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Abstract 
  
Rainfall is very often considered as the driving force of hydrological models. If the rainfall changes, the model output 
(i.e. flow) is also expected to change. The objective of this paper is to study the impacts of the uncertainties related to 
the random component of rainfall inflow in the Ouémé river basin. The inflow process is considered as a sum of 
deterministic and random components. Hydrological systems are considered as non - linear dynamical systems which 
can be described by stochastic differential equations (SDE). The dynamics of the system is here derived from the Least 
Action Principle (LAP) considerations. Using data from Ouémé river basin (Benin, West Africa), the modelling of the 
random component using an ARMA model is investigated. The generalized Fokker – Planck equation (FPE) that 
corresponds to the SDE describing the river basin is derived in terms of the transition probability distribution and 
characteristic function of the noise generating process. This generalized FPE is used to examine the effects of different 
type of uncertainties related to the random component of rainfall inflow on the dynamics of river discharge. The form 
of the FPE is found to be particularly sensitive to the uncertainty properties of the inflowing rainfall. 
 
Keywords: ARMA model, Fokker - Planck equation (FPE), Least Action Principle (LAP), random component of inflow 
rainfall, stochastic differential equation (SDE), uncertainty. 
 
 
1. Introduction 
 

1 The hydrological cycle has been greatly influenced by 
climate changes and human activities in the last 
decades (Solomon, et al, 2007). Today, evidence has 
been gained that the planet is warming up, largely as a 
result of human generated greenhouse gazes (IPCC, 
2014a, b), (Kundzewicz, et al, 2014). Understanding 
the rainfall process is critical for the solution of several 
regional environmental problems of integrate water 
resources management (IWRM) at regional scales, with 
implications for agriculture, climate change and 
natural hazards such as floods and droughts (Abdul – 
Aziz, et al, 2013). The impact of rainfall errors on 
predicted flow has been highlighted by many authors, 
including Sun, et al, (2000), Kavetski, et al, (2006), 
Bárdossy and Das, (2008), and Moulin, et al, (2009). 
From a management perspective, inaccuracies in 
rainfall inputs directly compromise model predictions 
and hence robust decision - making on water and risk 
management options. The impact of input uncertainty 
on streamflow simulations can be quantified by error 
propagation, either by using conditional simulation or 
simply by stochastically perturbing the rainfall inputs. 

                                                           

*Corresponding author: Biao  I. Eliézer 

Conditional simulation involves simulating ensemble 
rainfall fields conditioned on the mean and error of 
spatial rainfall interpolations (Clark and Slater, 2006), 
(Götzinger and Bárdossy, 2008). Conditional 
simulation methods do not require many assumptions 
on rainfall errors (Clark and Slater, 2006), but can be 
time consuming to implement. Stochastic perturbation 
of rainfall inputs is therefore more common (Reichle, et  
al, 2002), (Carpenter and Georgakakos, 2004), (Crow 
and van Loon, 2006), (Pauwels and de Lannoy, 2006), 
(Komma, et al, 2008), (Pan, et al, 2008), (Turner, et al, 
2008). In the stochastic perturbation approach it is 
common to perturb the model rainfall inputs based 
only on order of magnitude considerations. For 
example, Reichle, et al, (2002) used additive 
perturbations from a Gaussian distribution, with 
standard deviation equal to 50% of the rainfall total at 
each model time step. Given that uncertainty in 
hydrological simulations directly depends on adequate 
characterization of input error (Crow and van Loon, 
2006), (Götzinger and Bárdossy, 2008). Therefore, 
detailed analysis of the observed error of rainfall 
inputs is a critical research priority. 
 To efficiently improve the development of 
integrated water resource management (IWRM) in the 
context of climate change and variability, an awareness 
of the stochastic structure of hydrologic processes is 
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necessary for modelling water resources systems. In 
the present article, the inflow process representing all 
irregular variations of hydrometeorological processes 
is considered as a sum of deterministic and random 
components which embraces data uncertainties (e.g. 
measurement) and sample uncertainties (e.g. number 
of data). Adequate characterization of the uncertainties 
related to the random component of rainfall inflow is 
fundamental to success in rainfall - runoff modelling. 
No model, however well - founded in physical theory or 
empirically justified by past performance, can produce 
accurate runoff predictions if forced with inaccurate 
rainfall data (Beven, 2004). It is assumed that 
hydrological systems are non – linear dynamical 
systems which can be described by stochastic 
differential equations (SDE). Such equations arise 
when the elements which give rise to the 
representations of continuous deterministic dynamical 
system as ordinary differential equations (ODE) are 
considered subject to environmental fluctuations or 
noise. The theory is well developed and has found wide 
applications in most branches of sciences, including 
hydrology and water resources engineering ((Bodo, et 
al, 1987), (Konecny and Natchtnebel, 1995), (Hänggi, et 
al, 1995) and (Alamou, 2011). The new idea in this 
paper is that the dynamics of the system and the 
associated ODE are derived from the least action 
principle (LAP) designed to minimize uncertainties 
related to hydraulic transformation process and scaling 
law (physical models). Hence the deterministic 
hydrological model based on the least action principle 
(HyMoLAP) is fed by stochastic input. The main 
advantage of SDE is that it provides a physically 
transparent and mathematically tractable description 
of the stochastic dynamics, indicating how uncertainty 
in input precipitation and other environmental 
parameters (potential evapotranspiration, 
temperature) affect the uncertainty in model output. 
Using data from Ouémé river basin (Benin, West 
Africa) the random component is modelled with ARMA 
model to assess its stochastic properties. The 
generalized Fokker – Planck equation (FPE) that 
corresponds to the SDE describing the river basin is 
derived in terms of the transition probability 
distribution and characteristic function of the noise 
generating process. This generalized FPE is used to 
examine the effects of different type of uncertainties 
related to the random component of rainfall inflow on 
the dynamics of river discharge.  
 

