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A B S T R A C T

This study analyses forest reference level in terms of loss, gain and transitions among forest, cocoa agroforestry,
cassava, maize, settlement and others in the Kloto district (Togo) for REDD+ and sustainable forest and agri-
culture. The pixel-based classification was adopted and combined with the extended change matrix quantity and
intensity analysis using 32-year (1985–2017) Landsat data and land use information from land owners and
farmers. Results indicate an active forest loss (19.5%) with dormant gain (0.8%). Forest is involved in most
transitions as the most targeted category with the largest transition being a forest to cocoa agroforestry while the
avoiding transition was from forest, cocoa agroforestry, maize, cassava and settlement to unclassified classes
(e.g. road, water body) and vice versa. Other targeting categories were from forest to settlement, cassava and
maize Thus, both cash and food crops are major contributors of forest loss. The study concludes that cropland
land degradation is the main reason that explains the significant conversion of forest lands to stable agricultural
lands. Therefore, review of the existing cropping and farming systems by promoting agroecology systems (e.g.
agroforestry, rotational cropping, mixing cropping with pulses) to sustain and restore soil degradation while
mitigating climate change, forest degradation and provide food security for the rural communities is re-
commended. Economic measures such as: trade-off compensations for agroecology practices and afforestation
and reforestation through farmer’s association initiatives could be encouraged to limit forest extensions.

1. Introduction

The deliberate conversion of tropical forests to agricultural lands,
intensive deforestation, and forest degradation and inappropriate land
management practices are the major impediment to forests and soil
carbon sequestration potential (Denman et al., 2007; Lal, 2008a,b;
Stockmann et al., 2013; Koglo et al., 2016, 2017) in changing climate.
According to Valentine et al. (2000), forests have a remarkable ability
to store carbon in both plants and soils and they are valuable natural
break and sinkers of atmospheric carbon dioxide. The largest source of
GHG emissions in most tropical countries is from deforestation and
forest degradation. Fearnside and Laurance (2003) and Houghton

(2005) investigation on tropical deforestation revealed that 1–2 billion
tonnes (roughly 15–25% annual global greenhouse) of carbon are being
lost per year since 1990’s. Lasco (2002) also posited that land use
change and forest conversion are a significant source of CO2 con-
tributing to around 1.7 ± 0.6 Pg C per year (e.g., Parks and Hardie,
1995; Plantinga and Birdsey, 1995; Callaway and Mccarl, 1996;
Stavins, 1999; Kanime et al., 2013). Besides, land use change (e.g. forest
to agricultural and non-agricultural lands) is one of the primary drivers
of climate change and global warming (e.g., changes in albedo and
radiative forces) with serious environmental and socioeconomic con-
cerns. Following this background, in Togo, close analysis of available
statistics on greenhouse gas emissions revealed significant released
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from land use change (forest to agriculture) compared to energy, in-
dustry, and waste management sector (MERF, 2001). This crucial step is
paramount for the implementation of precautionary measures to miti-
gate the emissions resulting from forest conversion to agriculture lands.
Thus, it urges to answer following questions related to the changes, viz:
when? (period and identification of the changes via remote sensing and
GIS technology), how much? (referring to the significance of the
changes), where? (locations) moreover, what to do? (what necessary
and sustainable decision or measure to make). Knowing the initial time
(time 1) and the transition time (time 2), change detection (pixel, area
or percent of the map) analysis or transition matrix analysis can be
performed to account for the net changes for each land use type from
time1 to time 2. However, this method fails to account for the like-
lihood gains and losses of a category from one location to the other.
Moreover, it does not inform on the intensity of the changes (targeted/
avoided and active/dormant categories) as well as the swap change (the
difference between the total change and net change or spatial reloca-
tion), swap distance and persistent land use category (Pontius et al.,
2004). Thus extended cross-tabulation matrix analysis combined with
the intensity of gains and losses and transition intensity accounts for
allocation changes based on land cover change signals. It is against this
background that, scientific communities and policy makers have given
credit to driven forces of deforestation and forest degradations projects
and researchers to limit forest depletion and degradation. The role of
forests in a changing climate is of utmost importance to meet the re-
quirements of sustainable development goals. Diminishing emission

