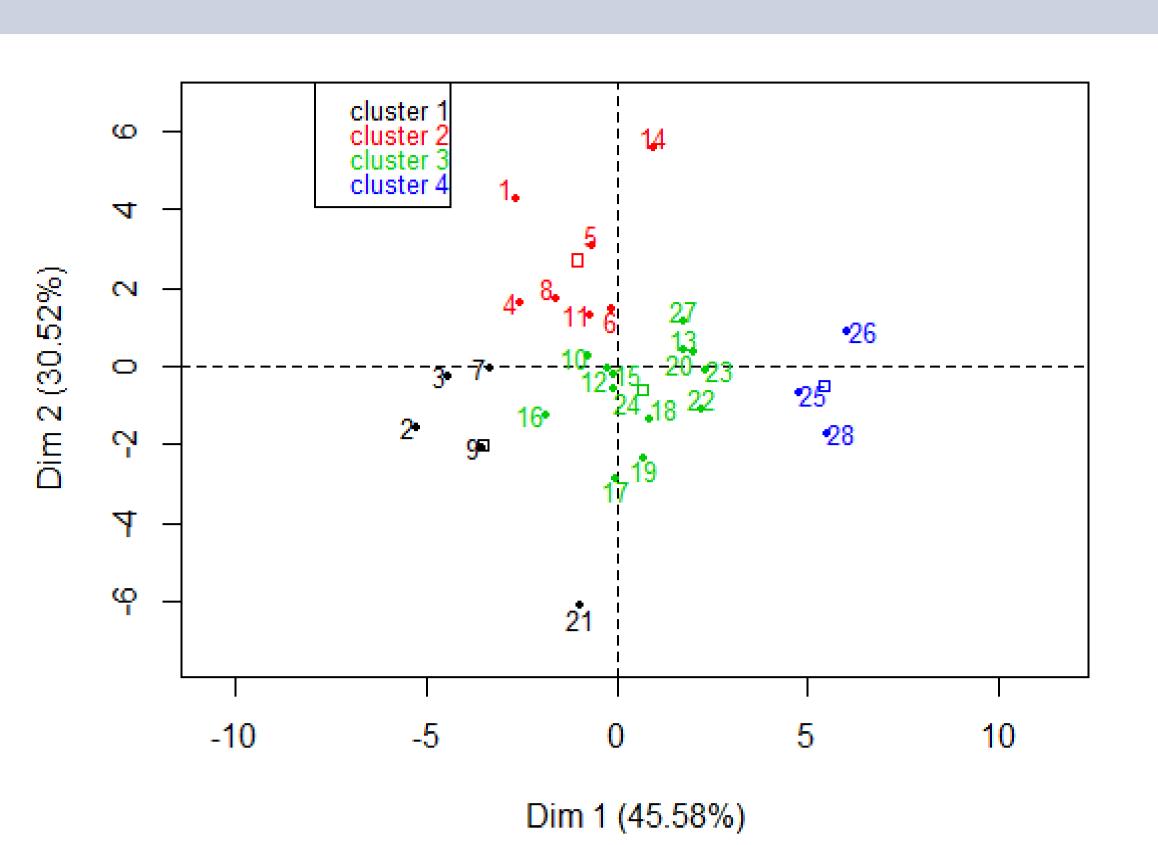
- Methodology: based on the Hierarchical Clustering on Principal Components (HCPC) function proposed by (Husson et al., 2010);
- Performed under R package FactoMineR
 1.28 (Husson et al., 2009; Lê et al., 2008);
- Combination of 2 exploratory data analysis methods: Principal Component Analysis (PCA) and Cluster Analysis (CA);
- Catchment attributes were first standardized;
- Appropriate number of Principal Components (PCs) chosen based on the Scree plot technique;
- Clustering built solely on the previously determined PCs;
- Distance between data points: Euclidean distance;
- Agglomerative method for merging two clusters: used the Ward's criterion

