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ABSTRACT

Since the 1970s, climate change has led to decreasing water resources in the Sahel. To cope with climate change, reliable modelling of future

hydroclimatic evolutions is required. This study uses multiclimate and hydrological modelling approaches to access past and future (1951–

2100) hydroclimatic trends on nine headwater catchments of the Niger River Basin. Eight global climate models (GCMs) dynamically down-

scaled under the CORDEX CMIP5 project were used. The GCM data were bias-corrected with quantile–quantile mapping. Three rainfall–runoff

models (IHACRES-CMD, IHACRES-CWI and Sacramento) were calibrated and validated with observed data and used to simulate runoff. The

projected future runoff trend from 2061 to 2090 was compared across the three hydrological models to assess uncertainties from hydrolo-

gical models. Results show that the bias correction positively enhanced the quality of eight GCMs across the nine catchments. An average

Nash–Sutcliffe Efficiency (NSE) across the nine catchments was improved from 0.53 to 0.68 and the Kling–Gupta Efficiency (KGE) was

enhanced from 0.65 to 0.83. The three hydrological models were calibrated and validated appropriately on the nine catchments. Despite

this, high hydrological modelling uncertainties were witnessed with contrasting projected future runoff patterns by the three models. We

recommended the use of ensembles of both climate and hydrological models to provide reliable hydroclimatic modelling.
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HIGHLIGHTS

• CMIP5 hydroclimatic projections are accrued with biases on the Niger Basin.

• Quantile mapping corrected biases in the climate projections.

• IHACRES-CWI, IHACRES-CMD and Sacramento hydrological models simulate runoff with high accuracies.

• Future runoff patterns on the Niger Basin are highly uncertain.

• Ensembles of both climate and hydrological models were recommended for future hydroclimatic projections.
INTRODUCTION

Severe impacts due to climate change have been predominant in the Niger Basin and West Africa. In recent decades, there
has been a decline in food security as a result of an increase in temperature, a change in rainfall patterns and an increase in
extreme climatic conditions (Intergovernmental Panel on Climate Change (IPCC) 2019). Climate change has aggravated a

decrease in river discharge and an increase in Sahel drought since 1970, with 1984 being the driest year on record (Biasutti
2019). Furthermore, future projections have indicated that there will be an increase in the intensity of rainfall and flood mag-
nitudes (Sylla et al. 2015a). Topsoil losses due to an increase in the rainfall–runoff erosivity are projected in the 21st century

(Amanambu et al. 2019). Despite water being important in different sectors such as agriculture and hydropower, Sylla et al.
(2018) have shown that high temperature and evapotranspiration will reduce the potential to sustain dams and irrigation in
West Africa.
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Effective design and planning of sustainable adaptation mechanisms to climate change requires an efficient prediction of

future climate and hydrological patterns. Past changes in climate are not properly documented owing to an insufficient and
deteriorating number of dependable observation stations ever since the 1980s (Ali & Lebel 2009). Satellite-based records of
rainfall have also shown inherent biases due to insufficient observed data for model assessments (calibration and validation)

(Sylla et al. 2013). Future hydrological and meteorological predictions from CMIP3 and CMIP5 regional climate model
(RCM)/global climate model (GCM) ensembles were ascribed with large uncertainties (Druyan 2011; Oyerinde & Diekkrüger
2017). Therefore, there is an urgent need to improve hydro-meteorological modelling methodologies in West Africa.

Several studies have attempted to determine contributions of climate and hydrological models to climate change uncertain-

ties (Lespinas et al. 2014; Her et al. 2016, 2019; Hattermann et al. 2018; Zhang et al. 2019; Gangrade et al. 2020). Lespinas
et al. (2014) assessed uncertainties associated with RCMs with one hydrological model at a monthly temporal scale on mul-
tiple catchments with all being located in France. The authors found uncertainties stemming from the GR2M hydrological

models used in the study. Hattermann et al. (2018) concluded in their article that hydrological models are very sensitive
to little changes in temperature from GCMs which have coarse resolution and are not good for hydrological impact studies.
Zhang et al. (2019) evaluated the impacts of parameterization of a hydrological model on uncertainties. The authors show-

cased that the parameter uncertainty could drive variability up to 10% annually and 26% monthly for future climate change
scenarios. The study by Gangrade et al. (2020) shows that the selection of climate models is more important than the choice
of the hydrologic model at the United States. They recommended site-specific insights into hydroclimate response and associ-

ated uncertainties to enhance informed decisions. A limited number of studies have assessed the combined role of climate
and hydrological models’ uncertainties in West Africa. In view of this, our study assessed the contribution of the RCM/
GCM and hydrological models to future runoff projections on nine Niger Basin catchments in West Africa. The objectives
of the study are to:

• assess uncertainties of climate (rainfall and potential evapotranspiration (PET)) projections from eight RCMs/GCMs on the
Niger River Basin,

• evaluate runoff projections from the combination of three rainfall–runoff models forced with eight RCMs/GCMs and

• determine uncertainties ascribed with hydroclimatic projections on multiple catchment scales.