from deforestation and forest abasement; protection of timberland
carbon stocks; sustainable management of forests and improvement of
forest carbon stocks (REDD+) have turned into the major theme of
environmental change discussion. For instance, the 2030 Agenda for
Sustainable Development and the Development Goals and the United
Nations Strategic Plan for Forest (UNSPF) 2017 – 3030 made and bold
an ambitious commitment to halting deforestation in 2020 by reversing
the loss of forest cover and increasing forest area by 3% (www.cpfweb.
org). REDD+ does not only rolls back climate change but also proffers
additional co-benefit in response to food security, conservation of
nature and improvement of socio-economic livelihoods of rural and
poorest communities that are likely to experience the adverse effects of
climate changes. Accordingly, the main question to ask is how much
forest changes and at which rates? and what are the impacts of an-
thropogenic activities on forests carbon loss or gain in Kloto district
(Togo)? Several studies have been carried out on land use, land cover
changes from one period to another (e.g., Han et al., 2009;Munsi et al.,
2010; Badjana et al., 2014; Folega et al., 2014; Sambou et al., 2015;
Diwediga et al., 2017), intensity analysis and its implications on carbon
cycle (e.g., Pontius et al., 2004; Manandhar et al., 2010; Aldwaik and
Pontius, 2012; Runfola and Pontius, 2013; Villamor et al.,2014).
However, little is known about the differentiation of food and cash
crops extent (e.g. maize, cassava and cocoa agro-forestry) and the ex-
tent of urbanization (population growth). Moreover, these studies fail
to integrate historical land occupation information and the extended
quantity and intensity analysis. It is, therefore, a prerequisite to

Fig. 1. Land use land cover map of the study area.
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investigating long-term transitional dynamics of annual and perennial
farming system expansions and population growth on the gain and loss
of native forest extent at a local and national level in developing
countries, notably Togo to facilitate forest reference levels (FRL) and
forest emission reference level (FREL) assessment. It is a way to for-
mulate solid arguments for the REDD+ establishment and accurate
measuring, reporting, and verification of REDD+ to United Nations
organs and Climate change, donors. From the foregoing introduction,
this paper aims to assess 32 years transitional and intensity changes on
the native forest extent due to maize, cassava, cocoa agroforestry
cropping, and urbanization extent for establishing a logical framework
model for sustainable forest management while increasing crop pro-
ductivity and establishing recommended landscape programmes.
Simply put its presents: (i) the quantity of changes in terms of gross
gains, losses, persistence, net and swap changes; (ii) the intensity of
gains and losses and (iii) the intensity of transition from forest to other
land use type (maize, cassava, cocoa agro-forestry farming and settle-
ments).

2. Study area

The study was conducted in Kloto district, Togo and covers an ap-
proximate land area of 528.23 km2. It encompasses 13 sub-districts
located in the northwest of the capital, Lomé (Fig. 1). Kloto is located
between 0.50° and 0.77° East and 6.75° and 7.0° North. The district
covers a total area of 528.23 km2. The major economic activity is
farming of food crops (e.g. maize, cassava) and cash crop (cocoa and
coffee agroforestry). The average production of maize and cassava from
1990 to 2016 revealed an annual production of 10,928 and 19,498
tonnes for maize and cassava over an area of 8291 and 3080 ha, re-
spectively. From 2014 to 2016 cocoa agroforestry of 2762 ha produced
1041 tonnes annually (DSID, 2017: analyzed statistic data).

3. Data collection and analysis

Two Landsat data (5 and OLI) of March 1985 and April 2017 were
downloaded from the USGS with cloud cover less than 10% using path
(193) and row (055). We assumed same phonological conditions be-
cause of the bimodal climate season. Acquired images were pre-pro-
cessed for atmospheric (cloud and noise removal) and radiometric
(brightness) corrections as well as layer stacking and sub-setting in
ArcGIS. Thereafter, thematic analysis was performed in ENVI software
based on six (06) Land Use, Land Cover types (Fig. 1), viz: forest, cocoa
agroforestry, maize, cassava farms, settlements and unclassified.

