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Abstract

The aim of this study was to quantify climate change impact on future blue water

(BW) and green water (GW) resources as well as the associated uncertainties for 4

subbasins of the Beninese part of the Niger River Basin. The outputs of 3 regional cli-

mate models (HIRHAM5, RCSM, and RCA4) under 2 emission scenarios (RCP4.5 and

RCP8.5) were downscaled for the historical period (1976–2005) and for the future

(2021–2050) using the Statistical DownScaling Model (SDSM). Comparison of climate

variables between these 2 periods suggests that rainfall will increase (1.7% to 23.4%)

for HIRHAM5 and RCSM under both RCPs but shows mixed trends (−8.5% to 17.3%)

for RCA4. Mean temperature will also increase up to 0.48 °C for HIRHAM5 and

RCSM but decrease for RCA4 up to −0.37 °C. Driven by the downscaled climate data,

future BW and GW were evaluated with hydrological models validated with

streamflow and soil moisture, respectively. The results indicate that GW will increase

in all the 4 investigated subbasins, whereas BW will only increase in one subbasin.

The overall uncertainty associated with the evaluation of the future BW and GW

was quantified through the computation of the interquartile range of the total number

of model realizations (combinations of regional climate models and selected hydrolog-

ical models) for each subbasin. The results show larger uncertainty for the quantifica-

tion of BW than GW. To cope with the projected decrease in BW that could adversely

impact the livelihoods and food security of the local population, recommendations for

the development of adequate adaptation strategies are briefly discussed.
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1 | INTRODUCTION

Stern (2010) identified climate change and poverty as the two major

challenges of our time. Modelling future climate change has led to

the development of multiple general circulation models (GCMs) and

regional climate models (RCMs) along with various downscaling
wileyonlinelibrary.co
techniques (Ahmed et al., 2013; Gudmundsson, Bremnes, Haugen, &

Engen‐Skaugen, 2012; Hagemann et al., 2011; Hay, Wilby, &

Leavesley, 2000; Piani et al., 2010; Piani, Haerter, & Coppola, 2010;

Salathé, Mote, & Wiley, 2007) to solve the issues of the coarse GCMs

and RCMs scales (Fowler, Blenkinsop, & Tebaldi, 2007; Wood, Leung,

Sridhar, & Lettenmaier, 2004).
Hydrological Processes. 2018;32:2526–2542.m/journal/hyp
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Statistical and dynamical downscaling are the two common

methods used for the disaggregation of GCMs and/or RCMs outputs.

Whereas dynamical downscaling disaggregates GCM outputs from the

global scale to the regional scale using climate models, the statistical

approach downscales GCM and RCM outputs to the local and point

scales using statistical functions. The former is less attractive because

it is computationally demanding and not easily transferable to new

regions. Notwithstanding, dynamical downscaling has the advantages

of providing RCM outputs consistent with the host GCM (Wilby &

Dawson, 2007), and better representation of orographic precipitation

(Haensler, Hagemann, & Jacob, 2011) and extreme events (Fowler

et al., 2007). Statistical downscaling is favoured because of its parsi-

mony, easier transferability to other regions, and lesser demand on

computer resources.

Although climate change is a global phenomenon, regions are not

affected the sameway (UNFCCC, 2007). West Africa is one of the most

exposed and vulnerable regions to the adverse effects of climate change

(IPCC, 2007a, 2007b, Niasse, Afouda, & Amani, 2004). The economy of

this region is mainly based on rainfed agriculture, and any change in the

climate regime would directly affect the income at the country level as

well as the livelihood of local populations (Läderach, Martinez‐Valle,

Schroth, & Castro, 2013; Schroth, Läderach, Martinez‐Valle, Bunn, &

Jassogne, 2016; Sultan & Gaetani, 2016). The high sensitivity of the

West African region to climate hazards is illustrated by the severe con-

sequences of the drought of the 1970s and 1980s (Amogu et al.,

2010; Badou, Kapangaziwiri, Diekkrüger, Hounkpè, & Afouda, 2016;

Lebel et al., 2009) and the floods at the end of the 2000s and the begin-

ning of the 2010s (Aich et al., 2015; Descroix et al., 2012) on agricultural

production and livelihoods of local population (Bonou, 2016; Hounkpè,

Diekkrüger, Badou, & Afouda, 2016; Liersch et al., 2013).

Although the adverse impacts of climate hazards felt by the West

African population are known, the extent to which future climate

change will impact water resources is still an open question. Lebel and

Ali (2009) reported wetter conditions since 1990 after the drought of

1970s and 1980s in the eastern and central Sahel, whereas dry condi-

tions are still prevailing in the western part. Other studies (Badou

et al., 2016; Laprise et al., 2013; Sylla et al., 2010; Vizy, Cook, Crétat,

& Neupane, 2013) have shown a decrease in rainfall in the western

Sahel and an increase in the eastern part. However, Oyerinde et al.

(2016) and Kaboré/Bontogho et al. (2015) reported an intensification

of the hydrological cycle in the eastern and central Sahel respectively.

For Oyerinde et al. (2016), climate change in the future will be benefi-

cial for hydropower production caused by an increase in precipitation

and streamflow despite an increase in potential evapotranspiration

for more than 70% of the Niger River Basin (2.2 million km2), the largest

river basin in West Africa.

Mbaye et al. (2015) working in western Sahel over the Senegal

River Basin showed that precipitation would decrease by the end of

the century for most parts of the study area with the exception of

the southern part (Guinean Highlands). Potential water yield (the dif-

ference between precipitation and potential evapotranspiration)

would decrease as well.

However, other studies have reported unclear impacts on the

hydrological cycle in response to climate change (Carter & Parker,

2009; Druyan, 2011; Vetter et al., 2015; Yira, Diekkrüger, Steup, &
Bossa, 2017). A comparison of 10 climate studies over West Africa

showed that the direction in which rainfall will vary during the current

century is uncertain (Druyan, 2011). Carter and Parker (2009) com-

pared the impacts of climate change, population growth, and land

use/land cover changes on groundwater in Africa. They found out that

population growth would have the most severe impact, whereas cli-

mate change would have significant impacts albeit with uncertainties

(both in direction and magnitude). Comparing the impacts of climate

change on the streamflows of four large African basins, Aich et al.

