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ABSTRACT 

In the economically-important but data-poor trans-boundary White Volta Basin shared between 

Ghana and Burkina Faso, information on the amount and timing of sediment loads is very 

limited. Monitoring of sediments is almost always ignored when designing Water Resources 

Information Systems (WRIS) in the Volta Basin, resulting in lost opportunities to expand our 

understanding of the hydrological processes (including sediment transport processes, erosion and 

sedimentation) at the river-basin scale. This paper presents the results of a study using surrogate 

techniques for estimating long-term sediment loads as a function of turbidity and stream flow 

data at Nawuni in the White Volta Basin. A comparison is made between the suspended 

sediment concentration (SSC) derived from a simple linear regression model and multiple linear 

regression model. The simple-linear regression model relating turbidity to SSC was found to be 

the most reliable method of estimating the SSC at Nawuni in the White Volta Basin. Due to the 

cost associated with collecting SSC and inadequate funding by the two riparian countries, this 

method presents a more reliable and accurate means of estimating long-term suspended sediment 

concentrations and loads than the traditional sediment rating curve relating SSC to streamflow in 

the White Volta Basin. 

Keywords: suspended sediment concentrations, turbidity, streamflow, White Volta Basin, linear 

regression model. 
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1. INRODUCTION 

The Volta River Basin is one of the 80 internationally shared river basins located in West Africa 

and shared by six riparian countries which includes Burkina Faso (43%) and Ghana (42%) with 

Togo, Cote d´Ivoire, Mali and Benin sharing the remaining 15%. Ghana occupies the 

downstream portions of the basin where the Akosombo Dam forms one of the largest man-made 

lakes in the world. The main river channel is approximately 1600km in length and drains 

approximately 400,000 km2 of the semi-arid and sub-humid savanna zones of West Africa. 

Andah (2005) identified water quality degradation as an important issue in the Volta Basin and 

pointed out that sediment transport across the riparian countries is the major source of 

degradation of shared water resources. Schmengler (2011) also compared the initial and actual 

reservoir bed morphology in the semi-arid regions of Burkina Faso and found that the reservoirs 

have lost approximately 10-15 % of their original storage capacity and more than 60 % of their 

inactive storage volume in the last 15 to 20 years. During that period, a sedimentation layer of 

0.3 m to 0.5 m thickness has accumulated on the reservoir beds. Information on the amount and 

timing of sediment transport is therefore very important to those directly or indirectly responsible 

for developing and managing the water and land resources in the basin. Such information will 

generally be used to judge the health of the water resources in the basin and the success or failure 

of activities designed to mitigate adverse impacts of sediment on the river (Nolan et al., 2005). 

Information on sediment loads are however very limited in the Volta Basin, primarily due to 

limited logistical support for data collection (Akrasi, 2005). In contrast, the Ghana Water 

Company Ltd has been collecting turbidity data on the rivers in which they abstract water for 

treatment for well over two decades. Accurate estimation of sediment load must however be 

based on long-term time series of suspended sediment discharge data. Whilst river discharge is 

generally measured frequently in the Volta Basin and can be considered as a continuous record, 

measurements of suspended sediment concentration are less frequent. This lack of long-term 

time series of suspended sediment concentration thus results in substantial errors in estimating 

the total sediment load in the basin. 

Early sediment studies undertaken in the Volta Basin were mainly of short duration and were 

associated with specific projects (Akrasi, 2005). Akrasi, (2005) therefore developed a simple 

predictive tool for estimating suspended sediment discharge from river discharge using the 

available limited sediment data. The data comprises sampling of suspended sediment 

concentrations in six sub-catchments of the Volta Basin. Additionally, as part of the 

prefeasibility studies of the White Volta Development Scheme for the Volta River Authority, 

Coyne etBellier, (1993) developed sediment rating curves for the White Volta basin based on 
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limited sediment measurements and obtained an average sediment transport of 61.7 kg/s which is 

equivalent to 1.95x106 metric tonnes/yr. 

The ideal method of estimating suspended sediment yield of a river is to measure suspended 

sediment concentration and water discharge continuously and use the product function as an 

estimate of suspended sediment discharge (Lane et al., 1997). Obtaining continuous records of 

suspended sediment concentration however is practically impossible owing to cost, number of 

samples and sampling frequency among others (Edwards and Glysson, 1999). Sediment rating 

curves therefore provide an alternative to these issues. A number of quantifiable variables can be 

used to compute suspended sediment concentration (SSC) in streams. These include turbidity; 

streamflow, stream stage, precipitation, seasonality, sediment sources, and land use (Rasmussen 

et al., 2009). 

The use of sediment-discharge rating curve to estimate sediment yield is however problematic 

because suspended sediment concentrations are known to be variable for a given discharge since 

storm hydrographs are usually, but not always, characterized by higher suspended sediment 

concentrations during the rising limb than the falling limb. The traditional sediment rating curves 

are usually based on the linear relationship between the logarithms of sediment concentration 

and the logarithms of river discharge. This procedure assumes that the relationship between the 

sediment discharge and the river discharge is representative throughout the period of interest. 

Problems can arise, such as bias, if the rating is extrapolated beyond the range of the data used, 

as may be required if there is no measured concentrations at extreme events. 

