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Improving rainfall–runoff modelling through the control of uncertainties under
increasing climate variability in the Ouémé River basin (Benin, West Africa)
Eliézer Iboukoun Biao, Eric Adéchina Alamou and Abel Afouda

Laboratory of Applied Hydrology, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin

ABSTRACT
The objective of this paper is to understand how the natural dynamics of a time-varying catchment, i.e.
the rainfall pattern, transforms the random component of rainfall and how this transformation influ-
ences the river discharge. To this end, this paper develops a rainfall–runoff modelling approach that
aims to capture the multiple sources and types of uncertainty in a single framework. The main
assumption is that hydrological systems are nonlinear dynamical systems which can be described by
stochastic differential equations (SDE). The dynamics of the system is based on the least action principle
(LAP) as derived from Noether’s theorem. The inflow process is considered as a sum of deterministic
and random components. Using data from the Ouémé River basin (Benin, West Africa), the basic
properties for the random component are considered and the triple relationship between the structure
of the inflowing rainfall, the corresponding SDE that describes the river basin and the associated
Fokker-Planck equations (FPE) is analysed.
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1 Introduction

Recent decades have witnessed increasing concern among the
international scientific community about climate change and its
impacts on the hydrological cycle (vanDam1999). Today, there is
much evidence that the planet is warming up, largely as a result of
human generated greenhouse gases (Kundzewicz et al. 2014,
IPCC 2014a, b). Therefore, managing water resources is more
challenging than ever, largely due to the risks associated with
multiple types of uncertainty (both aleatory and epistemic;
Khatri 2013). Since the 1970s, sub-Saharan Africa, and in parti-
cular West Africa, is facing water-related uncertainties posed by
the pressures of global change. A shortage in rainfall ranging from
20% to 30% has been observed throughout the region, leading to a
decrease in river flows ranging from 40% to 60% (Afouda et al.
2007). Nowadays, floods and flash floods occur more frequently
with greater and greater intensity and have become one of the
most devastating natural hazards in West Africa. In 2009 severe
flooding was observed in Burkina Faso and Mali; in 2010 flood
disaster affected more than 680 000 people and caused the deaths
of 46 people in Benin (World Bank 2011). In 2012, “killer floods”
inducing more than 50 fatalities each occurred in Niger and
Nigeria (Kundzewicz et al. 2014).

To efficiently adapt to these extreme events and climate
change in general, it is important to consider preventive
actions. Flood prevention and, more generally, water
resources management planning rely on an understanding
of the water cycle in West Africa. For the purpose of

planning, one usually assumes that hydrological processes in
a particular river basin can be described by probability dis-
tributions that are not changing over time (Strupczewski and
Mitosek 1995). However, the more that extreme events hap-
pen due to climate change and unpredictable human activ-
ities, the less historical characteristics of these processes can
be assumed essentially constant over time, and the more
challenging it is to plan for integrated water resources man-
agement (IWRM) and adaptation policy. Thus, extrapolation
using historical data is no longer valid for these events that
increase uncertainty about the future. The key question that
arises is how best to include these non-stationarity considera-
tions in water planning and management (Hanggi and Ljung
1995, Alamou 2011). Strupczewski and Mitosek (1995) pro-
posed improving the existing statistical procedures based on a
probability distribution by allowing its parameters to vary in
time. They concluded, however, that in the non-stationary
case, this approach increases the error of quantile estimation
and that this error increases with extrapolation time length. A
promising approach is to take advantage of the optimality
principle embodied in the least action principle (LAP), as
explained by Noether’s theorem, to minimize uncertainties
in modelling hydrological systems and from deficiency in our
knowledge. This will be beneficial for predicting the impact of
different forms of uncertainty on the overall water availabil-
ity, in a single framework, for water users and decision
makers.
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Therefore, the objective of this paper is to understand how
the natural dynamics of a time-varying catchment transforms
the random component of rainfall and how this transforma-
tion influences the river discharge. To this end, this paper
develops a rainfall–runoff modelling approach that aims to
capture the multiple sources and types of uncertainty in a
single framework. The main assumption is that hydrological
systems are nonlinear dynamical systems which can be
described by stochastic differential equations (SDE). Such
equations arise when the elements which give rise to the
representations of continuous deterministic dynamical system
in the form of ordinary differential equations (ODE) are
considered subject to environmental fluctuations or noise.
The SDE theory is well developed and has found wide appli-
cations in most branches of sciences, including hydrology and
water resources engineering (Bodo et al. 1987, Mtundu and
Koch 1987, Serrano and Unny 1987, Cushman 1987, Konecny
and Nachtnebel 1995, Hanggi and Ljung 1995, Alamou 2011).
In this paper, the dynamics of the system are based on the
LAP designed to minimize uncertainties related to rainfall –
runoff transformation processes and scaling law (physical
models).

The uncertainties addressed in this study come from three
important aspects: uncertainties linked to the model structure
and the model parameters, uncertainties linked to the corre-
lation between input and output of the model, and uncertain-
ties linked to the random component of rainfall. Using data
from the Ouémé River basin (Benin, West Africa), the prop-
erties of the random component of rainfall are investigated. It
is argued that the white noise process and the associated
Brownian motion are acceptable approximations to the ran-
dom component of rainfall over the Ouémé River basin. The
triple relationship between the structure of the rainfall pro-
cess, the corresponding stochastic differential equation that
describes the river basin, and the associated Fokker-Planck
equations (FPE) are analysed. The time-dependent probabil-
ity distribution for the resulting discharge is obtained in the
form of fundamental and approximate solutions of the FPE.
A comparison is made between the derived time-dependent
probability distributions and an empirical probability distri-
bution of the outflow.

