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ABSTRACT 

This study assessed the climate change impacts to streamflow and energy production in 

Shiroro Hydro power dam, located in a Guinean savannah zone in Niger State, Nigeria. 

Rainfall (1981-2015), streamflow (1990-2014), temperature (minimum and maximum) 

(1981-2015) data were collected from Nigeria Meteorological Agency (Nimet) and 

homogenisation test performed on the data using RHtestsV4. The trend in the data was 

evaluated using the Mann-Kendall and Sen’s slope techniques. Assessment of streamflow 

was done by utilising the Soil and Water Assessment Tool (SWAT). Remote Sensing 

datasets such as Digital Elevetion Model, FAO soil map and Moderate Resolution 

Imaging Spectroradiometer (MODIS) land cover were utilised in ArcSWAT to set up the 

watershed. Climate Forecast System Reanalysis (CFSR) was downloaded and served as 

the climate datasets for forcing the SWAT model.  Streamflow data obtained were divided 

into two with the first part used for calibration and the other part for validation of the 

watershed model. Downscaled NCC-NorESM1-M with WRF model output 

(precipitation, maximum and minimum temperature) under RCP 4.5 and 8.5 scenarios 

were extracted for the study area and streamflow simulated for the projected data in 

ArcSWAT. A stochastic dynamic model was employed to assess climate change impact 

on hydropower generation using the simulated output from the SWAT model. The results 

from the trend test showed existence of positive trend in both precipitation and 

temperature (average temperature) for Kaduna and Zaria whilst Minna and Jos indicate 

presence of negative trend in average temperature with Jos precipitation showing no 

significant trend and Minna precipitation series revealing a positive and significant trend. 

The calibration results of streamflow were unsatisfactory for R2 = 0.51 and NSE=0.43 

whilst PBIAS = -2 was very good. The uncertainty criteria of the model p-factor was 0.79 

and r-factor 1.27 which were within the recommended range. The R2= 0.79 and NSE= 

0.77 and PBIAS = 15 values were good during the validation period with p-factor = 0.77 

and r-factor = 0.77. Streamflow increased significantly from the baseline period (1990-

2014) when compared with the projected future scenarios for both RCP 4.5 ad 8.5. 

Generally, energy production were observed to increase alongside revenue generation in 

the future but reliability of the plant was below the acceptable 0.75 reliability. 
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CHAPTER ONE 

1.0                                                 INTRODUCTION 

1.1 Background to the Study 

Renewable energy options have become critical to the mitigation of climate change as 

they provide alternative sources to energy. Renewable energy sources are the primary and 

clean sources of energy. Fourteen percent (14%) of the energy demand of the world are 

satisfied by renewable energy sources, such as geothermal, hydropower, solar, biomass, 

wind and marine energies (Panwar et al., 2011). The use of renewable energy has widely 

been accepted as a decarbonizing option of energy and also because of its ability to 

replenish itself. World Resources Institute (2017) established that the energy sector 

accounts for about 72% of all global emissions of greenhouse gases in 2013. Increasing 

twice the percentage of renewable energy in the power generation market by the year 

2030 could mitigate half of the global required emissions reduction level and with 

improved energy efficiency can bring down the global average rise in temperature to the 

targeted value of below 2 °C which will avert the incidence of catastrophic climate change 

(IRENA, 2015).   

Advancements have been made in the hydropower technologies since its inception and 

therefore makes it a mature technology. Water utilised by hydropower installations 

fluctuate temporally. Nonetheless, the manageable output delivered by hydropower 

facilities that have reservoirs can be utilised to satisfy demands of electricity during peak 

hours and help to balance electricity systems that have large quantities of variable 

renewable energy generation. Some hydropower dams have multipurpose functionality 

as they are utilised for supply of energy, portable water, navigation and drought control, 

irrigation purposes and flood control.  