Furthermore, the timing between storm events also influences availability of fine-grained 

sediment from the watershed, such that an initial storm following a relatively dry condition 

usually has a greater suspended sediment concentration than subsequent flows of similar 

magnitude (Edwards and Glysson, 1999). Consequently, statistical considerations show that the 

sediment load of a river is likely to be underestimated when concentrations are estimated from 

water discharge using least squares regression of log-transformed variables (Asselman, 2000). 

Also regardless of how the samples are collected, there remain questions of when the 

measurements of suspended sediment concentration should be made, how they should be used to 

estimate the total yield, how close can samples be spaced in time and still be meaningful among 

others (Edwards and Glysson, 1999). 

The various methods developed to measure suspended sediment yield includes; the measurement 

of suspended sediment discharge and water discharge (Khanchoul et al., 2010), measuring total 

eroded soil and deposited sediments in small catchments (Verstraeten and Poesen, 2001), and 

measuring sediment volumes in ponds, lakes or reservoirs (Nichols, 2006). For the measurement 

of sediment volumes in ponds, lakes and reservoirs, radiometric techniques using 210Pb or 
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137Cs as tracer elements can be employed to reconstruct sediment budgets over a period of time 

(Schmengler, 2011). 

Turbidity is an expression of the optical properties of a sample that causes light rays to be 

scattered and absorbed rather than transmitted in straight lines through the sample (Rasmussen et 

al., 2009). Turbid water results from the presence of suspended and dissolved matter such as 

clay, silt, finely divided organic matter, plankton, other microscopic organisms, organic acids, 

and dyes (Rasmussen et al., 2009). Lewis (1996) showed that simple linear regression of 

turbidity and sediment samples provided a more accurate daily prediction of sediment loads than 

discharge-derived methods. Similarly, studies by USGS on the Kansas River produced sediment-

turbidity relationships that explained 99% of the model variance (Christensen et al. 2002). 

Rasmussen et al., (2009) also use continuously monitored stream flow data to analyze turbidity 

and suspended sediment concentration. They used site specific regression analysis to develop a 

linear regression model to compute specific instantaneous values of suspended sediment 

concentration based on turbidity readings (Perkins, 2013).  

The use of surrogate techniques to continuously monitor turbidity provides an accurate method 

of estimating sediment fluctuations without the cost associated with the collection and analysis 

of intensive water sampling. Turbidity measurements are a routine requirement associated with 

water treatment by the Ghana Water Company Ltd. This paper therefore presents the 

development of regression relationships between turbidity, streamflow and suspended sediment 

concentration as a cost effective method of estimating long-term time series of suspended 

sediment loads data in the White Volta Basin. 

2. MATERIALS AND METHODS 

2.1 Study Area 

The White Volta Basin is one of the sub-basins of the Volta Basin and is located between 

latitudes 8°50' N to 14°05' N and longitudes 0°06' E to 2°50' W.  The basin is bounded to the east 

by the Oti River Basin, to the west by the Black Volta River Basin and to the south by the 

Main/Lower Volta sub-basins. Burkina Faso and Ghana shares its northern and southern 

boundaries respectively. Figure 2.1 presents the map of the Volta Basin showing Volta White 

Basin and the six riparian countries. 

The basin covers approximately 100,100 km2 at Nawuni and represents approximately 25% of 

the total Volta Basin. The drainage area in the Ghana part of the basin is approximately 50,000 

km2 and constitutes 44% of the total area of the White Volta Basin with the remaining part 

located in Burkina Faso. The White Volta River and its main tributaries, the Red Volta and the 
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Kulpawn/Sissili rivers, take their sources in the central and north-eastern portions of Burkina 

Faso (WRC, 2008). 

Located in the Guinea Savannah belt, the White Volta Basin’s ecology is typically Sahelian (hot 

and dry), with the vegetation consisting mostly of semi-arid grassland interspersed with short 

trees. Bush burning which is typically not controlled and causes enormous damage on the 

vegetation is rampant in the basin. It is usually used to induce rapid re-growth of rangeland, clear 

land for agricultural purposes, hunting, and creating fire belts at the onset of the dry season. 

The basin has a uni-modal wet season which starts from April and peaks in August (Kwabena 

Kankam-Yeboah et al, 2013). The average annual rainfall of the basin is about 900 mm/annum. 

The basin is characterized by uniformly high temperatures throughout the year with a mean 

annual temperature of about 28 °C. The months of March and April are the hottest periods with a 

mean temperature of about 32 °C. August is the coolest month with a mean temperature of about 

26°C. Generally, potential evapotranspiration in the Volta Basin is highest in the dry season 

where the availability of water is limited. However, actual evapotranspiration is lowest in the dry 

season and estimated at 2 mm/day and highest in the rainy season at 10 mm/day (Martin, 2005). 

The predominant soil texture of the study area according to FAO/UNESCO Soil Classification 

System is sandy loam with 35.93% of the total catchment area with the least dominant soil being 

sand with just 0.01% of catchment area. Based on the reclassifications of the GlobCover 2009 

(Arino et al., 2012) land use mapusing SWAT land use codes, Agricultural Land-Row Crops was 

found to be the predominant land use/land cover category with 37.03% of the total catchment 

area and Forest Evergreen with 0.01% of the total catchment area being the least land use/land 

cover category. 
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Figure 2.1 : Map showing the White Volta Basin, Volta Basin and  

the six riparian countries. 

