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Climate change-induced reduction in agricultural land suitability of 
West-Africa’s inland valley landscapes 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• West Africa’s agenda for rice self- 
sufficiency remains uncertain under 
climate change conditions. 

• The potential of inland valleys for rain-
fed rice cultivation under future climate 
change uncertainties was assessed. 

• Significant losses of suitable areas due to 
changes in the day to night tempera-
tures oscillations were found.  
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A B S T R A C T   

CONTEXT: Although rice production has increased significantly in the last decade in West Africa, the region is far 
from being rice self-sufficient. Inland valleys (IVs) with their relatively higher water content and soil fertility 
compared to the surrounding uplands are the main rice-growing agroecosystem. They are being promoted by 
governments and development agencies as future food baskets of the region. However, West Africa’s crop pro-
duction is estimated to be negatively affected by climate change due to the strong dependence of its agriculture 
on rainfall. 
OBJECTIVE: The main objective of the study is to apply a set of machine learning models to quantify the extent of 
climate change impact on land suitability for rice using the presence of rice-only data in IVs along with 
bioclimatic indicators. 
METHODS: We used a spatially explicit modeling approach based on correlative Ecological Niche Modeling. We 
deployed 4 algorithms (Boosted Regression Trees, Generalized Linear Model, Maximum Entropy, and Random 
Forest) for 4-time periods (the 2030s, 2050s, 2070s, and 2080s) of the 4 Representative Concentration Pathways 
(RCP2.6, RCP4.5, RCP6.0, and RCP8) from an ensemble set of 32 spatially downscaled and bias-corrected Global 
Circulation Models climate data. 
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RESULTS AND CONCLUSIONS: The overall trend showed a decrease in suitable areas compared to the baseline as 
a function of changes in temperature and precipitation by the order of 22–33% area loss under the lowest 
reduction scenarios and more than 50% in extreme cases. Isothermality or how large the day to night temper-
atures oscillate relative to the annual oscillations has a large impact on area losses while precipitation increase 
accounts for most of the areas with no change in suitability. Strong adaptation measures along with technological 
advancement and adoption will be needed to cope with the adverse effects of climate change on inland valley rice 
areas in the sub-region. 
SIGNIFICANCE: The demand for rice in West Africa is huge. For the rice self-sufficiency agenda of the region, 
“where” and “how much” land resources are available is key and requires long-term, informed planning. Farmers 
can only adapt when they switch to improved breeds, providing that they are suited for the new conditions. Our 
results stress the need for land use planning that considers potential climate change impacts to define the best 
areas and growing systems to produce rice under multiple future climate change uncertainties.   

1. Introduction 

Crop productions need to increase to meet global rapid population 
growth by 2050 and beyond (Tilman et al., 2011; Wise, 2013). Never-
theless, agricultural systems that sustain crop production are subjected 
to changing climate impacts (Schmidhuber and Tubiello, 2008), which 
will potentially affect all aspects of food security (Mbow et al., 2017). 
Climate change is expected to negatively impact crop production in low- 
latitude countries, especially for major crops such as wheat, maize, and 
rice (Challinor et al., 2014; Rosenzweig et al., 2014). For instance, global 
warming will result in plausible rice yield losses if farmers are not 
provided with tools to allow them to adapt to changing growing con-
ditions (Zhao et al., 2016; van Oort and Zwart, 2018). It is acknowledged 
that climate change will affect future rainfed farming through increased 
climate variability and reduced mean annual rainfall (IPCC, 2014). In 
West Africa, for example, a shift in the total amount of rainfall is the 
main driver of change in the sorghum yield (Guan et al., 2015). There is 
evidence of change in precipitation patterns across crop production 
areas even under the lowest emission of the RCP2.6 scenario (Siabi et al., 
2021; Yeboah et al., 2022). Similarly, an analysis of heat stress on crop 
production showed that wetland rice showed high susceptibility to heat 
stress (Teixeira et al., 2013). 

The impact of climate change on crop production and food security 
has been mainly assessed through crop yield change (Challinor et al., 
2014) including studies for rice (Gupta and Mishra, 2019; van Oort and 
Zwart, 2018). However, climate change not only impacts crop yields but 
also the suitability of lands for agriculture (Iizumi and Ramankutty, 
2015). In addition to crop yield responses, climate change will also 
impact sequential cropping, rainfed cropland expansion, and irrigation 
expansion in tropical Sub-Saharan Africa (SSA) (Duku et al., 2018). In 
Ghana, for example, it is estimated that about 9.5% of the potentially 
suitable land will become unsuitable for irrigation in the 2050s, and it is 
expected to reach 17% in the 2070s due to climate change (Worqlul 
et al., 2019). For a wide range of crops, climate change will induce shifts 
in the areas previously suitable for their cultivation (Lane and Jarvis, 
2007). Therefore, to ensure better planning and sustainability of the 
agricultural systems, mapping cropland suitability under climate change 
conditions is important (Akpoti et al., 2019). In SSA, where the main 
crop production is based on rainfed systems by smallholder subsistence 
farmers, the cropland suitability mapping is essential for food security 
designing and implementing adaptation measures. The cropland suit-
ability assessment is considered the process of identifying the likelihood 
of a given location or pixel in the spatial landscape to support the op-
timum growth of the crop, taking into account biophysical and socio- 
economic factors (Akpoti et al., 2019). 

Various approaches can be used in assessing changes in cropland 
suitability under climate change. The discussion often turns around the 
use of process-based (mechanistic) or statistical models (including 
ecological niche models; ENMs) (Akpoti et al., 2019). A meta-analysis of 
both methods comparing modeling climate change impacts from 
process-based and statistical crop models has been conducted before 

(Lobell and Asseng, 2017). The comparison of process-based and sta-
tistical models for low levels of warming showed that there are no 
apparent systematic differences between the predicted sensitivities to 
temperature change (Lobell and Asseng, 2017). Several other studies 
compared the ability of mechanistic models (MMs) and ENMs to predict 
climate change effects on habitat suitability for species. One such study 
was conducted by Hijmans and Graham, 2006 based on MM and certain 
climate envelope models such as Bioclim (percentile distributions), 
Domain (distance metric), GAM (general additive modeling), and 
MaxEnt (maximum entropy). Results showed that while the Domain 
model performed poorly, GAM and MaxEnt (both can be considered 
machine learning methods) were as good as the MM. Machine learning 
methods thus can be used for climate change impacts on land suitability 
for specific crops. The MaxEnt model has also been used to model the 
shifting agricultural suitability of maize and wheat under climate 
change in South Africa (Bradley et al., 2012). There are three major 
reasons for the choice of ENMs over MMs. Firstly, MMs are intense data- 
driven models whose inputs include daily weather data, management 
practices (e.g., planting date), and soil-related parameters. These types 
of data are mostly available at field scales but are often missing on a 
larger scale modeling. Secondly, the spatial distribution of agricultural 
fields and crop types under rainfed conditions infer sufficient biocli-
matic information required for statistical modeling (Akpoti et al., 2021; 
Estes et al., 2013). Thirdly, rainfed lowland rice is often monoculture 
and does not need to account for crop species interactions. 

ENMs have been used in the past to assess the potential impacts of 
climate change on species range shifts risk (Remya et al., 2015; Ashraf 
et al., 2017). A crop suitability assessment based on ENM showed that 
larger area losses occur in the tropical regions of Africa, and southern 
and eastern Asia for crops such as rice, sweet potato, and yam (Beck, 
2013). The approach was also used to assess the vulnerability to climate 
change of the cocoa belt in West Africa (Schroth et al., 2017), on Hass 
avocados across the Americas (Ramírez-Gil et al., 2019), and olive va-
rieties in southern Spain (Arenas-Castro et al., 2020). ENM was also used 
to assess the impact of past climate change on rice area suitability in 
China (Liu et al., 2015) and future climate change on rice area suitability 
in Colombia (Castro-Llanos et al., 2019). 

West Africa is considered to have a high potential for rice production, 
but the region still depends on substantial rice imports. According to the 
Food and agriculture organization of the united nations (FAO) statistics 
on crop production (FAOSTAT, 2021), the main crops produced in 2019 
in Togo and Benin are cassava, maize, yams, sorghum, seed cotton, oil 
palm fruit, dry beans, paddy rice. In the case of rice, the production in 
Togo was 147,053 t with a harvested area of 89,678 ha and an overall 
yield of 1.6 t/ha. For Benin, the paddy rice production was 406,000 t on 
a harvested area of 113,719 ha and a yield of 3.6 t/ha. The limitations of 
the region’s rice production are related to biophysical, socio-economic, 
technological, and eco-environmental factors (Balasubramanian et al., 
2007; Saito et al., 2013). Africa’s rice ecosystems include dryland, deep- 
water, mangrove swamp, upland, lowland, and inland valleys 
(Andriesse and Fresco, 1991). In West Africa, inland valleys are believed 
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to be the future food baskets due to relatively higher water availability 
and soil fertility than the surrounding uplands (Rodenburg et al., 2014) 
and they are targeted by many interventions to improve national rice 
production (Gumma et al., 2009; Sakurai, 2006). In Togo and Benin, 
inland valley rice production represents more than 60% of the countries’ 
rice cultivated areas (Diagne et al., 2013). However, the impact of future 
climate change on the suitability of rainfed rice production in inland 
valleys in terms of direction and magnitude of change remains unclear. 
In this study, we used a biophysically based assessment to quantitatively 

map the climate change impact on inland valley rainfed rice area suit-
ability in Togo and Benin. We used an ensemble of ENMs with spatially 
downscaled climate data from a set of 32 General Circulation Models 
under 4 expected climate change scenarios as input. We used an 
ensemble of ENMs with spatially downscaled climate data from a set of 
32 General Circulation Models under 4 expected climate change sce-
narios as input. We specifically address the following question: How is 
the extent of inland valleys that are suitable for rainfed rice production 
changing because of climate change? The results from this study are to 

Fig. 1. Study area map of Togo and Benin depicting the location of sampled inland valleys.  
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guide policy development on climate change adaptation measures, and 
other development interventions in the rice sector in the region. 