(2014) found that the Niger and the Limpopo river basins will experi-

ence a mixed trend with respect to their mean river discharge—an

increase of high flows and a reduction of low flows—for most of the

investigated climate models. Yira et al. (2017) also pointed out the

unclear behaviour of future climate change for the Dano Basin of

Burkina Faso as they found that downscaled data from six RCMs are

nonconsistent regarding future direction of rainfall and discharge.

Hence, more research is needed to better understand, with less

uncertainty, the direction and magnitude of climate change impacts

over West Africa. In that sense, multimodel assessment approach is

thus expected to capture the uncertainties in the modelling of climate

change impacts (Mbaye et al., 2015; Oyerinde et al., 2016; Yira et al.,

2017). The objectives of this study are therefore, for the Beninese part

of the Niger River Basin, to

1. statistically downscale the outputs of RCMs and assess future cli-

mate trends;

2. quantify the impact of climate change on future blue water (BW)

and green water (GW) availability; and

3. quantify the uncertainty associated with the evaluation of BW

and GW.
2 | MATERIALS AND METHODS

Following the defined three objectives, the methodology of the study

can be split into three parts. The first part addresses how future cli-

mate change was assessed over the study area, namely, how three

RCMs products were statistically downscaled and analysed. The sec-

ond part addresses how climate change impacts on future BW and

GW were assessed. This includes how a set of four calibrated and val-

idated hydrological models was applied. The third part addresses the

quantification approach of uncertainties associated with the evalua-

tion of future BW and GW. Prior to a detailed description of these

three parts, the current section provides a brief description of the

study area and the applied climate data.
2.1 | Study area

The Beninese part of the Niger River Basin consists of four adjacent

and poorly gauged subbasins—the Coubéri (13,217 km2), Gbassè

(8,038 km2), Yankin (8,171 km2), and the Kompongou (5,670 km2)—

located in northern Benin, situated between 1°50′E and 3°75′E longi-

tude and 10°0′N and 12°30′N latitude (Figure 1). Its climate is Suda-

nese in the south and Sudano‐Sahelian in the north. The mean



FIGURE 1 (a) Location of the Beninese part of the Niger River Basin in West Africa; (b) digital elevation model; and (c) Coubéri, Gbassè, Yankin,
and Kompongou subbasins, and the climate and streamflow networks
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annual rainfall for the period of 1971–2010 is about 936 mm, whereas

the mean minimum and mean maximum temperatures are 21.54 °C

and 34.55 °C, respectively (Badou, 2016).
2.2 | Climate data

In this study, a statistical downscaling technique was implemented. A

critical step of the method is the choice of the large‐scale predictors

to be used for downscaling a given predictand (Gutiérrez et al.,

2011; Wilby & Dawson, 2007). This choice of predictors requires a

sound knowledge of the relationship between the predictors and the
predictands of interest. There is, however, an alternative of using

RCM outputs as predictors following a direct predictor–predictand

relationship. For example, to downscale the temperature of a given

gauge (predictand), one can use the temperature from an RCM as pre-

dictor (Kebede, Diekkrüger, & Moges, 2013). This alternative seems

particularly interesting in hydrological modelling because RCMs out-

puts can be disaggregated to the hydrological local impact assessment

scale. In this study, following Gobiet, Suklitsch, and Heinrich (2015);

Kebede et al. (2013); and Themeßl, Gobiet, and Heinrich (2011),

RCM outputs were used as predictors. RCMs that provide not only

precipitation and temperature but also wind speed, humidity, and
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radiation data were preferred because some of the hydrological

models (UHP‐HRU, SWAT, and WaSiM) used in this study require

these variables. Table 1 gives a summary of the characteristics of the

RCMs used. All three RCMs were developed in the framework of

the CORDEX AFRICA (Giorgi, Jones, & Asrar, 2009).

Furthermore, observed data from 12 in situ climate stations were

used as reference data for the downscaling (Table 2). Radiation data

were derived from sunshine duration information using the formula

of Amoussa (1992).
2.3 | Statistical downscaling

The Statistical DownScaling Model (SDSM) Ver 4.2 (Wilby & Dawson,

2007) was selected for the downscaling of climate data. SDSM is

reported to be a robust model (Kebede et al., 2013; Wetterhall,

Bárdossy, Chen, Halldin, & Xu, 2006; Wilby & Dawson, 2012) and

has been successfully applied worldwide (Wilby & Dawson, 2007).

SDSM is “a hybrid of the stochastic weather generator and transfer

function methods” (Wilby & Dawson, 2007). The model has to be

run for each climate variable and each gauging station, which makes

it easy to implement but at the same time tedious. Further details on

the model are provided in the user manuals and the notes of Wilby

and Dawson (2015, 2013, 2007, 2004).

The calibration process searches for the best statistical relation-

ship allowing the predictors to fit as much as possible the predictands

for the present day climate. To obtain such a fit, a trial and error tech-

nique was used. The empirical relationship obtained after the calibra-

tion is tested for an independent historical period during the
TABLE 1 Summary of some characteristics of the RCMs used in this stu

GCM Centre

Earth System Model ICHEC EC‐EARTH Danish Meteorological Inst

MPI‐ESM‐LR Max Planck Institute (MPI)

NOAA‐GFDL‐GFDL‐ESM2M Swedish Meteorological an
(SMHI)–Rossby Centre

Note. ICHEC is the Irish Centre for High‐end Computing; EC‐EARTH is the Ea
model running on low‐resolution grid; NOAA‐GFDL‐GFDL‐ESM2M is the Natio
Laboratory–Earth System Model; and RCSMs the regional climate system mod

TABLE 2 Observed climate data used during the downscaling

Stations Elev. (m) Lat. (degree) Long. (degree) Rain. (mm)

Gaya 202 11.88 3.45 +

Kandi 290 11.13 2.93 +

Natitingou 460 10.32 1.38 +

Parakou 392 9.35 2.6 +

Alfakoara 282 11.45 3.07 +

Banikoara 310 11.3 2.43 +

Bembéréké 491 10.2 2.67 +

Ina 358 9.97 2.73 +

Kalalé 410 10.3 3.38 +

Kouandé 442 10.33 1.68 +

Malanville 160 11.87 3.4 +

Nikki 402 9.93 3.2 +

Note. + Indicates that data are available and − indicates that they are not. The
validation stage. Upon a successful validation, the empirical predic-

tor–predictand relationship is used to downscale ensembles of the

same local variables for the future climate.