2.  Methodology 
 
2.1 Derivation of HyMoLAP 

The proposed hydrological model based on the least 
action principle (HyMoLAP) uses the principle of 
minimum energy expenditure. This principle can be 
stated as follows: “Nature always follows the simplest 
way…. And the simplest way is the one which 
minimizes the energy expenditure of the nature” 
(Afouda, et al, 2004). The least action principle 
originally formulated in the 18th (by Maupertus, Euler, 

Lagrange, etc.) and generalized in the 20th century by 
Noether’s theorem, has been of widespread application 
in fundamental physics (Arnold, 1974), (Doubrovine, et 
al, 1979) and is now conceived as a universal 
mathematical law of nature. It is herein considered that 
the global optimality principle postulated by Rodriguez 
- Iturbe and Rinaldo, (1997) for optimal channel 
networks is inherent to the self adjusting behaviour of 
a river basin endowed with optimal channel networks. 
This global optimality principle can be appropriately 
described by the LAP, whereby the entire pattern of 
motion is characterized using kinetic and potential 
energies, without specific reference to all the forces 
acting on or within the system. Although most of the 
classical applications of this principle assume that the 
kinetic and potential energies are respectively only 
functions of velocity and position, it is not necessarily 
the case in general. For hydrological systems, the 
discharge Q(X) which summarizes the interaction 
between water and the river basin medium at X can be 
considered as a generalized coordinate. The 
corresponding action is proposed in the form 

  dXXQQLQ X ),,(                                                    (1) 

where L(.) is the Lagrangian, Q is the discharge, 

   
  

  
 and X stands for time and space coordinate. 

For operational purposes the lumped version of the 
model is herein considered. Following Perrin, et al, 
(2003), the practical superiority of distributed or semi 
– distributed approaches over lumped ones for 
streamflow simulation has not been clearly 
demonstrated yet. The lumped version of HyMoLAP 
can be written as follows: 

12 
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where Q(t) is the discharge at the outlet of the river 
basin, q(t) is the cumulative rainfall and        is a 
time varying coefficient describing the interaction 
between the water flow and the river basin medium. μ 
and b are non – linearity coefficients. Equations (2) and 
(3) with the use of the following notations:  

   
 

  
      ,    

   

  
 , lead to equations (4) and 

(5) 
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with           

 