2. Materials and methods 

2.1. Study area overview 

The study area is the national scales of Togo (0◦- 2◦E, 6◦ - 11◦N) and 
Benin (0◦- 4◦E, 6◦-13◦N), two neighboring tropical countries located 
along the Gulf of Guinea in West Africa. The surface area of Togo and 
Benin are respectively about 57,000 km2 and 115,000 km2. Elevation 
relative to sea level across Togo and Benin varies from − 0.43 to 977 m 
(see Fig. 1). Togo is cut across in the center by a chain of hills known as 
the Togo Mountains. This mountainous chain extends southwestward 
into Ghana and northeastward into Benin. In Benin, it is known as the 
Atakora Mountains. The central and southern part of both countries 
forms a large complex of plateaus covered by a mosaic of vegetation 
types. The coastal zone of Togo and Benin is characterized by lagoons 
and marshes formed by rivers. According to the World Bank’s Climate 
Change Knowledge Portal (WBG, 2021), the mean annual temperature 
and rainfall between 1901 and 2016 for Togo and Benin are respectively 
27.0 ◦C - 1170 mm and 27.5 ◦C - 1059 mm. The climate in both countries 
is influenced by the West African Monsoon and the movement of the 
Inter-tropical Convergence Zone (ITCZ). The south of both countries 
experiences two rainy seasons: the first between March and July and the 
second between September and November. Only one rainy season occurs 
in the north from May to November. 

Projected climate trends in Togo showed that the mean annual 
temperature will increase between 1.2 ◦C and 2.7 ◦C in 2040–2059 (RCP 
8.5, Ensemble), by 1.0 to 3.1 ◦C by the 2060s, and by 1.5 ◦C to 5.3 ◦C by 
the 2090s(WBG, 2021). The projected temperature rise in Togo is ex-
pected to be pronounced in the north compared to the coastal zone. 

Contrary to the clear temperature increase projections, projected 
changes in rainfall are uncertain, with huge variability, with climate 
circulation models predicting both increases and decreases, with an 
estimation of an increase in the frequency of intense rainfall events and 
longer periods of drought (WBG, 2021). As in the case of Togo, Benin’s 
mean annual temperature will increase between 1.3 ◦C and 2.9 ◦C in 
2040–2059 (RCP 8.5, Ensemble), 1.0–3.0 ◦C by the 2060s, with the 
northern regions of Benin experiencing the most rapid increase, while 
rainfall projections remain uncertain (WBG, 2021). More generally, 
mean annual temperatures over West Africa are projected to increase by 
3 ◦C to 6 ◦C by the end of the 21st century under RCP4.5 and RCP8.5 
with many CMIP5 models projecting mean precipitation over West Af-
rica to increase during the rainy season with a small delay to the start of 
the rainy season (WBG, 2021). 

2.2. Inland valley delineation 

SSA wetlands comprise 1) coastal plains — including deltas, estu-
aries, and tidal flats, 2) inland basins which consist of extensive drainage 
depressions, 3) river floodplains characterized by recent alluvial de-
posits bordering rivers and 4) inland valleys. It is estimated that inland 
valley wetlands represent 36% of the total wetland land area in SSA (~ 
85 million ha) with only 10–15% of the inland valley area used for 
agriculture (Balasubramanian et al., 2007). Inland valleys are seasonally 
flooded wetlands comprising valley bottoms and hydromorphic fringes. 
A single inland valley is a toposequence of a valley bottom that includes 
hydromorphic edges, dryland slopes, and crests that contribute to runoff 
and seepage in the valley bottom (Wopereis et al., 2008; Balasu-
bramanian et al., 2007) (see Fig. 2). inland valleys are widespread in 
West Africa’s undulating landscape. Their high agricultural production 
potential is due to several reasons among which are a) proximity to river 
water, b) soil fertility, c) water availability even in the dry season, and d) 

Fig. 2. Flows of water from the upland area to the bottom of the inland valley (adapted from Wopereis et al., 2008). IVs are defined by their upstream position 
relative to the hydrological network. Characterization of an IV includes crest or upland area, fringes or edges of the valleys, and the area close to the valley bottom or 
hydromorphic fringes. The catchment area captures the water of the whole hydrological network of an inland valley, from the crest (upland area, without 
groundwater-table influence on crop growth) through the hydromorphic zone (with shallow groundwater table) to the inland-valley bottom (usually flooded in the 
wet season) (Wopereis et al., 2008). 
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contribution of groundwater lateral flow to water availability (Masoud 
et al., 2013). Inland valley ecosystems are favorable for rice production, 
as rice fields are flooded during all or part of the growing period. 
Selecting the most suitable inland valley for rice production is a deter-
minant of good yield, low-risk areas with ongoing exploitation, or new 
areas (Rodenburg et al., 2014). 

To delineate inland valleys for the rainfed rice potential modeling, 
two morphometric indices i.e. the Topographical Wetness Index (TWI) 
and elevation percentile were combined following the methodological 
framework reported in Fig. 3. We used the 30 m Digital Elevation Model 
(DEM) in a projected coordinate system, from which 30 m, 60 m, 90 m, 
120, and 240 m were resampled to delineate all sizes of inland valleys in 
the landscape. The four DEMs were then smoothed using the raster. 

gaussian.smooth function of the Spatial Analysis and Modeling Utilities 
(spatialEco) package in R (Evans et al., 2020). This process allows the 
final inland valley products to have a continuous shape. Elevation 
percentile, which is the ranking of each cell’s elevation relative to all 
other cells in the landscape that fall within a circular window of a given 
radius, is a robust index that contrasts the local topography by differ-
entiating between lowland and the upland (Gallant and Dowling, 2003). 
For each of the DEMs, the elevation percentile was computed based on a 
size 11 × 11 filter kernel in the x and y directions using the function 
wbt_elev_percentile of the Whitebox package in R (Lindsay, 2016). The 
percentile products were first normalized using the fuzzy small mem-
bership then combined using the fuzzy sum membership function in 
ArcGIS. TWI products were derived using the wbt_wetness_index function 

Fig. 3. A methodological framework for inland valleys delineation.  
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in the Whitebox package in R as defined in Eq. 1. The TWI of each pixel 
in the study area is a function of the upslope area (A) per unit contour 
length and the local slope (tanB) as: 

TWI = ln
(

A
tan(B)

)

(1) 

The TWI were further normalized using fuzzy linear membership 
function in ArcGIS, then combined using fuzzy sum. TWI is one of the 
key determinants of soil moisture spatial variability based on the 
assumption that in sloped terrain, topography controls the movement of 
water (Schmidt and Persson, 2003). The final elevation percentile 
product and TWI were combined to form inland valleys by setting a 
threshold. The combination of inland valley products from 30 m and 60 
m indices resulted in too many details where small depressions are 
captured, which were further removed from the final inland valley 
delineated data. Sensitivity analysis of various threshold values was 
conducted. A cut-threshold of 0.9 was finally considered with values 
greater than this threshold defined as inland valleys. The threshold of 
0.9 was validated by comparing the tracked inland valleys on the ground 
with the delineated inland valleys, with an accuracy of 0.8. To exclude 
river floodplains from inland valleys, we used stream order networks 
where higher streams are considered flood plains while lower-order 
streams are generally inland valleys. The total estimated inland valley 
area for Togo and Benin are 450,000 ha and 860,000 ha respectively. 
The suitability modeling of inland valleys for rice production was con-
ducted within the delineated inland valleys buffer. 

2.3. Inland valleys survey data 

The suitability assessment of inland valley landscapes for rainfed rice 
production systems is based on ecological niche modeling and requires 
the use of rice occurrence data, meaning the geo-location of agricultural 
fields where rice is grown in IVs. Between April and September 2017, the 
Africa Rice Center, and its partners in Togo and Benin implemented a 
field campaign under the framework of the project “Efficient Targeting 
and Equitable Scaling of Rice Technologies in Togo and Benin (ETES- 
Rice)”. As reported in Akpoti et al. (2020), 3 main steps were used in the 
field data: 1) a workshop was organized with country experts and 
agronomic extension services to define criteria for rainfed lowland 
including but not limited to the spatial distribution of the inland valleys 
relevant for ecological niche modeling, such that not all sampled inland 
valleys are located along major roads or near towns, the diversity of land 
use in inland valleys concerning presence or absence of rice agro- 
ecological and climatic zones in both countries; 2) and an exploratory 
phase to pre-locate the candidate inland valleys to be surveyed was 
conducted with the assistance of informants and farmers at the village 
level and the use of topographic maps and Google Earth; 3) and the 
survey with a data collection unit which consisted of a specific inland 
valley area users’ group and a systematically recording of inland valleys 
geo-locations using handheld GPS. In addition to location data, other 
relevant information was collected including 1) hydrological data 
(flooding duration in inland valley fringe and valley bottom, maximum 
flow accumulation, duration and frequency, water source in the inland 
valley, emerging and shallow water table at the firings, and valley 
bottoms, and duration), 2) topography and climate information in the 
inland valley, 3) soil information (physical and chemical properties), 3) 
socio-economic and accessibility environment (proximity to roads, 
towns, market places, rice mill, inputs, land ownership, gender, etc.) and 
farm management practices (crop other than rice, total inland valley 
used for rice, yield in the previous years, mode of exploitation of the 
inland valleys, water management practices, etc.). The structure of the 
dataset, which contains more than 50 variables was previously pub-
lished by Djagba et al. (2019), and the dataset was used to define the 
predictors that define the potential of inland valleys for rice production 
(Djagba et al., 2018). The final database contained 408 and 436 inland 

valleys where rice was grown under rainfed conditions, respectively in 
Togo and Benin. 

