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• We used environment niche modeling
(ENM) to map rainfed inland valleys
suitability for rice in Togo and Benin

• We estimated that 155,000-225,000 Ha
of inland valleys are suitable for rice
production Togo

• Benin has an estimated 351,000-
406,000 Ha suitable inland valleys for
rice production

• Distance to roads, travel time, climate,
available soil water capacity, bulk den-
sity among others are important predic-
tors

• ENM is an effective tool for agricultural
land use planning
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Inland valleys (IVs) in Africa are important landscapes for rice cultivation and are targeted by national govern-
ments to attain self-sufficiency. Yet, there is limited information on the spatial distribution of IVs suitability at
the national scale. In the present study, we developed an ensemble model approach to characterize the IVs suit-
ability for rainfed lowland rice using 4 machine learning algorithms based on environmental niche modeling
(ENM) with presence-only data and background sample, namely Boosted Regression Tree (BRT), Generalized
Linear Model (GLM), Maximum Entropy (MAXNT) and Random Forest (RF). We used a set of predictors that
were grouped under climatic variables, agricultural water productivity and soil water content, soil chemical
properties, soil physical properties, vegetation cover, and socio-economic variables. The Area Under the Curves
(AUC) evaluation metrics for both training and testing were respectively 0.999 and 0.873 for BRT, 0.866 and
0.816 for GLM, 0.948 and 0.861 for MAXENT and 0.911 and 0.878 for RF. Results showed that proximity of inland
valleys to roads and urban centers, elevation, soil water holding capacity, bulk density, vegetation index, gross
biomass water productivity, precipitation of the wettest quarter, isothermality, annual precipitation, and total
phosphorus among others were major predictors of IVs suitability for rainfed lowland rice. Suitable IVs areas
were estimated at 155,000–225,000 Ha in Togo and 351,000–406,000 Ha in Benin. We estimated that 53.8% of
the suitable IVs area is needed in Togo to attain self-sufficiency in rice while 60.1% of the suitable IVs area is
needed in Benin to attain self-sufficiency in rice. These results demonstrated the effectiveness of an ensemble en-
vironmental niche modeling approach that combines the strengths of several models.
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1. Introduction
In Africa, rice production has generally increased over the last de-
cade but still covers only 50% of consumers' needs (David-Benz and
Lançon, 2007). Thus, rice yield growth alone cannot keep track of
growth in consumption, suggesting that rice area expansion will be
needed (Van Oort et al., 2015). Spatially detailed and context-specific
assessments based on quantitative methods are required to estimate
the potential for agricultural land expansion in Africa.

Agricultural land suitability analysis (ALSA) is oneof the quantitative
tools used to identify the optimal use of available land for crop produc-
tion. There are different methods used in ALSA that have their specific
advantages and disadvantages (Akpoti et al., 2019). The increasing pro-
cessing power of computers and developments in machine learning al-
gorithms provide new opportunities and such methods are becoming
more popular. These methods are well established in ecological niche
modeling (Astorga et al., 2018; Freeman et al., 2019; Raghavan et al.,
2019; Simões and Peterson, 2018) and agricultural spatial predictive an-
alytic can benefit from such developments (Beck, 2013). Recent ad-
vances in environmental niche modeling have focused on novel
methods for characterizing the environment that use presence/absence
and/or presence-only data and machine-learning algorithms to predict
the likelihood of species occurrence (Elith and Leathwick, 2009). Spe-
cies habitat suitability is mainly evaluated with empirical models also
known as environmental or ecological niche-, bioclimatic suitability-,
habitat suitability- or species distribution models (Beale and Lennon,
2012). These models are also associated with a number of caveats in-
cluding potentially biased samples, predictors variables with no biolog-
ical meaning (Jarnevich et al., 2015). Most of the algorithms are
computationally-intensive. Lack of occurrence data and changes in eco-
logical niche parameters are among the major drawbacks (Peterson,
2003). The use of a single algorithm in most cases is also considered as
a limitation as different algorithms often provide different results for
the same modeling problem (Qiao et al., 2015). Thus, the choice of
model selection and parameters specification are important for building
a model (Jarnevich et al., 2015).

A recent study in West Africa used Random Forest, a classification
tree-based on machine learningmethod to determinewhich predictors
best explain the presence of rice in inland valleys (Djagba et al., 2018);
while Dossou-Yovo et al. (2019) used the same approach to model the
determinants of drought in inland valley landscapes. In Colombia and
across the Americas, ecological niche modeling based on maximum en-
tropy approach has been used to assess the suitability of land for Hass
avocados (Ramírez-Gil et al., 2018; Ramírez-Gil et al., 2019). In Asia,
the Random Forest method has been applied to characterize areas cur-
rently under paddy cultivation and to predictwhich other areas are suit-
able for paddy (Laborte et al., 2012). The maximum entropy method
was used to map lowland paddy rice and upland field crop suitability
(Heumann et al., 2011). Likewise, Artificial Neural Network has been
used for rice suitability mapping in Indonesia (Wang, 1994).

The application of high-performance computing algorithms that can
support the modeling of high potential agro-ecological systems such as
inland valleys for rice production in Africa is key. Inland valleys are con-
sidered as Africa's future food baskets due to their high agricultural po-
tential (Rodenburg et al., 2014). Despite the growing interest in inland
valleys rice production in Africa, they are still poorly developed
(TNRDS, 2010). In West Africa, most studies focused on the biophysical
determinant of the rice yield gap based on statistical analysis and ma-
chine learning approaches (Niang et al., 2018; Niang et al., 2017;
Tanaka et al., 2017). From pioneering work in the early 90s by
Windmeijer and Andriesse (1993) and Andriesse and Fresco (1991)
that biophysically characterize the agro-ecological environment of
West African inland valleys, a gradual interest is being put on the contri-
bution of the predictors of suitable inland valleys to the choice of agri-
cultural lowland use strategies (Erenstein et al., 2006; Dossou-Yovo
et al., 2017). Only few suitability mapping studies have been conducted
in West Africa especially for rice production. Therefore, the main objec-
tive of the present study is to apply an ensemble environmental niche
modeling approach to map land suitability for rice at the national
scale in Benin and Togo based on presence-only data in inland valleys.
We hypothesized that the current distribution of cultivated inland val-
leys (IVs) is a “good” indicator of lowland rice ecological requirements.