 
            . ψ and U describe 

respectively the model input and structure. Assuming λ 
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to be constant, a comparison has been made by 
Alamou, (2011) between the numerical value 
calculated from the model and the results from direct 
field measurement and thus confirm the physical 
meaning of this parameter. Clearly λ is the recession 
coefficient. Thus, the lumped properties of the river 
basin are described by λ while the hydrological 
properties are captured in the dynamical equations (4) 
and (5). Moreover equation (4) describes explicitly the 
production process (the action of the unsaturated zone 
which accounts for evaporation and 
evapotranspiration and divides the resulting rainfall 
event into two components: overland and 
underground) and equation (5) describes the 
transformation process (the process by which the 
amount of rainfall volumes for overland component 
and underground component are transformed into 
runoff). Here, equations (4) and (5) form the basic ODE 
describing the deterministic dynamics of the system. 
This model has been used successfully in rainfall - 
runoff modelling for the Bétérou catchment of the 
Ouémé river (Afouda and Alamou, 2010, Alamou, 
2011).    

2.2 ARMA model 
 
The random component of the inflow process, for the 
time period (1961 - 2010), is calculated as defined by 
Lamb (1982): 
 

q

t
t

qq





                                                            (6) 

where   is the spatial averaged rainfall of day t,  ̅ and 
   represent respectively the mean and the standard 

deviation of this time series for the considered time 
period.  
 To assess the stochastic properties of the random 
component of the inflow process, the ARMA modelling 
approach is used. The models belonging to the ARMA 
(Autoregressive - moving average) family may be 
written as: 
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where { (t), t = 1 ,2, … } is the random component 

being modelled; p is the number of autoregressive (AR) 
parameters;    is the ith AR parameter; r is the number 
of moving average (MA) parameters;    is the ith MA 
parameter; { w (t), t =1, 2, … } is the residual series. The 

important assumption involved in such models is that
w (t) is a sequence of white noise with zero mean and 

variance   . The Box and Jenkins, (1976) three stage 
standard modelling procedure (identification, 
estimation and diagnostic checking) is used to develop 
time series models. 
 The first step is model identification: Identification 
of model consists of specifying the appropriate 
structure (AR, MA or ARMA) and order of model. 

Models can also be identified by looking at the plots of 
the autocorrelation function (ACF) and partial 
autocorrelation function (PACF). Thus making sure 
that the variables are stationary, identifying 
seasonality in the dependent series and using plots of 
the ACF and PACF of the dependent time series to 
decide which (if any) autoregressive or moving 
average component should be used in the model (Box 
and Jenkins, 1970).  
 The second step is to estimate the parameters of the 
model:  Coefficients of the models can be estimated by 
maximum likelihood estimation or non - linear least - 
squares estimation methods. Estimation of parameters 
of MA and ARMA models usually requires a more 
complicated iteration procedure (Box and Jenkins, 
1970), (Chatfield, 2004).  
 The third step is model checking: Two important 
elements of checking are to ensure that the residuals of 
the model are random, and to ensure that the 
estimated parameters are statistically significant. 
Usually the fitting process is guided by the principle of 
parsimony, by which the best model is the simplest 
possible model. Performing a Ljung - Box test or 
plotting autocorrelation and partial autocorrelation of 
the residuals are also helpful to identify 
misspecification (Anderson, 1976). 

2.3 Derivation of the generalized FPE 

The deterministic equations (4) and (5) can be 
transformed to a SDE by treating        and          
as a random function that can be viewed as the sum of 
mean and a stochastic noise term. Afouda, et al, (2004) 
and Alamou, (2011) showed that the stochastic 
formulation of the system equations (4) and (5) can 
then be written in the vectorial form  

)(),(),()( tdWtXGdttXUtdX                               (8) 

However, in this paper, Let us use the scalar form of 
equation (8) in the form given by equation (9) for 
studying noise phenomena in hydrological systems 

)(),(),( ttQGtQU
dt

dQ
                                                  (9) 