2.4. Predictors 

2.4.1. Baseline climate characterization 
To represent the current climate in our models, a set of bioclimatic 

predictors were considered from the WorldClim Version2 database 
(http://worldclim.org/version2, Fick and Hijmans, 2017). The biocli-
matic dataset includes 19 bioclimatic predictors derived from average 
monthly temperature and precipitation throughout 1970–2000 at 1 km2 

spatial resolution. This period was referred to as the baseline climate. 
The bioclimatic predictors represent an annual average, seasonal, and 
intra-seasonal as well as limiting environmental factors (O’Donnell and 
Ignizio, 2012). These predictors are related to plant physiological pro-
cesses and have been widely used in species distribution modeling 
(Remya et al., 2015; Hijmans and Graham, 2006) and in cropland 
suitability mapping including rice (Läderach et al., 2013; Beck, 2013; 
Liu et al., 2015). Most of the 19 bioclimatic predictors are highly 
correlated, which may represent a major source of error in the correla-
tive models (Braunisch et al., 2013). Pearson’s correlation coefficient 
value |r| = 0.75 was used as a cut-off threshold to exclude any one of the 
paired highly correlated predictors. Only the climatic predictors that are 
considered most relevant for rice suitability (see Akpoti et al., 2020) are 
maintained in the final predictors’ list including isothermality (BIO3), 
annual precipitation (BIO12), precipitation seasonality (BIO15), pre-
cipitation of wettest quarter (BIO16) and precipitation of warmest 
quarter (BIO18). According to O’Donnell & Ignizio, (2012), these pre-
dictors are defined as follows:  

• Precipitation of the wettest quarter (BIO16) and precipitation of the 
warmest quarter (BIO18) are defined as the quarterly index ap-
proximates of the total precipitation that prevails during the wettest 
and the warmest quarter respectively.  

• Isothermality is defined as quantifying how large the day to night 
temperatures oscillate relative to the annual oscillations. Iso-
thermality is derived by calculating the ratio of the mean diurnal 
range to the annual temperature range as: 

BIO3 =

[
∑i=12

i=1
(Tmaxi − Tmini)

]/

12

max(Tmax1,…,Tmax12) − min(Tmin1,…,Tmin12)
× 100 (2)    

• Annual precipitation is the sum of all total monthly precipitation 
values as: 

BIO12 =
∑i=12

i=1
PPTi (3)    

• Precipitation Seasonality (Coefficient of Variation) is a measure of 
the variation in monthly precipitation totals over the year as: 

BIO5 =
SD(PPTi,…,PPT12)

1 +

(
∑i=12

i=1
PPTi

)/

12
(4) 

Where i = month, Tmax = monthly mean of daily maximum tem-
peratures (◦C), Tmin = monthly mean of daily minimum temperatures 
(◦C), PPT = total monthly precipitation (mm), and SD = standard 
deviation. 

2.4.2. Future climate scenarios 
General Circulation Models (GCMs) climate projections come at 

coarse resolution (typically 70 km by 70 km for the latest assessment; 
IPCC, 2014) while climate change impact studies require finer-scale data 
(Gharbia et al., 2016). Therefore, spatially downscaled and bias- 
corrected climate data obtained from the CGIAR Research Program on 
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Climate Change, Agriculture and Food Security (CCAFS) data portal 
(http://www.ccafs-climate.org/data_spatial_downscaling/; Navarro- 
Racines et al., 2020) was used. These data have been used previously in 
climate change impact on rice yield, cropland suitability, and ecological 
niche modeling (Zwart, 2016; van Oort and Zwart, 2018; Ashraf et al., 
2017). We used 32 GCMs of the Coupled Model Intercomparison Project, 
Phase 5 (CMIP5) models included in the IPCC’s Fifth Assessment Report 
(AR5) for 4 expected climatic scenarios, the Representative Concentra-
tion Pathways (RCP 2.6, 4.5, 6.0 and 8.5; see Table 1 for the complete 
list of models used). We applied a simple average as an ensemble 
approach to the GCMs to minimize the regional variability and un-
certainties associated with these models. In addition to the base period 

Table 1 
List of CMIP5 Global Climate Models used in the modeling (Navarro-Racines 
et al., 2020).  

Model Institution  RCP 

Country 2.6 4.5 6.0 8.5 

BCC_CSM1.1 Beijing Climate 
Center 

China – x x x 

BCC_CSM 1.1 
(m) 

Beijing Climate 
Center 

China – x x x 

BNU-ESM Beijing Normal 
University 

China x x – x 

CCCma 
CanESM2 

Canadian Centre for 
Climate Modeling 
and Analysis 

Canada x x – x 

CESM1(BGC) Community earth 
system model/ 
National Center for 
Atmospheric 
Research 

USA – x – x 

CESM1(CAM5) National Center for 
Atmospheric 
Research 

USA x x x x 

CSIRO- 
ACCESS1–0 

Commonwealth 
Scientific and 
Industrial Research 
Organization/ 
Australian 
Community Climate 
and Earth System 
Simulator 

Australia – x – x 

CSIRO- 
ACCESS1.3 

Commonwealth 
Scientific and 
Industrial Research 
Organization 

Australia – x – x 

CSIRO-Mk3.6.0 Commonwealth 
Scientific and 
Industrial Research 
Organization 

Australia x x x x 

FIO-ESM State Oceanic 
Administration 
(SOA) 

China x x x x 

EC-Earth European Centre for 
Medium-Range 
Weather Forecasts 
(ECMWF) 

Europe- 
wide 
consortium 

– – – x 

GFDL-CM3 NOAA Geophysical 
Fluid Dynamics 
Laboratory 

USA x x x x 

GFDL-ESM2G NOAA Geophysical 
Fluid Dynamics 
Laboratory 

USA x x x x 

GFDL-ESM2M NOAA Geophysical 
Fluid Dynamics 
Laboratory 

USA x x x x 

GISS-E2-H NASA Goddard 
Institute for Space 
Studies 

USA x – x x 

GISS-E2-H-CC NASA Goddard 
Institute for Space 
Studies 

USA – x – – 

GISS-E2-R NASA Goddard 
Institute for Space 
Studies 

USA x x x x 

GISS-E2-R-CC NASA Goddard 
Institute for Space 
Studies 

USA – x – – 

INM-CM4 Institute of 
Numerical 
Mathematics of the 
Russian Academy of 
Sciences 

Russia – x – x 

IPSL-CM5A-LR Institut Pierre 
Simon Laplace 

France x x x x 

IPSL_CM5A_MR Institut Pierre 
Simon Laplace 

France x x – x 

LASG FGOALS- 
G2 

Institute of 
Atmospheric 

China x x – x  

Table 1 (continued ) 

Model Institution  RCP 

Country 2.6 4.5 6.0 8.5 

Physics, Chinese 
Academy of 
Sciences 

MIROC-ESM Atmosphere and 
Ocean Research 
Institute (The 
University of 
Tokyo), National 
Institute for 
Environmental 
Studies, and Japan 
Agency for Marine- 
Earth Science and 
Technology 

Japan x x x x 

MIROC-ESM- 
CHEM 

University of Tokyo, 
National Institute 
for Environmental 
Studies and Japan 
Agency for Marine- 
Earth Science and 
Technology 

Japan x x x x 

MIROC 
MIROC5 

University of Tokyo, 
National Institute 
for Environmental 
Studies and Japan 
Agency for Marine- 
Earth Science and 
Technology 

Japan x x x x 

MOHC 
HadGEM2- 
CC 

Met Office Hadley 
Centre 

UK – x – x 

IPSL-CM5B-LR Institut Pierre 
Simon Laplace 

France – – – x 

MOHC 
HadGEM2-ES 

Met Office Hadley 
Centre 

UK x x x x 

MPI-ESM-LR Max Planck 
Institute for 
Meteorology 

Germany x x – x 

MPI-ESM-MR Max Planck 
Institute for 
Meteorology 

Germany x – – x 

MRI-CGCM3 Max Planck 
Institute for 
Meteorology 

Germany x x x x 

NCAR CCSM4 National Center for 
Atmospheric 
Research 

USA x x x x 

NCC NorESM1- 
M 

Bjerknes Centre for 
Climate Research, 
Norwegian 
Meteorological 
Institute 

Norway x x x x 

NIMR- 
HadGEM2- 
AO 

National Institute of 
Meteorological 
Research, Korea 
Meteorological 
Administration 

South 
Korea 

x x x x 

TOTAL   25 30 19 32 

(x) = GCM is included, (− ) = GCM not included. 
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1970–2000, 4 future periods were considered including 2030s: 
2020–2049, 2050s: 2040–2069, 2070s: 2060–2089 and 2080s: 
2070–2099. The bioclimatic predictors used in the baseline climate 
characterization were considered for all future scenarios. The future 
predictors change and variabilities relative to the baseline period are 
shown in supplementary material 1. 

2.4.3. Other predictors 
In addition to the bioclimatic predictors, other biophysical de-

terminants for inland valley suitability for rice cultivation (Akpoti et al., 
2020) were considered including soil physical and chemical properties, 
topographical indices, vegetation, water availability (see Table 2). In 
addition, socio-economic variables such as population density, travel 
time to cities, and distance to the road are also included. 