Study area

The Niger River Basin has a total area of 2.27 million km2 with a 50% active drainage area (Ogilvie et al. 2010). The basin is

the ninth largest in the world and third in Africa with a length of 4,200 km. The basin cut across 10 countries: Guinea
(source), Mali, Cote d’Ivoire, Niger, Burkina Faso, Algeria, Benin, Nigeria, Chad and Cameroon (Odunuga et al. 2015).
The source of the river basin is at the Fouta Djallon Mountains of Southern Guinea. Table 1 and Figure 1 present character-

istics and geographical location of the selected nine Niger Basin catchments for this study. Flow patterns on the Niger are
highly seasonal and show high inter-annual variability with a clear decreasing trend since the 1970s (Thompson et al.
2017). The average annual river discharge varies depending on the location on the basin. The discharge ranges from
Table 1 | Characteristics of the nine selected catchments on the Niger Basin

S.No. Catchment name Gauging station Average discharge (m3/s) from 1997 to2010 Catchment area (km2)

1 Banakoro Banakoro 668 70,057

2 Sota Couberi 28 13,410

3 Bani Douna 257 101,600

4 Sirba Garbey kourou 80 39,000

5 Dagol Kakassi 28 7,109

6 Mekrou Kompongou 22 5,670

7 Koulikoro Koulikoro 1,136 120,000

8 Niger Lokoja 6,310 2,061,866

9 Benue Makurdi 3,613 301,685
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Figure 1 | Map of the Niger Basin showing the distribution of evaluated catchments.
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22 m3/s at Kompongou in Benin Republic to 6,310 m3/s at Lokoja in Nigeria (Table 1). The population density in the Niger
River Basin varies from ,1 person per km² at the desert parts of the north to .1,000 at Nigeria (Aich et al. 2016).

Data

Observations

The three hydrological models use daily precipitation and PET to simulate river discharge. Daily precipitation was obtained
from the Global Precipitation Climatology Project (GPCP) (Huffman et al. 1997), and PET was calculated from 2 meter temp-
erature of the Modern Era Retrospective analysis for Research and Applications (MERRA) (Rienecker et al. 2011). The
Hamon model that provides good estimations of PET was used (Oudin et al. 2005; Oyerinde et al. 2017a). River basin bound-
ary for the Niger basin was obtained from Hydrosheds (Lehner et al. 2008). Catchment area and boundaries of hydrological
stations (Figure 1) were delineated with the Hortonian drainage network analysis (Jasiewicz & Metz 2011). We used the lati-

tudinal-weighted modelling approach of Oyerinde et al. (2016) to get over the challenge of a large temperature and rainfall
gradient. The gradient arises as a result of the back and forth movement of the Inter-Tropical Discontinuity (ITD) (Lucio et al.
2012).

Future projections

Precipitation data of eight GCMs (Table 2) from CORDEX CMIP5 experiments, which have two emission scenarios (RCP4.5

and RCP8.5), were utilized. The GCMs were dynamically downscaled with the Sveriges Meteorologiska och Hydrologiska
Institute (SMHI-RCA) RCM to 0.44°�0.44° resolution within the CORDEX-Africa regional downscaling experiments.
CORDEX data are popularly used for hydrological studies in the region (Mounkaila et al. 2014; Tall et al. 2016; Oyerinde

et al. 2017a). Basin projection data were extracted as stated for the observation data. Future PET was calculated from
extracted temperature using the Hamon model. Simulated runoff from the three models was aggregated into a future time
period of 2061–2090 and was matched to a historical period (1951–2005).
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Table 2 | List of CMIP5 global climate models used in the study

Modelling centre (or group) Model name Institute ID

Canadian Centre for Climate Modelling and Analysis CanESM2 CCCMA

Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation
Avancée en Calcul Scientifique

CNRM-CM5 CNRM-CERFACS

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M NOAA GFDL

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional
de Pesquisas Espaciais)

HadGEM2-ES MOHC

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC5 MIROC

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-ESM-LR MPI-M

Norwegian Climate Centre NorESM1-M NCC

EC-EARTH consortium EC-EARTH ICHEC
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METHODS

Modelling framework

Hydrological models

Selected hydrological models are components of the ‘Hydromad’ R package (Andrews et al. 2011). The three models estimate
river discharge at the outlet of the catchment with inputs of daily rainfall and PET. The three models were selected because of

their common usage and acceptance in hydrological studies over the study area (Gosset & Viarre 2013; Oyerinde et al.
2017b).