The RCMs data cover the period 1950–2100. The period 1976–

2005 (with 1976–1995 as the calibration period and 1996–2005 for

validation) was chosen as the baseline period, and the future period

spans from 2021 to 2050.

To account for the stochastic nature of climate variables (Biao,

Alamou, & Afouda, 2016) and as a result of limited computer

resources, a total of 20 ensemble simulations were generated for each

downscaled variable. Ensemble means were used for the comparison

of downscaled and observed variables and to derive the statistics

(Kebede et al., 2013).
2.4 | Future BW and GW availability

The calibration and validation of the hydrological models and the iden-

tification of the hydrological models adequate for the simulation of

BW and GW are described in detail in Badou (2016). This author iden-

tified in a set of four hydrological models the ones adequate for the

simulation of the BW and GW of the research area.

By definition, BW is the sum of streamflow (which includes shal-

low groundwater), deep aquifer recharge, and water storage (lakes,

ponds, wetlands, etc.). However, BW in this study was restricted to

the sum of streamflow and deep aquifer recharge. This was

constrained by the crucial challenge related to hydrological data avail-

ability and acquisition in the region (Kapangaziwiri, Hughes, &

Wagener, 2012). Streamflow (including shallow groundwater) is
dy

RCM Scenario

itute (DMI) HIRHAM5 RCP 4.5 and 8.5

RCSM RCP 4.5 and 8.5

d Hydrological Institute RCA4 RCP 4.5 and 8.5

rth system model; MPI‐ESM‐LR is the max Planck institute–Earth system
nal Oceanic and Atmospheric Administration–Geophysical Fluid Dynamics
els.

Mean temp. (°C) Rel. hum. (%) W. speed (m/s) Rad.* (Wh/m2)

+ + + +

+ + + +

+ + + +

+ + + +

− − − −

− − − −

− − − −

− − − −

− − − −

− − − −

− − − −

− − − −

data length is 1976–2005.

https://www.google.bj/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiY4MHDqsDMAhXMFsAKHZOPAP8QFggaMAA&url=http%3A%2F%2Fwww.gfdl.noaa.gov%2Fearth-system-model&usg=AFQjCNGCa_SkPROjf2msLnICcoChJ2yC_w&bvm=bv.121099550,d.ZGg
https://www.google.bj/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiY4MHDqsDMAhXMFsAKHZOPAP8QFggaMAA&url=http%3A%2F%2Fwww.gfdl.noaa.gov%2Fearth-system-model&usg=AFQjCNGCa_SkPROjf2msLnICcoChJ2yC_w&bvm=bv.121099550,d.ZGg
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readily available (Dettinger & Diaz, 2000) and was therefore taken as a

proxy for BW. Green water has two components, green water flow

(which is actual evapotranspiration) and green water storage (which

is soil moisture). Soil moisture being the primary source of actual

evapotranspiration (i.e., green water flow), in this study, GW was

defined as the sum of soil moisture and actual evapotranspiration,

and soil moisture was taken as a proxy for GW. Having no observed

soil moisture data, satellite soil moisture data of the European Space

Agency Climate Change Initiative (http://www.esa‐cci.org/) was used

(Badou, 2016).

Badou (2016) found that HBV‐light, UHP‐HRU, SWAT, and

WaSiM hydrological models were adequate for the simulation of the

daily streamflow of the Coubéri and Kompongou subbasins; HBV‐light

and SWAT for the Gbassè subbasin; and WaSiM, HBV‐light, and UHP‐

HRU for the Yankin subbasin (see Table 3). For the simulation of soil

moisture, UHP‐HRU and SWAT were identified as adequate for the

Coubéri, Gbassè, and Kompongou subbasins, and UHP‐HRU, SWAT,

and WaSiM for the Yankin subbasin (see Table 3). A description of

the four hydrological models is given in the Supporting Information

(Table S1) along with their performances (Tables S2–S6). A quality

control was conducted prior to the selection of the calibration and val-

idation periods of the hydrological models, which span from 1977 to

2010 (Tables S2–S5). This period has limited missing for model driving

climate data, and streamflow and soil moisture data, which are used as

reference data. Note that the periods of calibration and validation of

the statistical downscaling tool, SDSM, 1976–2005 (see Section 2.3),

and that of the hydrological models (WaSiM, SWAT, UHP‐HRU, and

HBV‐light), 1977–2010, are not interlinked and therefore different.

Also due to missing data, the periods of calibration and validation of

the hydrological models vary from one subbasin to the other but fall

within the period 1977–2010 (see Table S2–S6).

For each subbasin, the hydrological models were run with the

downscaled data from the three RCMs, HIRHAM5, RCSM, and

RCA4, and future BW was evaluated only with the hydrological

models that were successfully validated for the simulation of

streamflow, whereas future GW was evaluated solely with the hydro-

logical models validated for the simulation of soil moisture. Doing so

enabled the exploitation of the strengths of each of the hydrological

models used.
TABLE 3 Capacity of the hydrological models to simulate daily
streamflow and soil moisture, modified after Badou (2016)

Subbasin Coubéri Gbassè Yankin Kompongou

Streamflow

HBV‐light + + + +

UHP‐HRU + − + +

SWAT + + − +

WaSiM + − + +

Soil moisture

HBV‐light − − − −

UHP‐HRU + + + +

SWAT + + + +

WaSiM − − + −

Note. The sign + signifies that the model is adequate (seeTables S2–S5 and
S6) for the simulation of the variable, the sign—that it is not.
As downscaling was effective (see Section 4.1), observation‐based

hydrological simulations and downscaled RCMs data‐based historical

simulations can interchangeably be used as reference for computing

changes. In this paper, to quantify climate change impacts, observa-

tion‐based BW and GW of the hydrological models calibration and

validation periods were averaged to obtain, for each case, a mean

value used as reference for the historical period and compared with

future BW and GW. In reality, BW and GW resulting from running

the hydrological models with observed climate data are more repre-

sentative (and less uncertain) of the processes occurring across the

study area. An alternative would have been to use BW and GW

resulting from running the hydrological models with RCMs data for

the historical period as reference, but this would have led to higher

uncertainties in quantifying BW and GW changes.