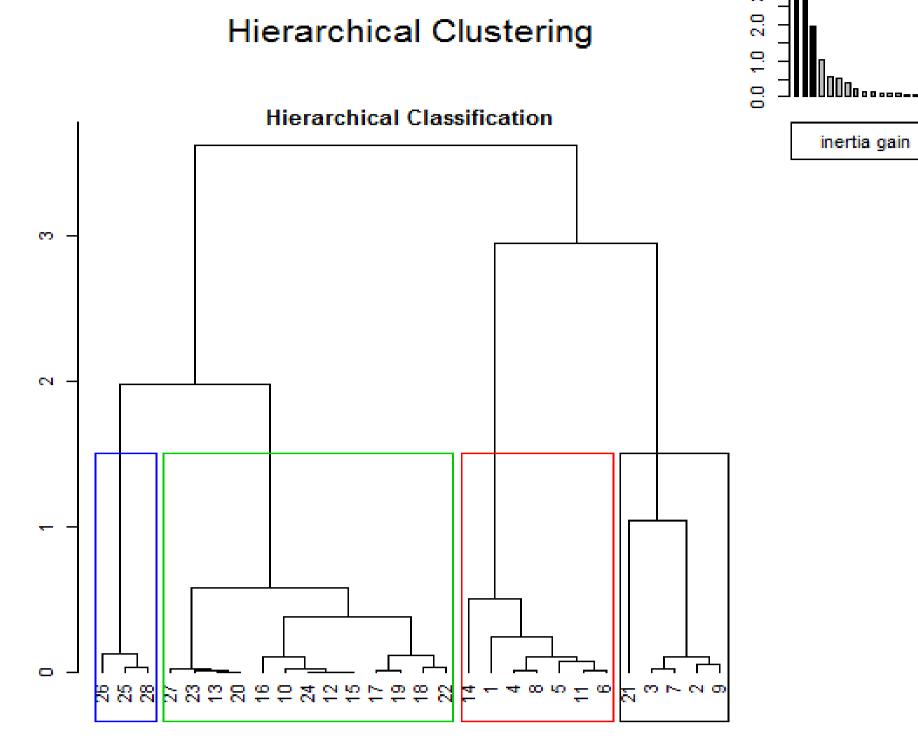

$$\sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I_q} \left(x_{iqk} - \overline{x_k} \right)^2 = \sum_{k=1}^{K} \sum_{q=1}^{Q} I_q \left(\overline{x_{qk}} - \overline{x_k} \right)^2 + \sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I_q} \left(x_{iqk} - \overline{x_{qk}} \right)^2,$$

Where x_{iqk} is the value of the variable k for the individual i of the cluster q, x_{qk} is the mean of the variable k for cluster q, x_{qk} is the overall mean of variable k and l_q is the number of individuals in cluster q;

Cluster description with the v-test

$$v - test = \frac{\overline{x}_{qk} - \overline{x}_k}{\sqrt{\frac{S^2}{n} \times \frac{N - n}{N - 1}}}$$


Where n is the number of individuals in cluster q, N is the total number of individuals and S^2 is the variance of the dataset.



3. Results

Figure 2. Hierarchical clustering representation on the map induced by the first 2 Principal Components on the Bani catchment.

Figure 3. Hierarchical tree. Each rectangle represents a cluster of similar catchments.