IHACRES-CMD

This model utilizes the identification of hydrographs and flow component purely from evapotranspiration, rainfall and river
discharge data (Croke & Jakeman 2004). It has a non-linear loss module, where rainfall is converted to effective rainfall (rain-

fall excess), and a linear discharge routing module. The two-store loss module simulates at time step k, quickflow, x(q)k and
slow-flow, x(s)k , which combines additively to yield streamflow (discharge), qk:

qk ¼ x(q)k þ x(s)k (1)

x(q)k ¼ aqx
(q)
k�1 þ bqUk (2)

x(s)k ¼ asx
(s)
k�1 þ bsUk (3)

where Uk is the effective rainfall. The parameters aq and as can be expressed as time constants for the quick- and slow-flow
stores, respectively.

IHACRES-CWI

The second model is the IHACRES-CWI, which has a one-store loss module that converts rainfall to effective rainfall
(Jakeman et al. 1990; Ye et al. 1997; Andrews 2011; Oyerinde et al. 2017c). Effective rainfall (rainfall excess) uk is calculated

from rainfall rk, PET Ek, drying rate twk and storage or soil moisture index sk as described by Oyerinde et al. (2016) and
Ye et al. (1997).

uk ¼ c� (sk � l)p � rk (4)

sk ¼ 1
1

twk

� �
� sk�1 þ rk (5)

twk ¼ tw� exp (�0:062� f � Ek) (6)
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Sacramento

The third model is the Sacramento model (Andrews et al. 2011; Burnash 2012; Kunnath-Poovakka & Eldho 2019). Of the
three models, it is the most complex. Two soil zones, upper and lower, are defined. The interception storage is contained

in the upper zone, while the lower zone indicates soil moisture and longer groundwater storage. In each soil zone, two moist-
ure storages are represented: tension water and free water. A special aspect of the model lies in the representation process of
the percolation from the upper zone to the lower zone. Evapotranspiration is computed using each part of the model accord-
ing to a hierarchy of priorities. A mass balance approach is used to calculate the effective rainfall from lateral drainage that is

contributed from each of the soil zones (Kumar & Marcy 2017).

Model calibration

The models were automatically calibrated using the ‘fitByOptim’ algorithm on R (Andrews et al. 2011). The function derives
best parameters that give the best Nash–Sutcliffe Efficiency (NSE). The observed and simulated river discharges were com-
pared with the following four efficiency criteria. The selected efficiency criteria have been used widely in the region with good
acceptability: Nash–Sutcliffe Efficiency (∞,NSE�1) (Nash & Sutcliffe 1970), Kling–Gupta Efficiency (0�KGE�1) (Kling

et al. 2012), root mean square error (RMSE) and coefficient of determination (0�R2�1) (Legates & McCabe 1999).
NSE can be defined as:

NSE ¼ 1�

Pn
i¼1

(Oi � Si)
2

Pn
i¼1

(Oi � �O)
2

(7)

whereO represents the observed river discharge and S is the simulated river discharge value at day i. The NSE of 1 indicates a

perfect match between simulated and observed river discharges. The KGE was designed to create an exciting decomposition
of the NSE (Kling et al. 2012). This will enhance the analysis of the relative significance of its different components related to
hydrological modelling (Kling et al. 2012).

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r � 1)2 þ (b� 1)2 þ (g� 1)2

q
(8)

b ¼ ms

mo
(9)

g ¼ CVs

CVo
(10)

where r is a dimensionless correlation coefficient between S and O, β is the dimensionless bias ratio, γ is the dimensionless
variability ratio, μ is the average river discharge in m3/s and CV is the dimensionless coefficient of variation. The KGE is opti-

mum at the value of 1 (Kling et al. 2012).
The coefficient of determination (R2) is the proportion of the variance in the dependent variable that is predictable from the

independent variable(s).