2 Methodology

The inflow process representing all irregular variations of
hydro-meteorological processes is considered as a sum of
deterministic and random components that embraces data
uncertainties (e.g. measurement) and sample uncertainties
(e.g. number of data) (Konecny and Nachtnebel 1995).
Hence, the deterministic hydrological model based on the
least action principle (HyMoLAP) is fed by a stochastic
input. The main advantage of an SDE is that it provides a
physically transparent and mathematically tractable descrip-
tion of the stochastic dynamics of a temporally varying catch-
ment and can significantly improve the estimation of
uncertainty. As noted by Koutsoyiannis (2013), changes in
hydrological systems occur on all time scales, from minute to
geological, but our limited senses and life span as well as the
short time window of instrumental observations restricts our

perception to the most apparent daily to yearly variations.
However, we herein restrict our view to those short-term
noises superimposed on the daily cycle, having in mind that
the processes associated with hydrological systems are usually
more complex. The driving process of an SDE plays a key role
in the dynamics and future evolution of that SDE. Our
approach will be especially effective if the noise that describes
the random component of rainfall can be represented as the
time derivative (in the sense of a generalized function) of a
stationary process with independent increments on non-over-
lapping intervals. In that case, the solution of the SDE is a
Markov process whose properties are well known (Denisov
et al. 2009, Alamou 2011).

2.1 Model description

The hydrological model based on the least action principle
(HyMoLAP) is described by:

dZ
dt

¼ ψðq; tÞ (1)

dðλQÞ
dt

þ μQ2μ�1 ¼ ψðq; tÞ ) dQ
dt

¼ YðQ;ψ; λÞ (2)

where Z describes the variation of the initial state of the
catchment, ψ describes the model input, Y describes the
model structure, λ and μ are the physical parameters of the
model, and Q stands for the river discharge.

Equation (1) describes explicitly the production process
(i.e. the action of the unsaturated zone that accounts for
evaporation and evapotranspiration and divides the resulting
rainfall event into two components: overland and under-
ground) and Equation (2) describes the transformation pro-
cess (i.e. the process by which the rainfall volumes for the
overland component and the underground component are
transformed into runoff). Here, Equations (1) and (2) form
the basic ODE describing the deterministic dynamics of the
system (Biao et al. 2015). The HyMoLAP model has been
used successfully in rainfall–runoff modelling for the Bétérou
and Save catchments of the Ouémé River (Afouda and
Alamou 2010, Alamou 2011, Biao et al. 2015). The choice of
this model is determined by the purposes targeted. By cou-
pling two classical theories we wish to take advantage of the
optimizing properties embodied in the physics-based deter-
ministic HyMoLAP and the statistical consistency of the
Ito SDE.

2.2 Uncertainty management with HyMoLAP

In the majority of cases, hydrological systems can be
described by a deterministic model, but this kind of model
does not represent the system in a truly ideal way. In a
hydrological system, as in almost all other natural systems,
fluctuations are present and are caused by the chaotic nature
of the system. As a consequence, these fluctuations do not
allow for purely deterministic descriptions. For this reason,
the stochastic formulation of HyMoLAP is derived from its
foundation in the SDE, which has already been applied suc-
cessfully in a wide range of hydrological applications.
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In practice, knowledge of the functions ψ q; tð Þ and
Y Q;ψ; λð Þ that describe, respectively, the model input and
the model structure is subject to different types of uncer-
tainty: one class of uncertainty is related to our imperfect
knowledge of the physical phenomenon and another class of
uncertainty is related to the quantitative evaluation of the
parameters of the environment (especially rainfall). These
forms of uncertainty can therefore be included in the struc-
ture of the model. To this end, the functions ψ q; tð Þ and
Y Q;ψ; λð Þ can be viewed as the sum of the mean and a
stochastic noise term. The deterministic Equations (1) and
(2) are transformed into an SDE. This SDE allows us to derive
the evolution of the total variance of river discharge.

The random functions ψ q; tð Þ and Y Q;ψ; λð Þ can be writ-
ten in the form:

ψðq; tÞ ¼ ψðq; tÞ þ G1ðq; tÞεψðtÞ (3)

YðQ;ψ; λÞ ¼ YðQ;ψ; λÞ
þ G2ðQ; tÞεYðtÞ with YðQ;ψ; λÞ

¼ � μ

λ
Q2μ�1 þ ψðq; tÞ (4)

where ψðq; tÞ and Y Q;ψ; λð Þ are, respectively, the means of
ψ q; tð Þ and Y Q;ψ; λð Þ; G1ðq; tÞand G2ðq; tÞ stand, respec-
tively, for the standard deviations of ψ q; tð Þ and Y Q;ψ; λð Þ.

It is appropriate to model the stochastic parts as a
Gaussian white noise process with zero mean and delta cor-
related structure, described by:

E εðtÞ � εðsÞ½ � ¼ MðtÞδðt � sÞ (5)

Here, M tð Þ is the variance of the Gaussian white noise
process, δ t � sð Þ is the Dirac delta function, E �½ � describes
mathematical expectation.