 

2 
 

Hydropower is an importance source of renewable energy in the world which supplied 

16.4 % of global power supply in the year 2013. Hydropower have become very important 

to the worlds national pool of energy sources with an increase in the development activity 

in the past decade and approximately satisfying 1000 GW of the world’s energy demand 

from total installed capacity with 2013 alone recording 40 GW of installed capacity 

(World Energy Council, 2015). In Nigeria alone, hydropower accounts for 16 % of the 

total energy capacity installed as at the year 2014 (Let et al., 2015). Nevertheless, 

hydropower facilities are vulnerable to climate change impact and affect this affects 

power generation. It is important for vulnerability assessment to climate change 

vulnerable measurements is important to be quantified in order to protect existing 

hydropower. The operation of hydropower reservoirs often designed for additional 

application and uses, for example, flood control, irrigation, drought control, navigation, 

and portable drinking water, in association to the supply of energy. Despite the 

significance of hydropower, Chiang et al. (2013) iterated that hydropower is associated 

with some social, environmental and economic impacts that have to do with its harnessing 

for energy. In terms of social and economic impacts, construction of dams with reservoirs 

have been associated with the relocation of communities from their ancestral homes and 

affecting their livelihoods. In terms of environment impacts, natural vegetation are 

destroyed to during the dam construction and as a result of flooding after impoundment. 

The cost of establishing hydropower power installations is enormous and the economic 

viability in the short term is not lucrative (does not provide high returns in short term 

operations) for private sector to engage in it (Mukheibir, 2007). 

The key challenge is to determine how dams are best able to contribute to African 

countries growth when obtaining reliable and sustainable sources of water, food and 

energy security, at the same time, concurrently avoiding harmful environmental impacts 
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and mitigating adverse impacts on the environment as far as possible (McCartney and 

Girma, 2012). Hydrological resources are likely to be impacted by the changing effect of 

temperature and precipitation in a particular location. Therefore, scientific research is 

required to assess the trend of hydrological and climatic processes and its impacts on 

power generation in the Shiroro catchement area. This will better enhance our 

understanding of the likely effect of climate change on hydropower generation and will 

further aid in the adaptation approaches to cope with its adverse effect. 

 

1.2 Statement of the Research Problem 

Energy is one of the key factors that drives development. In developing countries such as 

Nigeria, access to energy (such as electricity) is major constraints in their development 

and effort targeted to reduce poverty (Oyedepo, 2012). Demand for electricity is expected 

to increase in line with continuous population growth, infrastructure development and 

access to technology in Africa. In Nigeria, Oil and Gas, hydropower, biofuels and waste, 

and coal form part of the current energy sources contributing power to the National Grid 

and individual homes. Aside hydropower which is considered environmentally friendly, 

oil and gas are not environment friendly and are seen as one of the major contributors to 

carbon emission in most countries. Thus, making hydropower a crucial part in the 

country’s effort to reduce carbon emission in the atmosphere as a way of climate change 

mitigation.  

Nonetheless, the impact of climate change on hydrological resources and hydropower 

reservoirs has not been fully explored to reduce uncertainties on a local scale. A number 

of studies have attempted to enhance knowledge on the impact of climate change on 

hydropower and runoff both globally and on a regional scale. Hamududu and Killingtveit 

(2012) investigated the impact of climate change on hydropower facilities globally and 
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discovered that there exist variations (decrease/ increase) in predictions of hydropower 

generations across regions and within regions. Studies such as Mukheibir (2007), Schaefli 

(2007), Chaing et al (2013), Oyerinde et al. (2016) and Ravazanni et al. 2015 have all 

assessed the impact of climate on hydropower generation on a local scale worldwide. 

Their findings acknowledge the importance of climate change impact assessment on 

hydropower dam on local scale as there may exist underlying physical processes which 

may respond to changes in climate uniquely. The uncertainties associated with climate 

change impact prediction still remains a challenge for stakeholders to adequately adapt 

or mitigate these impacts. Currently, there are handful of research works in Nigeria which 

have explored impact of the changing on hydropower generation. Cervigni et al. (2013) 

assess climate change impact on dams (hydropower dams, irrigation and water supply 

dams) in Nigeria using historical runoff data and outputs of global circulation models 

(GCM) in Soil and Water Assessment Tool (SWAT) model whiles Oyerinde et al. (2016) 

also performed impact assessment on Kainji Dam Hydro-electric dam using hydromad 

model to estimate streamflow. There exist little or no research works on the assessment 

of climate change impact on Shiroro dam which this study aim to address. 