2.2 Data Overview 

Daily turbidity data spanning the period 1993-2013 was collected from the Ghana Water 

Company Limited, GWCL. GWCL abstracts raw water for treatment from the White Volta River 

at Nawuni. As part of the standardization process, the GWCL has been monitoring the raw water 

quality at their abstraction point in Nawuni since 1993. The GWCL has collated daily and 

monthly water quality parameters such as pH, color, alkalinity and turbidity from 1993 to date. 
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The quality of the raw water is monitored at least three times daily and at most twelve times 

daily. 

Wagner et al., (2006) recommended that the estimation of suspended sediment concentration 

from turbidity measurements should be done by first comparing turbidity measured from a fixed-

location to that of cross-section in-stream turbidity measurements. In this study, the GWCL 

abstraction point was considered as the fixed-location. The cross-section in-stream measurement 

were taken 50m upstream. The cross-section was divided into five equal widths and concomitant 

turbidity and water samples were taken using a Quanta Hydro lab Sonde and depth-integrated 

samplers respectively. The equal-width increment method of suspended sediment sampling 

(Gray et al., 2008) was employed using a DH-48 and DH-76 isokinetic depth-integrating sampler 

during low and high flows respectively. The cross-section turbidity measurements were also 

collected at three different depths (0.2, 0.6, 0.8 of total depth) as recommended by Anderson 

(2005). These measurements were then averaged to obtain mean daily in-stream turbidity and 

used in evaluating the representativeness of the data collected from fixed-location using a one-

on-one plot. 

The suspended sediment samples were collected from September 2012 to January 2014. As 

suspended sediment concentration in streams can change appreciably over seasonal timescales 

and during high flow events (Lawler et al., 2006) a gauge reader was engaged to take dip 

samples daily. Daily surface dip samples were taken concurrently alongside depth-integrated 

samples during monthly field visits. The surface dip samples were correlated with samples taken 

with the depth-integrated sampler to obtain a correction factor which was used to adjust the 

surface dip samples taken by the gauge readers (Akrasi, 2005).  

The statistical parameters of the river discharge and SSC data are presented in Table 2-1. 

Table 2-1: Statistical parameters of the river discharge, turbidity and SSC data at Nawuni 

Variable Mean Sx Cv Csx Min Max 
Max/Me

an 

Discharge 

(m3/s) 

429.2

6 

414.8

0 
0.97 1.66 40.8 1319.2 3.07 

Turbidity 

(NTU) 

322.6

6 

219.1

8 
0.68 0.97 93.0 1082.0 3.35 

SSC (mg/l) 
375.8

8 

405.9

9 
1.08 1.50 47.8 1908.0 5.08 

                             Sx: standard deviation; Cv: coefficient of variation;Csx: coefficient of skewness. 
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From Table 2-1, it can be seen that the river discharge, turbidity and SSC data show a 

significantly low skewed distribution and this is confirmed by the low coefficient of variation 

and the ratio between the maximum and mean. These statistics potentially minimizes the 

variation of the model estimated SSC from the measured. Available suspended sediment 

concentration data for Nawuni were also obtained from the Water Research Institute, WRI of the 

Council for Scientific and Industrial Research, CSIR. The data which was part of measurements 

of suspended sediment concentrations of water samples collected from six rivers (Amisigo & 

Akrasi 1996) covers the period July 1994-March 1995. The surface dip sampling method was 

used in collecting the data at a sampling interval of 3 days on average. To correct for the 

underestimation of surface dip sampling, a correction factor of 25% was used to provide mean 

concentration values for the cross-section area (Akrasi, 2005). The 1994/95 suspended sediment 

concentration data was used to temporally validate the derived models. 

2.3 Regression Analysis 

The key elements for computing suspended sediment concentration (SSC) time-series data from 

periodic instantaneous SSC, turbidity, and streamflow data are the type and goodness-of-fit of 

the regression model used in the computation.   

A simple linear regression (SLR) model relating turbidity to suspended-sediment concentration 

(SSC) is usually considered sufficient for reliable computations of SSC time-series. However, 

based on the criteria for determining the sufficiency of a SLR model, a multiple regression (MR) 

model relating both turbidity and streamflow to SSC could be employed to significantly improve 

the SLR model that is based on turbidity alone (Rasmussen et al., 2009). 

In this study, the time-series (i.e. turbidity, stream and SSC) collected during the period 

September 2012 to December 2013 were used as the calibration data set. All the data sets were 

transformed using the base-10 logarithmic transformation. Transformation of the data sets prior 

to regression analysis makes the residuals more symmetric, linear, and homoscedastic 

(Rasmussen et al., 2009). 

A SLR and MR models relating turbidity to SSC and turbidity and streamflow to SSC 

respectively were then developed and validated for the White Volta Basin. The models were 

validated with the 1994-1995 data sets. Diagnostic statistics were used to evaluate the 

performance of the derived models during the validation period. The appropriate model equation 

was selected and subsequently used to estimate long-term suspended sediment concentration and 

loads for the White Volta Basin. 