The Gaussian white noise is not Riemann-integrable.
However, it can be described as the formal derivative in
time of a Wiener process, W tð Þ; i.e. dW tð Þ ¼ ε tð Þdt:

Thus, the stochastic formulation of Equations (1) and (2)
reads:

dZ ¼ ψðq; tÞdt þ G1ðq; tÞdW1ðtÞ (6)

dQ ¼ YðQ;ψ; λÞdt þ G2ðQ; tÞdW2ðtÞ (7)

The system Equations (6) and (7) can then be written in
vector form (Afouda et al. 2004, Alamou 2011):

dU tð Þ ¼ f U; tð Þdt þ G U; tð ÞdW tð Þ (8)

One can, without loss of generality, write
�Y q; tð Þ ¼ �A Z; tð ÞZ, and the following vector notations can
be derived:

U ¼ Z
Q

� �
; G ¼ G1 0

0 G2

� �
; dW ¼ dW1ðtÞ

dW1ðtÞ
� �

;

f ðU; tÞ ¼ A 0
A � μ

λQ
2ðμ�1Þ

� �
Z
Q

� �
:

The solution of the SDE (Equation (8)) is a Markov diffu-
sion process. Subsequently, U(t)is fully determined if the joint
probability density function of the random variable U(t) is

defined for all finite sets of t. This is, however, a very ambi-
tious goal, which is difficult to achieve in most cases. In
practice, it is satisfactory if a limited number of moments of
the solution process are derived. This can be achieved by the
method of moment equations, which relies on deriving effec-
tive equations for the statistical moments.

We now concentrate on the output as derived from the
scalar form of Equation (8), dQ(t) = f(Q,t)dt +G(Q,t)dW(t).
Following Ito’s lemma (an identity used in Ito calculus to find
the differential of a time-dependent function of a stochastic
process), if ϕ(Q,t) is a real scalar function of the solution
process that is continuously differentiable in time t and that
has continuous second partial derivative with respect to Q,
then the stochastic differential of ϕ can be written as follows:

dϕ ¼ @ϕ

@t
þ YðQ;ψ; λÞ @ϕ

@Q
þ 1
2
MðtÞG2ðQ; tÞ @

2ϕ

@Q2

� �
dt

þ GðQ; tÞ @ϕ
@Q

dWðtÞ (9)

Taking expectation on both sides of Equation (9) yields

d
dt

E½ϕ� ¼ E
@ϕ

@t
þ YðQ;ψ; λÞ @ϕ

@Q
þ 1
2
MðtÞG2ðQ; tÞ @

2ϕ

@Q2

� �
(10)

since

E GðQ; tÞ @ϕ
@Q

dWðtÞ
� �

¼ 0

Now, if ϕ ¼ Qn, E½ϕ� ¼ E½Qn� is the nth moment, equations
for the moments can be defined as follows:

dE Qn½ �
dt

¼ E YðQ;ψ; λÞnQn�1 þ 1
2
nðn� 1ÞG2ðQ; tÞMðtÞQn�2

� �
(11)

From Equation (11) the low-order moments (mean and var-
iance) of the output discharge can be evaluated with
HyMoLAP. Thus, the equation of the first moment can be
obtained from Equation (11) by setting n ¼ 1:

dE Q½ �
dt

¼ E YðQ;ψ; λÞ½ � ¼ � μ

λ
Q

2μ�1 þ ψðq; tÞ
¼ f ðQ; tÞ (12)

where �ð Þ ¼ E½ð�Þ� denotes the mathematical expectation.
The second moment can be derived in the same way by

taking n ¼ 2:

dE Q2½ �
dt

¼ E 2YðQ;ψ; λÞQ½ � þMðtÞG2
(13)

Equation (12) can be combined with Equation (13) to get the
evolution of the variance in the form:

d
dt

E½Q2� � Q
2

h i
¼ 2 QYðQ;ψ; λÞ � QYðQ;ψ; λÞ� �þMðtÞG2

d
dt

VarðQÞ½ � ¼ � 2μ
λ

Q2μ�1 � QQ
2μ

h i
þ 2 Qψ � Qψ

� �
þMðtÞG2

(14)
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Equations (12) and (14) give, respectively, the evolution of the
mean and the evolution of the spread around the mean. These
equations can be used in the process of decision making for
planning purposes. Equation (14) exhibits the structure of
uncertainty. The total variance of the output is shown expli-
citly to have three components. The first component on the
right hand side of Equation (14) is equivalent to the usual
results given by standard statistical theory; the second and
third terms are specific to the SDE properties. The second
term reflects the influence of the dynamical structure of the
model and the third term is explicitly part of the variance due
to the choice of random noise. Therefore, it can be concluded
that not only the choice of model for the dynamical structure
of the river basin is important, but also investigation of the
stochastic properties of the random component of rainfall
must be carefully carried out.

3 Application to the Ouémé River basin at Bonou

3.1 Study area

The Ouémé River basin at the Bonou outlet covers a surface
area of 49 256 km2 between 6.8–10.2°N latitude and 1.3–3.45°E
longitude (Fig. 1). The Ouémé catchment covers two climatic
zones: the Guinea savanna zone and the Soudanese savanna
zone. The north of the catchment has a unimodal rainfall
season (from mid-March to October) which peaks in August,
whereas the south of the catchment exhibits a bimodal rainfall
season (March–July and August–October) which peaks in June

and September. This study is conducted, specifically, in the
Bonou catchment of the Ouémé River. The inter-annual rain-
fall average on the Ouémé at Bonou is around 1100 mm, the
minimum is 652 mm (in 1983) and the peak is 1536 mm (in
1963) over 1961–2010. On a global scale, Benin extends from
the Niger River to the Atlantic Ocean, with relatively flat
terrain, small mountains (about 600 m), and low coastal plains
with marshlands, lakes and lagoons. The landscape is charac-
terized by forest, gallery forest, savanna, woodlands, and agri-
cultural as well as pasture land. Rainfall–runoff variability is
high in the catchment, leading to runoff coefficients varying
from 0.10 to 0.26, with the lowest values for the savanna and
forest landscapes (Diekkrüger et al. 2010). Meteorological data
(daily rainfall data and daily potential evapotranspiration, cal-
culated by the Penman formula) and daily discharge data were
provided, respectively, by the Benin Meteorological
Department, ASCENA (Agency for Air Navigation Safety in
Africa and Madagascar) and the National Directorate of Water
(DG-Eau). A total of 25 rainfall stations are considered. In fact,
a Kruskal-Wallis homogeneity test (Saporta 1974) was con-
ducted on every station of the study area, which allowed
these 25 stations to be retained. This test ensures that spatial
homogeneity of the rainfall can be assumed. Moreover, the
period 1961–2010 was chosen as the reference (a good com-
promise, taking into account the length of the data available for
the different stations). Spatialized regional daily mean rainfall
was obtained by kriging (Matheron 1970) with an exponential
variogram of 53 km range, 0.3 nugget and 1 as the sill.