A field campaign was organized from May to October 2017 for
historical land occupational information via an interview with land-
owners and farmers and 40 random points of each land use type were
collected to train and validate the classification. Image calibration of
the two years was done using ground through and archive land occu-
pational geo-referenced points (40 in total) of each land use type of the
subsequent years of available statistics (DSID, 2017: Agriculture Census

statistic data) with the assistance of google earth historical data records,
and classification was performed using a Maximum Likelihood
Classifier. And the post-classification technique was initiated to derive
the extended cross-tabulation matrix for land use change and intensity
analysis. Images were classified with 100% accuracy with Kappa coef-
ficient equal to 1 (Appendices A and B).

3.1. Quantity of land use change

Change analysis of the thematic classes from time 1 (1985) to time 2
(2017) (Fig. 1) as percent of map was assessed in terms of persistence
(diagonal entries), total loss (total row of category i minus percentage
map of the same category of final year), total gain (total column of
category j minus category j of the initial year). The extended change
matrix was also used to derive the total, net and swap changes of each
land use category. The total change (TC) of a category is the sum of its
gross gain and loss. At the main time, the net change (NC) of a category
is the difference between its gross gain and loss while the swap change
(SC) of a category is the difference of a total change and net change for
the category.

3.2. Intensity analysis

The gain and loss intensity (GI, LI) were duly derived from the
change matrix knowing that the uniform intensity (UI) of the transition
is the total gain or loss of the four thematic classes. The gain and loss
intensity help to identify dormant (GI or LI less than UI) or active (GI or
LI greater than UI) categories. The LI and GI of a category were cal-
culated by dividing the loss of a category in 1985 and a gain of a ca-
tegory in 2017 with the size of the categories in 1985 and 2017, re-
spectively. Similarly, the loss and gain transition intensity of forest,
cocoa agroforestry, maize and cassava farms were calculated from the
extended matrix. In this case, the transition intensity (TI) denotes tar-
geted (TI greater than UI) or avoided (TI smaller than UI) categories
when a particular category change into another category. Thus, the loss
transition intensity (LTI) from forest to cocoa agroforestry, for instance,
was obtained by dividing the loss of forest to cocoa agroforestry in 1985
with the gain of cocoa agro-forestry in 2017. Therefore, the LTI is
compared to the hypothesized Uniform Loss/Gain Intensity (ULI/UGI)
of forest loss to cocoa agroforestry, maize, and cassava. The ULI/UGI is
the union of forest loss to cocoa agroforestry, maize and cassava divided
by the sum of cocoa agroforestry, maize and cassava and vice versa.
Moreover, the gain transition intensity (GTI) of forest from cocoa
agroforestry farms, for example, is computed by dividing the size of
cocoa agroforestry in 1985 with the gain of forest from grassland.

4. Results and discussion

4.1. Quantity of land use transition

Results (Table 1 and 2) revealed significant persistence (49.50%) of

Table 1
Change matrix from 1985 to 2017 in the percentage of the map.

2017

Unclassified Settlement Cassava Maize Cocoa agroforestry Forest Total 1985 Loss

1985 Unclassified 49.49 0.00 0.02 0.00 0.01 0.00 49.53 0.04
Settlement 0.00 0.54 0.01 0.02 0.00 0.00 0.57 0.03
Cassava 0.00 0.05 0.70 0.08 0.43 0.05 1.32 0.62
Maize 0.00 0.71 3.14 0.51 1.04 0.17 5.58 5.06
Cocoa agroforestry 0.00 1.29 10.51 0.75 1.56 0.52 14.63 13.07
Forest 0.00 2.21 12.12 0.65 4.49 8.90 28.37 19.47

Total 2017 49.50 4.80 26.49 2.03 7.54 9.65 1.00 38.291
Gain 0.00 4.26 25.79 1.51 5.97 0.75 38.29
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unclassified pixels (e.g. road, water bodies) with the marginal loss
(0.04) and gain (0.00), respectively. The transition of other classes
(settlement, Cassava, Maize, Cocoa Agroforestry, and forest) to such
pixels is quite negligible (0%) over 32 years (1985–2017) land use and
land cover transition analysis.

