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Forest cover change (FCC) varies globally and is thus considered as one of the drivers of climate change.
The present study identified the pattern of the FCC for the years 2010 and 2020 using vegetation index
and Markov chain techniques. The Markov chain (MC) was utilized to predict the forest cover map for
the year 2030. The vegetation index of Landsat 7 Enhanced thematic mapper plus (ETM+) and Landsat
8 Operational land images (OLI) were employed to assess the forest cover loss for the years 2010 and
2020. The validation result shows that the accuracy of the predicted forest cover map is more than 75
percent (%). The prediction result shows that if the current human activities continue such as deforesta-
tion, the forest cover will continue to be endangered and thus leading to a decrease in dense forest, plan-
tation, and sparse vegetation by 20.9%, 16.1%, and 20% respectively. Hence, there is an urgent need to
integrate bottom-up and participatory approaches between agriculture activities and forestry for socioe-
conomic development. This study will ensure sustainable forest management by assisting society, gov-
ernment and stakeholders.
� 2021 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Forest cover is one of the most important interactions between
human and global environmental systems (Bonan, 2008). Tropical
forest contributes 5 to 15 percent of anthropogenic carbon emis-
sions to the atmosphere at the global, regional, and local scales
(d’Annunzioin et al., 2015). Recent reports indicate that forest
cover change (FCC) affects the earth’s surface and serves as the
second-largest source of atmospheric emission (Achard et al.,
2002). In addition, deforestation and degradation processes con-
tribute immensely to forest cover loss (Herold et al., 2011a;
UNFCCC, 2014). Nevertheless, ninety percent of FCC in sub-
Saharan Africa is altered due to increase in human population,
expansion of agricultural activities, and consistent change of land
use especially in Nigeria (Oyerinde et al., 2015; FAO, 1999;
Ebenezer, 2015).
In Nigeria, forests cover approximately covered 35% of the
country’s landmass (Nweze, 2002; FAO, 2010). The spectral and
time-series data provided by satellite images have opened great
opportunities in assessing and monitoring FCC (Hirschmugl et al.,
2017). Recently, the Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) images, together with Landsat 8 Operational Land Images
(OLI) are becoming the driving force of mapping and monitoring
FCC due to its availability and accessibility (Hansen et al., 2014).
Monitoring and choosing a suitable spectral vegetation index can
help to understand the dynamics of forest cover (Pereira et al.,
1999). For instance, FCC has been widely monitored using vegeta-
tion indices at higher accuracy (Zhu and Liu, 2015).

One of the driving mechanisms of modeling FCC is to analyze
the past, present, and simulate possible future changes (Wu
et al., 2013). However, remote sensing techniques (RST) with Geo-
graphic information system (GIS) are recognized as an indispens-
able tool in storing, displaying, and analyzing the past, present,
and possible future changes through various methods such as Cel-
lular automata models (Clarke et al., 1997), Statistical analysis
(Ansari, 2016), Markov chain (Wu, 2006), and Artificial neural net-
work (Subedi and Thapa, 2013). Integration of the Cellular auto-
mata (CA) and Markov chain (MC) are becoming widely used and
acceptable for mapping FCC due to their efficiency and high
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flexibility (Ansari, 2016). Adedeji (2001) implemented the CA-
Markov to model changes in forest cover in the Onigambari forest
reserve. However, the study was limited in assessing the FCC using
a spectral vegetation index. Besides, few studies have been applied
to integrate spectral vegetation indices and the Markov chain
model in simulating forest cover especially in developing countries
such as Nigeria. The approach herein implemented the spectral
vegetation indices of Landsat 7 ETM + and Landsat 8 OLI images
with an MC model to simulate forest cover in Onigambari forest
reserve, Ibadan, Oyo State, Nigeria. Hence, the specific objectives
were to (i) assess the forest cover loss for the years 2010 and
2020 using spectral vegetation index (ii) predict the FCC of the
study area from the year 2010 to 2030.
2. Description of the study area

The study focused on Onigambari forest reserve, located at Iba-
dan between Guinea and the derived savanna of Oyo State, South-
west Nigeria. The forest reserve falls between latitude 7�250 and
7�550N and longitude 3�530 and 3�900 E, zones 31 and covering about
14,506.4 ha (Fig. 1). Out of the existing zones, the forest reserve
was made up of Gmelina plantations while the other existing area
comprises both Gmelina Arborea and Tectona grandis.
3. Climate

The climate of the study area is well-defined dry and wet sea-
sons (Adebekun, 1978). The rainfall starts from May to July with
a short dry spell period in August and relative humidity of about
Fig. 1. Stud
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60 to 80 percent which fluctuates during January and February
(Larinde and Olasupo, 2015).
4. Soil and geology