Figure 1. Study area and the hydrometeorological stations used.
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3.2 Simulation of discharge with HyMoLAP

Model calibration was performed on the period 1990–1993 and
the years 1994–1995 were used for model validation. In order
to evaluate the model performance for the calibration and the
validation, the following criteria were taken into account: the
coefficient of model efficiency CE (Nash and Sutcliffe 1970),
the coefficient of determination R2 and the absolute percentage
bias (APB). Figure 2 shows the result of the simulated hydro-
graph compared with the observed discharge for the calibra-
tion period, whereas Figure 3 presents the same data for the
validation period. The difference between the observed and
simulated results can be seen by a simple visual control and
the numerical values for CE, R2 and APB as presented in
Table 1. The recession curve is quite well simulated.

However, the uncertainties associated with the peaks are
greater than those associated with low flow.

For both the calibration and the validation periods the CE
and R2 are greater than 0.85 (Table 1), while APB of 33.5% for
the calibration period and 38.6% for the validation period were
achieved. These results indicate that the HyMoLAP is suitable
for simulation of river discharge in the Ouémé River basin.
However, there are still many sources of uncertainty not being
taken into account by HyMoLAP (for instance the uncertain-
ties related to the random component of rainfall). This is the
reason why the stochastic formulation of this model is pre-
ferred as the physical system behaviour is described in terms of
probabilities. Thus, the lack of confidence (uncertainty) in the
true discharge can be expressed using time-dependent prob-
ability distributions for the resulting discharge.

Figure 2. Simulated hydrograph compared with the observed discharge (calibration) for the Bonou catchment.

Figure 3. Simulated hydrograph compared with the observed discharge (validation) for the Bonou catchment.
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3.3 Tracking uncertainties

3.3.1 Assessment of the stochastic properties of the
random component
As suggested by Equation (14), the stochastic properties of
the random component must be investigated in order to have
a more precise idea about the uncertainty associated with the
model. This section therefore investigates the stochastic prop-
erties of the random component, εt, of rainfall. For εt to be
white noise, the following conditions must be verified:

● E[εt] = 0,
● εt is Gaussian,
● εt has independent increments.

Investigation of the properties of the random component of
rainfall is conducted through the implementation of some
statistical tests. To this end, daily rainfall index, for the time
period 1961–2010, is calculated as defined by Lamb (1982):

εt ¼ qt � q
σq

(15)

where qt is the spatial averaged rainfall of day t, q ̅ and σq
represent, respectively, the mean and the standard deviation
of this time series for the rainy seasons during the study
period.

First, the validity of the assumption that the random
component {εt} has zero mean is investigated. For this pur-
pose a statistic, η(ε), is defined as:

ηðεÞ ¼
ffiffiffi
n

p
ε

σ
(16)

where n is the number of observations, ε ̅ is the estimate of the
random component mean, and σ is the estimate of the ran-
dom component standard deviation.

The statistic η(ε) is approximately distributed as t(α, n − 1),
where α is the confidence level at which the test is being
carried out (Mujumdar and Nagesh Kumar 1990). If the
value of η(ε) ≤ t(α, n − 1), then the mean of the random com-
ponent is not significantly different from zero. The values of
the statistic η(ε) and t(α, n − 1) for the random component of
rainfall for the Bonou catchment are, respectively, 0.0430 and
1.645. At the 95% confidence level, it is observed that the
random component passes the test, leading to the conclusion
that the random component mean value is not statistically
different from zero (E[ε] ≈ 0).

Second, the random component is checked for Gaussian
properties using the normal probability plot (Chantarangsi
et al. 2014). If the series follow a normal distribution, the data
will fall within the confidence interval. The result of the
Gaussian test for the distribution of the random component

is shown by the normal probability plot (Fig. 4). All the data
fall within the 95% confidence interval. Therefore, the data
follow a normal distribution.

Third, the independence of the increments of the random
component is investigated. The process εt is said to have inde-
pendent increments if εt0 , εt1 � εt0 , εt2 � εt1 , . . .., εtk � εtk�1 are
independent variables, where t0 is the initial time and t1, t2, . . .,
tk are any times, with t0 < t1 < . . . < tk (Liu 2008).

To this end, the autocorrelation function (ACF) and partial
autocorrelation function (PACF) of the series of increments of
the random component are computed for a maximum lag of 20
and a confidence level of 95% based on the sample size n. Two
horizontal lines (blue lines) are superimposed at � 1:96=

ffiffiffi
n

p
.

These intervals give the acceptance region for testing the null
hypothesis H0: ρk = 0 at 5% significance level. They allow one to
judge whether a particular ρk is statistically different from zero.
The sample autocorrelation at lag k is defined as:

ρk ¼
Pn�k

t¼1
εt � εð Þ εtþk � εð Þ
Pn
t¼1

εt � εð Þ2
(17)

Figure 5 shows that the ACF and PACF for the series of
increments of the random component of rainfall do not dis-
play any significant correlations. Therefore, the random com-
ponent can be assumed to have independent increments.