2.5. Ecological niche modeling (ENM) 

2.5.1. Overview of the Software for Assisted Habitat Modeling (SAHM) 
The Software for Assisted Habitat Modeling (SAHM v 2.0.1) was 

developed by the United States Geological Survey (USGS) Fort Collins 
Science Center (https://www.usgs.gov/centers/fort) (https://www. 
usgs.gov/software/software-assisted-habitat-modeling-package-vis 
trails-sahm-vistrails-v1, Morisette et al., 2013) for running multiple 

Species Distribution Models (SDMs). SAHM is developed as a package or 
an ensemble of add-on tools in the open-source scientific workflow 
software VisTrails (Freire et al., 2006) with the capability of handling 
input data, pre- and post- processing tasks including the execution of 
algorithms, the evaluation of models, and the display of the spatial, 
graphical and textual results (Talbert et al., 2013). A key pre-processing 
feature in the SAHM software is the automated reprojection, aggrega-
tion, resampling, and sub-setting of predictors data to match predefined 
spatial characteristics — modeling grid or spatial resolution, study area 
extent, and projection system stored in a referenced or template layer. 
SAHM executes SDMs frameworks by combining spatial predictors 
layers, also referred to as environmental predictors — climate, soil, 
vegetation, etc., and field observation or sampling of a given species 
represented by their geographic locations to drive statistical machine 
learning algorithms. Five machine learning algorithms are implemented 
in SAHM, including boosted regression tree (BRT), generalized linear 
models (GLM), multivariate adaptive regression splines (MARS), 
random forest (RF), and maximum entropy (MaxEnt). SAHM has the 
advantage of maintaining the records of the different input data, pre- 
and post-processing steps, and modeling options during models building 
(Morisette et al., 2013), model diagnostics including the generation of 
response curves that graphically represent the relationships between 
predictors and responses that are represented in models as well as the 
ability of modelers to recreate any exploratory step and transfer final 
models to other interested users (Piekielek et al., 2015; West et al., 
2017). SAHM software also includes the transferability function into 
space (calibrated models can also be applied to other regions without 
collection of new species data) and time (calibrated models can be used 
for climate change impact studies based on future scenarios analysis) 
using the “ApplyModel” module. 

2.5.2. Model set up 
We used a correlative ENM approach (Peterson, 2006) that links rice 

crop occurrence in inland valleys with geospatial environmental pre-
dictors. The rainfed rice fundamental niche consists of the set of all 
conditions (predictors) that allow for its long-term survival in terms of 
biophysical conditions such as soil, climate, topography, management 
practices, socio-economic conditions, etc. To model the extent of the 
fundamental niche, we used the realized niche (rainfed rice fields), 
which is a subset of the fundamental niche. 

Studies showed that there is no single best correlative ecological 
niche model (Qiao et al., 2015; Pearson et al., 2006). Regardless of 
similarities in model performances, important variations occur when 
distributional responses to environmental gradients are assessed 
through different algorithms (Akpoti et al., 2022; Beaumont et al., 
2016). Thus, many modelers advocated for ensemble predictive models 
to identify the uncertainties and biases associated with a single modeling 
approach when considering climate change analysis (Hao et al., 2019). 
Therefore, we developed the inland valley suitability models by fitting 
four algorithms in the SAHM software: Generalized Linear Model (GLM), 
Boosted Regression Tree (BRT), Random Forest (RF), and Maximum 
Entropy (MaxEnt). A detailed description of the modeling approach is 
presented in Akpoti et al. (2020). The modeling process followed 7 main 
steps, and are visualized in Fig. 4: 

Step 1 – Input data preparation: This step corresponds to the cre-
ation of the training and testing data used by the machine learning al-
gorithms for training and testing. The SDMs work by considering both 
locations where the species occurs (here, rice field locations in inland 
valleys) and locations where rice is not found, referred to as absence 
data. The 844 inland valleys geolocation dataset where rice is grown was 
split in the ratio of 70% and 30% for calibration (training) and valida-
tion (testing) respectively. In the present case, because true absence data 
was not collected, the SAHM background surface generator module was 
used to establish a surface mask of inland valleys using adhoc bandwidth 
selection based on the Kernel density estimation method (Duong, 2015). 
Thus, 15,000 randomly generated background points or pseudo-absence 

Table 2 
List of predictors.  

No Predictor 
Name 

Predictor definition Native spatial 
resolution/Unit 

1 BIO3 Isothermalitya 1 km (%) 
2 BIO12 Annual precipitationa 1 km (mm) 
3 BIO15 Precipitation seasonalitya 1 km (%) 
4 BIO16 Precipitation of wettest quartera 1 km (mm) 
5 BIO18 Precipitation of warmest quartera 1 km (mm) 
6 AETI Actual evapo-transpiration and 

interceptionb 
250 m (mm) 

7 GBWP Gross biomass Water 
productivityb 

250 m (kg/m3) 

8 WWP Available soil water capacityb 250 m (%) 
9 ECN Electrical conductivityc 250 m (dS/m) 
10 PH Soil pH in Waterc 250 m (index) 
11 BSP Base saturation percentaged 250 m (%) 
12 ESP Exchangeable sodium 

percentagee 
250 m (%) 

13 TPHOS Total Phosphorusf 250 (mg/kg) 
14 SILT Soil texture fraction siltc 250 m (%) 
15 CLAY Soil texture fraction clayc 250 m (%) 
16 BLD Bulk densityc 250 m (kg/m3) 
17 DEPTH Depth to bedrockc 250 m (cm) 
18 DEM Elevationg 30 m (m) 
19 FACC Flow accumulationh 30 m (factor) 
20 SLOPE Slopeh 30 m (%) 
21 SAVI Soil adjusted vegetation indexi 500 m (index) 
22 POP Population densityj 1 km (persons/km2) 
23 ACCESS Travel time to cities or 

accessibilityk 
1 km (min) 

24 EUCDIST Euclidian distance of road 
networkl 

2 km (m) 

Sources: awww.worldclim.org, bFAO Water Productivity Open Access Portal 
(WaPOR)(https://wapor.apps.fao.org/home/1), cAfSoilGrids250m of Africa 
Soil Information Services (AfSIS) (Hengl et al., 2015), dComputed in ArcGIS 
based on total exchangeable bases and cation exchange capacity, eComputed in 
ArcGIS based on exchangeable sodium and cation exchange capacity, fAfSoil-
Grids250m of Africa Soil Information Services (AfSIS) (Hengl et al., 2017), 
gShuttle Radar Topography Mission (SRTM) elevation data(https://eart 
hexplorer.usgs.gov/), hDerived from DEM in SAGA, iDerived from MODIS data 
using MODIStsp: A Tool for Automatic Preprocessing of MODIS Time Series in R 
(Busetto and Ranghetti, 2016), jSocioeconomic Data and Applications Center 
(SEDAC) Gridded Population of the World (GPW) Version 4 (CIESIN, 2015), kA 
global map of travel time to cities to assess inequalities in accessibility in 2015 
(Weiss et al., 2018), lComputed using Euclidean distance tool in ArcGIS and the 
road network data. 
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points were considered with the inland valley’s surface mask, meaning 
that these points were generated within the same delineated inland 
valley buffer as the rice locations points. The SAHM Merged Data Set 
(MDS) module was then used to combine rice location points data, 
extracted values at each point for each predictor, and the pseudo- 
absence points. 

Step 2 – Data pre-processing: SAHM data pre-processing stage is 
useful for formatting and standardizing data from disparate sources. The 
main tool for this process is the PARC (Projection, Aggregation, 
Resampling, and Clipping) module. The PARC tool was used to harmo-
nize the various spatial grids of 30 m to 1 km in the predictors’ dataset 
(see Table 2). The predictors were aggregated and resampled to a grid 
with 90 by 90-m grid cells using the nearest neighbor method. This grid 
size was selected to match the smallest grid size of the delineated inland 
valleys. 

Step 3 – Collinearity analysis. This step consisted of data explo-
ration of predictors correlation and selection. The step allows selection 
and/or exclusion of any variables that may exhibit a high correlation 
with others based on how well each predictor explains the distribution 
of the sampled data points. Pearson’s correlation coefficient value |r| =
0.75 was used as a cut-off threshold. 

Step 4 – Model Fitting. The four models were fitted in step 4 namely 
boosted regression trees (BRT), generalized linear models (GLM), 
random forest (RF), and maximum entropy (MaxEnt):  

• Boosted regression trees (BRT), also called stochastic gradient 
boosting is a machine learning algorithm that uses models that relate 
a response to their predictors by recursive binary splits (regression 
trees) and adaptive methods that combines many simple models to 
improve predictive performance (boosting) (Elith et al., 2008). Three 

main parameters are used to improve BRT performance: 1) the 
maximum number of splits (tree complexity) for fitting each 
regression tree defines the depth of the tree and the maximum level 
of interaction between the predictor variables, the number of itera-
tions (number of trees), and the model regularization (or shrinkage) 
parameter (Müller et al., 2013). Besides, internal cross-validation, 
which limits model growth based on predictive accuracy on inde-
pendent portions of the data is used to avoid overfitting. In the 
present case, BRT was fitted with 5000 trees with a simplification 
method of 10-fold cross-validation with a bag fraction of 0.75. To 
avoid overfitting, a small learning rate of 0.006 was used following 
Jarnevich et al., 2017.  

• Generalized linear models (GLMs) are mathematical extensions of 
linear models and allow for non-linearity and non-constant variance 
structures in the data. They are based on an assumed relationship 
using the logit link function between the mean of the response var-
iable and the linear combination of the explanatory variables (Gui-
san et al., 2002). For inland valleys’ rainfed rice suitability mapping, 
we allowed for a second-order polynomial term and interactions in 
the model. We used the Akaike Information Criterion (AIC) to 
identify the best model. 