2. Materials and methods

2.1. Study area description

The present study area corresponds to the national scale of Togo
(56,785 km2) and Benin (114,763 km2) (see Fig. 1. While Togo encom-
passes rolling hills including the Chaîne du Togo in the north and south-
ern plateau with low coastal plain and extensive lagoons and marshes,
Benin is primarily flat with the exception of the Atakora Mountains ris-
ing along the northeastern border of Togo. Togo and Benin exhibit sim-
ilar climatic conditions with bimodal rainfall pattern in the south and
unimodal rainfall regime from themid-latitudes to the north. According
to Diagne et al., 2013, the lowland rice production in Benin and Togo
represents 60.8% and 77.6% of both countries' rice cropped areas,
respectively.

2.2. Inland valley survey and database

A survey was conducted in Togo and Benin between April and Sep-
tember 2017 to assess inland valleys. These valleys are known in French
as bas-fonds and are defined as the upper parts of river drainage systems
with a complete toposequence from the interfluves to the valley bottom
with its seasonallywaterlogged depression (Windmeijer and Andriesse,
1993). The data collected includes geolocation, biophysical and socio-
economic characteristics as well as management practices resulting in
N50 variables in the dataset. The structure of the dataset and the and
variables in the dataset have been previously described by Djagba
et al. (2019) and Dossou-Yovo et al. (2018).

The sampling of IVs was based on 3 main steps. Firstly, workshops
were held to define the criteria for selecting inland valleys during the
surveys. Key considerations for selection were: 1) spatial distribution
of the IVs so that not all are located along major roads or near towns,
2) the diversity of land use in IVs with respect to presence or absence
of rice and 3) agro-ecological and climatic zones in both countries.
These steps were important as niche models are sensitive to both sam-
ple size and biases in the distribution of data (Araújo and Guisan, 2006).
Secondly, an exploratory phase was conducted to pre-locate the candi-
dates IVs to be surveyed by including leaders and key informants at the
village level along with the use of topographic maps and Google Earth.
Finally, a survey was conducted with a data collection unit consisting
of a specific inland valley area users' groupwhile the location of the sur-
veyed IVs is systematically recorded using handheld Garmin GPS re-
ceiver with ±5 m positional accuracy. The surveys were conducted in
408 and 436 IVs respectively in Togo and Benin. The dataset was
complemented with IVs data by Djagba et al. (2019) containing similar
information. The database resulted in an occurrence of 1091 IVs.

2.3. Environmental covariates selection

The covariates selection can be based on 3 steps. The first involves
the selection from a predefined set of environmental covariates. This
step is driven by ecological, biophysical and socio-economic determi-
nants of the crop presence. In the specific context of lowland rice culti-
vation, predictors were selected based on previous studies and expert
knowledge considering both rice species physiology and empirical
best fit (Djagba et al., 2018; Niang et al., 2017; Laborte et al., 2012;
Heumann et al., 2011; Sys et al., 1993; Sys et al., 1991). A total of 60 co-
variates were considered and grouped under 6 categories: climatic var-
iables, agricultural water productivity and soil water content variables,



Fig. 1. Study area map showing the locations of the surveyed inland valleys where rice is grown in Togo and Benin.
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soil chemical properties variables, soil physical property variables, land
use and land cover variables and socio-economic variables (see Table A1
in Appendix 1 for the full list of covariates and Fig. 2 for a display of some
selected covariates). Secondly, we used a cut-off threshold of |r| N 0.75
to determine and exclude one of any pair of highly correlated variables.
Finally, we implemented a stepwise removal of the least contributing
variables (Zeng et al., 2016).

We considered 19 bioclimatic variables from theWorldClim version
2 database (Fick andHijmans, 2017). An average of 9 years of data of ag-
ricultural water productivity predictors was obtained from the FAO
Water Productivity Open-access portal (WaPOR). Soil water content
variables, soil chemical properties as well as some soil physical
Fig. 2. Example of selected 20 covariates included in the suitabilitymapping. Isothermality (BIO
biomass water productivity (GBWP), available soil water capacity (volumetric fraction) until w
(BSP), exchangeable sodium percentage (ESP), total phosphorus (TPHOS), soil texture fraction
slope (SLOPE), elevation (DEM), soil adjusted vegetation index (SAVI), Euclidian distance of ro
properties were aggregated from SoilGrids250m and AfSoilGrids250 m
(AfSIS) (Hengl et al., 2015; Hengl et al., 2017a, 2017b) by considering
the topsoil layer (0–30 cm) due to the shallow-rooting-type of lowland
rice. Also, we included two frequently soil chemical properties predic-
tors used in land suitability analysis such as exchangeable sodium per-
centage (ESP) and base saturation percentage (BSP) as computed in
Eqs. (1) and (2):

ESP ¼ EXNA� 100
CEC

ð1Þ

BSP ¼ EXB� 100
CEC

ð2Þ
3), annual precipitation (BIO12), actual evapo-transpiration and interception (AETI), gross
ilting point (WWP), electrical conductivity (ECN), Soil pH (PH), base saturation percentage
silt (SILT), soil texture fraction clay (CLAY), bulk density (BLD), depth to bedrock (DEPTH),
ad network (EUCDIST), population density (POP), travel time to cities (ACCESS).
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where EXNA and EXB andCEC are respectively the soil exchangeable so-
dium, the total exchangeable bases, and cation exchange capacity. Be-
sides, other parameters of soil physical properties variable were
derived from elevation data. A Normalized Difference Flood Index
(NDFI) was computed based on Eq. (3), following (Boschetti et al.,
2014):

NDFI ¼ RED−SWIR2ð Þ
REDþ SWIR2ð Þ ð3Þ

Where RED band (630–690 nm) and Short-wave-infrared – SWIR2
band (2090–2350 nm) are cloud-freeMYD13A1 - MODIS/Aqua Vegeta-
tion Indices 16-Day L3 Global 500 m products. A five-year average of
data (2013–2017) was downloaded and the index was computed di-
rectly using MODIStsp package, a tool for automatic preprocessing of
MODIS time series in R (Busetto and Ranghetti, 2017). To represent veg-
etation dynamics in our model, we considered the Soil-Adjusted Vege-
tation Index (SAVI) following Eq. (4), computed similarly to the NDFI:

SAVI ¼ NIR−REDð Þ
NIRþ REDþ 0:5ð Þ 1þ 0:5ð Þ ð4Þ

where RED (630–690 nm), Near-infrared -NIR (780–900 nm) MODIS
products. Recent studies on lowlands diversity and drivers for rice culti-
vation in West Africa showed the relevance of socio-economic factors
(Djagba et al., 2018; Dossou-Yovo et al., 2017). In the present study,
we used travel time to the nearest city (accessibility) data from Weiss
et al. (2018), Euclidean distance to the nearest road and population den-
sity as proxies for socioeconomic factors.