2.3.1 Relationship between Turbidity, Streamflow and Suspended Sediment Concentration 
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The relationship between the river discharge, suspended sediment concentration and turbidity at 

Nawuni in the White Volta was evaluated by plotting the time series of the 2013 calendar year. 

The plot was used to evaluate the variability of the turbidity and streamflow and their 

relationship with SSC in the White Volta Basin. 

2.3.2 Evaluation of Fixed-Location and Cross-Section Turbidity 

The development of the regression analysis was preceded by an evaluation of the relationship 

between the fixed-location turbidity as measured by GWCL and the in-stream turbidity as 

measured with the Quanta HydrolabSonde. Wagner et al., (2006) recommends that comparisons 

of fixed-location and cross-section in-stream turbidity measurements should be made part of the 

turbidity record analysis (Rasmussen et al., 2009). The relationship between the fixed-location 

turbidity and the in-stream turbidity was evaluated to check the representativeness of turbidity 

time-series as measured by GWCL. A plot of turbidity at the fixed-location and the in-stream 

turbidity was made and a one-on-one plot, i.e. y = x line was then drawn through the points on 

the plot. 

2.3.3 Identification of Outliers 

The development of the SSC regression model was also preceded by an evaluation of a 

scatterplot of the turbidity and SSC data. The scatter plot was used to identify possible outliers in 

the data set. The data was further examined by analyzing the residuals. Residuals that exceeded 

three standard deviations from the predicted line were considered insufficient for the regression 

analysis and therefore eliminated from the data set. . An extreme outlier is one for which the 

standardized residual is greater than three (3). The standardized residual is given by (Helsel and 

Hirsch, 2002): 
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where xi and xm are the ith and mean of the explanatory variable and n is the number of samples. 

ands is the standard error of the regression and is given by: 
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2.3.4 Correlation Analysis 

Correlation coefficients measure the strength of association between two variables (Helsel and 

Hirsch, 2002). The most commonly used measure of correlation is Pearson’s r which measures 

the linear association between two variables (Helsel and Hirsch, 2002) and is given by: 
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where n is the number of data points, xi and yi are the ith observation for the variables, xm and ym 

are the means and Sx and Sy are the standard deviation of the variables. If the data lie exactly 

along a straight line with positive slope, then r = 1 (Helsel and Hirsch, 2002). In this study, the 

relationship between explanatory and response variables was evaluated by computing the 

Pearson’s correlation coefficient and plotting the time series. The scatter plots and correlation 

coefficient helps to identify which variables are statistically related. Helsel and Hirsch (2002) 

suggest that before applying multiple linear regressions to any variables, it is important to 

understand the causes and consequences of multicollinearity. Multicollinearity is the condition 

where at least one explanatory variable is closely related to one or more other explanatory 

variables. In this study, variance inflation factor (VIF) was computed and used for measuring 

multicollinearity. The VIF is given by (Helsel and Hirsch (2002): 

 2
1

1

j

j
R

VIF




 Eq.5 

where Rj
2 is the coefficient of determination (R2) from a regression of the jth explanatory 

variable on all of the other explanatory variables. In this study, VIF for turbidity and streamflow 

was computed by using the coefficient of determination (R2) from the regression of turbidity on 

stream flow. 

2.3.5 Simple Linear Regression, SLR Analysis 

After the correlation analysis, the SLR was used to establish a relationship between turbidity and 

SSC as a power function. 

caTSSC   Eq.6 
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SSC is the suspended sediment concentration (mg/l), and T is the turbidity (NTU), a and c are 

transport curve parameters (Gray and Simoes, 2008). Eq.6 was formulated as a linear model in 

base-10 logarithmic space to find a solution for transport-curve parameters. 

The t-statistics, the p-value and the 90% confidence intervals were used to evaluate the 

performance of the SLR model. For a statistically significant linear relationship between 

turbidity and SSC, the absolute value of the t-statistics should be greater than 2 (Helsel and 

Hirsch (2002)). 

The diagnostics statistics used to evaluate the SLR were the coefficient of determination adjusted 

(R2
a) and the model standard percentage error (MSPE). The R2

a for the turbidity indicates the 

fraction of variability in the SSC that is explained by the model (Rasmussen et al., 2009). RMSE 

expressed as a percentage is referred to as the model standard percentage error (MSPE) 

(Rasmussen et al., 2009). For RMSE expressed in log-10 units, the MSPE interval is given by: 

Upper   100110  RMSEMSPE  and 

Lower   100101  RMSEMSPE Eq.7 

The MSPE and the 90% prediction intervals indicate the range in uncertainty associated with 

each regression-computed SSC value. SLR analysis is usually preferred where turbidity is the 

variable most strongly correlated with SSC or where MSPE is less than 20 percent (Rasmussen et 

al., 2009). 

The SLR was further evaluated by examining the model residuals. Ordinary residuals are defined 

as the difference between the observed values and the model estimates (Moriasi et al., 2007). The 

residual error (ei) for the computed SSC values should be random and, in theory, should be 

normally distributed with a mean of zero and a constant variance (Helsel and Hirsch, 2002). The 

residuals from a regression of SSC on the turbidity indicate how the model-estimated SSC varies 

from the observed SSC. A residual value of 0.00 indicates that the model-estimated SSC is equal 

to the observed value. A positive residual indicates that the observed value was larger than the 

estimated value, and a negative residual indicates that the observed value was less than the 

estimated value (Rasmussen et al., 2009). The variance of the residuals was evaluated by plotting 

them against the model estimated SSC. 