• Random Forest (RF) is a tree-based ensemble machine learning al-
gorithm with each tree node depending on a collection of random 
variables using binary recursive partitioning trees. The RF modeling 
as implemented in the SAHM was developed based on the package 
‘randomForest’ in R (Breiman et al., 2011). Three main training 
hyperparameters were specified: the number of trees to grow in the 
forest (ntree), the number of randomly selected predictor variables at 
each node (mtry), and the minimal number of observations at the 
terminal nodes of the trees (node size). We considered 1000, 10, and 

Fig. 4. Summary of modeling steps. Step 1, dataset creation (training/validation); step 2, data exploration (record selection/exclusion); step 3, collinearity analysis 
(predictors selection/exclusion); step 4, model fitting; step 5, model validation/selection; step 6, interpolate over the whole region of interest; step 7, interpolate with 
new climate data over the region of interest. 
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5 of these parameters respectively as similarly adopted in modeling 
by Were et al. (2015).  

• Maximum Entropy (MaxEnt)(Phillips et al., 2006) is a general- 
purpose machine learning method, which is defined as probability 
density estimation where the presence data (here, rice fields point 
data) are assumed to be drawn from some probability distribution 
over the study region. The modeling task of the inland valley rainfed 
rice suitability is to estimate that distribution. To this end, the default 
settings in the MaxEnt model were considered with a maximum 
iteration of 5000, except for the 15,000 background samples, as used 
for the three other models. 

Step 5 – Model validation/selection. Consisted of model validation 
with inspection of evaluation metrics, and assessment of residual sur-
faces and Receiver Operation Characteristics (ROC) plots. 

Step 6 – Interpolate over the whole region of interest. In step 6, 
the models were interpolated over the entire region of interest, i.e., Togo 
and Benin. 

Step 7 – Interpolate with new climate data over the region of 
interest. In this step, the final calibrated models (Step 1 to 6) were 
maintained with the exception that the baseline climate predictors were 
replaced with future climate predictors under the four climate scenarios 
(RCPs 2.6, 4.5, 6.0, and 8.0), and the 4-time steps (the 2030s, 2050s, 
2070s, and 2080s) using the “ApplyModel” module in SAHM. 

2.5.3. Model performance evaluation 
Ecological niche models are usually evaluated by comparing the 

predictions with a set of validations sites using a confusion matrix 
(Allouche et al., 2006). To construct the matrix from the continuous 
probability surfaces (on a scale of 0 to 1), a threshold is needed to 
transform the continuous prediction into binary (suitable, unsuitable). 
To avoid the subjectivity associated with the choice of a threshold, the 
area under the receiver operating characteristic (ROC) curve (AUC), is 
often considered as a standard method to assess the predictive capacity 
of models by summarizing overall model performance over all possible 
thresholds (Jiménez-valverde, 2012). According to Swets (1988), AUC 
values >0.8 indicate high accuracy. In addition to the threshold- 
independent metric of AUC, multiple threshold dependent perfor-
mance evaluation metrics exist and will be reported on including the 
rate of correctly classified cells (overall accuracy), probability of actual 
presences predicted (Sensitivity), probability of actual absences pre-
dicted (Specificity), the kappa statistic and the true skill statistic (TSS) 
(Allouche et al., 2006) were considered (see Table 3). 

2.5.4. Threshold definition 
To convert the continuous suitability predictions into discrete binary 

maps that indicate suitable and non-suitable areas for rainfed rice pro-
duction, we used the “sensitivity equals specificity” threshold which has 
performed well in comparison to other thresholds (Liu et al., 2005). In 
this threshold, there is an equal accuracy in predicting suitabilities 
(Sensitivity) as there is to predict non-suitabilities (specificity). The 

threshold was defined based on test data using the presence-absence 
analysis package in R (Freeman and Moisen, 2008) as implemented in 
SAHM. 

2.5.5. Ensemble prediction 
Studies showed that predictions of alternative models can be variable 

and the use of multiple models within an ensemble forecasting frame-
work is recommended (Crimmins et al., 2013). The ensemble prediction 
approach represents a single prediction that provides a measure of 
central tendency across a suite of individual models thus, providing a 
means to overcome the issue of variability in predictions (Marmion 
et al., 2009). In the present case, a simple average was applied to the 
suitability produced by the 4 algorithms. 

2.5.6. Statistical analysis of suitability changes 
Basic statistics (minimum, maximum, mean, and standard deviation) 

of the continuous predicted suitability maps and area suitability of the 
binary maps from the baseline period models and future scenarios 
models were derived. The approach allowed the evaluation of the 
magnitude of changes in the predicted areas. Suitable inland valley rice 
area extent was computed under the baseline condition as well as suit-
able future rice area by thresholding the predicted probabilities of the 
models. Furthermore, the changes in future suitable inland valleys area 
extent for each country (i.e., Togo and Benin) relative to the baseline 
were computed. To evaluate the statistical difference of future suitable 
rice area change, compared to the baseline area for a given model (e.g. 
GLM), the non-parametric one-sample Wilcoxon signed-rank in R (R 
Development Core Team, R, 2011) was used. This test is used to deter-
mine whether the median of the sample (the various prediction of the 
models over the various periods) is equal to a known standard value (i. 
e., a theoretical value which represent the baseline prediction). The use 
of this non-parametric test is justified by the fact that the data series 
formed by the baseline data and the future projection of each model is 
not normally distributed. Also, we compared the statistical difference 
between future suitable area predictions of any paired models (e.g., GLM 
& MaxEnt or MaxEnt &RF). In this case, the non-parametric unpaired 
two-sample Wilcoxon test (also known as Wilcoxon rank-sum test or 
Mann-Whitney test) was applied. The non-parametric Wilcoxon statis-
tics have been previously used to compare model predictions in 
ecological niche modeling (Zimmermann et al., 2009; Václavík and 
Meentemeyer, 2009). The non-parametric tests, which were used to 
compare the significant differences among models further justified the 
use of the ensemble of the multi-model approach over the single model. 

2.5.7. Modeling assumptions 
The fundamental assumption in correlative ENMs is that such models 

estimate the conditions (or some subset of the conditions) within which 
a species can survive and reproduce (Warren, 2012). In the context of 
this paper, inland valley wetland ecology where rice is mostly grown in 
West Africa under rainfed conditions was considered. Although man-
agement practices, land tenure, and other factors are relevant for rice 
cultivation, these factors were not directly included in the modeling. In 
the potential impacts of climate change on inland valleys’ suitability for 
rainfed rice cultivation assessment, the biophysical factors such as 
topographical, vegetation, soil physical, and chemical properties were 
kept constant. Also, the population density and accessibility are likely to 
change in the future but are assumed constant in the current analysis. 
The focus of this study was to assess the impact of climate change 
without the additional (possibly interactive) effect of population 
growth, infrastructure development, and management practices. 

3. Results 

3.1. Baseline models’ performance evaluation 

All models show good performance with AUC > 0.84 and PCC > 75% 

Table 3 
Definition of the evaluation metrics.  

Evaluation 
metric 

Explanation 

Overall accuracy Percentage of training records that was correctly predicted to be 
either suitable or unsuitable. 

Sensitivity Percentage of training records that was correctly predicted to be 
suitable from all records that were known to be suitable 

Specificity Percentage of training records that was correctly predicted to be 
unsuitable from all records that were known to be unsuitable. 

Kappa statistic Percentage of training records that was correctly predicted to be 
either suitable or unsuitable corrected for the probability of 
making a correct prediction by chance 

True Skill 
Statistics 

The sum of sensitivity and specificity, rescaled between − 1 and 1  
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for both training and testing simulations (Table 4). Other performance 
metrics values confirm the ability of the models to accurately predict 
inland valleys’ suitability for rice production. However, BRT showed 
some level of overfitting as demonstrated by the notable difference be-
tween training and testing values of the performance statistics compared 
to the consistency in the values related to GLM, MaxEnt, and RF. Overall, 
evaluation metrics values for training and testing data are similar in 
GLM and RF. 

3.2. Potential distribution of the baseline suitability 

For both Togo and Benin, the GLM predicted the highest suitable 
areas in the baseline followed by MaxEnt, RF, and BRT (Fig. 5). The two 
extreme positions of the predicted areas occupied by GLM, and BRT may 
be explained by both models’ complexity. BRT put more constraints on 
covariates data than GLM which is simpler in structure. The ensemble 
suitability that includes the 4 models produced an estimated suitable 
area of 4.03 × 105 ha in Benin, which represents 46.7% of the total 
available inland valleys. Similarly, the ensemble estimated area of 
suitable inland valleys represents 1.9 × 105 ha in Togo, corresponding to 
41.8% of the total available inland valleys in Togo. Also, the predicted 
areas suitable for rice production are located throughout the study with 
marginal suitable areas along the coastal zones compared to other parts 
of both countries. 

Table 4 
Baseline models performance evaluation for both training (70%) and testing (30%) of the data. Area Under the Curves (AUC), Overall accuracy or Percentage Correctly 
Classified (PCC), Sensitivity, Specificity, Kappa statistic, True Skill Statistics for the 4 algorithms.  