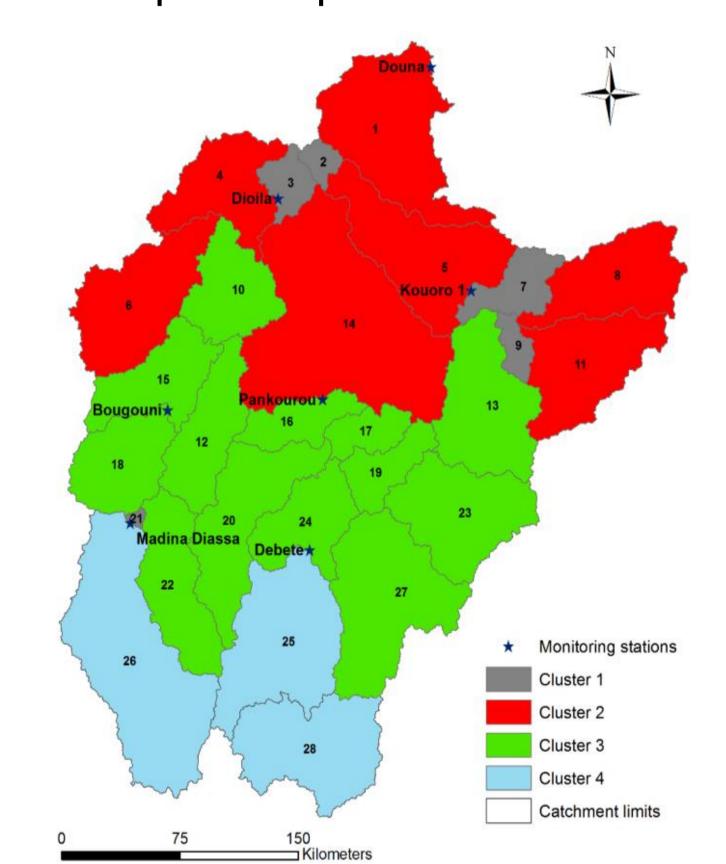


Figure 4. The spatial distribution of clusters of Physically-similar catchments on the Bani basin.

Table 2. Description of hierarchical clusters by the means of the v-test.

v-test	Mean in category	Overall mean	p-value		
Cluster 2					
2.97	87.75	50.81	0.002936		
2.76	12.17	11.41	0.005818		
2.74	91.25	56.71	0.006213		
- 2.68	265.57	285.96	0.007257		
- 3.00	829.56	1011.18	0.002674		
Cluster 4					
3.95	3.53	2.12	0.000080		
3.41	801.67	559.00	0.000654		
3.25	405.79	352.47	0.001171		
2.77	321.00	285.96	0.005648		
2.67	1279.97	1011.18	0.007662		
- 3.16	9.94	11.41	0.001 <i>557</i>		
	2.97 2.76 2.74 - 2.68 - 3.00 3.95 3.41 3.25 2.77 2.67	Cluster 2 2.97 87.75 2.76 12.17 2.74 91.25 - 2.68 265.57 - 3.00 829.56 Cluster 4 3.95 3.53 3.41 801.67 3.25 405.79 2.77 321.00 2.67 1279.97	Cluster 2 2.97 87.75 50.81 2.76 12.17 11.41 2.74 91.25 56.71 - 2.68 265.57 285.96 - 3.00 829.56 1011.18 Cluster 4 3.95 3.53 2.12 3.41 801.67 559.00 3.25 405.79 352.47 2.77 321.00 285.96 2.67 1279.97 1011.18		

4. Conclusions

- The Bani basin was classified into 4 clusters of similar catchments (Figures 2-4),
- The topographic variables (Elev, ElevMin, ElevMax, Slo1), precipitation and the geographical position of the sub-catchment (Lat) were demonstrated to be the most important causes of similarity between catchments belonging to Cluster 2 and Cluster 4 (Table 2),
- This study permitted to propose the two nomenclature: Group of northerly flat and semi-arid catchments, and group of southerly hilly and humid catchments.

References

- Blöschl, G., 2001. Scaling in hydrology. Hydrological Processes, 15(4): 709-711.
- Harman, C., Sivapalan, M., 2009. A similarity framework to assess controls on shallow subsurface flow dynamics in hillslopes. Water Resources Research, 45(1): W01417.
- Husson, F., Josse, J., Lê, S., Mazet, J., 2009. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining with R. R package version 1.12.
- Husson, F., Josse, J., Pages, J., 2010. Principal component methods hierarchical clustering partitional clustering: why would we need to choose for visualizing data?, Applied Mathematics Department, France.
- Lê, S., Josse, J., Husson, F., 2008. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1): 1-18.
- Wagener, T., Sivapalan, M., Troch, P., Woods, R., 2007. Catchment Classification and Hydrologic Similarity. Geography Compass, 1(4): 901-931.

Acknowledgements: We thank WASCAL and AGRHYMET/FFEM/CC for providing funds to support this work which is part of a PhD Thesis.