 

where         
 

 
             and        are 

respectively the deterministic part and a multiplicative 
noise term.  (t) is a noise resulting from a fluctuating 

environment.  
 This approach is especially effective if the noise that 
describes the action of the environment on the system 
can be represented as a time derivative, in the sense of 
generalized functions, of a stationary process with 
independent increments. In this case the solutions of 
equation (9) belong to the class of Markov processes 
whose properties are well known. The stationary 
process with independent increments and zero initial 
state constitutes a class of Lévy processes (Kato, 1999). 
For brevity, we call the Lévy process, whose derivative 
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produces a given noise, the noise generating process. 
The statistical properties of solutions of equation (9) 
can be characterized by the transition probability 
distribution.  
 Let us derive the generalized FPE associated with 
equation (9) in terms of the transition probability and 
characteristic function of the noise generating process. 
Since the characteristic function is completely 
described by the transition probability distribution of 
the noise generating process, it is this distribution 
which ultimately determines the term in the 
generalized FPE that described the effect of the noise 
on the dynamics of the system.  The starting point 
relies on the fact that the noise,  (t), is the time 

derivative, in the sense of generalized functions, of the 
noise generating process η(t) (Gikhman and 
Skorokhod, 2004). According to this, the increment 
                  of  (t) is defined as the time 
integral, 
 

)()( '' tdtt

t

t


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
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                                                                    (10) 

In the sense of convergence in distribution. Therefore 
the increment                   of the 
discharge during a time interval τ (τ →0) can be 
written in the form 

)(),(),()( ttQGtQUtQ                                           (11) 

 
which defines the meaning of equation (9) in the Ito 
interpretation (Risken, 1989). For a fixed τ, the 
distribution of the increments   (jτ)  (j = 0, 1, 2 ,…) is 
completely described by the transition probability 
distribution p(    +τ |  ), where      and    denote 

the possible values of  (jτ+τ) and  (jτ), respectively. 
Thus the statistical properties of solution of equation 
(9) can be characterized by p(    +τ|  ) as well. Next 

for simplicity, we additionally assume that 
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According to Denisov, et al, (2009), if one introduces 
the Fourier transform,      , of the probability 
distribution function of the discharge,       , one 
obtains the following equation 
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with          
 

 
[       ]                                       (14) 

 
Since the transition probability distribution p(∆η, τ) is 
normalized, i.e.,       = 1, equation (14) must satisfy 
the condition    = 0. If k ≠ 0, then there exist three 

different cases, depending on how quickly         
tends to zero as τ →0.       
                                                 
 First, if         =o(τ), then    = 0 and the noise 

has no effect on the system. 
 Second, if          tends to zero slower than τ, 

then |   | = ∞, i.e., the influence of the noise is so 
strong that the system relaxes instantaneously to 
the final state. 

 Finally, the case we are interested in corresponds 
to         =O(τ), i.e., 0 < |   | < ∞ and the noise 
acts on the system in a non – trivial way. 

 
Let us apply the inverse Fourier transform, defined as 
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to equation (13). Using equation (14), one obtains 
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where the function            [           ]  is a 
special characteristic of p(∆η,τ), for τ →0 that describes 
the influence of noise on the system. Therefore the 
desired generalized FPE that corresponds to the SDE 
(9) driven by multiplicative noise, which results from 
an arbitrary noise generating process, takes the form  
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In accordance with the definition  

                    , the solution of this 
equation must be normalized and satisfy the initial 
condition           ). 

To gain more insight into the connection between the 
generalized FPE and the properties of the noise, the 
characteristic function               of the noise 
generating process η(t) at t =1 is introduced. With the 
formula 
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it can be rewritten as 
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where                   is the characteristic 
function of δη(t). Then, replacing       by       and 
taking into account that 
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we find        ,  i.e.,    = ln  . Thus, from equation 
(13) an alternative representation of the generalized 
FPE is obtained: 
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In the particular case of additive noise, where 
        ,  equation (13) becomes 
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and the generalized Fokker - Planck equation simplifies 
to the equation 
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The generalized Fokker - Planck equations (21) and 

(23) are derived here in terms of the characteristic 

function    of the noise generating process at t =1. The 

main advantage of this generalized Fokker - Planck 

equation is that it accounts for the noise action in a 

unified way, namely through the characteristic function 

of the noise generating process at dimensionless time 

 t = 1. This provides an opportunity to study the effect 

of different noises on the same system. 
 