Evaluation metrics BRT GLM MAXENT RF 

Train Test Train Test Train Test Train Test 

AUC 0.998 0.915 0.850 0.845 0.938 0.892 0.898 0.905 
PCC 98.0 83.9 76.0 75.6 86.75 83.0 81.73 82.2 
Sensitivity 0.975 0.840 0.755 0.756 0.877 0.832 0.823 0.823 
Specificity 0.980 0.839 0.760 0.756 0.867 0.830 0.817 0.822 
Kappa 0.744 0.209 0.115 0.116 0.259 0.196 0.179 0.185 
TSS 0.954 0.680 0.510 0.512 0.744 0.662 0.640 0.646  

Fig. 5. Baseline area suitability. The ensemble represents the simple mean on the binary suitability produced by the 4 algorithms. The ensemble of BRT and RF is also 
reported as they are the only two models used in the future scenarios’ analysis. 

Table 5 
Suitability area (x105Ha) in Togo for all scenarios, time periods and models (N- 
non-suitable, S-suitable).  

Scenarios- 
Periods 

BRT GLM MAXENT RF 

N S N S N S N S 

BASELINE 7.01 1.42 6.09 2.36 6.33 2.10 6.80 1.63 
RCP2.6 2030s 7.61 0.82 7.94 0.51 8.19 0.24 7.11 1.32 
RCP2.6 2050s 7.66 0.77 8.09 0.36 7.88 0.55 7.15 1.28 
RCP2.6 2070s 7.66 0.77 8.09 0.36 7.87 0.56 7.13 1.30 
RCP2.6 2080s 7.65 0.79 8.05 0.40 7.82 0.62 7.11 1.32 
RCP4.5 2030s 7.60 0.83 7.90 0.54 7.72 0.71 7.09 1.34 
RCP4.5 2050s 7.59 0.84 8.05 0.40 7.81 0.62 7.09 1.34 
RCP4.5 2070s 7.59 0.84 8.11 0.33 7.84 0.60 7.07 1.36 
RCP4.5 2080s 7.59 0.84 8.08 0.37 7.83 0.60 7.08 1.35 
RCP6.0 2030s 7.50 0.93 7.63 0.82 7.49 0.94 7.01 1.42 
RCP6.0 2050s 7.47 0.96 7.55 0.90 7.43 1.00 7.01 1.42 
RCP6.0 2070s 7.57 0.86 8.07 0.38 7.74 0.69 7.05 1.38 
RCP6.0 2080s 7.55 0.88 7.85 0.60 7.61 0.82 7.00 1.43 
RCP8.5 2030s 7.55 0.88 8.01 0.44 7.71 0.72 7.03 1.40 
RCP8.5 2050s 7.55 0.88 8.01 0.44 7.71 0.72 7.03 1.40 
RCP8.5 2070s 7.57 0.86 8.05 0.40 7.74 0.69 7.07 1.37 
RCP8.5 2080s 7.56 0.87 8.03 0.42 7.69 0.75 7.05 1.38  
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3.3. Models transfer, future suitability distribution, and changes 

Future scenarios results showed a significant difference relative to 
the baseline predicted areas when considering individual models based 
on the non-parametric one-sample Wilcoxon signed-rank (p-value 
<0.05). Also, the unpaired two-sample Wilcoxon test across all pairs of 
models showed a significant difference between models’ predictions of 
future scenarios (p-value <0.05). This suggests that predictions of suit-
able inland valleys varied from one model to another (see details of the 
individual’s predictions under all RCPs and periods for Togo and Benin 
respectively reported in Table 5 and Table 6). 

In the future scenario’s predictions, MaxEnt and GLM showed grossly 
high area losses (50–60%) while BRT and RF showed relatively lower 
area losses compared to the baseline (17–32%). Thus, in the subsequent 
results, only an ensemble of BRT and RF are used in area change anal-
ysis. The spatial disaggregation of the ensemble suitability of future 
predictions in terms of areas that remained stable (no change), areas 
with suitability losses, and areas with suitability gains are reported in 
Fig. 6 with zoom in selected windows in Fig. 7. The disaggregation is 
further reported as a percentage shared for all RCPs and periods in Fig. 8. 
Overall, stable areas varied from 59% to 63% with higher values in the 
2030s and lower values in the 2080s. Only 2080s of RCPs 2.6 have 
higher suitability of stable areas (62%) compared to 2030s prediction 
among all 4 RCPs. In Togo, stable areas are located along with the 
mountainous areas (Southwest-northeast direction) and the extreme 
north of the country (which is also a hilly zone). The stable areas in 
Benin are also located at high altitudes (see Fig. 1 for topographical 
profile) between 9-degree north and 11-degree north latitude, the cen-
tral part of the country. Comparatively, area losses increased with time 
and emission scenarios, varying from 29% to 37%. Only marginal new 
suitable area gain has been observed representing 3% to 9%. The newly 
suitable areas, although located across both countries (see Fig. 9 for area 
suitability per administrative units), tends to be more pronounced in the 
southern and coastal zones of both countries. 

The estimated future changes of inland valleys area suitable for rice 
production relative to the baseline predictions were quantified for Togo 
and Benin across all four algorithms (Fig. 10). Results show small vari-
ability between the different RCP scenarios and large variability be-
tween the models; but overall, all scenarios and model realizations 
suggest a loss of suitable area for inland valley rice production because 
of climate change when no mitigating measures are taken. More spe-
cifically, on average, results show that in Togo, area losses varied from 
29.8% to 32.1% while Benin area losses varied from 27% to 30.6% 
under RCP 2.6. A similar trend is shown for other RCPs with slightly 
lower values compared to RCP 2.6. These lower values are exceptionally 

noticeable under RCP 6.0 where area losses varied from 21.0% to 26.8% 
in Togo and 17.5% to 26.7% in Benin. This exception may be explained 
by the spatial difference in rainfall under RCP6.0 in both countries 
compared to other RCPs. Under RCP6.0, annual rainfall increased more 
in Benin compared to Togo (see Fig. S1.4, supplementary material 1). A 
similar trend can be observed in the precipitation of the wettest quarter 
(Fig. S1.6, supplementary material 1). Also, annual, and wettest quarter 
precipitation increased more under the 2070s, and 2080s compared to 
the 2030s and 2050s of RCP6.0. Meanwhile, predictors response curves 
showed that the probability of suitable conditions increased with 
increased values of precipitation-related predictors while the opposite is 
observed with temperature. 

3.4. Area losses, gain, and stables related to predictors changes 

We linked the area suitability changes to the variability of future 
predictors values based on stable areas, area losses, and area gains. Area 
gains (Fig. 11), no change (Fig. 12), and losses (Fig. 13) appeared to be 
linked to both changes in future temperature (isothermality) and pre-
cipitation values. Area gains seem to be influenced by higher precipi-
tation values. Most of the points in area gains appear to be above the 1:1 
line for the annual precipitation (BIO12), precipitation coefficient of 
variation (BIO15), and precipitation of the wettest quarter (BIO16) 
(Fig. 11). Most area gains felt above 1000 mm, 60 mm, and 400 mm 
respectively for BIO12, BIO15, and BIO6. For area gains, no clear trend 
is shown for isothermality (BIO3) as equal points appeared to be above 
and below the 1:1 line. For the precipitation of the warmest quarter 
(BIO18), area gains are either on the 1:1 line or below. In areas with no 
change (stable areas) and area losses (Figs. 9 & 10), most points are 
below the 1:1 line for BIO3; which suggests that future high tempera-
tures influence the suitability of area losses and stability. In both cases, 
most of the points are above either follow or above the 1:1 line for 
BIO12, BIO16, and BIO18. Area losses and stability seem not to be 
impacted by BIO15. 

4. Discussion 

4.1. Inland valleys’ suitability changes under multiple climate change 
scenarios 

Our results demonstrate the potential impacts of climate change on 
rainfed agriculture in tropical inland valleys. Changing climate, 
expressed here as changes in the bioclimatic predictors represented in 
our models as annual trends (precipitation-BIO12), seasonality (Iso-
thermality-BIO3, precipitation seasonality-BIO15), and limiting 

Table 6 
Suitability area (x105Ha) in Benin for all scenarios, time periods and models (N-non-suitable, S-suitable).  

Scenarios-Periods BRT GLM MAXENT RF 

N S N S N S N S 

BASELINE 13.34 2.99 11.35 4.98 11.53 4.80 12.99 3.34 
RCP2.6 2030s 14.23 2.10 15.11 1.25 15.67 0.65 13.80 2.52 
RCP2.6 2050s 14.36 1.97 15.45 0.90 15.04 1.29 13.90 2.43 
RCP2.6 2070s 14.38 1.94 15.40 0.96 14.98 1.35 13.88 2.45 
RCP2.6 2080s 14.31 2.01 15.27 1.09 14.87 1.46 13.79 2.54 
RCP4.5 2030s 14.13 2.19 15.16 1.20 14.65 1.68 13.75 2.58 
RCP4.5 2050s 14.24 2.09 15.38 0.97 14.82 1.50 13.80 2.53 
RCP4.5 2070s 14.15 2.18 15.45 0.91 14.74 1.59 13.72 2.60 
RCP4.5 2080s 14.15 2.18 15.45 0.90 14.69 1.64 13.75 2.57 
RCP6.0 2030s 13.96 2.37 14.58 1.78 14.27 2.06 13.57 2.76 
RCP6.0 2050s 13.95 2.38 14.63 1.73 14.34 1.99 13.58 2.75 
RCP6.0 2070s 14.27 2.06 15.61 0.74 15.04 1.29 13.75 2.58 
RCP6.0 2080s 13.90 2.43 15.10 1.26 14.61 1.72 13.54 2.79 
RCP8.5 2030s 14.05 2.28 15.25 1.10 14.60 1.73 13.68 2.65 
RCP8.5 2050s 14.05 2.28 15.25 1.10 14.60 1.73 13.68 2.65 
RCP8.5 2070s 14.16 2.17 15.42 0.93 14.61 1.71 13.75 2.57 
RCP8.5 2080s 14.15 2.18 15.40 0.96 14.53 1.80 13.74 2.59  
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environmental predictors (precipitation of wettest quarter-BIO16 and 
precipitation of warmest quarter-BIO18), strain important impact over 
suitability for rainfed rice production in inland valleys, a process often 
overlooked by studies that focus on climate change impact on rice yield. 
The results indicated a reduction in inland valleys’ suitability for rice 
production under the future climate in Togo and Benin. Our results are 
in support to other similar studies which showed that agricultural lands 
will face major constraints under future climate change uncertainties 
(Lamboll et al., 2017), notably in tropical countries expecting the 

significant losses of suitable cropland (Bradley et al., 2012; Beck, 2013). 
A previous study on the effect of changing climate on rice yields in Af-
rica, assuming no adaptation to these conditions, showed an average 
lowest yield decline of − 9% under RCP 2.6 and the highest decline of 
− 24% in RCP 8.5 relative to the base year yield (van Oort and Zwart, 
2018). A similar study in India showed that despite the increase in rice 
yield under RCP 2.6, there is a decline in rice yield for higher RCPs 
(Gupta and Mishra, 2019). Thus, climatic change is expected to impact 
croplands as demonstrated for rice areas in this study as well as in other 