The above results show that the random component of
rainfall over the Ouémé River basin can be approximated
by white noise. We therefore conclude that this random
component is also delta correlated and fulfils the condition
that P(ε(0) = 0) = 1; it can also be represented as the time
derivative (in the sense of a generalized function) of a
stationary process with independent increments on non-
overlapping intervals. White noise is commonly used in
stochastic hydrology due to its simplicity and existing rela-
tionship to real processes.

3.3.2 Modelling the random component by white noise
The traditional approach for assessing the probability of out-
flow of a given frequency has been to pick a storm pattern,
choose a runoff model and set the parameters with the best
available estimate. One of the most important advantages of
the SDE is the associated FPE, which allows one to directly
derive the time-varying probabilities associated with the
outflow.

Since εt can be treated as white noise, one can write
Equation (8) in the form:

dQ ¼ f ðQ; tÞdt þ GðQ; tÞdW (18)

where f ðQ; tÞ ¼ � μ
λQ

2μ�1 þ ψðq; tÞ.
In this case, the discharge Q is a Markov process and there-
fore the distribution function of discharge, P(Q,t), must obey
Equation (19):

PðQ; t þ ΔtÞ ¼
ð
PðQ0; tÞf ðQ;ΔtjQ0ÞdQ0 (19)

where Δt � τc; τc stands for the correlation time of ε(t).

Table 1. Performance criteria of the hydrological model based on the least
action principle (HyMoLAP) for the Bonou catchment, Ouémé River.

CE R2 APB (%)

Model calibration
(1990–1993)

0.85 0.89 33.5

Model validation
(1994–1995)

0.87 0.86 38.6
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From Equation (19) a partial differential equation for P(Q,t)
can be derived as the Kramers-Moyal expansion (Risken 1989):

@P
@t

¼
X1
n¼1

�1ð Þn
n!

@n

@Qn
LnPð Þ (20)

where Ln are the moments of Q.
Formally, Equation (20) suggests that one may break off

after a suitable number of terms. For instance, there could be
situations where, for n > 2, Ln is identically zero or negligible
(Risken 1989). In this case, one is left with the FPE:

@P
@t

¼ � @

@Q
ðL1PÞ þ 1

2
@2

@Q2
ðL2PÞ (21)

where L1 = f(Q,t) and L2 = 2G2(Q,t) stand, respectively, for
the mean and the variance. Both L1 and L2 can be derived
from Equations (12) and (14).

The FPE models the time evolution of the probability
distribution in a system under uncertainty. In essence, the
FPE is a conservation law expressing the fact that the prob-
ability distribution function (pdf) cannot be created or
destroyed. Equation (21) corresponds to:

Figure 4. The normal probability plot with 95% confidence interval of the random component of rainfall for the Bonou catchment.

Figure 5. Autocorrelation function (ACF) and partial autocorrelation function (PACF) for the series of increments of the random component of rainfall for the Bonou
catchment. The horizontal lines give the threshold above which the correlation is significant at the level α = 0.05.
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@PðQ; tÞ
@t

¼ � @

@Q
fPðQ; tÞð Þ þ @2

@Q2
G2PðQ; tÞ� �

(22)

Equation (22) can be written in the form of a continuity
equation:

@P
@t

þ @J
@Q

¼ 0 (23)

where we have defined the probability current:

J ¼ �fP þ @

@Q
G2P
� �

(24)

The evolution of the solution of the FPE is thus described by
the hydrodynamic image of a continuous flow in discharge
space. The corresponding current is the sum of the convec-
tion current, −fP, and the diffusion current, @

@Q G2Pð Þ.
In a stationary state, P is independent of time t. As a

consequence, J does not depend on Q. Thus, by integrating
Equation (23) through applying, for instance, the variation of
constants method, the normalized solution is obtained by
setting J = 0.

PðQÞ ¼ C: exp
fQ
G

	 

(25)

where C is a constant.
A remarkable feature is that a stationary state is a state that

has no probability current. According to Annunziato and
Borzì (2010), the state of a stochastic process can be comple-
tely characterized in many cases by the shape of its statistical
distribution, which is represented by the pdf. For this reason,
the time-dependent probability distributions for the resulting
discharge are sought in the form of fundamental and approx-
imate solutions of the associated FPE, Equation (21).

We define the fundamental solution as the solution that
corresponds to the initial solution PðQ; t ¼ 0Þ ¼ δðQ� Q0Þ,
in which the initial discharge Q0 is well defined (not random).
For simplicity, one can set μ = 1, γ = μ/λ such that f = γQ. The
fundamental solution of the associate FPE, Equation (21), is
given by Equation (26). Its derivation is given in Appendix A.

PðQ; tÞ ¼ 1ffiffiffiffiffi
2π

p
ffiffiffiffi
γ

G

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�2γt
p exp � γ

2G
Q� Q0e�γtð Þ2
1� e�2γtð Þ

" #

(26)

For t→ ∞, the fundamental solution tends to the stationary
distribution:

PðQÞ ¼ 1ffiffiffiffiffi
2π

p
ffiffiffiffi
γ

G

r
exp � γ

2G
Q2

� �
(27)

At each time t, during the wet seasons, the fundamental
distribution is Gaussian with mean:

Q ¼
ð

� μ

λ
Q

2μ�1 þ ψðq; tÞ
� �

dt

and variance:

σ2ðQ; tÞ ¼
ð

� 2μ
λ

Q2μ�1 � QQ
2μ

h i
þ 2 Qψ � Qψ

� �þMðtÞG2

	 

dt:

These moments (mean and variance) can be derived from
Equations (12) and (14). Using the standardized variables u of
Q, that is:

u ¼ Q� E½Q�
σQ

(28)

for the time period 1961–2010, where σQ is the standard
deviation of Q, the time-dependent probability distribution
P(u,t) is plotted in Figure 6 for different times. At each time,
the profile is symmetric about the expected value of the
standardized discharge. It is also observed that the distribu-
tion becomes narrower with time.