2.5 | Uncertainty quantification

The uncertainty analysis focused on the overall predictive uncertainty,

which implied lumping all the sources of uncertainties (i.e., input data,

reference data, hydrological models, hydrological models parameters,

climate models, and emissions scenarios). Such analysis of predictive

uncertainty helps in capturing the overall range of expected uncer-

tainty propagated through the modelling. The two emission scenarios

(RCP4.5 and RCP8.5), the three RCMs (HIRHAM5, RCA4, and RCSM),

the four hydrological models (HBV‐light, UHP‐HRU, SWAT, and

WaSiM), and the N behavioural solutions of the hydrological models

(see Tables S2–S5) were considered to compute the number of model

realizations (NMR), which is the total number of simulations and is

given in Equation (1) below.

NMR ¼ 2×3×4×N (1)

The overall uncertainties were presented in the form of box‐plots

drawn with all the elements of the NMR and discussed in terms of

interquartile ranges (the difference between the 75th and 25th per-

centiles). The interquartile range expresses how scattered the data

are, and is therefore used as a measure of uncertainty. Thus, the

higher the interquartile range is, the wider the box‐plot are, implying

the degree of uncertainty of the results.
3 | RESULTS

3.1 | Downscaled climate variables

Although radiation, humidity, and wind speed data were also down-

scaled, only the results of the downscaling of precipitation and tem-

perature are presented because previous studies mainly focus on

these two variables. Downscaled radiation, relative humidity, and wind

speed are shown in Figures S1–S3, respectively.

3.1.1 | Precipitation

Figure 2 compares RCMs and observed precipitation. The left‐ and

right‐hand side panels of the diagram show raw and bias‐corrected

rainfall, respectively.

In general, the RCMs rainfall captured the unimodal rainfall

regime of the study area with the maximum peak in August well

defined. However, for the stations located in the south (Nikki, Ina,

http://www.esa-cci.org/


FIGURE 2 Comparison of raw (left panel) and downscaled (right panel) rainfall of the baseline period (1976–2005). Stations are ordered from the
south to the north of the study area. STD = standard deviation; MAE = mean absolute error
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Bembereke, Natitingou, and Kalale), RCA4 overestimates the rain

during the April to October season. Comparison of raw and down-

scaled RCM rainfall shows that biases in the raw data are successfully
corrected especially for HRHAM5 and RCSM (but to a lesser extent

for RCA4). A clear difference is noted between the statistical proper-

ties of raw and downscaled rainfall whose standard deviations fall



FIGURE 2 Continued.
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within the intervals (2.06, 4.67) against (2.57, 3.31), and absolute

values of the mean absolute errors within the intervals (0, 1.51)

against (0, 0.56). Yet this difference in statistical properties does

not imply an alteration of the climate signal (Figure 2). Therefore,

the conclusion was that SDSM is appropriate for downscaling rainfall

over the study area.

Downscaled RCMs projections are presented as changes relative

to the baseline period (Figure 3). Under RCP4.5, rainfall exhibits a pos-

itive trend for HIRHAM5 (47 to 265 mm, i.e., 4.6% to 23.4%) and

RCSM (22 to 264 mm, i.e., 1.9% to 23.3%) but a mixed trend for

RCA4 (−66 to 215 mm, i.e., −7.7% to 17.3%).

Under RCP 8.5, similar trends are projected with slight change in

the magnitudes: 47 to 265 mm (4.5% to 23.4%) increase for
HIRHAM5, 19 to 265 mm (1.7% to 23.4%) increase for RCSM, and

−73 to 205 mm (−8.5% to 16.2%) for RCA4. Half of the stations depict

negative trends particularly with RCA4 model (Figure 3).
3.1.2 | Temperature

Figure 4 displays the mean temperature before and after downscaling

(left and right panels, respectively). The three RCMs reproduced well

the seasonal cycle of observed temperature; however, they

underestimated the magnitude. This is particularly so for RCSM, which

depicts the strongest underestimation during the months of January

and December. Downscaled temperature matches reasonably well

the observed temperature for the three RCMs with low standard



FIGURE 3 Box plots of the projected change (2021–2050) in annual mean rainfall relative to the baseline period (1976–2005) under RCP 4.5
(upper panel) and RCP 8.5 (lower panel)
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deviation and low MAE values (Figure 4). These results thus indicate

that SDSM is suitable for the downscaling of the temperature over

the study area.

Figure 5 shows the expected changes in mean temperature for

the future period (2021–2050) relative to the historical period

(1976–2005). Regardless of the scenario, HIRHAM5 and RCSM exhib-

ited positive trends with RCA4 showing negative trends. As an order

of magnitude, the changes equal 0.02 to 0.38 °C and 0.04 to

0.35 °C for HRHAM5 under RCP4.5 and RCP 8.5, respectively. In

the case of the RCSM model, changes of −0.01 to 0.48 °C and

−0.02 to 0.45 °C are projected under RCP 4.5 and RCP 8.5, respec-

tively. The changes are expected to reach −0.34 up to 0.09 °C and

−0.37 up to 0.04 °C under RCPs 4.5 and 8.5 for the RCA4 model. It

is interesting to note that the station at Parakou will experience both

the highest temperature increase (HIRHAM5 and RCSM) and the

highest temperature decrease (RCA4).
3.2 | Future BW and GW availability

Projected BW and GW are presented in Figures 6–9 for the first and

last decades of the future time horizon for the Coubéri, Gbassè,

Yankin, and Kompongou subbasins, respectively. Some variables (e.g.,

GW in Figures 6a,d, and BW in Figures 7b and 8c) are not shown

because the hydrological models were not suitable for the predictions

of these variables.