2.3.6 Nonlinear Multiple Regression, NMR Analysis 

Generally, it is recommended that an additional explanatory variable should be added to a SLR 

model in a multivariate regression analysis if the p-value of the partial F-statistic is less than 
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0.025 (Rasmussen et al., 2009). A nonlinear multiple regression model was used to fit a 3rd order 

polynomial function of the form: 

n

wn QbTcaSSC logloglog 
       Eq.8 

where SSC is the suspended sediment concentration (mg/l), Qn
w is streamflow (m3/s), T is the 

turbidity (NTU), and a, bn, and c are transport curve parameters (Gray and Simoes, 2008). After 

obtaining a solution, Eq. , was retransformed into a power function of the form: 

cb

w TaQSSC 
 Eq.9 

The NMR was evaluated using the coefficient of determination (R2), sum of square errors 

(SSE).. The SSE estimates the total within-group noise using departures from the sample group 

mean. Error in this context refers not to a mistake, but to the inherent variability within a group 

(Helsel and Hirsch, 2002). The smaller the SSE, the better the model fits the sample with zero as 

the optimal best fit. 

2.3.7 Bias Correction Factor, BCF 

The derived regression equations were retransformed from the logarithmic space to linear space. 

This approach usually introduces a bias in the computed SSC (Rasmussen et al., 2009). The bias 

usually arises because regression estimates are the mean of the SSC for a given explanatory 

variable in logarithmic space, and retransformation of these estimates is not equal to the mean of 

the SSC for a given explanatory variable in linear space.  

In this study, the nonparametric bias correction factor proposed by Duan (1983) was used to 

correct the bias due to the retransformation. The BCF is given by: 

n
BCF

n

i

ei
 1

10

Eq.10 

Where n is the number of samples, and ei is the residual or the difference between each measured 

and estimated SSC, in log units. 

2.4 Model Validation 

Model validation is the process of estimating the suspended sediment concentration using the 

developed models for different time spans. The purpose of validating the model in this study was 
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to establish whether the model has the ability to predict the measured suspended sediment 

concentrations at Nawuni for a different time period. 

The derived models were validated by comparing the model estimated SSC with measured daily 

suspended sediment concentration sampled from July 1994 to March 1995. The performances of 

the derived models were then evaluated using the coefficient of determination (R2), mean 

absolute error (MAE), percent bias (PBIAS) and the Nash-Sutcliffe efficiency (NSE).The R2 

measures the degree to which two variables are linearly related and ranges from 0 to 1, with 

higher values indicating less error variance (Moriasi et al., 2007). MAE presents a more balanced 

perspective of the goodness-of-fit at average SSCs and range from 0 to +∞. A MAE value of 0 

indicates a perfect fit (Kisi, 2007).The NSE on the other hand is a normalized statistic that 

determines the relative magnitude of the residual variance compared to the measured data 

variance and ranges from -∞ to 1.The optimal value of NSE is 1.0 (Moriasi et al., 2007). The R2, 

RMSE, MAE and NSE are respectively defined by: 
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3. RESULTS AND DISCUSSIONS 

3.1 Evaluating the relationship between Turbidity, Suspended Sediment Concentration and 

River Discharge 

A plot of turbidity, streamflow and SSC for the 2013 calendar year is presented in Figure 3-1. 

The figure illustrates the variability of turbidity observations, and demonstrates the close 

correlation between turbidity and SSC at Nawuni in the White Volta Basin. The plot shows a 

sharp rise and declines for the turbidity and SSC in May but the trend in the river discharge 

generally remains flat. These sharp peaks of turbidity and SSC recorded in the month of May can 

be attributed to the early rains which wash off sediments that have accumulated during the dry 
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season and loose top soils from agricultural lands which are usually ploughed in May. The early 

rains however usually contribute insignificant runoff to the watershed outlet due to dry 

antecedent moisture conditions during that period. Additionally, bush burning, which damages 

vegetation, is rampant around this period in the basin and therefore presents little resistance to 

sediment transport into the river. 

On the other hand, the figure also shows that while the turbidity and SSC peaks in late August, 

the streamflow peaks in late September. This can be attributed to the fact that, with increasing 

rainfall in the basin, the re-growth of the vegetative cover improves and provides resistance to 

sediment transport into the river. As runoff reaches its peaks, the basin becomes lush with 

vegetation thereby impeding the transport of sediments into the river. . This also implies that, the 

main source of sediments in the study area is mainly driven by upland erosion and sediment 

transport. 

 

Figure 3-1: A plot of river discharge (m3/s), turbidity (NTU) and SSC (mg/l) 

at Nawuni for 2013 

3.2 Relationship between Fixed-Location and Cross-Section Turbidity 

Results of the evaluation of the relationship between the turbidity as measured at the fixed 

location by the GWCL and the mean cross-section turbidity measured with the Quanta Hydro lab 

Sondeis presented in Figure 3-2. The figure shows that the measured turbidity at the fixed-

location overestimates the mean cross-section turbidity for the high turbidity values. This can be 

attributed to the fact that at high flows the flow velocities at the river banks are very low 

compared with that of the mid-section causing a semblance of laminar flow at the river bank. 
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The velocity gradient thus tends to force fine and other microbial materials to settle at the river 

banks resulting in high turbid waters compared to the mid-sections. The deviations from the 1:1 

line are however minimal indicating a fairly harmonized data between the GWCL turbidity 

measurements at the fixed-location and the mean cross-section measurements by the Quanta 

Hydro lab Sonde. 