The changing trends in rainfall and temperature present the challenge to determining how 

these changes influence hydropower generation in Nigeria. Understanding the amount of 

runoff that will be generated in future will be crucial in management of the dam. 

Physically based hydrological model when coupled with Regional Climate Models will 

go a long way to better help us comprehend the effect of climate change on runoff 

generation in river basins. 
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1.4 Aim and Objectives 

The aim of this study is to assess the impact of climate change on the future energy 

generation at Shiroro dam. The specific objectives of the study are: 

1. Assess the trends in climate (temperature and precipitation) of the study area. 

2. Assess changes in the streamflow. 

3. Assess the future power generation by modelling hydropower dam operation 

policy using Stochastic Dynamic Modelling. 

 

1.5 Research Questions 

1. Is climate change or variability evident in the basin? 

2. What are the effects of rainfall and temperature trends from 1990 -2014 on the runoff 

generation in the Shiroro Catchment area? 

3. What are the projected trends in the rainfall and precipitation of the river Shiroro Dam 

Catchment under RCPs 4.5 and 8.5? 

4. What are the changes to streamflow in the Shiroro Dam Catchment as a result of these 

projected trends? 

5. How would power generation be affected as a result of changes in streamflow? 

 

1.5 Justification of the Study 

Hydropower still remains one of the most important energy source (United State 

Geological Survey (USGS), 2016). Climate Change is anticipated to impact hydrological 

cycle and resources in the world. This will directly affect the utilisation of hydrological 

resources for hydropower generation in West Africa. There are varying prediction of the 

climate change impact on hydrological resources and hydropower generation in West 
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Africa and Nigeria in particular. This makes it imperative to evaluate the effect of climate 

change on hydropower schemes. Shiroro Hydro-Electric plant station has an installed 

capacity of about 600 MW with an actual generation capacity of 350 MW of power as of 

May 2015 (Ley et al., 2015). Making it an important source of energy in Nigeria. Several 

researchers have stressed on the importance of applied scientific research into the 

evaluation of the impact of climate change on hydroelectric facilities. The importance of 

hydropower for power generation and contribution to Greenhouse Gas mitigation, 

coupled with climate change impact on its activities necessitate this study.  

 

1.6  Scope and Limitation of Study 

The study is limited to Kaduna River Basin with the Shiroro reservoir water catchment 

area as the main focus. The aim of this research is to assess climate change impact on 

hydropower dams. The data used for this research are secondary data obtained from 

various agencies. Climate Modelling could not be performed due to the short duration of 

the research period. For this reason, climate model data was obtained from CORDEX 

Coordinated Regional Downscaling Experiment. The research focusses on the impact of 

climate change on runoff generation and its contribution to energy generation. Other 

aspects such as impact of sediments and land use were not considered in this research due 

to availability of data for analysis. 

 

1.7  Study Area 

1.7.1  Kaduna River Basin  

Kaduna River basin (Figure 1.1) is an important river basin in Niger State and Kaduna 

State as a result of its influence on agriculture activities (crop production, fisheries and 

animal production) water supply and electricity generation). It forms part of the lower 
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Niger River Basin and specifically located in the Niger Central hydrological area of 

Nigeria. There exist a total of eight (8) hydrological areas in Nigeria (Figure 1.2), namely 

Niger North, Lake Chad, Niger Central, Eastern Littoral, Western Littoral, Niger South, 

Upper and Lower Benue hydrological areas (Cervigni et al., 2013).  Subsequently, five 

out of these eight hydrological areas forms part of the Lower Niger Basin comprising of 

Niger North, Niger South, Niger Central, Lower Benue and Upper Benue hydrological 

areas. The River Kaduna is a tributary to the Niger River in Nigeria and it flows into the 

Niger River between Baro and Jebba (Grove, 1972). The source of the Kaduna River 

originates from northwest of Jos (Grove, 1972 and Jimoh & Ayodeji, 2003). The direction 

of flow of the river is westerly and south westerly after it has drained the Jos Plateau at 

an elevation of 1500 m passing through Kaduna Town and thereafter into the Niger River 

(Jimoh & Ayodeji, 2003). The tributaries to the Kaduna River are the Dinya and Sarkin 

River to the left side and the Tubo River on the right (Jimoh & Ayodeji, 2003). 