In the meantime, Table 2 shows a total gain/loss of 38.29% with
61.71% persistence. Very dynamic categories were distinguished in
terms of total changes (Fig. 2) namely cassava (26.41%), forest
(20.22%) and cocoa agroforestry (19.05%); dynamic classes encom-
passing maize (6.57%) and settlement (4.29%) and unclassified pixels
as a stable class (0.04%) in terms of loss-gain and vice versa over
32 years period. The net change (Fig. 2) reveals high forest land re-
duction (18.72%) follow by cocoa agroforestry (7.10%), maize (3.55%)
and others (0.04%) to the detriment of cassava and settlement which
are gaining 25.18 and 4.23%, respectively. The spatial relocation re-
garding loss or gain pixels shows a maximum distance change of
11.95 km for coca agroforestry and 1.50 km of forest lands. Cassava
lands gain from others land use categories at a minimum distance of
1.23 km less than maize (3.02 km) and settlement (0.06 km). In sum,
the quantitative analysis indicates that there are a change from forest to
agricultural (cassava, maize, cocoa agro-forestry) and non-agricultural
(settlement and unclassified) land use systems. However, it did not give
the information about the speed of the change as well as the intensity at
which the changes are occurring. In that line, intensity analysis was
performed to determine dormant and active categories (Fig. 3) of the
transition as well as the targeted and avoided categories (Fig. 4) of the
32 years transition analysis.Fig. 1.

4.2. Intensity analysis

Results (Fig. 3) depict the loss and gain intensity per category in
percentage of map. Some categories, namely: unclassified and settle-
ment is losing slowly while, cassava, maize, cocoa agroforestry, and
forest are losing faster. Simply put, unclassified and settlement is dor-
mant regarding area expansion, while, the remaining categories

reduced significantly. In the meantime, some gain more sites compared
to others (Fig. 3). This is the case of forest which gains less than its
losses. Forest gain is dormant (7.76 < 38.29) while the conversion of
forest to other land use, land cover types (e.g. settlement, cassava,
cocoa agroforestry and maize) is active. This expansion of cultivated
and non-cultivated areas is intense for cassava farms (97.36) followed
by settlement (88.80), cocoa agroforestry (79.28) and maize (74.63)
farming systems. For the targeted and avoided categories of loss and
gain transitions, Fig. 4 (a–e) were used. The loss analysis (Fig. 4a) re-
vealed that deforestation and forest degradation is mainly targeted by
cocoa agroforestry farms (59.60%) followed by housing expansion
(46.08%), cassava (45.73%) and maize (32.26%) farms in 2017. In the
meantime, the cocoa agroforestry loss (Fig. 4b) is targeted by cassava
(39.69%) and maize (36.96%) farming. In contrast, maize lost (Fig. 4c)
14.75, 13.79 and 11.86% to the detriment of the settlement, cocoa

Table 2
Gain, loss, persistence, total change, net change and swap change per category.

Gain Loss Persistence Total
change

Net change Swap
change

Unclassified 0.00 0.04 49.49 0.04 −0.04 0.00
Settlement 4.26 0.03 0.54 4.29 4.23 0.06
Cassava 25.79 0.62 0.70 26.41 25.18 1.23
Maize 1.51 5.06 0.51 6.57 −3.55 3.02
Cocoa agroforestry 5.97 13.07 1.56 19.05 −7.10 11.95
Forest 0.75 19.47 8.90 20.22 −18.72 1.50

Total 38.29 38.29 61.71

Fig. 2. Quantity of land use transition.

Fig. 3. Gain and Loss intensity per category in percentage.