3.  Application to Ouémé river basin 

3.1 The study area 

 
In a scale of West Africa, Ouémé is a small coastal river 
that covers at Bonou, the most advanced station before 
the delta, a surface area of 49, 256 km2 between 6.8 
and 10.2° N of latitude and between 1.3 and 3.45° E of 
longitude  (Figure 1). The Ouémé catchment covers 
two climatic zones: the Guinea savanna zone and the 
Soudanese savanna zone. The north of the catchment 
has a unimodal rainfall season (from mid - March to 
October) that peaks in August, whereas the south of the 
catchment exhibits a bimodal rainfall season (from 
March to July and from August to October) that peaks 
in June and September. This study is conducted, 
specifically, in the Bétérou, Savè and Bonou catchments 
of the Ouémé river. Meteorological data (daily rainfall 
data and daily potential evapotranspiration, calculated 
by the Penman formula) and daily discharge data were 
provided respectively by the Benin Meteorological 
Department, ASCENA (Agency for Air Navigation Safety 

in Africa and Madagascar) and the National Directorate 
of Water (DG - Eau). A total of twenty five rainfall 
stations were considered. In fact a homogeneity test of 
Kuskal - Wallis (Saporta, 1974) was conducted on 
every station of the study area, and this allowed to 
retain finally these twenty five stations. Moreover, the 
period 1961 - 2010 has been chosen as the study 
period (good compromise, taking into account the 
length of the data available in the different stations). 
Spatialized regional daily mean rainfall was obtained 
by kriging (Matheron, 1970) with an exponential 
variogram. 
 

 
 
Fig.1 Location of the study area. The investigated sub 

catchments are Ouémé at Bétérou (10,475 km2), 
Ouémé at Savè (23,600 km2), Ouémé at Bonou (49,256 

km2). 
 
3.2 Simulation of discharge with HyMoLAP 

 
Calibration of the model 
 
The model was calibrated for the time period 2000 - 
2005, except for the Ouémé at Savè catchment where 
the calibration was performed over the time period 
2002 - 2005, as 2000 and 2001 are missing. Figure 2 
shows the results of the simulated hydrographs 
compared with the observed discharge for the 
calibration period. The difference between the 
observed and simulated results can be seen by a simple 
visual control and the numerical values for the 
coefficient of model efficiency (CE), the coefficient of 
determination (R2) and the absolute percent bias (APB) 
as presented by Table 1. The uncertainties associated 
with the peaks are greater than those associated with 
low flow. The CE and R2 are greater than 0.80 (Table 
1), while an APB less than 40% was achieved. 

 
Model validation 

The model was applied with the same parameter set 

over the time period 2007 - 2008 for the investigated 

sub - catchments. The diagram of the model validation 
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in the investigated sub - catchments in Figure 3 shows 

that the agreement of simulated and observed 

discharge is good. Comparable to the calibration 

period, the major differences between the measured 

and simulated hydrographs can be observed in the 

discharge peaks. The CE and R2 are greater than 0.75 

(Table 2), while an APB less than 40% was also 

achieved. These three coefficients used to evaluate the 

model prediction here are slightly lower values relative 

to the calibration period. These slightly lower values 

obtained after validation of the model can be explained 

by the deficiencies contained in the different climatic 

data in the model. However, these results indicate that 

the HyMoLAP is suitable for simulation of river 

discharge in these sub - catchments. 
 

 
a) Oueme at Bétérou catchment 

 
 

b) Oueme at Save catchment 
 

 
c) Oueme at Bonou catchment 

Fig.2 Simulated hydrographs compared with the 
observed discharge (calibration) for the investigated 

sub - catchments. 

Table 1 Performance criteria of the HyMoLAP 
(Calibration) for the investigated sub – catchments 

 
Sub - catchments CE R2 APB(%) 

Bétérou 0.84 0.85 31.71 

Save 0.82 0.86 33.81 

Bonou 0.81 0.82 35.52 

 
a) Oueme at Bétérou catchment 

 
b) Oueme at Save catchment 

 

c) Oueme at Bonou catchment 

Fig.3 Simulated hydrographs compared with the 
observed discharge (validation) for the investigated 

sub - catchments. 

Table 1 Performance criteria of the HyMoLAP 
(validation) for the investigated sub – catchments 
 

Sub - catchments CE R2 APB(%) 

Bétérou 0.78 0.81 31.71 

Save 0.83 0.83 29.9 

Bonou 0.76 0.78 39.52 

 
However, there are still many sources of uncertainties 
not being taken into account by HyMoLAP (for instance 
the uncertainties which are related to the inflow 
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process). The observed rainfall data that are often used 
for catchment studies are not areal rainfall because 
rainfall cannot be quantitatively measured in space 
with sufficient precision for catchment modelling. 
Usually, rainfall is only observed at some stations 
(point rainfall), located either inside or outside the 
study catchment. A lot of uncertainties due to 
measurement errors, spatial and temporal variability 
are therefore to address in hydrological modelling. 
This is done here through the modelling of the random 
component of the inflow process with ARMA model. 