Over the Coubéri subbasin, the ensemble of hydrological models

predict a negative trend of BW by midcentury. For SWAT and UHP‐
HRU, the decrease is in the same order of magnitude for both RCPs

(Figures 6b,c). However, HBV‐light and WaSiM project a decrease

under RCP8.5 that is slightly higher than under RCP4.5 (Figures 6a,

d). GW is expected to increase in the subbasin with an increase under

RCP4.5 nearly twice that under RCP8.5. Overall, compared with the

reference period, rainfall will vary between −0.6% (RCP4.5) and

−1.5% (RCP8.5), which will result in a decrease in BW of −37.5%

(RCP4.5) and −36.8% (RCP8.5) and an increase in GW of 4.7%

(RCP4.5) and 3.4% (RCP8.5).

For the Gbassè subbasin, both HBV‐light and SWAT predict a

decrease in BW but with different magnitudes. The decrease will be

between 17% and 39% for the HBV‐light and even higher for the

SWAT model (Figures 7a,c). Future trend in GW is consistent across

the models with both UHP‐HRU and SWAT predicting an increase in

GW especially under RCP4.5 (Figures 7b,c). Altogether, the deviation

from the reference period can be summarized as follows: a variation

of rainfall by ±4.2% under RCP4.5 and ±3.4% under RCP8.5 that will

induce a reduction in BW by −50.6% under RCP4.5 and −49.3% under

RCP8.5 and an increase in GW by 16.3% under RCP4.5 against 15.0%

under RCP8.5.

The expected change in BW and GW resources relative to the ref-

erence period, across the Yankin subbasin, is presented in Figure 8

along with the change in rainfall. Rainfall is expected to increase for

HIRHAM5 and RCSM (with a higher increase under RCP4.5) but to

decrease for RCA4 (along with a higher decrease under RCP8.5).

Regardless of the climate models and the RCP, BW will decrease but

GW is simulated to increase. In addition, the decrease in BW is slightly



FIGURE 4 Comparison of raw (left panel) and downscaled (right panel) mean temperature of the baseline period (1976–2005). Stations are
ordered from the south to the north of the study area. STD = standard deviation; MAE = mean absolute error
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higher under RCP8.5, whereas the increase in GW is slightly higher

under RCP8.5. On the whole, rainfall will likely increase by 5.6% under

RCP 4.5 and by 5.1% under RCP8.5. This change in rainfall will be

accompanied by a reduction in BW of −25% under RCP4.5 and

−26.0% under RCP8.5 but by an increase in GW of 10.9% under

RCP4.5 and 10.1% under RCP8.5.

The projected BW and GW of the Kompongou subbasin (Figure 9)

have different trends from the three other subbasins. The first differ-

ence is that, unlike the other subbasins, rainfall will increase for all cli-

mate and hydrological models with the exception of UHP‐HRU run

with RCA4. The second peculiarity of the Kompongou subbasin is that

a mixed trend (an increase and a decrease) and not a decrease (as it

was the case for the other subbasins) in BW is projected. Also, unlike
the other subbasins, UHP‐HRU showed a decrease in GW when run

with RCA4 and RCSM data.

Of the four subbasins, the highest increase in rainfall and the low-

est decrease in BW are simulated for the Kompongou subbasin. Over-

all, compared with the reference period, rainfall will increase by

between 9.1% (RCP4.5) and 8.9% (RCP8.5). This change in rainfall will

lead to a change in BW of −8.4% (RCP4.5) and −6.2% (RCP8.5) but to

an increase in GW by 5.5% (RCP4.5) and 4.9% (RCP8.5).
3.3 | Uncertainty quantification

The uncertainty quantification of the Coubéri subbasin was based

on 90 model realizations. The result is presented in Figure 10.



FIGURE 5 Box plots of the projected change (2021–2050) in annual mean temperature relative to the baseline period (1976–2005) under RCP
4.5 (upper panel) and RCP 8.5 (lower panel)

FIGURE 6 Simulated changes (%) in rainfall, blue water (BW), and green water (GW) under RCP4.5 and RCP8.5 climate scenarios in the Coubéri
subbasin by the HBV‐light (a), UHP‐HRU (b), SWAT (c), and WaSiM (d) hydrological models. A: HIRHAM5_RCP4.5_2021–2030, B:
HIRHAM5_RCP4.5_2041–2050, C: RCA4_RCP4.5_2021–2030, D: RCA4_RCP4.5_2041–2050, E: RCSM_RCP4.5_2021–2030, F:
RCSM_RCP4.5_2041–2050, G: HIRHAM5_RCP8.5_2021–2030, H: HIRHAM5_RCP8.5_2041–2050, I: RCA4_RCP8.5_2021–2030, J:
RCA4_RCP8.5_2041–2050, K: RCSM_RCP8.5_2021–2030, L: RCSM_RCP8.5_2041–2050
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Rainfall is predicted to decrease by a median of −2.9% to −4.0%

with an interquartile range between 8.7% and 9.2%. The median

of BW will also decrease by between −38.4% to −41.3% with an

interquartile range of 16.1% to 21.6%. The median projected

change in GW is approximately 1.5% to 2.5% with an interquartile

range of 2.2% to 2.7%. The values of the interquartile ranges

show that the GW evaluation is associated with lesser uncertainty

than that of rainfall, whereas the assessment of BW is the least

certain.
For the Gbassè subbasin, 48 model realizations were used to

assess the uncertainty (Figure 11). The median of rainfall is predicted

to increase by between 5.2% and 6.3% along with an associated inter-

quartile range of 8.2% to 8.72%. Similarly, the median of GW will

increase by 12.4% to 14.0% with an interquartile range of 18.4% to

19.1%. The median of BW is, however, predicted to decrease between

−21.3% and −23.2% with an interquartile range of 18.5% to 20.2%.