 

Figure 3-2: Comparison of Turbidity from Fixed-Location (GWCL, Nawuni Headworks) 

and In-Stream Cross-Section Measurements (Quanta Hydrolab) 

3.3 Identification of Outliers 

Figure 3-3 presents the scatter plot of turbidity versus the suspended sediment concentration at 

Nawuni. In this study, no outlying data points were identified in a scatter plot of turbidity versus 

suspended sediment concentration consisting of all the time-series data used in the regression 

analysis. The standardized residuals were computed for the data and the maximum deviation 

from the predicted line found to be 2.14 which is less than the recommended value of 3. All the 

99time-series data points were therefore considered sufficient for the regression analysis 
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Figure 3-3: A scatter plot of turbidity (NTU) from GWCL and SSC(mg/l) 

3.4 Correlation Analysis 

In this study, scatter plots and correlation coefficients in logarithmic space were used to evaluate 

the relationship between turbidity, streamflow and SSC. Figure3-4 presents a scatter plot of 

turbidity versus suspended sediment concentration in base-10 logarithmic transform space. The 

relationship shows a strong association with a correlation coefficient of 0.95.The plot showed a 

linear relationship between the turbidity and the SSC implying a linear regression model can be 

developed between them (Lee et al., 2009). 

 

Figure 3-4: A plot of turbidity (NTU) and SSC mg/l) in log-10 space at Nawuni. 
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The relationship between the streamflow and SSC in log-10 transform space however shows a 

parabolic shape (Figure 3-5). An observation from Figure 3-1 and 3-5 shows that the SSC peaked 

in the 3rd week of August as streamflow just begins to rise. The plots also show that beyond this 

period, every incremental streamflow correspond with a decline in SSC. This period also 

concedes with the peak of the rainfall. As the soil moisture reaches saturation and the vegetative 

cover becomes lush, less sediment are being eroded from the uplands and transported to the 

watershed outlet. 

With the cessation of rainfall in the basin, streamflow eventually decline in magnitude below the 

SSC. This suggests that the river remained turbid over a wide range of flows, and the suspended 

sediment concentrations remain relatively high during low flows. This relationship also implies 

that a nonlinear multiple regression model relating turbidity and streamflow to SSC would be 

applicable. 

 

Figure 3-5: A plot of discharge (m3/s) and SSC (mg/l) in log-10 space at Nawuni. 

3.5 Regression Analysis 

3.5.1 Simple Linear Regression Model (SLR) 

Analysis of the regression residual plots for turbidity and SSC in linear space shows a 

heteroscedastic pattern (Figure 3-6). Heteroscedasticity occurs when the variability of the 

residuals increases as estimated SSC increase and suggests the need of variance stabilizing 

transformation of the response variable. In this study, the turbidity and SSC were therefore 

transformed using the base-10 logarithmic transform function. 
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Figure 3-6: Computed suspended-sediment concentrations and regression residuals in 

linear space showing heteroscedasticity. 

The residuals plot for the log-10-transformed regression however shows a homoscedastic pattern 

(i.e. constant variance) and is presented in Figure 3-7. The residuals were also evaluated for 

normality by plotting the residuals on a normal-probability plot (Figure 3-8) and computing the 

probability plot correlation coefficient (PPCC). According to Helsel and Hirsch (2002),the ideal 

transformation maximizes the probability plot correlation coefficient (PPCC) for the regression 

residuals and optimizes the normality of residuals. Non-normally distributed residuals will not be 

linear or equally distributed on a normal-probability plot and have a smaller PPCC(Rasmussen et 

al., 2009). From Figure 3-8, the probability plot for the log-10transformed regression shows a 

more linear, evenly distributed residuals and a high PPCC of 0.97. 

 

Figure 3-7: Plot of computed suspended-sediment concentrations and regression residuals 
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Figure 3-8: Normal probability plot of the regression residuals 

The SLR model in base-10 logarithmic space for the White Volta at Nawuni is given by: 

.581T1.62logSSClog 1010 
 Eq. 14 

where SSC is the suspended-sediment concentration (mg/l) and T is the turbidity (NTU). Table 

3-1 presents the model basic information, regression coefficients, and model diagnostic statistics. 

The best fit SLR model plot showing the 90% confidence interval is presented in Figure 3-9. The 

figure shows that given the significance level of 10%, the information brought by the 

explanatory variables is significantly better than what a basic mean would bring. Figure 3-10 

also shows a plot of the predicted versus the observed SSC on a one-on-one plot in base-10 

logarithmic space. The figure shows a uniformly distribution points around the one-on-one plot 

implying that the model did not significant over or underestimated the SSC. 