  

1.7.2  Shiroro Dam and Shiroro Dam Catchment 

For the purpose of this study, Shiroro dam was selected for the assessment of streamflow 

generation of hydropower. The dam is situated in the basin on coordinate latitude 09⁰ 

58’N and longitude 06⁰ 50’E using the Geographic Coordinate System with WGS 84 

datum (Suleiman & Ifabiyi, 2015). The construction of Shiroro Hydroelectric Dam was 

completed in 1989 (Ley et al., 2015). The main purpose of the dam was for the generation 

of electricity. The Shiroro Hydroelectric dam was constructed at Shiroro village by the 

impounding of the Kaduna River at Shiroro Gorge in Niger State (Jimoh &Ayodeji, 

2003). The Shiroro dam reservoir (Figure 1.1) has a lake basin area of about 320 km2 with 

a maximum storage volume of 7 billion cubic metres and the maximum length of the lake 

is 32 km (Suleiman and Ifabiyi, 2015). The Shiroro reservoir dam has an installed 
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capacity of 600 MW, have four Francis turbines which contributes 150 MW each (Adie 

et al., 2012). The part of the Kaduna River Basin contributing streamflow to the Shiroro 

Dam is referred to as the Shiroro catchment. Large percentage of Shiroro Catchment 

(Figure 1.1) area lies in Kaduna State of Nigeria with a small part in Niger State where 

the Shiroro Hydroelectric plant is situated.  

 

Figure 1.1. Nigeria map showing the Shiroro Catchment, Shiroro Reservoir and Kaduna 

River Basin 
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Figure 1.2. The hydrological areas of Nigeria. The study area falls in the region 

highlighted in pink, the Niger Central Hydrological area. (Source: Cervigni et al., 2013) 

 

1.7.3  Climate  

Shiroro is located in Niger State and the location has similar climatic condition. Niger 

State climatic conditions comprises of dry and wet season. Maximum average 

temperature in the dry season are about 38 ⁰C as recorded between March and June (Niger 

State Bureau Statistics (NSBS), 2011). Niger State annual rainfall amount vary from a 

maximum annual amount of 1543 mm to a minimum annual rainfall of 800 mm, with the 

onset occurring in May and the cessation in October. Low monthly rainfall amount is 

recorded in March and April. The annual amount of rainfall in Kaduna ranges from 790 

mm to 1658 mm with an annual average of 1210 mm for a period of 35 years from 1981 

to 2015. The number of days that recorded rainfall (Rainy days) in the year ranges from 
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172 days to 212 days (NSBS, 2011). The dry season occurs from November to March. 

The lowest day recorded temperature is about 21°C. Seasonal climate event such as 

rainfall pattern is influence by the movement of the Intertropical Discontinuity (ITD), 

Tropical Easterly Jet (TEJ) and the Africa Easterly Jet (AEJ) (Omotosho and Abiodun, 

2007; Akinsanola and Ogunjobi, 2014). The inland movement of the West African 

Monsoon (WAM) is associated with the onset of rainfall in West Africa. The hydrology 

of River Kaduna has only one main period of peak flow, which falls between August and 

September. (Adie et al., 2012). 

 

1.7.4  Vegetation and Soil 

Majority of the catchment area of the Kaduna River Basin lies predominantly in Kaduna 

and Niger State in Nigeria. The vegetation of the entire catchment is guinea savannah 

(Jimoh & Ayodeji, 2003). The soils identified in the catchment are Ferric Luvisols, Gleyic 

Luvisols, Luvisols Arenosols, Ferric Acrisols, Orthic Acrisols, Lithosols, Lithic Ferric 

Luvisols, Lithic Chromic Cambisols, Luvic Arenosols and Lithic Chernozens according 

FAO world soil map. The predominant soils identified were Ferric Luvisols covering 74 

% and Gleyic Luvisols covering 16 % of the catchment area.  