Fig. 6. Spatial disaggregation of the ensemble suitability (BRT and RF) of future predictions for RCP 2.6 in terms of area that remained stable (no change), area with 
suitability losses, and area with suitability gains. 
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studies (Iizumi and Ramankutty, 2015; Liu et al., 2015). 
Under RCP 2.6, the scenario leading to the lowest greenhouse gas 

concentration levels through a “peak-and-decline” succession for 2050 
and 2100, that aims to keep global warming likely below 2 ◦C above pre- 
industrial temperatures (IPCC, 2014), we still found a significant decline 
in land suitability in both countries for rainfed rice (29.8% to 32.9% in 
Benin and 27% to 30.6% in Togo). Similar trends were observed for the 
intermediate scenarios (RCP 4.5 and 6.0) with slightly higher losses (see 
Figs. 6 & 7). With the scenario, RCP 8.5, leading to high greenhouse gas 
concentration levels through rising radiative forcing, inland valleys 
landscape suitability showed higher losses up to 27% in Benin and 25% 
in Togo by the end of the century. These projections suggest that low-
land rice production will be severely affected by climate change, with 
serious implications for food security in the region. Existing research in 
Colombia, using the MaxEnt model, showed that climate change could 
reduce the area that is suitable for rice production by 60% (Castro-Lla-
nos et al., 2019), a magnitude of suitable area losses supported by our 
results. Also, the same study demonstrated that lowland rice production 
regions may be the most affected by changing climate while higher al-
titudes may become more favorable for rice production. Similarly, our 
predicted suitability maps showed that inland valleys areas that were 
suitable in the baseline and located along with the mountain ranges in 
Togo and Benin (see Fig. 1 for the topographical profile of the study 
area) and other high-altitude areas remained mostly suitable along the 
same gradient (see Fig. 10). Also, other studies showed that rice area’s 
suitability shifts in China match climate change patterns in the country 

(Liu et al., 2015), showing that future agricultural land use planning 
should consider changing environment scenarios. 

GCMs forecasted substantial changes in the bioclimatic predictors 
over the study regions (see supplementary material 1) which limits the 
potential gains in suitability for rainfed rice production and drives the 
predicted suitability decreases over the study area. Although changes in 
the predictions among RCPs remained subtly small, the analysis of the 
suitable inland valleys area reductions showed trends compatible with 
the severity of emission scenarios where lower emissions resulted in 
lower area losses while higher emissions were associated with extreme 
climate conditions and the highest area suitability losses. We showed 
this through the assessment of the spatio-temporal bio-climatic pre-
dictors’ anomaly by comparing the future predictors to the baseline 
climate conditions (1970–2000). The mean anomaly over the study 
areas showed isothermalitity (BIO3) variation between − 10% to +8%, 
corresponding to an annual mean temperature (BIO1) increase between 
+0.5 ◦C in the 2030s (RCP2.6) to more than +4.5 ◦C by 2080s (2080s) 
(Fig. S1.1, supplementary material 1). The modeling showed that inland 
valley suitability decreased with increasing temperature. Heat stress, 
which results from a combination of higher temperatures and lower 
humidity, reduces rice yield through reduced grain quality (spikelet 
sterility) due to transpiration cooling induced by high daytime tem-
peratures and reduced assimilated accumulation due to increased 
nighttime temperature (Wassmann et al., 2009; van Oort and Zwart, 
2018). The magnitude of warming is a function of CO2-equivalent con-
centration i.e., higher RCPs represent higher warming. The spatial 

Fig. 7. Zoom into six selected windows (A-F) in Togo and Benin to show details of the spatial disaggregation of the ensemble suitability of future predictions for RCP 
2.6 (2030s) in terms of area that remained stable (no change), area with suitability losses, and area with suitability gains. 
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variations of BIO1 showed noticeable warming from the south to the 
north in both Togo and Benin (Fig. S1.2, supplementary material 1). This 
can also be inferred by the fact that the points in Fig. 11 (also see sup-
plementary material 1), for BIO3 lay considerably below the 1:1 line. 
The distance between these points and the 1:1 line indicates the tem-
perature (Isothermality) difference. Rice, as a C31 crop, may benefit 
from higher CO2 concentration which could enhance photosynthesis. 
However, this advantage could be limited by an average air temperature 
increase at the same time (Wassmann et al., 2009), a trend predicted 
under all RCPs scenarios for this region. The mean anomaly of iso-
thermality (BIO3) showed a decline in the day to night temperature 
compared to annual temperature oscillations (Fig. S1.3, supplementary 
material 1). In terms of spatial variations, the BIO3 anomaly showed 
negative values in the southern part of both Togo and Benin while 
northeast of Benin and northwest of Togo displayed positive values. In 
general, the southern part of both countries’ BIO3 regime will show a 
higher level of temperature variability within an average month relative 
to the year while the northern part of both countries will undergo the 
opposite phenomenon. 

The mean anomaly over the study area of the annual precipitation 
(BIO12) showed that precipitation will increase in the future under all 

RCPs compared to the present condition with the highest precipitation 
occurring under RCP6.0 (Fig. S1.4, supplementary material 1). Spatially, 
BIO12 will increase mainly in northeast Benin and southwest Togo. 
However, the spatial variations of the BIO12 anomaly showed selected 
hotspots of future rainfall deficits mainly in the coastal zone of both 
countries, some parts of central and northern Togo, and northwest of 
Benin. Also, the central part of Togo and northern Benin showed a 
reduction in seasonal rainfall (BIO15) compared to other parts of the 
countries. Precipitation of the wettest quarter (BIO16) anomaly showed 
a similar pattern as BIO12 while future precipitation of the warmest 
quarter (BIO18) showed a reduction compared to the baseline. These 
trends showed that changing climate may not be homogenous, condi-
tions that may adversity impact food security (Misra, 2014). Drought is 
already a reality in West African inland valleys, causing low agricultural 
profitability and crop production vulnerability (Dossou-Yovo et al., 
2019). Besides, climate change may significantly impact inland valleys 
water yields in West Africa (Danvi et al., 2018), which in turn, will 
jeopardize their ability to support rainfed rice systems. 

4.2. Climate change impacts on the agricultural sector in the region and 
options for adaptation 

The agricultural sector in West Africa is vulnerable to climate change 
due to high climate variability, high reliance on rain-fed agriculture, and 
limited economic and institutional capacity to respond to climate vari-
ability and change (Sultan and Gaetani, 2016). Changing climate in the 

Fig. 8. Inland valleys suitability share by area gain, loss, and no change over Togo and Benin based on the ensemble of BRT and RF.  

1 C3 plants are plants in which the initial product of the assimilation of 
carbon dioxide through photosynthesis is 3-phosphoglycerate, which contains 3 
carbon atoms (https://www.sciencedirect.com/topics/earth-and-planetary-scie 
nces/c3-plant/pdf) 
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region results in late-onset and early cessation dates of rainfall, reduc-
tion of length of the growing period, frequent drought, heat stress (Sarr, 
2012), the reduced potential of the suitable land to support crop among 
others with a need for strong support to research on adaptation to 
climate change (Rhodes et al., 2014). It is projected that global climate 
change effects such as temperature increases and changes in rainfall 
patterns and distribution could result in significant changes in land and 
water resources for rice production as well as in the productivity of rice 
crops grown (Nguyen, 2002). Thus, the primary land class for rice and 
other crops grown in the tropical areas would decline by between 18.4 
and 51% by the end of the century due to global warming, figures which 
are in support of the results from this study (Nguyen, 2002). 