2.4. Suitability modeling development

The environmental nichemodels (ENMs) link species locationswith
environmental conditions and then geographically project where the
species are likely to be found based on suitable environmental condi-
tions (Beale and Lennon, 2012). For the present study, we develop our
IVs suitability models in the Software for Assisted Habitat Modeling
(SAHM) package (Morisette et al., 2013). We used SAHM package to
fit IVs distribution models using Generalized Linear Model (GLM),
Boosted Regression Tree (BRT), Random Forest (RF), andMaximumEn-
tropy (MAXENT) that also compute the related performance metrics.
SAHM have been widely used in environmental niche modeling
(Jarnevich et al., 2017; West et al., 2016a, 2016b; Hayes et al., 2015;
Chang et al., 2014). We followed 6 fundamental steps in our model for-
mulation as shown in Fig. 3. In the first step, we considered covariates
and IVs valleys geolocation data as described in Sections 2.2 and 2.3. A
temple layerwith a pixel size of 90m in a geographic coordinate system
was specified and propagated to the subsequent modeling. The second
step consisted of synchronizing all layers by Projection, Aggregation, Re-
sampling and Clipping (PARC) to match the template layer properties.
We used the nearest neighbor method for resampling while the mean
and majority filter methods were used for aggregation for continuous
and categorical covariates, respectively. Also, we used the SAHM back-
ground surface generator module to create a surface mask using ad
hoc bandwidth selection based on Kernel Density Estimation (KDE)
method (Duong, 2007). In addition, 15,000 randomly generated back-
ground points were considered in the Merged Data Set (MDS) Builder
module. The third step was a preliminary analysis consisting of data
splitting. We used 70% of the data for training and 30% for testing.
Step 4 consisted of tuning hyperparameters for the individual algo-
rithms as described below.

2.4.1. Generalized Linear Model (GLM)
GLM is a linear regression method adapted to binary data which se-

lects in SAHM covariates by a bidirectional stepwise procedure (Talbert
and Talbert, 2012). Thus, a covariate is selected to be included or
dropped from the considered set of covariates based on a predefined
Akaike Information Criterion (AIC). A likelihood can be increased by
addingmore parameters but this may result in overfitting. AIC attempts
to minimize the overfitting by introducing a penalty term when the
number of covariates in themodel increases (Cohen, 2006). The overall
procedure starts with a null model, then covariates with the best crite-
rion scores are added while also considering the change in criterion
when covariates present in the model are dropped; and the modeling
ends when no further improvement can be made in AIC (Talbert and
Talbert, 2012).

2.4.2. Boosted Regression Tree (BRT)
This is an ensemble forecastingmethod based on decision trees that

partition the parameter space into the most homogeneous subsets in
terms of the response (Araújo and New, 2007). The model is in a form
of logistic regression that models the probability of an occurrence,
y = 1, at a location with covariates X, P (y = 1 |X) (Elith et al., 2008).
The BRT starts with a single decision tree, then adds a tree that best ex-
plains the residual error in the first tree, and so on (Talbert and Talbert,
2012). The complexity of our models varies from 5000 trees to 10,000
trees. We used a simplification method of 10-fold cross-validation
with a bag fraction of 0.75.

2.4.3. Random Forest (RF)
Random forests are a collection of tree-structured classifiers of co-

variates such that each tree depends on the values of independent iden-
tically distributed random vectors sampled independently andwith the
same distribution for all trees in the forest (Breiman, 2011). Each tree
casts a unit vote for themost popular class at the input of a given covar-
iate (Breiman, 2011). We used 1000 decision trees to grow the forest
with proximity calculated only on out-of-bag (OOB) data. The RF
method uses bootstrap aggregation or bagging for sampling the data.
Some observations are not used when building the trees and are
known as OOB (Cutler et al., 2012). We used 10 as the randomly se-
lected covariates at each node and 5 as a minimal number of observa-
tions at the terminal nodes of the trees.

2.4.4. Maximum Entropy (MAXENT)
Maxent is a prediction method that models the distribution that is

the most spread out, i.e. closest to uniform while considering the limits
of the environmental covariates of the presence data (Phillips et al.,
2006). The Maxent model has been widely used for species distribution
modeling (e.g. Qin et al., 2017; West et al., 2016a, 2016b; Evangelista
et al., 2008) with various discussions on the model methodological de-
cisions and interpretations (Jarnevich et al., 2017; Zeng et al., 2016;
Halvorsen et al., 2016). We considered the default setting of Maxent
in SAHM except for the number of background point that was set to
15,000 and with a maximum 5000 iterations.

2.5. Evaluation of models' predictions

We use the area under the receiver operating characteristic (ROC)
curve (AUC), a standard statistical method widely used to assess the ac-
curacy of species distribution models (Jiménez-valverde, 2012). Spatial
predictive models are also often evaluated based on a confusion matrix
(Table 1) from which evaluation metrics are derived (Table 2).

2.6. Threshold selection

A defined threshold is needed to convert the continuous probability
maps into binary maps that identify suitable and unsuitable inland val-
leys for rice development. Defining the threshold level is critical as dif-
ferent thresholds can result in a dissimilar estimate of species suitable
range (Liu et al., 2005). Thus, the end-use of model outputs should
guide in the selection of thresholds (Jarnevich et al., 2015). Various
threshold selection methods have been applied in various ecological



Fig. 3. Flowchart of the inland valleys suitability potential modeling in the Software for Assisted Habitat Modeling (SAHM) package. PARC is a module for Projection, Aggregation,
Resampling, and Clipping while MDS is a module for Merging Data Set (MDS). The “Yes” arrow represents the accepted models based on the designed model flow. If results are not
satisfactory, the “No” arrows indicate the steps that can be modified to improve model accuracy.
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niche modeling (Merow et al., 2013; Cordeiro et al., 2016; García-
Callejas and Araújo, 2016). Nine threshold methods were implemented
in SAHM: threshold= 0.50, sensitivity = specificity, maximizes (sensi-
tivity + specificity)/2, maximizes Cohen's Kappa, maximizes PCC (per-
cent correctly classified), predicted prevalence = observed prevalence,
observed prevalence, mean predicted probability and minimizes dis-
tance between ROC plot and (0,1).We tested these ninemethods to op-
timize themodeling. Ultimately, we used the sensitivity= specificity as
it a much more commonly used threshold (Dormann et al., 2008;
Stohlgren et al., 2010; West et al., 2016a, 2016b). Our approach is
based on the test data threshold as it better-discretized predictions in
binary data. The approach of sensitivity = specificity based test data
was applied before in the studies by Stohlgren et al. (2010).
Table 1
Confusion matrix. a - number of cells for which presence was correctly predicted by the
model; b - number of cells for which the species was not found but the model predicted
presence; c - number of cells for which the species was found but themodel predicted ab-
sence; d - number of cells for which absence was correctly predicted by the model.
Adapted from Allouche et al. (2006).