 

1.7.5  Topography and Drainage 

Niger state and Kaduna State forms part of West African belt of African Precambrian 

base which are underlain by Sedimentary rocks (Cretaceous-Tertiary rocks) and 

Basement Complex rock origins (Adelana et al., 2008; Obada and Oladejo, 2013 & 

Omanayin and Ogunbajo, 2016). Figure 1.2 illustrate the geology of Nigeria. The 

Precambrian base rocks are the major rocks which underlie the North-Central area of 

Nigeria where the Shiroro Catchment is found including the Jos Plateau (Olugboye, 
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2008). These basement complex rocks comprise of ancient granite, migmatite-gneiss, 

quartzite (Andersen et al., 2005), schists, phyllites and banded iron formations some of 

which are of metavolcanic or metasediments origins (Obada and Oladejo, 2013). These 

rock formations are characterized by limited aquifer or groundwater potential with some 

exceptions in weathered zones (Andersen et al., 2005 and Obada and Oladejo, 2013). 

There also exist Jurassic younger granites present in the region of the Jos Plateau. The 

Jos plateau region and adjacent Plateau areas are sites where Tertiary- Volcanic Rocks 

which are interbedded with alluvial sediments are found (Dan-Hassan, 2016). 

 

Figure 1.3. The Geologic Map of Nigeria (Sourced: Adelana et al., 2008) 
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CHAPTER TWO 

2.0                                            LITERATURE REVIEW 

2.1 Conceptual Framework 

2.1.1 Climate Change and runoff influence on Hydrological Resources 

Climate defined by World Meteorological Organization (WMO) as “the measurement of 

the mean and variability of relevant quantities of certain variables such as precipitation, 

temperature or wind over a period of time from months to thousands or millions of years. 

Classical period accepted is 30 years” (WMO, n.d.).  It defines the mean weather of a 

location over an extended period usually for a 30-year period. Climate change is a 

phenomenon which directly or indirectly affect both the socio- economic environment 

and the natural environment globally.  Enete and Amusa (2010) acknowledged that 

climate change is perhaps the most crucial environmental threat thwarting efforts to 

achieve a world without hunger in all forms (such as extreme hunger), diseases and 

poverty in Africa.  

Climate change is defined as “the change in the state of the climate that can be statistically 

tested or identified by changes in the mean and or variability of its properties that persists 

for an extended period typically decades or longer (Intergovernmental Panel on Climate 

Change” (IPCC), 2007a). Climate change results in the development of extreme weather 

events such as hurricanes, flooding, heatwaves and drought which are evident. National 

Aeronautics and Space Administration (NASA) (2016) attests to the fact that these events 

manifesting today had been predicted by scientist as the effect of global warming in the 

past. This is in agreement with (IPCC, 2007a) AR4 report which deduced that, the volume 

of findings of published works in general predicted that the net costs of destruction 
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imposed by climate change are going to be substantial and the adversely affect likely rise 

with time.   

The impact of climate change on hydrological resources directly affects its utilization for 

power generation. The presence of Greenhouse gases in the atmosphere are the key 

drivers of climate change. Carbon dioxide concentrations have increased significantly in 

the past decade (Keeling et al., 2005). The hydrological cycle has intimate relationship 

with changes in atmospheric radiation balance and temperature. The climate change effect 

on changes in the hydrological cycle, is estimated to affect the timing, distribution and 

quantity of water resources (Goulden et al., 2009). Bates et al. (2008) confirms that 

climate change is going to impose increase amount of pressure on the water availability 

and demand in Africa. They also projected that by the year 2025 nine countries of 

Southern and Eastern Africa, water availability will dwindle to amounts less than 1000 

m3 per person per annum and twelve countries are exposed to limited water availability 

levels of 1000 m3 – 1700 m3 per person per annum, and the most vulnerable people at 

risk of water approximating to 460 million people with majority originating from Western 

Africa.  