Fig. 4. Land use land cover intensity of transitions expressed as (a) Forest, (b)
Cocoa agroforestry, (c) Maize, (d) Cassava and (e) Settlement.
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agroforestry, and cassava farm. The transition intensity of cassava,
settlement, and unclassified categories (Fig. 4d), Fig. 4 depicts the high
proportion of cassava loss to cocoa agroforestry (5.75%) followed by
maize (4.10%) which also targeted settlement and others land use cover
categories at 1.19 and 0.10%, respectively. Transition to and from
settlement is reciprocal with maize farming (Fig. 4e), whereby, settle-
ment losses and gains simultaneously from maize. Furthermore, the
marginal gain of the forest came from cassava, cocoa agroforestry, and
maize at 3.69, 3.56 and 3.13%, respectively while cocoa agroforestry
took 32.89 and 31.37% from cassava and forest rather than maize
(18.64%). In the meantime, cassava targeted cocoa agroforestry farms
(71.84%) compared to maize (56.33%) and forest (42.70%). Results
also revealed that settlement expansion is 12.70, 8.81 and 7.80% due to
maize and cocoa agroforestry farms and forest lands reduction respec-
tively whereas, unclassified gain did not target any land use classes.
From the analysis, it is quite an evident that deforestation and forest
degradation transition intensity analysis in Kloto district is both agri-
cultural (cocoa, agroforestry, cassava, and maize) and non-agricultural
(settlement expansion) issues. The results present the role of agriculture

and population growth on forest extinction. These results are consistent
with similar studies in Indonesia (Villamor et al., 2014; Gao et al.,
2016); Ghana (Aloô and Pontius, 2008) and in China (Huang et al.,
2012; Zhou et al., 2014) where, transition analysis revealed a sys-
tematic transition from either forest to croplands and from croplands to
build-up. However, they failed to account for the part of individual
systems for forest reference and emission level determination as a
benchmark for REDD+ projects. Kloto district is a forest zone with the
dominance of indigenous trees and cocoa agroforestry systems. These
results could be explained by population growth, the market price of
cash and food crops and farming and cropping systems in use. The
perception of farmers and landowners bring to the conclusion that,
population growth from 1985 to 2017 had implied a tremendous in-
crease in food demand and expansion of residences. Recent population
census (MPDAT, 2010) depicted a significant increase of rural popula-
tion at national level to the rate of 25.2% (1981) for 37.7% (2010). The
population density of Kloto in 1981 was between 50 and 100 in-
habitant/km2 (Anipah et al., 1989) against 263 inhabitants/km2 in
2010 for a total population of 139,043 inhabitants (MPDAT, 2010).
Moreover, economic incentives to cocoa and cassava prices in the
market had promoted the conversion of many maize farms to cassava
and cocoa agroforestry farms. Interview from farmers revealed that
most of the farmers are adopting cocoa agroforestry farming systems
(e.g. cocoa and coffee; cocoa, coffee, and cassava or cocoa, cassava and
plantain) to increase and diversify their level of income. For others, the
price of these cash and food crops are more stable at national and in-
ternational markets compared to maize price. In addition to cocoa-
cassava agroforestry systems, farmers also practice mono-cropping
cassava systems with either indigenous or improved varieties while
maize cultivation is mainly mono-crop. In some areas, maize is culti-
vated in association with cassava or as sequential cropping systems. The
intensity of mono-cropping and the decline of soil fertility oblige
farmers to clear more forests to the detriment of cocoa agroforestry,
cassava and maize farms as revealed by the 32 years land use transition
analysis (Koglo et al., 2018). These analyses are similar to recent studies
conducted in northern Togo by Diwediga et al. (2017). An evaluation of
multifunctional landscapes progression in the mountainous basin of the
Mo River (Togo, West Africa) from 1972 to 2014 uncovered an im-
perative anthropogenic land change prompting land degradation. This
also explained part of the results of this study whereby, conventional
agriculture intensifications and population growth are targeting native
forest stability. The systematic land use transition was from forest to
cocoa agroforestry followed by settlement expansion, cassava and
maize farming with the total dormancy of forest gain and very active
non-forest land cover types.