R2 ¼ 1�

P
i
(Oi � �O)

2

P
i
(Oi � Si)

2 (11)

where O and S are the observed and simulated runoffs, respectively.
RMSE indicates a perfect match between O and S values when it equals 0 (zero), with increasing RMSE values indicating

an increasingly poor match.

Uncertainty and sensitivity analysis

We used the Generalized Likelihood Uncertainty Estimation (GLUE) method to assess the three hydrological models’ par-
ameter sensitivities and uncertainties (Beven & Binley 1992; Chaibou Begou et al. 2016; Oyerinde & Diekkrüger 2017). The
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GLUE is the Monte Carlo method for the hydrological models’ sensitivity and uncertainty analysis. The method uses large

numbers of model runs with different combinations of parameter values chosen randomly and independently from the
prior distribution in the parameter space. We used 10,000 model runs with different parameter sets in the study. The total
sample of simulations was divided into ‘behavioural’ and ‘non-behavioural’ based on a threshold value of NSE�0.5 (Chaibou

Begou et al. 2016), a 90% coverage of the observed values and a GLUE quantile range of 0.05–0.95. GLUE prediction uncer-
tainty was assessed with the P-factor and the R-factor (Abbaspour et al. 2004; Chaibou Begou et al. 2016). The P-factor
represents the percentage of observed data bracketed by the 90% predictive uncertainty band of the model calculated at
the 5 and 95% levels of the cumulative distribution of an output variable obtained through random sampling. The R-factor
is the ratio of the average width of the 90% predictive uncertainty band and the standard deviation of the measured variable.
For uncertainty assessment, a value of P-factor .0.5 (i.e., more than half of the observed data should be enclosed within the
90% predictive uncertainty band) and R-factor ,1 (i.e., the average width of the 90% predictive uncertainty band should be

less than the standard deviation of the measured data) should be adequate for this study, especially considering limited data
availability.
Figure 2 | Comparison of four coefficients (NSE, KGE, RMSE and R2) before and after the bias correction of RCM rainfall data to the GPCP.
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Bias correction of RCMs/GCMs and evaluation

Bias adjustments reduce the margin of errors from climate models when compared with historical observations (Kling et al.
2012). It depends on differences between the RCM/GCM and observed data. In this study, we used MERRA and GPCP data-

sets from 1997 to 2010 to correct biases in RCM/GCM datasets. The quantile mapping bias correction (Gudmundsson et al.
2012; Ravazzani et al. 2016; Enayati et al. 2021) was used to improve the CMIP5 temperature and rainfall data. It corrects
moments of the probability distribution function (PDF) of input variable by deriving both cumulative distribution functions
(CDFs) and transfer function from the PDFs of the observed data and the RCM. Here, a quantile–quantile parametric trans-

formation shown in the following equation was used:

Po ¼ bPc
m (12)

where Po is the observed data, Pm is the RCM empirical CDF and b and c are the free parameters.
Mapping was done on a monthly scale. The original daily RCM/GCM and bias-adjusted rainfall data were compared with

the observed data using the four efficiency criteria described earlier above. In this study, the quantile mapping bias correction

was implemented on the R Statistical Software Package ‘qmap’.
Figure 3 | Comparison of the RMSE before and after the bias correction of RCM rainfall data to the GPCP.
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RESULTS

Bias adjustments and future climate trends

The efficiency coefficients used in comparing rainfall quantile–quantile mapping bias correction are presented in Figures 2

and 3. All the four coefficients (NSE, KGE, RMSE and R2) were improved by bias correction in the nine catchments. Bias
Figure 5 | Mean and standard deviation (SD) of efficiency coefficients from nine catchments during the hydrological model calibration and
validation.

Figure 4 | CMIP5 historical and future trends of rainfall and PET under RCP4.5 (blue) and RCP8.5 (red) scenarios on the Niger Basin (Lokoja
Station).
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correction improved the NSE and the KGE more than the value of R2. In Figure 3, the error derived from RMSE values was

reduced after bias correction.
Figure 4 presents eight downscaled RCM/GCM annual ensemble median rainfall and PET trends with uncertainty bands

on the Niger Basin at the Lokoja Station. The high emission scenario (RCP8.5) will lead to an increase in rainfall above the

historical normal, while there will be no change in rainfall under the Business-as-Usual emission scenario (RCP4.5). PET will
increase under the two emission scenarios.