3.3 Modelling the random component with ARMA model 

The autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) were calculated for 

lags 0 to 20 using a 95% confidence level to identify the 

candidate models. This is because the first r terms in 

the ACF of a MA (r) process are non - zero and the 

remaining terms are all zeros. By the same way, the 

PACF indicates the order p of the AR process by the 

number of non - zero terms in the PACF. A visual 

inspection of the ACF graphs show that the 

autocorrelations of the random component in the 

investigated sub - catchments diminish fairly quickly. 

The series are therefore relatively stationary. The ACF 

and the PACF show both that the most significant value 

is observed at lag 1 (Figure 4).  

 
From these observations, it was appropriate to try the 

ARMA (1, 1) model. However, for a better selection, the 

following models are investigated:  ARMA (1, 1), ARMA 

(1, 2), ARMA (2, 1) and ARMA (2, 2) as they are mostly 

used in hydrology (Bacanli 2012).  

 

Maximum likelihood estimation (MLE) is used to 

determine the efficient parameters. Table 3 gives the 

estimated parameters for the selected models to 

represent the random component. 

 
However, it is possible to identify an ARMA model by 

using formal model selection criteria. The most widely 

used criteria are the Akaike information criterion 

(AIC), the Bayesian (Schwarz) information criterion 

(BIC or SIC) and the minimum residual variance Var 

(e). The best model is the one having the lowest AIC, 

BIC and Var (e). The results of the tested ARMA models 

using the goodness-of-fit criteria are summarized in 

Table 4. These results show that the best fitted model 

is ARMA (1, 1) model and confirm the findings about 

the use of ACF and PACF. The difference between the 

criteria does not seem important. A diagnostic 

checking is therefore conducted for all investigated 

models through careful analysis of residuals. 

Let    be the sequence of residuals given by       

  ̂. The basic assumption is that {  } is a white noise (or 

that the series is uncorrelated). The selected models 

are validated by testing residuals for the significance of 

correlations. The results of the diagnostic checking 

revealed that ARMA (1, 1) model is effectively the best 

model and is therefore adequate for modelling the 

random component in the investigated sub-

catchments. Indeed, a visual inspection of Figure 5 and 

Figure 6 shows that the ACF and the PACF for the 

residuals series do not display any significant 

correlations. 

 
a) Oueme at Bétérou catchment 

 
b) Oueme at Save catchment 

 
 

c) Oueme at Bonou catchment 

 
Fig.4 Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) for     the random 

component for investigated sub - catchments. The 

horizontal lines give the threshold above which the 

correlation is significant at the level α =0.05. 
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Table 3 Maximum Likelihood estimated Parameters of 
the tested ARMA models used to assess stochastic 

properties of the random component for the 
investigated sub – catchments. 

 
 

Table 4 Criteria of the ARMA models tested in 
assessing stochastic properties of the random 

component for the investigated sub - catchments. 
 
 

 
 

 

 
 

 
 

Fig.5 ACF plots with 95% confidence bands for the 
residuals series for the investigated sub - catchments. 

 

 
 

 
 

 
 

 

Fig.6 PACF plots with 95% confidence bands for the 
residuals series for the investigated sub - catchments. 

In short, all the diagnostic checking conducted above 
show that the residuals series {  } can be treated as 

white noise. Thus, ARMA (1, 1) model selected so far is 
adequate for modelling the random component in the 
investigated sub - catchments and confirms therefore 

the stochastic nature of the inflow process. These 
stochastic properties are based on the theory of 

stochastic differential equations and are used in the 
modelling of hydrological phenomena. 