Table 3-1: SLR model coefficients and diagnostic statistics 

Variable Coefficients Standard Error t-Statistics P-value 
Lower 

90.0% 
Upper 90.0% 

Intercept -1.58 0.13 -12.03 < 0.0001 -1.80 -1.36 

Log-10(Turbidity) 1.62 0.05 30.07 < 0.0001 1.53 1.71 
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Figure 3-9: A plot of SLR of SSC and turbidity showing 90% confidence level for Nawuni 

(Sept. 2012-Dec. 2013) 

 

Figure 3-10: Comparison of SLR model predicted versus observed SSC showing the 90% 

confidence level at Nawuni (Sept. 2012-Dec. 2013). 
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The absolute values of the t-statistics of 12.03 and 30.07 for the intercept and turbidity 

respectively (Table 3-1), are greater than 2 and can be considered significant to be included in 

the SLR model. The p-values for the intercept and turbidity were all less than 0.0001 satisfying 

the null hypothesis at 90% confidence level. A standard error of 0.032 for the turbidity also 

shows less dispersion of the data around the regression line. 

The diagnostics statistics used to evaluate the SLR model are also presented in Table 3-2. The 

coefficient of determination adjusted (R2
a) for the turbidity indicates the fraction of variability in 

the SSC that is explained by the model (Rasmussen et al., 2009). The R2
a value of 0.902 

indicates that the SLR model explains 90.2% of the variability in the SSC. 

Table 3-2: SLR Model diagnostics for the White Volta Basin at Nawuni 

No. of Measurements RMSE R2 Adjusted  R2
a 

 

Lower 

MSPE 

Upper MSPE 

155 0.141 0.903 0.902 27.7% 38.3% 

 

The MSPE and the 90% prediction intervals indicate the range in uncertainty associated with 

each regression-computed SSC value. From Table 3-1, the 90-percent prediction interval was 

found to be 1.53 and 1.71 percent for the lower and upper significant levels respectively. This 

implies that, for every given turbidity value, there is a 90-percent certainty that the true SSC 

value occurs within 0.18 interval. The larger the 90-percent prediction interval, the more 

uncertainty there is associated with computed SSC (Rasmussen et al., 2009). 

According to Rasmussen et al., (2009) SLR analysis is preferred for sites where turbidity is the 

measure most strongly correlated with SSC or where MSPE is less than 20%. From Table 3-2, 

the Upper and Lower MSPE were found to be 38.3% and 27.7% respectively which are greater 

than the recommended 20%. This implies that, an additional explanatory variable such as the 

river discharge may improve the estimation of SSC in a multiple linear regression model. 

The bias correction factor (BCF) was estimated using Eq.10 and found to be 0.027. Applying the 

BCF and retransforming Eq.14, the final SLR model for the White Volta Basin at Nawuni on the 

basis of turbidity and SSC is given by: 

62.1027.0 TSSC   Eq. 15 

where SSC is the suspended-sediment concentration (mg/l) and T is the turbidity (NTU). 

3.5.2 Nonlinear Multiple Regression (NMR) Model 
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The MSPE for the SLR model for the White Volta at Nawuni was found to be greater than 20% 

indicating that an additional explanatory variable such as streamflow in a NMR model may 

improve the model estimation of SSC. 

In this study, the applicability of the NMR was initially analyzed by computing the variance 

inflation factor (VIF) for turbidity and streamflow using the coefficient of determination (R2) 

from the regression of turbidity on streamflow. The R2 was found to be 0.014 resulting in a VIF 

of 1.00 which is considered ideal for the development of a NMR model. A  VIF of 1.00 suggest 

that turbidity and streamflow are not strongly multi collinear and could be used as explanatory 

variables in a multiple model to compute SSC. 

The NMR model in base-10 logarithmic space relating turbidity and streamflow to SSC for the 

White Volta is given by: 

32 log09.0log42.0

log25.0log49.173.1log

ww

w

QQ

QTSSC





Eq.16 

The NMR model equation in base-10 logarithmic space shows a linear relationship between 

turbidity and SSC and a polynomial relationship between the streamflow and SSC as confirmed 

in the correlation analysis.  

The diagnostics statistics used to evaluate the NMR model are presented in Table 3-3. The R2 

value of 0.915 indicates that the NMR model explains 91.5% of the variability in the SSC. The 

sum of square errors (SSE) was found to be 1.704 indicating that the model estimated SSC did 

not significantly depart from the measured mean and hence a very good fit. 

Table 3-3: NMR Model diagnostics for the White Volta Basin at Nawuni 

No. of  Measurements RMSE R2 SSE 

 

Lower 

MSPE 

Upper MSPE 

155 0.135 0.915 1.704 26.66% 36.35% 

 

The upper and lower MSPE for the NMR were found to be 36.35 and 26.66% respectively which 

are greater than the recommended 20%. This implies that, the additional explanatory variable, 

the streamflow, may not sufficiently improve the estimation of SSC by the NMR model. 

The bias correction factor (BCF) was found to be 0.55 and the final retransformed NMR model 

for the White Volta Basin at Nawuni on the basis of turbidity, streamflow and SSC is given by: 
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42.130.0
010.0 TQSSC w

Eq.17 

where SSC is the suspended-sediment concentration (mg/l), Qw is the river discharge (m3/s) and 

T is the turbidity (NTU).The low magnitude of the streamflow exponent (<1) implies that SSC in 

the White Volta tends to decrease during rising streamflow. 