Now, the approximate solutions of the FPE (21) are
sought. Indeed, the FPE does not have an explicit solution.
It can be solved numerically or by approximation. Because
extreme phenomena are analysed using the generalized
extreme value (GEV) distribution, one seeks for an approx-
imate solution that can be closed to the GEV law. Many
studies have shown the use of the Hermite polynomial expan-
sion to approximate the solution of the FPE (Alamou 2011).
Hermite polynomials Hn(U) are orthogonal polynomials with

Figure 6. Fundamental distribution P(u,t) of the standardized daily discharge u for the Bonou catchment for the period 1961–2010. The colours toward the blue end
of the colour map indicate low probability and the colours at the red end of the colour map indicate high probability.
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respect to the standard Gaussian density θðuÞ ¼ 1ffiffiffiffi
2π

p e�
u2
2

defined over the interval (−∞, +∞).

The Hermite polynomials Hn(U) are defined

by Hn uð Þ ¼ �1ð Þneu22 dn
dun e�

u2
2

� �
.

The Hermite polynomial expansion of the probability dis-
tribution is given in the form:

Pðu; tÞ ¼ 1ffiffiffiffiffi
2π

p e�
u2
2 1þ

Xn
i¼1

AiHiþ1ðuÞ
" #

(29)

where Ai is the ith expansion coefficient expressed in terms of
moments, ri, of the variable u and given by

Ai ¼
Pk
j¼0

�1ð Þj riþ1�2j

j! iþ1�2jð Þ!2j , Hiþ1 is the (i + 1)th Hermite poly-

nomial, k represents the integer part of (i + 1)/2.
Thus,

A1 ¼ 0; A2 ¼ r3
3!
; A3 ¼ r4 � 3

4!
; etc:

Based on the above expressions of the expansion coefficients,
the observed values of discharge are used to make calculations
of P(u,t). Figure 7 shows the first four approximations.

It can be seen that the first-order approximation, i.e.
n = 1, leads to the case where E[U] = 0. As a result, the
equation that describes the evolution of the variable u
takes the form:

@P
@t

¼ �G2ðuÞ
2

@2P
@u2

(30)

This result can also be predicted from Equation (22) when the
term @

@Q fPðQ; tÞð Þ is equal to zero. In such a case, the dis-
tribution of the variable is Gaussian. The succeeding approx-
imations (i.e. n = 2, 3 and 4) are corrected by their respective
coefficients to give the corresponding shape of the solution of
the FPE. Clearly, this result shows that for Gaussian PDF,
only the diffusion current is considered, whereas for more
complex PDF the convection current can be accounted for by
successive terms of Hermite polynomials. The three-dimen-
sional plot of the derived probability distribution is in accor-
dance with the two-dimensional plot and, furthermore, the
flow regime of the Ouémé River basin at Bonou is also
reproduced.

However, in this study, a new approximate solution can
also be sought by using Student’s t distribution, which also
belongs to the domain of attraction of GEV. The main moti-
vation to choose Student’s t distribution is that it is also
defined over the interval (−∞, +∞). Thus, one can write P
(Q,t) as:

PðQ; tÞ ¼ ζðQÞ
Xn
k¼0

akφkðQÞ (31)

where ζ(Q) is the base density function, which is Student’s t
distribution, given by:

ζðQÞ ¼
Γ βþ1

2

� �
ffiffiffiffiffiffi
πβ

p
Γ β

2

� � 1þ Q2

β

	 
�βþ1
2

(32)

in which β is the number of degrees of freedom of the
distribution.

The term ϕkðQÞ in Equation (31) denotes the associated
orthogonal polynomials. The orthogonal polynomials asso-
ciated with Student’s t distribution are given by (see
Appendix B):

Pðu; tÞ ¼
Γ βþ1

2

� �
ffiffiffiffiffiffi
βπ

p
Γ β

2

� � 1þ u2

β

	 
�βþ1
2

1þ 3

β2
� 1
β

	 

ϕ2ðuÞ þ

χ3
6

�1þ 12
β
� 47

β2
þ 60

β3

	 

ϕ3ðuÞ þ � � �

� �

(33)

where χk is the moment of order k of the standardized vari-
ables u.

This equation shows that the leading Student’s t distribu-
tion term is corrected by higher-order contributions contain-
ing skewness and kurtosis excess. In the context of
approximating the solution of the FPE, the coefficients ak
have to be determined so as to approach the solution of
that partial derivative equation. Taking into account the
properties of the derived polynomials, the coefficients ak
obey the optimal criteria defined in Galerkin’s method
(Afouda et al. 2004). The time-dependent probability distri-
butions for different order approximations are plotted in
Figure 8. It can be noticed that the approximations for
k = 0, 1 and 2 give the shape of Student’s t distribution.
However, the approximations corresponding to k = 3 and 4
are corrected by the coefficients ak and the shape of these
solutions of FPE are reproduced accordingly.

We now want to investigate whether the different
approaches used to derive the time-dependent probability dis-
tribution can be efficient in predicting the distribution of
discharge. To this end, a comparison is made between the
derived time-dependent probability distributions (fundamental
and approximate distributions) and the empirical probability
distribution of the standardized daily discharge. The standar-
dized daily discharge u is arranged in descending order and
ranks allotted. Then the estimated cumulative probabilities are
computed using Hazen’s formula (Soro 2011):

pðu � uiÞ ¼ i� e
N � 2eþ 1

with e ¼ 0:5 (34)

where i stands for the rank of a value, and N is the total
number of values to be plotted.