Observed data

Presence Absence

Predicted data Presence a (true positive) b (false positive)
Absence c (false negative) d (true negative)
3. Results

3.1. Models development and evaluation

Based on the correlation matrix (Fig. A1, Appendix 1) and elimina-
tion of least contributing covariates, the initial set of 60 variables
(Table A1, Appendix 1) was reduced to only 21 bio-physical and 3
socio-economic covariates. The predictive performance across models
for both training and testing are reported in Table 3. Results showed
that all models performed better than random (AUC N 0.5) with all
AUCs N0.8. Also, all models produced PCC N 75%. Models BRT, MAXENT,
RF, and GLM showed in that order higher predictive performance for
training and validation. However, in term of algorithms showing consis-
tent evaluation metrics between training and testing, RF, and GLM pro-
duced better generalizability compared to MAXENT and BRT.

3.2. Covariates importance

Fig. 4 shows the ranking of most important variables by BRT,
MAXENT, and RF for the modeling suitability of inland valleys for rice
development. Although the rank of each covariate differs fromone algo-
rithm to another, there is a consistent prediction of most important co-
variates across models. These include travel time from IVs to the major
cities or accessibility (ACESS), Euclidian distance of IVs to the nearest
road (EUCDIST), land elevation (DEM), available soil water capacity
(WWP), bulk density (BLD), soil adjusted vegetation index (SAVI),



Table 2
Model evaluation metrics. Overall accuracy: rate of correctly classified cells. Sensitivity: the probability of actual presences predicted. Specificity: probability of actual absences predicted.
The kappa statistic and TSS normalize the overall accuracy by the accuracy that might have occurred by chance alone.
Adapted from Allouche et al. (2006).

Evaluation metric Mathematical formulation Equation number

Overall accuracy (a + d)/n 5
Sensitivity a/(a + c) 6
Specificity d/(b + d) 7
Kappa statistic

ðaþ ⅆ
n

Þ−
ðaþbÞðaþcÞþðcþⅆÞðⅆþbÞ

n2

1−
ðaþ bÞðaþ cÞ þ ðcþ ⅆÞðⅆþ bÞ

n2

8

True Skill Statistics Sensitivity + Specificity – 1 9

n = a + b + c + d.
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precipitation of the warmest quarter (BIO18), gross biomass water pro-
ductivity (GBWP), precipitation of the wettest quarter (BIO16), precip-
itation seasonality (BIO15), annual precipitation (BIO12) and total
phosphorus (TPHOS) as the top 12 most important variables. The jack-
knife resampling technique applied to the area under the curve (AUC)
from the MAXENT model confirmed the importance of the aforemen-
tioned variables (Fig. 5). Covariates that have the highest AUC gain
when used in isolation are population density (POP) followed by AC-
CESS. This showed the strong influence of socio-economic drivers on
the IVs development for rice production. Also, environmental variables
that have the highest AUC gain when used in isolation are SAVI, BLD,
WWP, GBWP, and BIO3. These predictors appear to have important in-
formation by themselves useful for IVs rice development. Also, the co-
variates that decreased the AUC gain the most when omitted in the
modeling are BIO3, ACCESS, and EUCDIST. In addition to some of the
previously mentioned important variables, the GLM also captured ex-
changeable sodium percentage (ESP), base saturation percentage
(BSP), soil texture fraction (SILT) and soil depth to bedrock (DEPTH)
as important predictors (Table 4).

3.3. Covariates response curves

Figs. 6 graphically depicted the shape and the magnitude of the co-
variates across models in which they were captured. The graphs
displayed the link between the values of the covariates and the IVs suit-
ability according to the predictions of the four algorithms. We only
highlight the shape and direction of the most important predictors in
each category of the covariates that includes climate (BIO3, BIO16 and
BIO18), agricultural water productivity and soil water content (GBWP
andWWP), soil chemical properties (BSP, ESP), soil physical properties
(DEM, BLD, DEPTH), vegetation cover (SAVI) and socio-economic vari-
ables (ACCESS, EUCDIST and POP).

Climatic covariates indicate that Isothermality (BIO3) has a positive
linear response curve with suitability. The results indicate a smaller
Table 3
Evaluation metrics for both training (70%) and testing (30%) of the data split. The evalua-
tionmeasures are: Area Under the Curves (AUC), Overall accuracy or Percentage Correctly
Classified (PCC), Sensitivity, Specificity, Kappa statistic, True Skill Statistics for the four
algorithms.

Evaluation
metrics

BRT GLM MAXENT RF

Train Test Train Test Train Test Train Test

AUC 0.999 0.873 0.866 0.816 0.948 0.861 0.911 0.878
PCC 98.6 78.6 78.3 74.1 89.6 77.9 83.4 81.4
Sensitivity 0.980 0.783 0.783 0.747 0.898 0.778 0.833 0.803
Specificity 0.986 0.786 0.783 0.741 0.896 0.780 0.834 0.815
Kappa 0.822 0.153 0.150 0.113 0.340 0.146 0.214 0.184
TSS 0.966 0.569 0.565 0.488 0.794 0.557 0.668 0.618
Threshold 0.930 0.440 0.570 0.510 0.340 0.190 0.530 0.500
level of temperature variability within an average month relative to
the year. Precipitation of warmest quarter (BIO18) right-skewed bell-
shaped response curves as with maximum suitability between 100
and 200mm. Precipitation ofwettest quarter (BIO16) shows the highest
suitability between 500 and 900 mm for at least two of the models.
Gross biomass water productivity (GBWP) exhibits a sigmoid response
curve with the highest values between 1 and 2 kg/m3. Available soil
water capacity (WWP) shows a truncated positively skewed Gaussian
response with an optimum value of 10% beyond which suitability de-
creased. The chemical properties of IVs described a truncated positively
skewedGaussian response for base saturation percentage (BSP)with an
optimum value of 50% beyond which suitability decreased. Exchange-
able sodium percentage (ESP) describes normal distribution between
0 and 10% with maximum suitability at 5%. Beyond ESP value of 10%,
suitability decreases or remains constant except for MAXENT that
shows an increasing response curve. Elevation showed a normal distri-
bution between 0 and 500 m with highest suitability corresponding to
350 m. Bulk density showed for most of the model, a trapezoidal
shape with the plateau curve corresponding 1300–1800 kg/m3. Linear
to a positive exponential curve represents the gradient of soil depth
with high soil depth corresponding to increasing suitability. Results
show that SAVI has a negative linear relationship with suitability.
Lower SAVI values (b0.6) exhibits higher suitability while SAVI values
N0.9 are unsuitable for lowland rice cultivation.