Sub-catchments ARMA models       AIC       BIC    Var(e)

Oueme at Bétérou ARMA (1, 1) 134.0002 137.9027 1.6192

ARMA (1, 2) 135.9176 141.7713 1.7679

ARMA(2, 1) 135.8936 139.7473 2.4249

ARMA (2, 2) 135.5522 143.3572 2.0992

Oueme at Save ARMA (1, 1) 128.3026 132.2051 1.1814

ARMA (1, 2) 129.5109 135.3647 1.8046

ARMA(2, 1) 128.5602 134.414 1.5464

ARMA (2, 2) 130.831 138.6358 1.7237

Oueme at Bonou ARMA (1, 1) 135.9046 139.8071 1.4727

ARMA (1, 2) 137.6411 143.4948 1.7155

ARMA (2, 1) 136.1203 141.974 1.7743

ARMA (2, 2) 137.2107 145.0156 2.5734
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3.3 Effect of different specific noises on the dynamics of 
river discharge 

a) Modelling the random component by Gaussian 
white noise 
 
The transition probability distribution p(∆η,τ)for 
Gaussian white noise is given by equation (24) 
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it can be found that in the case of additive Gaussian 
white noise, equation (23) reduces to the ordinary 
Fokker - Planck equation (Risken, 1989) 
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If the Gaussian white noise is multiplicative, then 
   (    )              and 
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Applying the inverse Fourier transform to equation 
(13) and using the above result, we obtain the ordinary 
Fokker - Planck equation (Risken, 1989) 
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b) Modelling the random component by Poisson 
white noise 
 

In the specific case of Poisson noise, i.e., a random 
sequence of δ - pulses, ε(t) is defined as (Hänggi, 1978) 

 

 



)(

1

)(
tn

i

ii ttzt                                                             (29) 

Here      is a Poisson counting process with the 
probability                        of    ≥ 0 
arrivals in the interval (0, t], λ is the rate of the process, 
   is the ith (random) arrival time of this process, and    
is the ith independent random variable of zero mean 
distributed with the same probability q(z). It is 
assumed also that        if      = 0. The noise 
generating process η(t) is a step - wise constant 
Markov process whose increments  

      ∫        
   

 
   are given by        , if 

       and       ∑   
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The transition probability density p(Δη, τ) is given by 
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c) Modelling the random component by compound 
noise 

The noise      ∑       
    is composed of a set of 

independent noises      . In this case the noise 
generating process can be written in the following 
form 
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Because of the statistical independence of the 
increments         of the partial generating processes 
     , the characteristic function               of 
η(1) is expressed through the characteristic functions 
   

             of       as follows:  

 
   ∏    

 
   .   Therefore, in the case of additive 

compound noise the generalized FPE (23) becomes 
 

 .ln)(),(),(
),(

1

1










 M

m

mk k
StPFtQPtQU

Qt

tQP                        (33)                        

 
In particular, if  M = 2 and       and        are Gaussian 
and Poisson white noises, respectively, equation (33) is 
then reduced to (Gardiner, 1990) 
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d) Modelling the random component by Lévy stable 
noise 
 

We now assume that the random component of the 
inflow process is modelled by Lévy stable noise. The 
generalized central limit theorem (Gnedenko, et al, 
1954) implies that for a wide class of properly scaled 
transition probability distribution p(Δη,τ), the 
characteristic function of the noise generating process 
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   corresponds to Lévy stable distributions,    =    (α, 
β, γ, ρ). It is well known (Zolotarev, 1986) that    (α, β, 
γ, ρ) depends on four parameters: an index of stability 
α ∈ (0, 2], a skewness parameter β ∈[-1, 1], a scale 
parameter γ ∈ (0, ∞), and a location parameter ρ ∈ (-∞, 
∞). Assuming, in accordance with the initial condition 
P(Q, 0) = δ(Q), that ρ = 0 and excluding from 
consideration the singular case when α = 1 and β ≠ 0 
simultaneously (in this case|  |   ), we obtain 
    =    (α, β, γ) (Zolotarev, 1986), where 
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In the following we assume for simplicity that the 
condition           holds for all    and t. In this 
case,                          (α, β, γ) and the 

generalized FPE (21) becomes 
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where        {             }.  