Thus, the evaluation of change in rainfall is associated with lesser

uncertainty than the quantification of BW and GW.



FIGURE 7 Simulated changes (%) in rainfall, blue water (BW), and green water (GW) under RCP4.5 and RCP8.5 climate scenarios in the Gbassè
subbasin by the HBV‐light (a), UHP‐HRU (b), SWAT (c), and WaSiM (d) hydrological models. A: HIRHAM5_RCP4.5_2021–2030, B:
HIRHAM5_RCP4.5_2041–2050, C: RCA4_RCP4.5_2021–2030, D: RCA4_RCP4.5_2041–2050, E: RCSM_RCP4.5_2021–2030, F:
RCSM_RCP4.5_2041–2050, G: HIRHAM5_RCP8.5_2021–2030, H: HIRHAM5_RCP8.5_2041–2050, I: RCA4_RCP8.5_2021–2030, J:
RCA4_RCP8.5_2041–2050, K: RCSM_RCP8.5_2021–2030, L: RCSM_RCP8.5_2041–2050

FIGURE 8 Simulated changes (%) in rainfall, blue water (BW), and green water (GW) under RCP4.5 and RCP8.5 climate scenarios in the Yankin
subbasin by the HBV‐light (a), UHP‐HRU (b), SWAT (c), and WaSiM (d) hydrological models. A: HIRHAM5_RCP4.5_2021–2030, B:
HIRHAM5_RCP4.5_2041–2050, C: RCA4_RCP4.5_2021–2030, D: RCA4_RCP4.5_2041–2050, E: RCSM_RCP4.5_2021–2030, F:
RCSM_RCP4.5_2041–2050, G: HIRHAM5_RCP8.5_2021–2030, H: HIRHAM5_RCP8.5_2041–2050, I: RCA4_RCP8.5_2021–2030, J:
RCA4_RCP8.5_2041–2050, K: RCSM_RCP8.5_2021–2030, L: RCSM_RCP8.5_2041–2050

FIGURE 9 Simulated changes (%) in rainfall, blue water (BW), and green water (GW) under RCP4.5 and RCP8.5 climate scenarios in the Gbassè
subbasin by the HBV‐light (a), UHP‐HRU (b), SWAT (c), and WaSiM (d) hydrological models. A: HIRHAM5_RCP4.5_2021–2030, B:
HIRHAM5_RCP4.5_2041–2050, C: RCA4_RCP4.5_2021–2030, D: RCA4_RCP4.5_2041–2050, E: RCSM_RCP4.5_2021–2030, F:
RCSM_RCP4.5_2041–2050, G: HIRHAM5_RCP8.5_2021–2030, H: HIRHAM5_RCP8.5_2041–2050, I: RCA4_RCP8.5_2021–2030, J:
RCA4_RCP8.5_2041–2050, K: RCSM_RCP8.5_2021–2030, L: RCSM_RCP8.5_2041–2050
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FIGURE 10 Ensemble percentiles (lower, median, and upper

quartile) projected interannual rainfall, blue water, and green water
trends relative to 1988–1992 and 2003–2006 in the Coubéri
subbasin. X_21–30, X_31–40, X_41–50 denotes the values of rainfall
(X = R), blue water (X = B), and green water (X = G) during the decades
2021–2030, 2031–2041, and 2041–2050

FIGURE 11 Ensemble percentiles (lower quartile, median and upper
quartile) projected interannual rainfall, blue water, and green water
trends relative to 1986–1990 and 2003–2006 in the Gbassè subbasin.
X_21–30, X_31–40, X_41–50 denotes the values of rainfall (X = R),
blue water (X = B) and green water (X = G) during the decades 2021–
2030, 2031–2041, and 2041–2050

FIGURE 12 Ensemble percentiles (lower, median, and upper
quartile) projected interannual rainfall, blue water, and green water
trends relative to 1984–1988 and 2005–2008 in the Yankin subbasin.
X_21–30, X_31–40, X_41–50 denotes the values of rainfall (X = R),
blue water (X = B), and green water (X = G) during the decades 2021–
2030, 2031–2041, and 2041–2050
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In the case of the Yankin subbasin, 78 model realizations were

used to assess the uncertainty. An inspection of Figure 12 reveals

that rainfall change will exhibit positive trends of 7.7% to 8.6%

changes of the median along with an interquartile range of 10.5%

to 11.2%. However, the median of the BW is predicted to decrease

by −15.2% to −17.8%, whereas the median of the GW is projected

to increase by 9.3% to 10.0%. The associated interquartile ranges

are predicted as of the order of 36.5% to 42.2% and 6.8% to 7.3%

for BW and GW, respectively. As in the case of the Coubéri subbasin,

GW evaluation is associated with lesser uncertainty than the evalua-

tion of rainfall, whereas while the assessment of BW resources is the

least certain.
For the Kompongou subbasin, the combination of climate models,

emissions scenarios, hydrological models, and behavioural hydrological

models parameters resulted in 24 model realizations, which is the

smallest NMR of all subbasins. The reason is that only one behavioural

hydrological model parameter set was retained after the calibration

and validation procedure (see Section 4.3 and Tables S2–S5). The

analysis of the uncertainty is presented in Figure 13. The median

projected change in rainfall is approximately 8.8% to 10.2% with an

interquartile range of 11.9% to 12.4%. This increase in rainfall will lead

to an increase in both BW and GW. Whereas the median of the BW is

predicted to increase by 0.2% to 4.5% with an interquartile range of

70.7% to 73.1%, that of GW is predicted to increase by 2.0% to

2.8% along with an interquartile range of 12.7% to 13.2%. Thus, the

evaluation of BW is associated with the largest uncertainty in compar-

ison with the assessment of rainfall and GW for which the interquar-

tile ranges are smaller.
4 | DISCUSSION

4.1 | Downscaled climate variables

4.1.1 | Precipitation

The findings presented above are consistent with recent downscaling

studies over Africa. The projected increase in rainfall for HIRHAM5

and RCSM is consistent with the conclusions of Oyerinde et al.