The empirical quantiles are plotted on the y-axis and the
corresponding quantiles from the theoretically derived probabil-
ity distributions are plotted on the x-axis. The quantiles of the
derived probability distributions are computed based on the
estimated associated cumulative probabilities. Figure 9 shows
the quantile–quantile (Q–Q) plot for the standardized daily dis-
charge. For the sake of brevity, only the results of the first order

2910 I. E. BIAO ET AL.



for the investigated approximations are presented. In this figure,
it can be seen that the data points do tend to fall on the line.

4 Discussion

As revealed by Equation (14), the evolution of the variance of
the river discharge shows three terms:

● The first term,� 2μ
λ Q2μ�1 � QQ

2μ
h i

, describes the

proper variance of the evolution of the discharge in
the model output. This first term takes into account
the model parameters and therefore quantifies both
the uncertainties linked to the model structure and
those linked to the model parameters.

● The second term, 2 Qψ � Qψ
� �

, quantifies uncertainties
that are often not cited in hydrological literature but
appear explicitly. These uncertainties are linked to the
correlation between input ψ and output Q of the model.

● Finally the third term, MðtÞG2
, quantifies the uncertain-

ties linked to the random component of rainfall.

To the best of our knowledge, the above result (Equation 14)
is the first that explicitly shows the contribution of the input,
model parameters and structural uncertainties in the output
discharge. To emphasize the relevance of Equation (14), the
proportion of the total variance that is attributable to each of
the terms of Equation (14) has been calculated over the
targeted catchment. The results revealed that the contribution
of the first term to the total variance is 83.78%, while the
second and third terms represent 10.62% and 5.60%,

Figure 7. Approximate distributions P(u,t) with Hermite polynomials up to order n = 4 of the standardized daily discharge u for the Bonou catchment, for the period
1961–2010. See Figure 6 for explanation.
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respectively. The proportion of the total variance that is
attributable to both the second and third terms is the
expected loss of precision when using the standard statistical
theory over the investigated sub-catchment. The derived
Equations (12) and (14) are designed to warn planners and
decision makers that under climate change the mean and the
variance are no longer constant parameters.

The performance of HyMoLAP has previously been com-
pared with the GR4J model in the Ouémé at Bétérou catch-
ment by Alamou (2011). This author found that HyMoLAP
performs better than GR4J. However, the fact that the dis-
charge peaks are not well simulated can be attributed to data
errors (Andréassian et al. 2010, Kuczera et al. 2010). In fact,
the improper representation of uncertainty is an intrinsic

drawback of the deterministic hydrological models, since
they do not include components that enable the preservation
of the associated statistical characteristics of the observed
data. Thus, using an appropriate random component of the
inflowing rainfall can tackle the problem. As indicated in
Efstratiadis et al. (2014), the nonlinearity of the resulting
model induced by the deterministic model allows for a
more faithful representation of the catchment behaviour and
provides a better basis to exploit the available information,
while the stochastic output is an advantage over the single
output of the deterministic approach. This view is confirmed
by the result given in Equation (14).

Under changing climate conditions, the river basin is a time-
varying catchment and this is one of the reasons to understand

Figure 8. Approximate distributions P(u,t) with orthogonal polynomials associated with Student’s t distribution up to order k = 4 of the standardized daily discharge
u for the Bonou catchment, for the period 1961–2010.
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the triple relationship between the input, the SDE that describes
the river basin and the output. The approach using the FPE
allows one to model the time evolution of the probability dis-
tribution in a system under uncertainty. At present, water
resources planners in river basins are facing increased uncer-
tainty in evaluating the hydrological conditions of the basins
under climate change. The derived probability distributions of
the model output show how the probability distribution changes
over time and show more detail than do time series. The results
of the time-dependent probability distributions presented in this
study are mostly valid for the rainy season, as non-rainy days are
omitted in the data series to fulfil the noise component
assumptions.

In some systems, it may happen that these time-dependent
probability distributions tend to a limiting stationary probability
distribution when time evolves (Fig. 6). Therefore, in the steady
state, the climate does not affect the probability distribution of
the discharge. A comparison of the approximate solutions of the
FPE revealed that the distribution of the standardized daily
discharge with the first-order Hermite polynomials and the
orthogonal polynomials associated with Student’s t distribution
for the first three orders are close to Gaussian distributions. This
shows the Gaussian character of the variable under study. The
fact that the data points in the Q–Q plot for the standardized
daily discharge tend to fall on the line indicates that the inves-
tigated time-dependent probability distributions are good mod-
els for the discharge data. By looking at the expression of the
derived probability current, one can see that it is the sum of the
convection current and the diffusion current. The modifications
brought by the convection term to P(u, t) are contained in the

successive terms of Hermite polynomials and orthogonal poly-
nomials associated with Student’s t distribution. This convection
term progressively changes the shape of the probability distribu-
tion of the standardized daily discharge, P(u, t).

5 Conclusion

The main contribution of this paper was to develop a rainfall–
runoff modelling approach that aims to capture multiple
sources and types of uncertainty in a single framework. The
achievement of this analysis stemmed from the combination
of a two-step modelling approach: (1) a deterministic model-
ling of the system dynamics by a hydrological model based on
the least action principle (HyMoLAP); and (2) the stochastic
formulation of HyMoLAP in terms of a stochastic differential
equation (SDE). HyMoLAP is designed to minimize uncer-
tainties related to the rainfall–runoff transformation process
and scaling law, and thus is characterized by a limited num-
ber of parameters (λ, μ) capable of physical interpretation;
while its stochastic formulation helps to make use of the
large body of Ito stochastic differential equation theory and
the associated FPE theory, now available for time-varying
probability distribution derivation and uncertainty analysis.