By rewriting equation (36) in a form containing the 
Riemann - Liouville derivatives and using the 
characteristic function (35), we obtain the fractional 
FPE 
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Equation (37) reproduces all known forms of the 
fractional FPE that corresponds to the SDE (9) driven 
by Levy stable noise. It can be easily rewritten in a 
form containing the Riesz derivative defined as 
(Samko, et al, 1993) 
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With the help of this definition, and the relations 
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we reduce equation (37) into 
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It is obvious that for α = 2 this equation takes the form 
of the ordinary FPE (28) with D = γ. 
 

4.  Discussion 
 
The degree of agreement between simulated and 
measured discharge that is observed over the 
investigated sub - catchments are similar to those 
obtained by Afouda and Alamou, (2010). The recession 
and low flow periods are well reproduced by HyMoLAP 
compared to the peaks. This is not the case for the 
simulation results of Götzinger, (2007) for the Ouémé 
at Bonou catchment. In his simulation, the recession 
does not match the observed data. The observed 
difference in the simulation of the recession period can 
be explained by the procedure used for the calculation 
of the parameters μ and λ of HyMoLAP, which 
considers a long period of drainage without rainfall 
input.  In fact, the parameter λ is a recession coefficient. 
The deterministic modelling of the system dynamics by 
HyMoLAP reveals that the uncertainties associated 
with the peaks are greater than those associated with 
low flow. These high uncertainties associated with the 
peaks were also reported by Götzinger, (2007), who 
carried out a simulation with the HBV model for 
Ouémé at Bétérou catchment within the framework of 
the Rivertwin project. The fact that the discharge peaks 
are not well simulated can be attributed to data errors 
(Andréassian, et al, 2010), (Kuczera, et al, 2010). In 
fact, the improper representation of uncertainty is an 
intrinsic drawback of the deterministic hydrological 
models, since these do not include components that 
enable the preservation of the associated statistical 
characteristics of the observed data. With regard to the 
known drawback of deterministic hydrological models, 
the work of Efstratiadis, et al, (2014) confirmed that 
using an appropriate error model can effectively tackle 
the problem. 
 A remarkable feature of the derived FPE (28), (31), 
(34) and (41) is that they give an opportunity to 
examine the effects of different noises on the same 
system. Indeed, if one looks at these Fokker - Planck 
equations, it can be observed that the first terms on the 
right hand side are similar, whereas the remaining 
terms on this right hand side are different. In fact, it is 
these remaining terms which describe the effect of 
different specific noises on the dynamics of the system. 
As a consequence, the dynamics of the river discharge 
for each specific type of noise could not be the same. 
The above results clearly show how each specific type 
of noise can drastically modify the dynamics of the 
deterministic dynamical system. This means that 
inaccurate choice of noise models for dynamical 
equations will lead to poor decisions about the state 
estimates. Therefore, understanding the properties of 
the random components of the rainfall inflow on river 
water resources is crucial to successfully manage 
uncertainties in hydrological systems. 
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Conclusions 
 
The main contribution of this paper is to investigate 
the influence of the uncertainties related to the random 
component of inflow process on the dynamics of river 
discharge. The achievement of this analysis stemmed 
from the combination of a two step modelling 
approach: (1) a deterministic modelling of the system 
dynamics by a hydrological model based on the least 
action principle (HyMoLAP), (2) the stochastic 
formulation of HyMoLAP in terms of stochastic 
differential equation (SDE). HyMoLAP is designed to 
minimize uncertainties related to hydraulic 
transformation process and scaling law, and thus 
characterized by a limited number of parameters (λ, μ ) 
capable of physical interpretation, while its stochastic 
formulation helped to make use of the large body of Ito 
stochastic differential equation theory. The inflow 
process to hydrological modelling was considered as a 
sum of deterministic and random components. 
 Using data from Ouémé river basin (Benin), the 
stochastic properties of the random component of the 
inflowing precipitations have been investigated. This 
paper has demonstrated that the random component 
of the inflow process can be modelled with the ARMA 
(1, 1) model in the investigated sub - catchments. The 
dynamics of the system and the associated ODE are 
derived from the least action principle (LAP). The main 
advantage of the generalized Fokker - Planck equation 
is that it accounts for the noise action in a unified way, 
namely through the characteristic function of the noise 
generating process at dimensionless time t = 1. This 
provides an opportunity to study the effect of different 
specific noises on the same system. The form of the 
derived FPEs is found to be particularly sensitive to the 
uncertainty properties of the inflowing rainfall. 
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