Risk on water resources imposed by climate change impact are without doubts crucial to 

the development of hydropower and hydrological resources in general. Some of these 

impacts rely on the changes in the quantity and period of river runs, increased reservoir 

and surface water bodies evaporation as a result of variation in the amount and frequency 

of precipitation and increase in global average temperature will affect the development 

of Hydropower, hydrology infrastructure installations, the management practices and the 

return on investments of investors in the hydro sector of economies (Kundzewicz et al., 

2007; Bekoe and Logah, 2013; Beilfuss and Triet, 2014). Arguably, many literatures have 

establish that climate change will impact water resources and undeniably the development 
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of hydropower sources. Many countries in Africa such as Ghana have had to ration power 

generated from their hydropower installations as a result of hydrological drought impact 

due to variation in the duration and intensity of precipitation received over a period of 

time (Bekoe & Logah, 2013). Eastern African countries such as Tanzania and Kenya, 

have also experienced electricity shortages from their hydropower installations due to 

hydrological drought (Mukheibir, 2007). Due to these impact, governments’ dependence 

on coal, fossil fuel and natural gas in are on the increasing as witnessed currently in Ghana 

as the Akosombo dam had spells of under-operating (Gnansounou et al., 2007). Changing 

climate has made traditional analysis of historical rainfall and river flow data for 

feasibility study of hydroelectric potential substantially unreliable (Milly et al. 2008). 

Beilfuss and Triet (2014) agreed with the findings of World Commissions on Dams( 

2000) reports which deduced that the potential impact of climate change on global 

hydropower installations exist in at least these five important ways: 

1. Climate change changes the reservoir inflows on a seasonal and annual basis due 

to reduction or increase in the runoff of the basin and altered frequency and duration of 

droughts conditions and affecting energy generation capacity; 

2. Increase in surface evaporation as a result of increased in temperature, especially 

from upstream reservoirs and floodplains, reducing energy generation capacity; 

3. Varied timing of wet season flows, especially delayed onset of rainy season 

affecting the dam operations and downstream release patterns.abuj 

4. Increase in extreme flooding events (inflows) event as a result of higher rainfall 

intensity and more frequent intense tropical cyclones and storms, affecting dam safety 

and operational rule curve designed to prevent over-topping; 
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5. Increase in sedimentation load to reservoir, resulting from higher rainfall intensity 

and associated erosion resulting in reduced reservoir capacity (lifespan) and water quality. 

 

2.1.2  Hydropower Dam 

Hydropower is referred to as the energy harnessed from moving water utilising the 

influence of the force of gravity as water moves from higher to lower elevation usually 

through turbines for electricity generation (IPCC, 2007b). It also utilises the kinetic 

energy of water by virtue of its difference in elevation. Hydropower projects includes run-

of-river, dam projects with reservoir and in-stream projects and covers a continuum of 

project scale (IPCC, 2011). Advancements have been in the hydropower technologies 

since its inception and therefore makes it a mature technology. Water utilise by 

hydropower installations vary temporally. However, the controllable output provided by 

hydropower facilities that have reservoirs can be used to meet peak electricity demands 

and help to balance electricity systems that have large amounts of variable Renewable 

Energy generation. Hydropower are utilised for supply of energy, drinking water, flood 

and drought control, irrigation purposes and navigation. The operation of hydropower 

reservoirs often reflects their multiple uses, for example, drinking water, irrigation, flood 

and drought control, and navigation, as well as energy supply. 

Despite the significance of hydropower, Chiang et al. (2013) iterated that hydropower is 

associated with some social, environmental and economic impacts associated with its 

harnessing for energy. The cost of establishing hydropower power installations is 

enormous and the economic viability in the short term is not lucrative (does not provide 

high returns in short term operations) for private sector to engage in (Mukheibir, 2007). 
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2.1.3 Global Climate Models and Downscaling Techniques 

Global climate models outputs provide an efficient and useful means in assessment and 

impacts studies of climate. Global Climate Models (GCMs) are numerical models which 

are used to simulate physical processes in the earth’s atmosphere, ocean, land surface and 

cryosphere. These models run differential equations, laws of physics, chemistry and fluid 

motion which are governing the physical processes. GCMs are very important to climate 

change studies and impact studies as they model global climate and the response of global 

climate to greenhouse gas forcings. Thus GCMs are developed for the prediction of future 

climate changes based on greenhouse gas emission and other aerosols concentration in 

the atmosphere which are defined in emissions scenarios (IPCC 2000, Fiseha et al., 2014). 