Travel time to the major cities and distance to the nearest road both
showed negative exponential distribution, implying that the shorter the
travel time and the distance, the economically viable become the IVs for
rice production. The travel time of 100 min is the critical value beyond
which a given IV becomes economically unsuitable. Similarly, the criti-
cal nearest distance to the road is 5 km.
3.4. Modeling spatial distributions of IVs suitability and evaluation

Results of the spatial explicit distributions of the suitability of IVs
predicted by the four algorithms are shown in Fig. A2 (Appendix 2).
Also, the average suitability from the models and habitat suitability
scores indicating the number of the four optimized models that classi-
fied a given pixel as having suitable conditions for IVs rice cultivation
are reported. Results of the spatial distribution of the suitability over
the study show some level of variation acrossmodels but also consistent
predictions of new areas as suitable. The continuous probability maps
were converted into binary maps (suitable, unsuitable) based on the
threshold method of the probability that the model correctly classifies
a suitable area is the same as the probability that the model correctly
classifies unsuitable area (Sensitivity = Specificity). The results of the
discretization maps are shown in Fig. 7. The coastal zone of both coun-
tries shows less suitable IVs for rice productions.

The area coverage of the potentially suitable IVs areas in Benin and
Togo are further analyzed in Fig. 8. In Benin, the predicted suitable IVs
occupy 351,000–406,000 Ha corresponding to 40.8–47.2% of the total



Fig. 4. Covariates importance. Only the ranking among covariates is compared, not the absolutes values because the estimation of the covariates' importance differed across algorithms.
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inland valley area in Benin.1 In Togo, suitable IVs area coverage repre-
sents 147,000–225,000 Ha corresponding to 32.6–50% of the total esti-
mated inland valley area in Togo.2

Also, we evaluate the prediction of our models with known points
distribution of IVswhere rice is grown and the delineated IVs at 4 differ-
ent locations in Togo and Benin (Fig. 9). Results show strong agreement
with IVs locations as well as matching between the delineated IVs and
our predictions. These results are in support of our initial hypothesis
that the current distribution of cultivated inland valleys is a “good” indi-
cator of lowland rice ecological requirements.

4. Discussion

Previous studies focused on the spatial characteristics of croplands at
varying scales and for different agro-ecosystems, which included
rainfed and irrigated rice systems (Salmon et al., 2015; Samasse et al.,
2018; You et al., 2014; Beck, 2013). While these studies advanced our
1 A total estimated inland valley area in Benin = 860,000Ha according to AfricaRice
report.

2 A total estimated inland valley area in Togo = 450,000 Ha according to AfricaRice
report.
understanding of the factors determining land suitability to rice cultiva-
tion, major challenges remain as to the level of uncertainties due to
missing data, misregistration, gridding errors, topographical effects,
and classifier error (Salmon et al., 2015). In this study, we developed a
spatially explicit inland valleys (IVs) suitability mapping approach for
rice cultivation in Togo and Benin using four environmental niche
models. We assume that the current distribution of the cultivated IVs
represents the “best bet” ecology for lowland rain-fed rice cultivation.
The result is the spatial distribution and suitability level for lowland
rice along with the evaluation of the predictive power of the models
considered, the covariates importance and the response curve of rice
to the covariates' gradients (see Supplementary material 1 for addi-
tional results).

4.1. Covariates selection and model's evaluation

We used the Area Under the Curves (AUC), Percentage Correctly
Classified (PCC), Sensitivity, Specificity, Kappa statistic, and True Skill
Statistics to evaluate the performance of four models: Boosted Regres-
sion Tree (BRT), Generalized Linear Models (GLM), Maximum Entropy
(MAXENT) and Random Forest (RF). Consistently, BRT and MAXENT



Fig. 5. Jackknife test for AUC of individual covariates importance (blue bars), all the remaining variables (light blue) and all environmental variables (red bar).
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and RF were top-performing models while GLM showed lower perfor-
mance irrespective of the covariates included. Previous studies reported
a lower performance of theGLMcompared to amachine learningmodel
(Jarnevich et al., 2017). The differences in models' performances are
often associated with the model's complexity. The model complexity
is related to computation time for fitting models (García-Callejas and
Table 4
GLM model variables importance.

Response ~ ACCESS + ACCESS:EUCDIST + EUCDIST + EUCDIST:BLD + BLD
+ BLD2 + BIO152 + BIO32 + WWP + DEPTH2 + BSP + GBWP2

Coefficients: Estimate Std. error z value Pr(N|z|) Sign.

Intercept −60.000 21.400 −2.799 0.005 **
ACCESS −0.016 0.004 −4.010 0.000 ***
ACCESS:EUCDIST 0.000 0.000 −1.836 0.066 .
EUCDIST −0.005 0.002 −2.808 0.005 **
EUCDIST:BLD 0.000 0.000 2.822 0.005 **
BLD 0.057 0.028 2.023 0.043 *
BLD2 0.000 0.000 −1.900 0.057 .
BIO152 0.001 0.000 5.969 0.000 ***
BIO32 0.004 0.001 4.434 0.000 ***
WWP −0.241 0.061 −3.956 0.000 ***
DEPTH2 0.000 0.000 2.747 0.006 **
BSP −0.031 0.011 −2.909 0.004 **
GBWP2 1.380 0.553 2.496 0.013 *

Signifiance codes : 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
Araújo, 2016). Models with longer run time seem to produce higher
evaluation metrics. In our case, BRT, RF, MAXENT, and GLM showed in
that order higher computation time. Also, the properties of IVs with
presence of rice data and their relationship with the environment are
strong predictors of model success (García-Callejas and Araújo, 2016).
Thus, the covariates involved in themodeling process influence strongly
themodel performance. In our IVs suitability modeling, the models that
included only biophysical factors showed a lower performance com-
pared to the models that included both biophysical and socio-
economic factors indicating the importance of combining both biophys-
ical and socio-economic covariates in assessing IVs suitability for rice
cultivation. Nevertheless, the success of a predictivemodel also depends
on its ability to producehigh evaluationmetrics both at training and val-
idation stage, an effect known as model generalizability. Our modeling
shows that RF and GLM produced better generalizability compared to
MAXENT and BRT. This characteristicmakes thesemodels better predic-
tive algorithms for unvisited locations as shown by GLM in a study by
Duque-Lazo et al., 2016.