5. Conclusions

Land use transition analysis at sub certain level using extended
matrix analysis, remote sensing and land occupational data information
is scarce in developing countries for accurate REDD+ implementation,
accountability and establishment of cost-effective sustainable land and
forest sustainable management policies. This study uses this technique
with pertinent results. Conclusions drawn revealed an intensive loss
(19.47%) of forest in the past 32 years (1985–2017) to the detriment of
cocoa agroforestry, maize, cassava farming and settlement expansion.
In contrast, forest gain (0.75%) slowly while, settlement, cocoa agro-
forestry, cassava, and maize are gaining faster. The systematic transi-
tion was from forest to cocoa agroforestry followed by cassava, settle-
ment, and maize. These results are more explicit in formulating
sustainable policies for each land use land cover type in forest man-
agement while promoting sustainable agriculture in forested zones
(Kloto, Togo). This confirms the robustness of the land use transition
analysis when combining satellite data with strong post classification
analysis and historical land use information from landowners and/or
farmers. In other words, it gives the exact effect of each land use type

Fig. 4. (continued)
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(e.g. food, cash crop or residential) on forest stability, loss or gain. This
study recommends demographic policies (e.g. family planning; in-
centive measures for small households), capacity building of land
owners and farmers (e.g. sustainable forest management). As both cash
and food crops are major impediments to forest loss, it urges to review
the existing cropping and farming systems in the area by promoting
agro-ecology systems (e.g. agroforestry, rotational cropping, mixing
cropping with pulses) as natural fertilizers to regain and restore soil
fertility while mitigating climate change, forest decline and providing
more foods for the rural communities.
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Appendix A. Analysis report land use land cover map 1985.

Overall Accuracy= (1162188/1162188) 100%
Kappa Coefficient= 1

Table a. Confusion matrix

Class Unclassified Settlement Cassava Maize Cocoa agroforestry Forest Total

Unclassified 100 0 0 0 0 0 100
Settlement 0 100 0 0 0 0 100
Cassava 0 0 100 0 0 0 100
Maize 0 0 0 100 0 0 100
Cocoa agroforestry 0 0 0 0 100 0 100
Forest 0 0 0 0 0 100 100
Total 100 100 100 100 100 100

Table b. Omission and Commission error

Class Producer accuracy (%) User accuracy (%) Producer accuracy (Pixels) User accuracy (Pixels)

Unclassified 100 100 575228/575228 575228/575228
Settlement 100 100 9216/9216 9216/9216
Cassava 100 100 83425/83425 83425/83425
Maize 100 100 93908/93908 93908/93908
Cocoa agroforestry 100 100 148596/148596 148596/148596
Forest 100 100 251815/251815 251815/251815

Appendix B. Analysis report land use land cover map 2017.

Overall Accuracy= (1162188/1162188) 100%.
Kappa Coefficient= 1

Table a. Confusion matrix

Class Unclassified Settlement Cassava Maize Cocoa agroforestry Forest Total

Unclassified 100 0 0 0 0 0 100
Settlement 0 100 0 0 0 0 100
Cassava 0 0 100 0 0 0 100
Maize 0 0 0 100 0 0 100
Cocoa agroforestry 0 0 0 0 100 0 100
Forest 0 0 0 0 0 100 100
Total 100 100 100 100 100 100

Table b. Omission and Commission error

Class Producer accuracy (%) User accuracy (%) Producer accuracy (Pixels) User accuracy (Pixels)

Unclassified 100 100 627/627 627/627
(continued on next page)
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Table b. Omission and Commission error (continued)

Class Producer accuracy (%) User accuracy (%) Producer accuracy (Pixels) User accuracy (Pixels)

Settlement 100 100 658000/658000 658000/658000
Cassava 100 100 206470/206470 206470/206470
Maize 100 100 49902/49902 49902/49902
Cocoa agroforestry 100 100 101300/101300 101300/101300
Forest 100 100 145889/145889 145889/145889

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecolind.2018.09.042.
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