(2016) who reported an increase of 2% (RCP 4.5) and 5% to 10%

(RCP 8.5) from the middle to the end of the century over the Niger

River Basin. Similarly, Kaboré/Bontogho et al. (2015) found that in

the Massili Basin of Burkina Faso, rainfall will slightly increase for

the period 2006–2050 in comparison with the period 1975–2000.

Besides, the mixed trend of rainfall projected by RCA4 is comparable

with the findings of Kebede et al. (2013) who reported that in the

Baro‐Akobo Basin of Ethiopia, downscaled rainfall by the model



FIGURE 13 Ensemble percentiles (lower, median, and upper
quartile) projected interannual rainfall, blue water, and green water
trends relative to 1979–1984 in the Kompongou subbasin. X_21–30,
X_31–40, X_41–50 denotes the values of rainfall (X = R), blue water
(X = B), and green water (X = G) during the decades 2021–2030,
2031–2041, and 2041–2050
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REMO (A1B and B1 scenarios) resulted in a change of −2% to 21%.

The negative rainfall trend projected for some stations (Figure 3) is

consistent with the results found for the Ouémé Basin of Benin,

where a 9% to 12% decrease in rainfall was expected when REMO

rainfall (A1B which is similar to RCP6.0 scenario and B1 which is sim-

ilar to the RCP4.5 scenario) was bias‐corrected (Bossa, Diekkrüger, &

Agbossou, 2014).

However, the fact that stations exhibit both positive and negative

rainfall trend relaunches the discourse on the importance of the direc-

tion (rather than the magnitude) of change of future rainfall over West

Africa (Druyan, 2011; Yira et al., 2017).
4.1.2 | Temperature

The projected increase in temperature for the models HIRHAM5 and

RCSM corroborates the conclusions of Kaboré/Bontogho et al.

(2015) and Oyerinde (2016) where the former reported that tempera-

ture will increase by 1.8 °C (RCP4.5) and 3.0 °C (under RCP8.5) from

1971 to 2050 in Massili basin of Burkina Faso, and the latter found

that the Niger River Basin will experience a temperature increase of

between 5% and 10% under RCP4.5 and 5% and 20% under RCP8.5

from the beginning to the end of the century.

On the contrary, the negative trend of temperature projected for

the climate model RCA4 contrasts the continuation of warming during

the rest of the century reported in IPCC (2013). However, it is not the

first time that a decrease in temperature is reported in the literature.

For example, Kebede et al. (2013) downscaled the minimum and max-

imum temperatures of the GCM CGCM 3.1 (A1B scenario) and the

RCM REMO (A1B and B1 scenarios) and obtained almost similar

results. The results of Kebede et al. (2013) showed that the majority

of the investigated stations will experience a decrease in maximum

temperature (for CGCM3.1) and half of the stations will exhibit a

decrease in minimum temperature (for REMO).
Another aspect that requires attention is that higher temperatures

are projected under RCP4.5 than under RCP8.5. These results are sur-

prising because the opposite was expected. However, Kebede et al.

(2013) also found almost similar results when they reported higher

maximum temperature under B1 than under A1B for half of the stations

and higher minimum temperature under B1 than under A1B for 40% of

the stations. Given that the same downscaling model, SDSM is used by

Kebede et al. (2013) as well as in this study, one wonders if the results

imply an internal artefact (or systematic error) of the model.
4.2 | Future BW and GW availability

On average, a decrease in BW is projected and GW is predicted to

increase. The increase in GW is linked to the projected warming and

the intensification of the hydrological cycle. In the context of increas-

ing rainfall, the warmer the atmosphere, the greater the evaporative

demand, which leads to an increase in GW. This in turn leads to less

water to run off and/or to percolate and reach the deep aquifer so

the decrease in BW. These results are partly in agreement with the

conclusions of some previous studies in nearby basins. Using four

hydrological models, Cornelissen, Diekkrüger, and Giertz (2013) inves-

tigated the impact of climate change (REMO under A1B and B1 sce-

narios) and land use change on the water balance of the Térou Basin,

a tributary of the Ouémé River in Benin. Regardless of the emissions

scenarios, two models (UHP‐HRU and GR4J) predicted a decrease in

discharge (which is the most important part of the BW), whereas the

two others (SWAT and WaSiM) predicted an increase in discharge.

Bossa (2012) conducted a study with the SWAT model to evaluate

the influence of climate (REMO under A1B and B1) and land use

changes on the sediment yield and the water balance of the Donga‐

Pont and the Ouémé‐Bonou basins in Benin, and the results indicated

a decrease in water yield, surface run‐off and groundwater flow, and

actual evapotranspiration. However, land use change would induce

an increase in surface run‐off and water yield (depending on the type

of change envisaged) but a decrease in the others' water balance com-

ponents. Zannou (2011) reported that the Ouémé Basin will experi-

ence a 41% decrease in water resources by 2025. Oyerinde et al.

(2016) used eight GCM products and found that annual streamflow

would slightly increase by the end of the century at the run‐off sta-

tions at Malanville and Kainji located in the Niger River Basin. Finally,

Touré, Diekkrüger, and Mariko (2016) found that climate change will

lead to a decrease in groundwater resource in the Klela Basin of Mali.
4.3 | The particular case of the Kompongou subbasin

Unlike the three other subbasins, in the Kompongou subbasin, rainfall

is expected to increase (with the exception of UHP‐HRU run with

RCA4 data), GW to decrease when UHP‐HRU is run with RCA4 and

RCSM data, and BW to have a mixed trend (not a decrease as it was

the case for the other subbasins). This unique behaviour could be

explained by the difference in climate conditions between the calibra-

tion/validation period (1979–1984) and the future time horizon

(2021–2050). In the subbasin, the calibration (1979–1984) of hydro-

logical models was satisfactory but the validation (2007–2010) was

not. Kompongou is the subbasin with the largest percentage of
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missing data in the historical streamflow records. As a result, there was

a difference of nearly 30 years between the calibration period (1979–

1984) and the validation period (2007–2010). During these 30 years,

the subbasin might have undergone many changes in its characteris-

tics making validation very difficult if not impossible. Subsequently,

comparison with the future was limited to the calibration period,

which actually was a period of severe drought (Badou et al., 2016).