4.2. Covariates importance and response curves

Rice-growing environments in Africa are highly diverse (Saito et al.,
2013; Diagne et al., 2013); even within the same ecology like IVs as
shown in recent studies in West Africa (Djagba et al., 2018; Dossou-
Yovo et al., 2017). Thus, the challenges to area expansion and



Fig. 6. The response curve of the covariates. The covariates represent the reduced set in the final models for each modeling algorithm such as BRT, GLM, MAXENT, and RF. The x-axis
represents the covariates observed values in the complete training dataset while the y-axis shows the corresponding suitability rank with 0 as not suitable and 1 for maximum
suitability. Covariates in the final models are represented by figure a1–a5 for climatic variables, b1–b3 for the agricultural water productivity and soil water content variables, c1–c5 for
the soil chemical properties variables, d1–d7 for soil physical properties, and e1 vegetation index and f1–f3 for socio-economic variables. The abbreviation Norm. corresponds to the
normalization of the covariate using the fuzzy linear method.
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intensificationwidely vary by ecology (Niang et al., 2017)with opportu-
nities for increasing rice production depending, to a large extent, on bio-
physical and socio-economic environments. In our spatially explicit
characterization of the biophysical and socio-economic suitability of
IVs ecology for rice production, 25 covariates were considered in the
final model setting.

The IVs suitability for rice production inWest Africa largely depends
on the interaction between biophysical factors including climate, soil
types and, hydrology (Niang et al., 2017; Tanaka et al., 2017). Rainfed
ecosystems represent 70% of the rice production area in Africa while
rainfed lowlands account for 38%. As such, climatic conditions play a
vital role and influence other biophysical factors such as hydrology
and soil conditions (Touré et al., 2009; Tsubo et al., 2006). Considering
the climatic covariates, the prediction of our models for annual precipi-
tation (BIO12) as (Unsuitable b1000 mm; Marginally suitable—
1000–1250 mm; moderately suitable—1250–1500 mm; highly suit-
able—1500–1750 mm) agreed on overall with the Sys et al. (1991,
1993) suitability ranges (Unsuitable b900 mm; Marginally suitable—
950–1100 mm; moderately suitable—1200–1400 mm; highly suitable
N1400) for rainfed lowland rice. The temperature parameter is indi-
rectly incorporated in themodeling through the Isothermality predictor
(BIO3) that is computed based on the minimum and maximum



Fig. 7. Binary maps showing predicted suitability of inland valleys for rice production. The binary maps are discretization from the continuous probability maps based on the threshold
optimization method (sensitivity = specificity). The thresholds are 0.44, 0.51, 0.19 and 0.50 respectively for BRT, GLM, MAXENT, and RF.
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temperatures. IVs suitability increased with isothermally in the study
area with amaximum value of 75%. This indicates a smaller level of var-
iability in annual temperature in the study region, but a large variability
between the daytime andnighttime temperature that affects inland val-
ley rice cultivation (Dingkuhn et al., 2015). The Isothermality covariate
was constantly selected as one of the main predictors for both biophys-
ical and socio-economicmodels. The precipitation of thewarmest quar-
ter (BIO 18) and the precipitation of wettest quarter (BIO16) were
among important predictors in most cases. However, the optimum
values for BIO18 (100–200mm)were lower compared to the optimum
values for BIO16 (500–900 mm) because rainfed rice, as opposed to ir-
rigated rice, is not cultivated during the warmest quarter.

In the case of rain-fed lowland rice production ecology, studies
showed that the toposequence effects on hydrological variability can
lead to differences in yield (Touré et al., 2009; Tsubo et al., 2006).
Also, local topographical variations are shown to be a greater determi-
nant of drought risk in rainfed lowlands than soil variations (van Oort,
2018; Dossou-Yovo et al., 2018). In the present study, elevation was
constantly among themain predictors for all models increasing suitabil-
ity up to an optimum value of 350 m. This could be explained by a re-
duced flooding risk with an increase in elevation. But since both
studied countries exhibit a decrease in rainfall and an increase in eleva-
tion patterns following the gradient south-north, regions located above
the elevation 350m presentedmarginal climatic conditions for rice cul-
tivation. Conversely, the slope was not important predictors across
models with decrease suitability to slope value of 10%. Beyond this
value, suitability remains marginal or present unsuitable condition for
rice cultivation. A similar study on lowland suitability in Laos using RF
showed similar response curve for slope with values b5% representing
higher suitability (Laborte et al., 2012). The difference in the threshold
could be explained by the overall difference in topography as Laos is
hilly and mountainous while Togo and Benin are relatively flat. There-
fore, a lower value of slope in Benin and Togo could be similar to higher
flooding risk. The flow accumulation covariate, a cumulative count of



Fig. 8. Area coverage of the suitability classes for Benin and Togo as predicted by each model.
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the number of pixels that naturally drain into outlets, obviously showed
increased suitability with higher values with similar results by Laborte
et al. (2012).

The use of socio-economic covariates provided the means to in-
clude in our modeling the market opportunities for IVs rice produc-
tion. The importance of the accessibility captured by the travel time
to urban centers (ACESS), the Euclidian distance to the road network
(EUCDIST). The suitability of IVs decreased exponentially with lon-
ger travel time with critical values varying between 100 and
200 min beyond which the IVs becomes unsuitable. Similarly, the
suitability showed an exponential decrease with EUCDIST with a
critical range of 1.25 to 5 km. Similar response curves were found
for covariates related to distance by Laborte et al. (2012). A study
on the drivers of household food availability in sub-Saharan Africa
suggested that targeting poverty through improving market access
is a better strategy to increase food security (Frelat et al., 2016) in
the contest of crop production. Albeit the importance of these
socio-economic predictors for IVs suitability, a study showed that ge-
ography cannot explain, on its own, the agricultural use of IVs ecol-
ogy (Dossou-Yovo et al., 2017). As discussed in the latter study,
about 40% of the inland valleys abandoned by farmers were located
in relatively high population-density areas close to the main road
and to the market. Meanwhile, biogeography elements including
soil fertility status, hydrological regimes among others are strong
players in the agricultural land use of the IVs.
4.3. IVs spatially explicit distribution and its implications for Togo and Benin
rice self-sufficiency

While most African countries are far from being self-sufficient in
their rice consumption, area expansion will play a major part in filling
that gap (Van Oort et al., 2015). There is an estimated 450,000 Ha of
IV in Togo while Benin has 860,000 Ha of IV. Our modeling resulted in
155,000–225,000 Ha suitable IV in Togo; corresponding to 34.4–50.0%
of the total IV area. Using rice area, production and yield data from
FAO statistics (FAO STAT, 2017) on the various rice ecology in combina-
tion with 2016 rice consumption data in Togo, we estimated that 53.8%
of the suitable IV area (121,133Ha) is needed to attain self-sufficiency in
rice (see Supplementary material 2). Thus, the remaining 103,866.6 Ha
can be safeguarded for other purposes. Alike Togo, Benin suitable IV rep-
resents 351,000–406,000 Ha corresponding to 40.8–47.2% of the total
inland valley area. We estimated that 60.1% of the Benin suitable IV
area (244,149 Ha) is needed to attain self-sufficiency in rice while
161,850 can be used for other purposes.