The parent material of the study area is derived from the base-
ment material with intrusions of quartzite, schist, and gneisses
(Jones and Wild, 1975). The soil particle size distribution classifica-
tion ranged from sandy clay loam to sandy loam with the presence
and formation of the argillic horizon and thus classified as Mollic
Cambisols and Abruptic Eutric (FAO/IUSS Working Group, 2010).
5. Study methods

5.1. Data description and sources

The fieldwork started with a reconnaissance visit to the study
area and was followed by primary data collection. During the sur-
vey visit, ground-truthing information was acquired to define the
nature of the forest covers with the aid of a GPS (Global positioning
system) device. Information such as a base map and reports were
acquired through downloading from the USGS (United States Geo-
logical Survey) repository website. In this study, Landsat 7 ETM
+ and 8 OLI satellite data for the years 2010 and 2020 were
acquired and used to assess and simulate the FCC. The downloaded
satellite images were geo-rectified according to 31-North UTM
(Universal Transverse Mercator) coordinate system using path
191 and row 055. Due to the atmospheric error and avoidance of
seasonal variation, the Landsat satellite images were downloaded
during the dry season and thus ensure the image is free of noise
y area.
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and no further image-to-image registration. Afterward, the image
processing and analyses were executed in ENVI 5.1 software. The
result of the image processing and analyses was supported with
the images downloaded from the Google Earth Pro engine. The
essence of supporting Google Earth image is to enable easy identi-
fication of AOI (Area of interest) during image processing and
analyses.
6. Forest cover assessment using spectral vegetation index

In the present study, forest cover loss was assessed using Land-
sat 7 ETM + and 8 OLI satellite images of the years 2010 and 2020.
The satellite images were subjected to image pre-processing in
ENVI environments using DOS (dark object subtraction) method.
The DOS method was implemented to improve the visual interpre-
tation and better visibility of Landsat images during analyses. The
NDVI (Normalized difference vegetation index), and GNDVI (Green
normalized difference vegetation index) were used. The vegetation
indices were assessed as follows:NDVI ¼ ðNIR � REDÞ=ðNIR þ REDÞ,
and GNDVI ¼ ðSWIR2� GREENÞ=ðSWIR2þ GREENÞ (Jiang et al.,
2006). Thereafter, the vegetation spectral index was assessed and
Fig. 2. Workflow of
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computed in raster math’s tool using ArcGIS 10v5 software. The
spectral vegetation index was selected based on their sensitivities
and higher accuracy to forest cover monitoring (Jiang et al., 2006).
7. Land use and land cover classification processing

The collected Landsat 7 and 8 satellite images were enhanced in
ENVI 5.1 Software via (3 by 3) majority filter techniques for better
visibility. Natural color composite (NCC) was generated using suit-
able combinations of bands from the acquired Landsat satellite
images (d’Entremont and Thomason, 1987; Good and Giordano,
2019). Considering the ‘‘Nigeria Land Classification System” and
the goal of this study, Anderson and Hardy’s (1976) classification
scheme II and reconnaissance survey were utilized to identify the
AOI features of the study area. Thereafter, the acquired Landsat
images for the years 2010 and 2020 were classified by a supervised
classification method in ENVI 5.1 environment. The images
obtained from the classified Landsat 7 and 8 were used to identify
the forest cover classes based on the Maximum Likelihood Super-
vised Classification (MLSC) algorithm. The MLSC is applied due to
its detail efficiency and easy classification algorithm (Liu, 2005;
the study area.
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Sun et al., 2013; Biro et al., 2013). The identified forest cover
classes are Plantation; (timber plantations with Tectona Arborea
and Gmelina), Agricultural land; (Arable land, permanent crops,
and pastures), Dense forest; (Indigenous species of trees), Sparse
vegetation; (secondary forest, Shrubs, and/or herbaceous vegeta-
tion), and Bareground; (degraded lands). The classified images
were further imported to iDrisi selva using the Envi-iDrisi format
tool. Afterward, the classified forest cover map of the study area
was subjected to accuracy and validation using the Kappa coeffi-
cient through 100 ground truths field data. These 100 ground truth
field data were chosen through the random sampling method.
However, for the acceptability of the classification accuracy, the
classified forest cover classes are over 75% (Pontius and Millones,
2011; Foody, 2002; Story and Congalton, 1986). The Kappa coeffi-
cient (K) for the forest cover classification accuracy assessment
was shown in Eq. (1):

K ¼
Pr

i¼1xii�
Pr

i¼1 xi� xþ ið Þ
N4 � Pr

i¼1 xi ¼ 1� xþ ið Þ ð1Þ
Fig. 3. GNDVI and NDV
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The K is the kappa coefficient, N is the total number of sites in
the matrix, r is the number of rows in the matrix, xii is the number
in rows i and column i.