A plot of the NMR model predicted versus the observed SSC in base-10 logarithmic space is 

presented in Figure 3-11. The figure shows a uniformly distribution points around the one-on-

one plot implying that the model did not significant over or underestimated the SSC.  

 

Figure 3-11: Comparison of NMR model predicted versus observed SSC at Nawuni  

(Sept. 2012-Dec. 2013) 

3.6 Model Validation 

To evaluate the reliability of the derived linear regression models, the models were used to 

estimate SSC and compared with measured SSC at the Nawuni hydrological gauging station for 

the period of July 1994-March 1995. The ability of the models to accurately estimate the SSC 

was then evaluated using model performance statistics such as the R2, MAE, and NSE. Table 3-4 

presents the model performance statistics for the Nawuni station. 
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Table 3-4: Model Performance Statistics for the SLR and NMR of the White Volta Basin 

for the validation period 

Model Type R2 MAE NSE 

SLR 0.93 3.29 0.93 

NMR 0.79 1.65 0.66 

 

 

Figure 3-12: Comparison of Observed and Model Estimated SSC (mg/l)  

for the White Volta at Nawuni 

The coefficient of determination, R2 was found to be 0.93 and 0.79 for the SLR and the NMR 

models respectively. This indicates that the turbidity alone explains the variability of the SSC in 

the White Volta Basin than a combination of turbidity and streamflow. Figure 3-12 shows a plot 

of predicted SSC versus observed SSC on a one-on-one plot. For a perfect estimate, the data 

fitting a function should fall along the 1:1 line, where the model estimates are equal to the 

observed. The plot shows that both the SLR and NMR predicted very well the observed SSC at 

Nawuni during the validation period. The NMR model however tends to overestimate the high 

SSC in the basin. The model efficiencies and mean absolute errors were also found to be very 

good with values of 0.93 and 3.29 for the SLR and 0.66 and 1.65 for the NMR respectively. 

Overall, the performance statistics indicates that the SLR model can be considered the better 

option for estimating long-term time series of SSC for the White Volta Basin. The addition of 
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streamflow as an explanatory variable in the MLR did not improve the estimation of the SSC and 

this is reflected in the magnitude of the streamflow exponent. 

Based on the above results, it is evident that monitoring turbidity in conjunction with limited 

sediment sampling will provide a reasonable surrogate method for estimating SSC on a daily or 

sub-daily time scale. The derived SLR model was subsequently used to estimate long-term time 

series of sediment loads in the White Volta Basin. 

3.7 Estimation of Suspended Sediment Load (SSL) for the White Volta Basin 

The SLR model was used to estimate SSC based on long-term turbidity data obtained from the 

Ghana Water Company Ltd. Long-term sediment loads were subsequently computed using Eq. 

15 (Horowitz, 2003): 

SSCQSSL w  0864.0
 Eq.18 

where SSL is the daily sediment load (metric tonnes/day), 0.0864 is a conversion factor, Qw is 

the streamflow (m3/s) and SSC is the suspended sediment concentration (mg/l).Using Eq. 18, the 

daily sediment loads of the White Volta Basin at the Nawuni hydrological station was computed 

based on the estimated SSC and streamflow. Monthly and annual sediment loads were also 

computed. A plot of the long-term monthly computed SSL is presented in Figure 3-13. 

 

Figure 3-13: Long term monthly computed SSL (tonnes/day) for the White  

Volta Basin at Nawuni 

From the figure, the highest transported suspended sediments in the White Volta Basin occurred 

in the year 2009 with least occurring in 1994. The mean annual suspended sediment load for the 
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White Volta was then computed from the daily loads and found to be 5.68x106 metric tonnes per 

annum which is consistent with results obtained by Akrasi (2005).Milliman et al., (1992) also 

estimated the mean annual suspended sediment load of the Volta Basin to be 19x106metric 

tonnes per annum. This result is significantly low compared with the 127x106 metric tonnes/yr of 

sediment loads generated in the Blue Nile (El Monshidet al., 1997). 

4. CONCLUSION 

The collection of suspended-sediment data in the White Volta Basin in particular and the Volta 

Basin in general has been sporadic and at best project/program demand driven. In this study, the 

use of the surrogate method of estimating long-term suspended-sediment data using turbidity and 

streamflow was examined.  

Continuous turbidity data collected by GWCL as part of their water quality requirement was 

calibrated with measured SSC data and used to compute long-term time series of suspended 

sediment load for the White Volta Basin at Nawuni. A simple linear regression model between 

turbidity and the measured SSC data was derived. 

With the challenge of developing sustainable and continuous SSC sampling due to lack of 

resources, sediment rating curves based on continuously monitored turbidity by GWCL provides 

a better option of computing long-term suspended-sediment loads in the country. The developed 

sediment rating curves can be bi-annually updated with detailed sampling of SSC. Based on the 

analysis of the SLR and NMR models, the simple-linear regression, SLR model was selected for 

the study area on the basis of the relationship between the base-10 logarithmic transformation of 

turbidity and SSC. 

The mean annual suspended sediment load for the White Volta Basin at Nawuni is estimated to 

be 5.68x106 metric tonnes per annum. Although the sediment load obtained in this study is seen 

as relatively low compared with other rivers, the results provide a valuable basis for assessing the 

potential sedimentation of the Volta Lake. 
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