Hence, when compared with that period of drought, some models (e.

g., SWAT and WaSiM when run with HIRHAM5 and RCSM data) sim-

ulate an increase in future BW and UHP‐HRU when driven by RCA4

and RCSM data predicts a decrease in GW.
4.4 | Uncertainty quantification

The key outcome of the uncertainty analyses is that BW quantification

is associated with larger uncertainty than GW evaluation. Two main

reasons can explain it. First, BW evaluation was done with four hydro-

logical models of very distinct structures: a conceptual lumped model

(HBV‐light), two conceptual semidistributed model (UHP‐HRU and

SWAT), and a distributed physically based model (WaSiM). On the

contrary, GW was assessed solely with the hydrological models

(UHP‐HRU, SWAT, and WaSiM) having a more or less physically

meaningful soil moisture routine. Second, and most importantly,

although the approaches used by the models to compute evapotrans-

piration (i.e., GW) are nearly similar, the approaches used to derive the

streamflow components (i.e., BW) are very different. UHP‐HRU,

SWAT, and WaSiM use the Penman–Monteith method (Monteith,

1965; Penman, 1956) to compute Potential evapotranspiration. To

derive surface run‐off (a component of BW), HBV‐light uses a typical

tank‐type approach, WaSiM a method based on the Richards equa-

tion, and UHP‐HRU and SWAT the SCS CN method (Badou, 2016).
5 | RECOMMENDATIONS

The main finding of this study is that though rainfall may have a pos-

itive trend in the future, increase in rainfall will be accompanied by a

decrease in BW resources, the easily accessible water resources but

with an increase in GW resources. Given the current population

growth in the study area, from 1,579,006 in 2014 to 5,600,000

expected in 2050 (Badou, 2016), this is rather crucial information for

decision makers and water planners. Less BW resources imply less

water for municipal, domestic, and industrial uses; less water for agri-

culture and possibly more conflicts between farmers and cattle

rangers (Lougbegnon, Dossou, Houessou, & Teka, 2012); and less

water for fishery. Two sets of solutions could be explored to address

the problem. This first set deals with BW and the second with GW.

In order to meet the increasing water demand with the predicted

decrease in BW, a rational use of BW is mandatory. In the study area,

traditional belief in the “gods” is still very strong and often, hazards

are seen as the gods' curses (Vissin, 2007). The solution, therefore, is

more sociological than technical, implying that more attention should

be given to the sociological dimension of adaptation to a changing cli-

mate.Wherever a technical solution is necessary, the human dimension

should also be included. Unfortunately, this aspect is often not taken
into account in most recommendations. More research is needed to

bridge the gap between technical solution and their relevance for the

people to implement them. Another solution to address the issue of

the projected decrease in BW is the use of grass and alfalfa lands to

dampen run‐off (Kharel, Zheng, & Kirilenko, 2016). This technique

limits run‐off and increases deep aquifer recharge, which has a buffer

effect against climate change (Vouillamoz, Lawson, Yalo, & Descloitres,

2015).

The second set of solutions is based on the projected increase

in GW. An increase in GW implies an increase in either transpira-

tion and/or evaporation (both resulting in increased water losses).

To face the probable increase in evaporation, more research is

needed to reverse the situation, by, for example, implementing

techniques of soil and water conservation that can easily be applied

in the study area. Rodriguez‐Juan, Sbai, and El Harradji (2015) con-

ducted such as study for the Mestferki Basin located in North‐East

of Morocco.
6 | CONCLUSION

A proper estimation of future water availability is vital information for

water planners. This study explored alternative avenues for more

informative and robust hydrological prediction of the water resources

of the Benin Portion of the Niger River Basin, a conglomerate of four

subbasins, which is rich in terms of ecosystem services but poorly

gauged. Water resources were treated as BW and GW. The products

of three RCMs (HIRHAM5, RCSM, and RCSM) under RCPs 4.5 and 8.5

were statistically downscaled and used to run four different hydrolog-

ical models. Whereas BW was predicted using only the most suitable

hydrological models for the simulation of streamflow, GW assessment

depended on those models found to be more behavioural for the sim-

ulation of soil moisture storage. It was found that

1. rainfall will likely increase (1.7% to 23.4%) for HIRHAM5 and

RCSM under both RCPs but will show mixed trends (−8.5% to

17.3%) for RCA4. Mean temperature will also increase up to

0.48 °C for HIRHAM5 and RCSM but decrease for RCA4 up to

−0.37 °C.

2. as a result of global warming, GW will increase in all the four

investigated subbasins and BW will only increase in the

Kompongou subbasin. The median decrease in BW is projected

to approximate −38% to −41% in the Coubéri subbasin, −21%

to −23% in the Gbassè subbasin, and −15% to −18% in theYankin

subbasin, but a median increase of 0.2% to 4.5% is predicted in

the Kompongou subbasin. The median increase in GW will

approximate 2% to 3% in Coubéri, 12% to 14% in Gbassè, 9%

to 10% in Yankin, and 2% to 3% in Kompongou.

3. using interquartile ranges, BW evaluation is associated with larger

uncertainty than GW quantification. A variation of the interquar-

tile ranges of 16% to 21% in BW against 2% to 3% in GW for the

Coubéri subbasin, 19% to 20% in BW against 18% to 19% in GW

for the Gbassè subbasin, 37% to 42% in BW against 7% in GW

for the Yankin subbasin, and 71% to 73% in BW against 13% in

GW for the Kompongou subbasin was noted.
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The projected increase in rainfall will be accompanied by a

decrease in BW resources, the easily accessible water resources but

with an increase in GW resources. If technical solutions (use of grass

lands to dampen run‐off and increase deep aquifer recharge, tech-

niques of soil and water conservation) are necessary, more attention

should be given to the sociological dimension of adaptation to a

changing climate.
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