8. Simulation pattern analysis

To simulate the FCC of the study area, the Markov-chain model
was used to determine the FCC for the year 2030. The Cellular auto-
mata were used to stimulate the time–space and underlie the
dynamics of changes in the study area (Balogun and Ishola,
2017). The Markov chain and cellular automata were supported
with the classified forest cover maps of the year 2010 and 2020.
Based on the transition probability matrix between the year 2010
and 2020 classified images, the forest cover for the year 2030 was
predicted. The CA-Markov model used in this study was described
according to Subedi and Thapa (2013) in Eqs. (2) and (3).

Sþ1
t ¼ f St ; Nð Þ ð2Þ
I of the study area.
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here, S represents the set of states of the finite cells; t and t + 1 are
the early years and the later year; N is the neighborhood of cells,
and f is the conversion rule of local space.

P11P12 � � � P1n

..

. . .
. ..

.

Pn1Pn2 � � � Pnn

2
664

3
775 ð3Þ

where P stands for the probability matrix in the Markov model, and
Pij is the probability of converting from current state i to state j in
the next period. S is the land use status, and t; t + 1 is the time point
and this was described according to Subedi and Thapa (2013) using
Equation (4). The workflow of the present study was shown in
Fig. 2.

0 < Pij < 1and
Xn

j¼j
Pij ¼ 1; i; j ¼ 1;2;3 � � �n: ð4Þ
Fig. 4. The forest
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9. Results and discussion

9.1. The sensitivity of spectral indices to forest cover

The present study utilized the Landsat 7 ETM + and 8 OLI spec-
tral vegetation index of the year 2010 and 2020 to assess the rate of
forest cover loss. The NDVI and GNDVI of the study area were clas-
sified as (�1) low and (1) high. The result of the NDVI and GNDVI
reveals that the study area demonstrates low forest cover densities
in the year 2020 than in the year 2010 (Fig. 3). However, it was also
observed during the reconnaissance survey that the forest cover of
the present study had experienced consistent changes such as an
expansion of agricultural practices, and degradation of the study
area. Besides, the sensitivity of the spectral vegetation index used
in this study has also provided evidence and easy assessment of
the past and present forest cover of the present study. According
cover change.
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to Aman et al. (1992), the abrupt or gradual change of the past, pre-
sent and possible future changes of forest cover are better assessed
using spectral vegetation index and this is similar to the present
result obtained. Warner et al. (2016) also highlighted that mapping
and monitoring forest cover changes using NDVI and GNDVI are
regarded as one of the most correlated spectral vegetation indices
with higher validation accuracy. Also, the present study correlates
with the study conducted by Oyerinde et al. (2015) that Nigeria’s
forest cover is faced with sudden and gradual deforestation.
10. Forest cover mapping from the year 2010 to 2030

The periodical assessment characteristics and the analyzed Nat-
ural color composite (NCC) were used to specifically classify the
FCC. The MLSC algorithm was applied to the Landsat 7 ETM+ and
8 OLI satellite images for the years 2010 and 2020 focusing on
the plantation, agricultural land, dense forest, sparse vegetation,
and bareground using the Envi 5.1 software. The CA-Markov model
was implemented and subjected to visual image interpretation,
cognition of patterns, and colors which shows great efficiency in
simulating the year 2030 forest cover of the study area (Fig. 4).
Bakx et al. (2019) and Bank (1991) posit that one of the easy and
accurate ways of extracting information from remotely sensed data
is by cognition of patterns and colors. The overall classification
accuracy for the years 2010, 2020, and 2030 of the forest cover
Table 1
Error Matrix of the study area for the year 2010.

Forest cover SV PL DF BG AL

SV 41 4 0 1 5
PL 0 54 8 3 0
DF 4 0 54 0 6
BG 0 4 3 84 0
AL 10 0 18 5 43
Total 55 62 83 93 54
Overall accuracy = 80.00% Kappa coefficient = 75.00%

SV: Sparse vegetation; PL: Plantation; DF: Dense forest; BG: Bareground; AL: Agricultur

Table 3
Error Matrix of the study area for the year 2030.

Forest cover SV PL DF BG AL

SV 30 1 2 1 1
PL 2 51 0 0 0
DF 1 0 70 2 0
BG 5 2 4 76 0
AL 5 10 0 0 89
Total 43 64 76 79 90
Overall accuracy = 89.77% Kappa coefficient = 85.89%

SV: Sparse vegetation; PL: Plantation; DF: Dense forest; BG: Bareground; AL: Agricultur

Table 2
Error Matrix of the study area for the year 2020.