Hydrological model evaluation

Figure 5 shows mean and standard deviation of NSE, KGE, RMSE and R2 across the nine catchments during hydrological
model calibration and validation. The three hydrological models performed very well across the nine catchments by

having good efficiency coefficients.

Hydrological model uncertainty analysis

Table 3 presents the results of 10,000 model runs using different parameter sets. The three evaluated models show different P
and R factors across the catchments. The CWI hydrological model has an acceptable P-factor (.0.5) at four catchments

(Banakoro, Benue, Dargol and Koulikoro), while the remaining catchments had P-factors that are ,0.5. The CMD hydrolo-
gical model has a good P-factor at two catchments (Benue and Kompongou), while the Scaramento model witnessed a good
P-factor on three catchments (Banakoro, Benue and Sota). An R-factor shows different responses for the three hydrological

models across catchments. CWI models have a good R-factor at Benue and Dargol catchments, while CMD and Scaramento
hydrological models displayed a poor R-factor on all catchments.

Future runoff trends and uncertainties

Figure 6 shows ensemble median (eight RC M/GCM combinations) future runoff trends on nine catchments of the Niger

Basin from three hydrological models under the RCP4.5 and RCP8.5 scenarios. The three hydrological models have a similar
runoff trend across the nine catchments in the RCP4.5 scenario (Figure 6). Under the RCP8.5 scenario, IHACRES-CWI and
Sacramento gave an increasing runoff pattern toward the end of the century on the Niger Basin (Lokoja Station), while

IHACRES-CMD gave a decreasing trend. At Banakoro, while IHACRES-CWI gave no trend, the remaining two hydrological
models showed an increasing trend. At the Bani catchment, IHACRES-CWI progresses from no trend to a mild decrease
toward the end of the century, and the remaining two models progress to about a 20% increase.

On the Benue catchment, all the three models unanimously agree on a decreasing runoff trend with varying margins. Simi-

lar model agreements were observed on the Dargol catchment where the models projected an increasing trend. At Koulikoro,
IHACRES-CWI gave clear decreasing runoff of up to about 20%, while 10% increases were projected by IHACRES-CMD and
Sacramento models. On the Mekrou (Kompongou) and Sota catchments, IHACRES-CWI gave a decreasing trend up to end

of the century, while IHACRES-CMD and Sacramento gave a decreasing trend to 2080 where mild increases were observed.
Table 3 | P and R factors for evaluated catchments on the Niger Basin

Catchments

CWI CMD Sacramento

Calibration Validation Calibration Validation Calibration Validation

P R P R P R P R P R P R

Banakoro 0.64 0.70 0.61 0.60 0.35 0.39 0.28 0.34 0.61 0.48 0.61 0.44

Bani 0.14 0.18 0.17 0.18 0.16 0.27 0.16 0.28 0.25 0.16 0.23 0.17

Benue 0.55 1.07 0.53 1.10 0.54 0.60 0.54 0.61 0.64 0.52 0.65 0.53

Dargol 0.59 4.78 0.61 4.77 0.32 0.81 0.32 0.82 0.41 0.66 0.48 0.67

Kolikoro 0.51 0.44 0.52 0.44 0.48 0.45 0.43 0.45 0.44 0.28 0.43 0.28

Kompongou 0.26 0.98 0.27 0.96 0.63 0.51 0.68 0.49 0.26 0.60 0.28 0.51

Lokoja 0.20 0.26 0.21 0.26 0.35 0.47 0.34 0.46 0.31 0.66 0.31 0.61

Sota 0.25 0.47 0.27 0.48 0.18 0.59 0.17 0.53 0.58 0.42 0.55 0.39

Bold values indicates P and R Factors values that are below or above acceptable limits.
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At Sirba, both IHACRES models moved from no trend to increasing trend at the end of the century, but the Sacramento

model showed a high percentage decrease in runoff from beginning to the end of the 21st century.
Figure 7 presents uncertainties in runoff projections on multiple catchments. The three hydrological models show different

far future (2061–2090) runoff deviations from the historical period (1951–2005) under the RCP4.5 and RCP8.5 scenarios. On

the whole Niger Basin, IHACRES-CWI and Sacramento models gave increasing runoff trends under both RCP4.5 and
RCP8.5 scenarios, while the IHACRES-CMD gave an opposite trend of decrease in runoff (Figure 6). On Banakoro and
Bani catchments, IHACRES-CWI gave no trend, while IHACRES-CMD and Scaramento unanimously gave an increasing
trend. At the River Benue, all models agree on a decreasing trend with different magnitudes. The IHACRES-CWI model

gave a negative projection on Koulikoro, while other models show no trend in the RCP4.5 scenario and a mild increase
in the RCP8.5 scenario. There were good model agreements on Sirba, Mekrou and Sota. Across all the nine catchments,
Figure 6 | Multihydrological models’ future ensemble median runoff trends on the nine Niger Basin catchments.
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Figure 7 | Multihydrological models’ 2061–2090 runoff trends on the nine Niger Basin catchments.
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the ensemble of the three hydrological models gave an average prediction that filtered out the hydrological model

uncertainties.