With the commitment of Togo and Benin to double their domestic
rice production (BNRDS, 2011; TNRDS, 2010), it appears that at least
50% of the highly suitable areas in both countries could be used to attain
this objective while the remaining can be safeguarded for other ecolog-
ical services. A study showed that with improvedwater andweedman-
agement, Africa could be self-sufficient in rice with b10% of the total
inland valley area (Rodenburg et al., 2014).



Fig. 9. Predicted ensemble binary suitability of IVs rice shown in the leftwindow and a zoomon 4 selected areas: two in Togo (A, B) and in Benin (C, D) at afiner scale - 1:215,781 forwhich
we showed binary suitability and continuous probability maps.
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5. Special use of ENM in agriculture and uncertainties

Some discussions on the use of Environmental Niche Models
(ENMs) in agriculture tend to compare correlative species distribu-
tion and mechanistic models and in some cases the combination of
both (Estes et al., 2013; Nabout et al., 2012). Most of these studies
showed that mechanistic models often require more time, effort, re-
sources and data to construct and validate (Kearney and Porter,
2009) compared to correlative models. Nabout et al., 2012 and
Estes et al., 2013 showed that correlative models can produce the
same or better accuracy as mechanistic models for predicting both
crop suitability and productivity. Correlative species distribution
models as used in the present work relate known geographical loca-
tions of species (e.g. here inland valley rice) with environmental pre-
dictors to estimate suitability gradient (Peterson, 2006). However,
Elith and Leathwick, 2009 described 4 issues in the use of these
models related to ENM theory: 1) non-environmental factors that
may impact occurrence data, (2) the assumption of niche
conservatism, (3) the interaction with other species, and (4) the en-
vironmental migration of species to adapt to environmental changes.
In the context of crop suitability mapping, these uncertainties may
be introduced by the rate of adoption of novel techniques and the in-
troduction of new crop varieties in crop production systems, the eco-
nomic activities, and trade that influence crop production (Beck,
2013). Therefore, high demand for rice commodities in West Africa
coupled with technological adoption and introduction of new rice
varieties may influence where rice is planted and thus introduce un-
certainties in rainfed rice correlative suitability mapping. Thus, the
effort to introduce new spatial explicit predictors data related tech-
nological adoptions, new varieties could significantly improve the
correlative models' predictive power.

Although our modeling exercise was complex in terms of covariates
choice, models parameter tuning in order to get the best results possi-
ble, our results are not beyond criticism. Such caveats are related to
known limitations of ecological niche modeling (Jarnevich et al., 2015;
Beale and Lennon, 2012; Araújo and Guisan, 2006) including but not
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limited to incomplete and potentially biased sampling, the quality of
predictors used as well as missing of potential important predictors.
This study made use of 1091 geo-located IVs of which 818 were with
the presence of rice, it is not clear whether this sampling is complete
enough to be representative of all environmental gradient present in
the study area especially those related to soil properties. Thus we are
in support of the fact that these results should be treated as a hypothesis
to be tested and validated with additional sampling and modeling
(Jarnevich et al., 2015). The soils related covariates used are themselves
model prediction with subsequent related limitations including
undersampled locations in Africa (Hengl et al., 2017a, 2017b; Hengl
et al., 2015) and is certainly reflected in our modeling results. As an ex-
ample, the initial models' results showed that total nitrogen (TNO) was
one of the top predictors but resulted in decreasing suitability with in-
creasing values of NTO. The result showed the opposite of what was ex-
pected, and the variable was further removed from the final model
setting. However, these datasets are the best available owing to the
lack of national spatially-explicit soil data. Other important predictors
of IVs used for rice production such as presence of rice mill, percentage
of female farmers in the inland valley (Justin Fagnombo Djagba et al.,
2018) as well as ethnicity and land tenure status as noted by Laborte
et al. (2012) are missing in our model.

6. Conclusions and outlook

This study is the first step toward a detailed spatially explicit under-
standing of the rainfed lowland rice system in West Africa. Differences
in the models' predictions suggest that the multi-model approach and
consensus modeling is the best way to increase confidence in the re-
sults. Our modeling showed that BRT and MAXENT produced higher
evaluation metrics compared to RF and GLM. Topographical variables,
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climate covariates as well as soil water content parameter are major
predictors' suitable inland valley condition for rainfed rice cultivation.
Also, our results showed that proximity of inland valleys to roads and
urban centers provide an additional suitable condition for rice produc-
tion. This study shows that Togo and Benin have enough IVs suitable
tomeet their domestic rice production. The studyprovides an important
insight into the spatially explicit potentials of IVs of both countries, but
only represent the first stage of a more complex evaluation. A local and
participatory approach to assess the detailed feasibility to implement
rice production in currently uncultivated areas would be required. Fu-
ture research should also consider the specificity of rice varieties and
technological advancements in rice suitability modeling. Besides, the
suitability of the IVs ecology for rainfed rice under climate change sce-
narios needs to be further explored.
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Appendix 1. Covariates data
Table A1

Covariates considered in the IVs suitabilitymodels including the covariate name, covariates definition, steps taken to create the covariates and/or the source of the original data, the spatial
native resolution, and unit, the covariate inclusion in the final models.
No Covariate Covariate definition

name
Creation step/source
 Native spatial
resolution/unit
Included
(yes/no)
limatic variables

BIO1
 Annual mean temperature
 www.worldclim.org
 1 km (°C)
 No

BIO2
 Annual mean diurnal range
 www.worldclim.org
 1 km (°C)
 No

BIO3
 Isothermality
 www.worldclim.org
 1 km (%)
 Yes

BIO4
 Temperature seasonality
 www.worldclim.org
 1 km (°C)
 No

BIO5
 Maximum temperature of warmest month
 www.worldclim.org
 1 km (°C)
 No

BIO6
 Minimum temperature of the coldest month
 www.worldclim.org
 1 km (°C)
 No

BIO7
 Annual temperature range
 www.worldclim.org
 1 km (°C)
 No

BIO8
 Mean temperature of wettest quarter
 www.worldclim.org
 1 km (°C)
 No

BIO9
 Mean temperature of driest quarter
 www.worldclim.org
 1 km (°C)
 No
0
 BIO10
 Mean temperature of warmest quarter
 www.worldclim.org
 1 km (°C)
 No