Forest cover SV PL DF BG AL

SV 51 4 2 1 0
PL 2 41 4 0 3
DF 2 10 67 2 0
BG 10 0 0 80 4
AL 0 20 4 0 60
Total 65 75 77 83 67
Overall accuracy = 81.47% Kappa coefficient = 76.25%.

SV: Sparse vegetation; PL: Plantation; DF: Dense forest; BG: Bareground; AL: Agricultur
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map was 80.00%, 81.47%, and 89.77%. After the prediction, it was
found out that the Cohen kappa statistics were greater than 0.75
and thus show substantial classification agreement with the pre-
sent study (Tables 1–3). According to Li, (2005) kappa statistics
remains one of the standard procedures of validating the accuracy
of classified Landsat images at different levels. The statistical anal-
ysis of the multi-temporal forest cover revealed that significant
changes have taken place in the study area (Table 4). From the sta-
tistical change analysis, it was observed that the AOI features in the
year 2010 are in the following order: 34.6% (plantation), 27.4%
(sparse vegetation), 24.6% (dense forest), 11.4% (bareground), and
2.0% (agricultural land). However, the significant changes observed
from the year 2020 forest cover classification map revealed that
plantation, sparse vegetation, and dense forest decreased from
34.6% to 25.9%, 27.4% to 21.0%, and 24.6% to 22.5% while agricul-
tural land and bareground increased from 291.7 Ha (Hectares) to
1000.0 Ha and 1654.1 Ha to 3453.3 Ha. Moreover, the increase
observed in the agricultural land and bareground translated to
the reduction or decrease in the dense forest, plantation, and
sparse vegetation in the year 2030. Furthermore, the decrease
observed in the forest cover features (such as a dense forest) in
the year 2030 can be attributed to the persistent increase in human
activities in the study area. Garg et al. (2006) and Adepoju et al.
(2006) noted that a substantial increase in human activities such
as deforestation and expansion of agricultural practices are known
to be one of the major factors contributing to the sudden or gradual
Total Producer Accuracy (%) User Accuracy (%)

51 74.60 80.40
65 87.10 83.10
64 65.10 84.40
91 90.30 92.30
76 79.60 56.60
347

al.

Total Producer Accuracy (%) User Accuracy (%)

35 69.76 85.71
53 79.68 96.22
73 92.10 95.89
87 96.20 87.35
104 98.88 85.57
352

al.

Total Producer Accuracy (%) User Accuracy (%)

58 78.50 87.93
50 54.70 82.00
81 87.01 82.71
94 85 85.10
84 71.42 71.4
367

al.



Table 4
Forest cover classification of the study area.

LULC 2010 2020 2030

Ha % Ha % Ha %

Sparse vegetation 3972.2 27.4 3042.8 21 2901.6 20
Plantation 5026.2 34.6 3752.6 25.9 2338.3 16.1
Dense forest 3562.2 24.6 3257.7 22.5 3034.9 20.9
Bareground 1654.1 11.4 3453.3 23.8 4914.3 33.9
Agricultural Land 291.7 2 1000 6.9 1317.3 9.1
Total 14506.4 100 14506.4 100 14506.4 100
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loss of forest cover. Moreover, the rate of deforestation and the
substantial loss of forest cover in the study area could also support
the gradual or sudden increase of climate change. Abubakar et al.
(2014); and Lepers et al. (2005) stated that deforestation is one
of the main driving forces predicted to forest cover change in
developing countries such as Nigeria. The present study also inter-
dem the view of Akinsoji (2013) that tropical forests are faced with
persistent encroachment of human activities such as deforestation
and expansion of agricultural activities.

11. Conclusion

This study intended to evaluate the significance of FCC in
Onigambari forest reserve Ibadan, Nigeria using CA-Markov and
vegetation index. Prediction of FCC shows that such kind of predic-
tion can help to manage the gradual or sudden change of forest
cover caused by human activities such as deforestation and expan-
sion of agricultural practices. The use of spectral vegetation index
reveals that NDVI and GNDVI serve as indispensable techniques
used in assessing and monitoring forest cover loss with higher
accuracy and less time. Based on the forest cover analysis, it was
discovered that the forest cover pattern varied significantly from
the year 2010 to 2030. The findings of the FCC reveals that the
dense forest, plantation, and sparse vegetation will decrease by
20.9%, 16.1%, and 20%, while bareground and agricultural land will
increase by 33.9%, and 9.1% respectively. This indicates that the
Onigambari forest reserve experienced deforestation and expan-
sion of agricultural activities thereby contributing to climate
change. Hence, there is an urgent need to integrate bottom-up
and participatory approaches between agriculture activities and
forestry for socioeconomic development. The present study
demonstrated the efficiency of GIS and RST in the study of FCC
using the vegetation index and Markov chain model.
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