DISCUSSION

Weimproved the accuracyof theCORDEXCMIP5RCMoutputs using thequantile–quantilemappingbias correction. Precipitation
data from climatemodels often haveweak accuracywhen compared to observations. Climatemodels overrate the ‘drizzle’ amount
(Sun et al. 2006; Perkins et al. 2007) thereby generating biased datawhen compared to observations (Lenderink et al. 2007). CMIP5

models also have been characterized with such biases in the region (Biasutti 2013; Klutse et al. 2015). This is in line with previous
studies done on similar subject in West Africa (MPo et al. 2016; Oyerinde et al. 2017a). MPo et al. (2016) found out that the RCM
generally overestimates precipitation and quantile–quantile adjustmentswere able to correct the biases. Another set ofWest African

authors used quantile mapping to improve discharge simulations from a rainfall–runoff model (Oyerinde et al. 2017a). They were
also able to significantly decrease the biases adhered with RCM outputs (Oyerinde et al. 2017a).

Bias-corrected rainfall projections show that climate change will drive an increase in rainfall at the Niger Basin in line with pre-

vious studies.WetterSahelhavebeenprojected in the21st centurybyCMIP5models (Biasutti 2013;Badouet al.2018).Comparison
of climate variables between historical and future periods suggests that rainfall will increase in the region (Badou et al. 2018). Sylla
et al. (2015b) have projected increases in the intensity of very wet rainfall events in the Sahel by the end of the 21st century.

The performances of three rainfall–runoff models were assessed across nine catchments with different scales. All the three
models had excellent performance which shows that the models are adapted to the Niger Basin. Similar studies on the Niger
Basin have found that the models are appropriate for the region (Oyerinde et al. 2016, 2017a). Disparities shown by the three
hydrological models in projecting future runoff trends across the nine catchments are due to structural uncertainties and

differences in the structures of the three hydrological models. Structural uncertainties come from simplified assumptions
made in approximating the actual environmental system with mathematical functions (Renard et al. 2010; Cornelissen
et al. 2013; Oyerinde & Diekkrüger 2017). We assessed the structural uncertainties with the GLUE and found out that

the CWI hydrological model performed better than the CMD and Sacramento models with better P-factor and R-factor on
a greater number of catchments. This is in line with previous studies where the CWI model was recommended to give a
better prediction than the CMD on ephemeral catchments (Ye et al. 1997).
om http://iwaponline.com/jwcc/article-pdf/13/3/1534/1028521/jwc0131534.pdf
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modelling uncertainties. The hydrological model ensemble was reported to give a more accurate representation of catchment
water balance (Thapa et al. 2017). It compensates for the effects of model uncertainties, and the ensemble result is a more reliable
estimation of future runoff characteristics (Oyerinde&Diekkrüger 2017). Gyamfi et al. (2021) further corroborate our findings by
recommending that for climate impact assessment and hydrologic modelling studies, multi-model ensembles should be used.

CONCLUSIONS

Climate and hydrological modelling have been ascribed with uncertainties. Most previous studies have focused on climate
models as a major source of uncertainty in hydroclimatic prediction. In this study, we were able to showcase the influence
of structural uncertainties of three hydrological models in hydroclimatic predictions on nine catchments. The CWI, CMD and

Sacramento hydrological models were used for our study. The hydrological models were forced with temperature and rainfall
data from eight dynamically downscaled GCMs from 1951 to 2100. The climate models’ data were bias-corrected with quan-
tile mapping to reduce uncertainties from climate models. We assessed structural uncertainties of the three hydrological

models with GLUE using observed rainfall, temperature and river discharge data. Results of uncertainty assessments
showed that different hydrological models responded differently to varying climate and hydrological conditions on nine
different catchments. This greatly affected the projected trends by different models on nine Niger Basin catchments. We rec-
ommend the consideration of hydrological modelling uncertainties as a major factor in hydroclimatic modelling.
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