The results of this study present an opportunity to develop new av-
enues of research to adapt rainfed rice systems in inland valleys in the 

region. Our results stress the need for land use planning that considers 
potential climate change impacts to define the best areas and growing 
systems for the production of rice under multiple future climate change 
uncertainties. The relationship between changes in inland valley suit-
ability and isothermality suggested that breeding programs should focus 
on the development of high nighttime temperature and heat tolerant rice 
varieties. The extension services should also support farmers with 
knowledge and early warning systems about changing the planting date 
and proving varieties that have shorter duration to avoid the heat during 
the sensitive growth phases. Improvement in water control and soil 
management in the rice field is considered as one of the adaptation 
measures to climate change, especially in the context of inland valleys 
rice production (Dossou-Yovo et al., 2022). To improve water control 
and soil management and increase the productivity of local rice 

Fig. 9. Inland valleys suitability share by area gain, loss, and no change over administrative units in Togo (Regions) and Benin (Departments) for the period 2030s 
of RCP2.6. 
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production in the context of climate change, a new technology 
(smart-valley approach) was introduced in Benin and Togo in 2010. The 
Smart-valley approach entails good agricultural practices such as land 
leveling, bunding, and puddling in combination with good water man-
agement, which leads lead to greater water storage in the fields and less 
field run-off through bunding and drainage facilities (Arouna and Akpa, 
2019). In practice, the smart-valley approach is based on three pillars 
such as drainage canals, irrigation infrastructure (where water resources 
are available), and bunded and leveled rice fields in the inland valleys 
(Arouna and Akpa, 2019). The smart valley approach allows adaptation 
under actual local conditions to meet farmers’ demands and the climate 
change risks for farmers, such as drought and flooding are reduced 
(Arouna and Akpa, 2019). Also, irrigation is considered as a means of 
adaptation to climate change in Africa in addition to the intensification 
of existing rice land, and the introduction of rice cultivation into highly 
suitable environments (Wassmann and Dobermann, 2007). 

In the general context of West Africa, there is a need to tackle the 
impact of climate change on crop production and agricultural land 
through innovation. For example, new models to allow access to land, 
inputs, credit, and markets are needed, which in turn can influence the 
level of adaptation of the small-scale farmers. Drought-tolerant varieties 
are needed to cope with future climate uncertainties. Early warning 
systems (including those using sensors and mobile apps), new methods, 
and tools to guide farmers on when and where to farm are all relevant to 
the collective effort for adaptation. To this end, is important to include 
these efforts in the agricultural research for development agenda. 

4.3. Caveats of correlative modeling 

Limitations and areas of caution in correlative modeling for native 
species distribution have extensively been discussed in the past, 
including but not limited to sampling issues, clustering of observations, 
choice of predictors and autocorrelation, ecological niche models se-
lection, models evaluations metrics, result interpretations, applications 
of concepts and theories, conceptual flaws in landscape analyses, and 
challenges in models transferability among others (Dormann, 2007; Li 
and Wu, 2004; Peterson et al., 2018; Sillero and Barbosa, 2021; Yates 

et al., 2018). For cultivated species such as rice, most of the above 
limitations still hold when designing an ecological modeling framework 
(Nabout et al., 2012). As discussed in the previous section, we tried to 
minimize the pitfalls by adopting the best practices. Still, some aspects 
warrant further discussions. 

The models relate descriptors of climate to inland valley rice loca-
tions empirically and processes can be implicit (Asse et al., 2020) and 
are estimated by response curves (Dormann, 2007). However, a previous 
study showed that response curves to both climatic and other biophys-
ical predictors of inland valleys rainfed rice cultivation have a reason-
able ecological explanation (Akpoti et al., 2020). The models may also 
seem to suggest that the farmers of inland valley rice crops have adopted 
the best management practices for optimal rice crop development. This 
is not always true however as water, weed and pest control in inland 
valleys have been a major limiting factor in rice cultivation in Africa 
(Rodenburg et al., 2014) and this is not explicitly captured in our 
models. 

Peterson et al. (2018) reported three main limitations that could 
impact the transfer of correlative models in climate change impact 
studies. Firstly, the effects of niche truncation on model transfer to 
future climate conditions are important. To train and evaluate the pre-
dictive skills of the 4 models we used a total of 844 inland valleys 
covering all agroclimatic zones in Benin and Togo. Although not all 
inland valley hydrological regimes or soil and topographical profile may 
be represented in the initial sample, we believe it provides sufficient 
basis for reliable predictions. Further data collection could improve the 
overall predictions of suitable and not suitable inland valleys. Secondly, 
the effects of model selection procedures on future-climate transfers of 
ecological niche models have a clear impact on results. In the present 
study, we used 4 different correlative models. While the direction and 
distribution of change in future inland valley suitability were unani-
mously captured by all models, the potential magnitude of change is 
different among the models; providing some level of uncertainties in 
quantifying how much area loss should be expected from climate 
change. Thus, we strongly support the view that multi-model predictions 
should be adopted to provide a large view of what could be expected 
under multiple future climate uncertainties. Thirdly, the relative 

Fig. 10. Area changes relative to the baseline (1970–2000) in Togo (1.53 × 105 ha) and Benin (3.17 × 105 ha) for the four algorithms.  
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Fig. 11. Relationship between baseline and future state of bioclimatic predictors values in areas presenting gains, in terms of suitability for inland valley rice under 
RCP2.6 for 4 time periods (the 2030s, 2050s, 2070s, and 2080s). The dashed lines represent 1:1 line (no change in the predictor’s future values). BIO3, Isothermality; 
BIO15, precipitation seasonality (Coefficient of Variation); BIO12, annual precipitation; BIO16, precipitation of wettest quarter; BIO18, precipitation of warm-
est quarter. 
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Fig. 12. Relationship between baseline and future state of bioclimatic predictors values in areas presenting no change, in terms of suitability for inland valley rice 
under RCP2.6 for 4 time periods (the 2030s, 2050s, 2070s, and 2080s). The dashed lines represent 1:1 line (no change in the predictor’s future values). BIO3, 
Isothermality; BIO15, precipitation seasonality (Coefficient of Variation); BIO12, annual precipitation; BIO16, precipitation of wettest quarter; BIO18, precipitation 
of warmest quarter. 
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Fig. 13. Relationship between baseline and future state of bioclimatic predictors values in areas presenting losses, in terms of suitability for inland valley rice under 
RCP2.6 for 4 time periods (the 2030s, 2050s, 2070s, and 2080s). The dashed lines represent a 1:1 line (no change in the predictor’s future values). BIO3, Iso-
thermality; BIO15, precipitation seasonality (Coefficient of Variation); BIO12, annual precipitation; BIO16, precipitation of wettest quarter; BIO18, precipitation of 
warmest quarter. 
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contributions of several factors were not considered in the present study. 
The replicate of samples of point data, the individual general circulation 
models, and alternative model parameterizations to overall variance in 
models’ outcomes are not presented. We are aware that doing so will 
quantify the source of uncertainties in models results and should be 
considered in subsequent modeling efforts. 

4.4. Other uncertainties and limitations 

In climate change impacts studies on agricultural systems, the use of 
a single GCM prediction to characterize future climate profiles and no 
bias-correction and spatial downscaling assessment of the products have 
been acknowledged as limitations (Zhang et al., 2017). Our approach 
avoided such drawbacks by including the spatial downscaled and bias- 
corrected the full range of changes in climatic variables as projected 
by the total ensemble of the 32 GCMs of the CMIP5 experiment included 
in the CCAFS database (Navarro-Racines et al., 2020). This approach is 
considered good practice in spatial modeling (Lutz et al., 2016). Still, 
there are major uncertainties in the GCMs predictions, especially for 
rainfall in the region (WBG, 2021). Also, limitations in data used in our 
approach may be related to soil and other topographic parameters, 
which we maintained as constant throughout future predictions. 
Meanwhile, poor agricultural practices that result in land degradation 
and soil losses, as well as climate change and its effects on hydrological 
processes, may affect soil properties in the next decades (Zhang et al., 
2017) with subsequent impacts on food security (Brevik, 2013). 
Currently, we are not aware of any spatial data available on climate 
change impacts on soil properties that can be used in land suitability 
modeling. Studies suggested that future population growth may imply 
competing use of resources, including land for agriculture (Hall et al., 
2017). This aspect was not considered in our modeling, as population 
density was kept constant. 

Aside from data-associated limitations, there are uncertainties in the 
models’ predictions. Results showed a small extent of variability be-
tween the different RCP scenarios but large differences among the four 
algorithms. Still, the trend across all algorithms is clear, suggesting that 
climate change will induce a significant reduction in inland valleys 
suitable for rainfed rice production if no adaptation and mitigation ef-
forts are put in place. In the same line, other studies suggest that, despite 
the uncertainties in the magnitude of impacts, the climate will nega-
tively affect agricultural production in Sub-Saharan Africa (Kotir, 2011). 

5. Conclusion and future research 

In the present study, we carefully analyzed the future inland valleys’ 
suitability for rice production under 4 different climate scenarios and 4 
time periods by explicitly addressing the questions of the magnitude of 
suitable area changes. The modeling showed a significant loss in 
potentially suitable inland valley areas as early as the 2030s up from 
37% under RCP2.6 to about 34% losses by the end of the century under 
RCP8.5. The suitable inland valleys areas which will remain unchanged 
varied from 61% in the 2030s of RCP2.6 to 59% in the 2080s of RCP8.4. 
There were marginal gains of suitable inland valley areas from 3% to 9% 
across scenarios which tend to be located south and coastal areas in both 
Togo and Benin. The suitability changes are both linked to changes in 
temperature and precipitation regimes. Area losses may be explained by 
higher warming while area stability and gain may be linked to increased 
precipitation and lower temperatures. With current rice production far 
from meeting national demands, coupled with rapid population growth 
and dietary shifts, strong adaptation measures along with technological 
advancement and adoption are needed to cope with the adverse effects 
of climate change on inland valley rice fields. Although our modeling 
made use of the current most comprehensive datasets, uncertainties 
remain. Future research may also consider future population dynamics 
in the modeling as well as infrastructure development and their poten-
tial impacts on inland valleys’ agricultural development. The results 

from this study should be interpreted in the context of no adaption 
scenarios. We recommend that subsequent studies may consider adap-
tation options, for example, better field-scale management, the adoption 
of extreme tolerant rice varieties among others. The present results 
could guide researchers, development agencies, and policymakers in the 
future sustainable planning and use of wetlands for food security. 
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