Using data from Ouémé River basin (Benin), the proper-
ties of the random component of the inflowing precipitation
have been investigated. This paper has shown that the white
noise process and the associated Brownian motion can be an
acceptable approximation to the random component of rain-
fall over the Ouémé River basin. The main advantage of the
SDE approach is that it provides a physically transparent and

Figure 9. Q–Q plot for standardized daily discharge for the Bonou catchment, for the period 1961–2010.
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mathematically tractable description of the stochastic
dynamics, indicating how uncertainty in input precipitation
and environmental parameters (potential evapotranspiration,
temperature) affects the uncertainty in model output.
Although the use of the SDE and the associated FPE as
proposed in this paper can become more complex, the poten-
tial benefits in the areas of decision making, data collection
and value of information are of promising importance.
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Appendix A Derivation of the fundamental solution
of the associate FPE

Let us define the Fourier transform with respect to Q for the funda-
mental solution:

Pð�; tÞ ¼
ð1
�1

PðQ; tÞei�QdQ (A1)

Since Pð�; t ¼ 0Þ ¼ ei�Q0 , then by applying the Fourier transform, the
FPE becomes:

@P
@t

Pð�; tÞ þ γ�
@Pð�; tÞ

@�
¼ �Δ�2Pð�; tÞ (A2)

One can show that the solution of Equation (25) is of the form:

Pð�; tÞ ¼ Φ �e�γt½ � exp �G
γ

�2

2

	 

(A3)

where Φ is an arbitrary function chosen such that the initial solution
Pð�; t ¼ 0Þ ¼ ei�Q0 is verified.

Φ �ð Þ ¼ ei�Q0 exp �G
γ

�2

2

	 

(A4)

Thus, Equation (A3) yields:

Pð�; tÞ ¼ exp i�e�γtQ0ð Þ exp �G
γ

�2

2
1� e�2γt
� �	 


(A5)

Applying the inverse Fourier transform to Equation (A5), the funda-
mental solution of the FPE is:

PðQ; tÞ ¼ 1ffiffiffiffiffi
2π

p
ffiffiffiffi
γ

G

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�2γt
p exp � γ

2G
ðQ� Q0e�γtÞ2
ð1� e�2γtÞ

" #
(A6)

Appendix B Derivation of the orthogonal
polynomial associated with Student’s t distribution

To obtain the associated orthogonal polynomials, let us recall that
Student’s distribution is part of the solution of Pearson differential
equations. And it is well known that Pearson’s distribution leads to
orthogonal polynomial systems when taking derivatives:

Υ0 Qð Þ
Υ Qð Þ ¼ b0 þ b1Q

c0 þ c1Qþ c2Q2
¼ b0 þ b1Q

R Qð Þ (A7)

where b0; b1; c0; c1; c2are real constants and R Qð Þ = c0 þ c1Qþ c2Q2;
Υ0 Qð Þ is a polynomial of degree 1.

All orthogonal polynomials can be obtained by repeatedly applying
the differential operator as follows (Xiu and Karniadakis 2002):

φkðQÞ ¼
1

ωðQÞ
dk

dQk
ωðQÞRkðQÞ� �

(A8)

Equation (A8) is known as the generalized Rodriguez formula. These
authors also showed that the weighting functions, ω(Q), for some ortho-
gonal polynomials are identical to certain probability functions. That is
why, in this approach, we choose Student’s t distribution as our weight-
ing function. From Equation (A8), the well-known Hermite polynomials

are obtained by taking R(Q) = 1. To derive expansion of the Student’s t
distribution, which is part of the Pearson system, let us consider the
polynomial of degree two, R(Q), as follows:

RðQÞ ¼ 1þ Q2

β
(A9)

Thus, using the above expression of R(Q) in the generalized Rodriguez
formula, one derives the first five polynomials:

φ0ðQÞ ¼ 1

φ1ðQÞ ¼
1
β
� 1

β2

	 

Q

φ2ðQÞ ¼ 1� 5
β
þ 6

β2

	 

Q2 � 1þ 3

β
(A10)

φ3ðQÞ ¼ �1þ 12
β
� 47

β2
þ 60

β3

	 

Q3 þ 3� 24

β
þ 45

β2

	 

Q

φ4ðQÞ ¼ 1� 29
β
þ 284

β2
� 1135

β3
þ 1365

β4

	 

Q4

þ �9þ 197
β

� 995

β2
þ 1575

β3

	 

Q2 þ 3� 36

β
þ 105

β2

It remains now to determine the constants ak in Equation (31). This
determination is just like that of the constants in a Fourier series and
they are given by:

ak ¼ 1
k!

ð1
�1

φkðQÞPðQ; tÞdQ ¼ 1
k!
E φkðQÞ
� �

(A11)

Using the standardized variables:

u ¼ Q� E½Q�
σQ

where σQ is the standard deviation of Q, E[u] =0, E = 1 and E[uk] = χk,
one obtains the following coefficients:

a0 ¼ 1

a1 ¼ 0

a2 ¼ 3

β2
� 1
β

(A12)

a3 ¼ 1
6

�1þ 12
β
� 47

β2
þ 60

β3

	 

χ3

a4 ¼ 1
24

1� 29
β
þ 289

β2
� 1135

β3
þ 1365

β4

	 

χ4 � 6þ 161

β
� 890

β2
þ 1575

β3

� �

where χk is the moment of order k of the standardized variables u.
Therefore, the orthogonal polynomials associated with Student’s t dis-
tribution are given by:

Pðu; tÞ ¼
Γ βþ1

2

� �
ffiffiffiffiffiffi
βπ

p
Γ β

2

� � 1þ u2

β

	 
�βþ1
2

1þ 3

β2
� 1
β

	 

ϕ2ðuÞ

�

þ χ3
6

�1þ 12
β
� 47

β2
þ 60

β3

	 

ϕ3ðuÞ þ � � �� (A13)
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