1
 BIO11
 Mean temperature of coldest quarter
 www.worldclim.org
 1 km (°C)
 No

2
 BIO12
 Annual precipitation
 www.worldclim.org
 1 km (mm)
 Yes

3
 BIO13
 Precipitation of wettest month
 www.worldclim.org
 1 km (mm)
 No

4
 BIO14
 Precipitation of driest month
 www.worldclim.org
 1 km (mm)
 No

5
 BIO15
 Precipitation seasonality
 www.worldclim.org
 1 km (%)
 Yes

6
 BIO16
 Precipitation of wettest quarter
 www.worldclim.org
 1 km (mm)
 Yes

7
 BIO17
 Precipitation of driest quarter
 www.worldclim.org
 1 km (mm)
 No

8
 BIO18
 Precipitation of warmest quarter
 www.worldclim.org
 1 km (mm)
 Yes

9
 BIO19
 Precipitation of coldest quarter
 www.worldclim.org
 1 km (mm)
 No
gricultural water productivity and soil water content variables

0
 AETI
 Actual evapo-transpiration and interception
 https://wapor.apps.fao.org/home/1
 250 m (mm)
 Yes

1
 GBWP
 Gross biomass Water productivity
 https://wapor.apps.fao.org/home/1
 250 m (kg/m3)
 Yes

2
 NBWP
 Net biomass water productivity
 https://wapor.apps.fao.org/home/1
 250 m (kg/m3)
 No

3
 AWCH
 Available soil water capacity
 AfSoilGrids250m
 250 m (%)
 No

4
 AWCTS
 Saturated water content (porosity)
 SoilGrids250m
 250 m (%)
 No

5
 WWP
 Available soil water capacity (volumetric fraction) until wilting

point

SoilGrids250m
 250 m (%)
 Yes
6
 NDFI
 Normalized difference flood index
 Derived from MODIS data using
MODIStsp
500 m (index)
 No
il chemical property variables

http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
https://wapor.apps.fao.org/home/1
https://wapor.apps.fao.org/home/1
https://wapor.apps.fao.org/home/1
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able A1 (continued)
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Covariate
name
Covariate definition
 Creation step/source
 Native spatial
resolution/unit
Included
(yes/no)
7
 CEC
 Cation exchange capacity
 AfSoilGrids250 m
 250 m (cmol/kg)
 No

8
 ECN
 Electrical conductivity
 AfSoilGrids250 m
 250 m (dS/m)
 Yes

9
 EXB
 Exchangeable bases total
 AfSoilGrids250 m
 250 m (cmol/kg)
 No

0
 EXK
 Exchangeable K
 AfSoilGrids250 m
 250 m (cmol/kg)
 No

1
 EXNA
 Exchangeable Na
 AfSoilGrids250m
 250 m ()
 No

2
 NTO
 Total nitrogen
 AfSoilGrids250 m
 250 m (g/kg)
 No

3
 ORC
 Soil organic carbon content
 AfSoilGrids250 m
 250 m (g/kg)
 No

4
 PH
 Soil pH in water
 AfSoilGrids250m
 250 m (index)
 Yes

5
 BSP
 Base saturation percentage
 Computed in ArcGIS
 250 m (%)
 Yes

6
 ESP
 Exchangeable sodium percentage
 Computed in ArcGIS
 250 m (%)
 Yes

7
 CFV
 Coarse fragments volumetric
 AfSoilGrids250 m
 250 m (%)
 No

8
 TPHOS
 Total phosphorus
 AfSoilGrids250 m
 250 (mg/kg)
 Yes
il physical property variables

9
 SAND
 Soil texture fraction sand
 AfSoilGrids250 m
 250 m (%)
 No

0
 SILT
 Soil texture fraction silt
 AfSoilGrids250 m
 250 m (%)
 Yes

1
 CLAY
 Soil texture fraction clay
 AfSoilGrids250 m
 250 m (%)
 Yes

2
 TEXT
 Texture
 AfSoilGrids250 m
 250 m (factor)
 No

3
 BLD
 Bulk density
 AfSoilGrids250 m
 250 m (kg/m3)
 Yes

4
 DRAIN
 Drainage
 AfSoilGrids250 m
 250 m (factor)
 No

5
 DEPTH
 Depth to bedrock
 AfSoilGrids250 m
 250 m (cm)
 Yes

6
 DEM
 Elevation
 https://earthexplorer.usgs.gov/
 30 m (m)
 Yes

7
 FACC
 Flow accumulation
 Derived in SAGA
 30 m (factor)
 Yes

8
 SLOPE
 Slope
 Derived in SAGA
 30 m (%)
 Yes

9
 ASPECT
 Aspect
 Derived in SAGA
 30 m (radians)
 No

0
 TWI
 Topographic wetness index
 Derived in SAGA
 30 m (index)
 No

1
 SPI
 Stream power index
 Derived in SAGA
 30 m (index)
 No

2
 TRI
 Terrain ruggedness index
 Derived in SAGA
 30 m (index)
 No

3
 TPI
 Topographic position index
 Derived in SAGA
 30 m (index)
 No

4
 MRVBF
 Multiresolution index of valley bottom flatness
 Derived in SAGA
 30 m (index)
 No

5
 MRRTF
 Multi-resolution ridge top flatness
 Derived in SAGA
 30 m (index)
 No

nd use and Land cover variables

6
 LULC
 Land use land cover
 http://2016africalandcover20m.esrin.

esa.int/

20 m (factor)
 No
7
 SAVI
 Soil adjusted vegetation index
 Derived from MODIS data using
MODIStsp
(500 m) (index)
 Yes
cio-economic variables

8
 POP
 Population density
 CIESIN, 2018
 1 km (persons/km2)
 Yes

9
 ACCESS
 Travel time to cities or accessibility
 Weiss et al., 2018
 1 km (min)
 Yes

0
 EUCDIST
 Euclidian distance of road network
 Derived in ArcGIS
 2 km (m)
 Yes
6

https://earthexplorer.usgs.gov/
http://2016africalandcover20m.esrin.esa.int/
http://2016africalandcover20m.esrin.esa.int/


Fig. A1. Paired correlation between 26 selected covariates.
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Appendix 2. Predicted suitability maps

Fig. A2. Predicted suitabilitymaps (a–d) of the four environmental nichemodels. Panel e showcases the ensemble suitability of the fourmodelswhile panel f displays the consensushabitat
suitability scores indicating the number of the four optimized models that classified a given pixel as having suitable conditions for IVs rice cultivation.
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Appendix 3. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2019.136165.
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