General Circulation models that simulate the earth's atmosphere are called Atmospheric 

General Circulation Model (AGCM) whiles Ocean General Circulation models (OGCM) 

simulate the processes of the ocean. Considering the long term interaction (such as the 

high heat capacity of the ocean and its ability to transfer heat around the Globe) between 

the ocean and atmosphere significance to climate, AGCM and OGCM are coupled 

together in assessment of climate during modelling to account for the impact of these 

slow ocean processes in long term simulations (Baede et al., 2001). The high heat capacity 

of the ocean influences the hydrological cycle of the Earth’s climate system through the 

transfer of heat and matter into the atmosphere and serves as a store for carbon dioxide, 

thus coupling aids in accounting for the climate system’s energy budget (Baede et al., 

2001).  

In climate change impact studies and assessment, GCMs and its output are crucial in 

analysing projected future climatic conditions based on scenarios such as Special Report 

on Emissions Scenarios (SRES), Representative Concentration Pathways (RCP) and 

Shared Socio-economic Pathways (SSS). Many authors (Cuo et al., 2013; Pervez and 
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Henebry, 2014; Pervez and Henebry, 2015; Cervigni et al., 2013) have utilised GCM 

output for climate change impact assessment on health, hydrology, hydropower, 

heatwaves, temperature stress on crops, droughts and flooding. GCM model outputs are 

coarse spatially and therefore their utilisation requires the outputs to be downscaled 

before employed for impact assessment on regional scale. The downscaling techniques 

employed are the statistical downscaling and dynamic downscaling (Lafaysse et al., 2014; 

Willems and Lloyd-Hughes, 2016). GCM outputs comes in varieties of different spatial 

and temporal resolutions which fails to realistically represent variables of interest in 

scales suitable for hydrological models during water resources climate vulnerability and 

impact assessment (Layfasse et al.,2014). The difference in GCM models are greater than 

the difference between the RCM when downscaled (Beilfuss & Triet, (2014), which 

makes RCMs accounts for the high uncertainties in the prediction rainfall unlike GCMs 

in West Africa (Gbobaniyi et al., 2014).  

 

2.1.4 Hydrological Modelling  

Hydrological modelling have become unarguably one of the efficient tools for assessing 

hydrological resources and river basin management Adeogun et al.,2014). Hydrological 

model can be considered as a mathematical representation of a hydrological cycle of an 

entire river basin or a part of it. According to (Cunderlik and Burn, 2003), hydrological 

models can be categorised in to three key categories, namely stochastic models, empirical 

and symbolic models. Hydrological models can also be grouped into semi-distributed or 

lumped. 
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2.1.4.1   Soil and Water Assessment Tool (SWAT) and Climate change 

The Soil and Water Assessment Tool (SWAT) is a physically based semi-distributed 

simulation model which can simulate the effects of changes in land use and land cover 

(LULC) and management practices on drainage characteristics of watersheds which have 

variable land use, soil and management practices over extended time periods and mainly 

as a tactical decision planning tool (Neitsch et al., 2005). The model has been utilised 

extensively in the world; in Africa, Asia and the United State. In Africa, SWAT has been 

utilised in hydrological related prediction in countries like Egypt, Sudan, South-Sudan, 

Ethiopia, Eritrea, Ghana, Nigeria, Uganda, Tanzania, Kenya, Burundi, Rwanda and DR 

Congo (Adeogun et al., 2014). Studies like Schuol et al. (2008) utilised the SWAT model 

to investigate the surface and ground water changes on a regional and continental scale 

in Africa. The model application increased in dependability and consistency and has 

gained worldwide audience in its usage because of its usefulness in studying different 

aspects of hydrological system (Akpoti, 2016).  Semi-distributed physically based models 

like the SWAT are well established models for studying the impact of land use practices 

on water, agricultural chemical yields, sediment in complex watersheds. SWAT model 

can be coupled with Global Climate models to make climate prediction. The model has 

proven useful in the impact assessment study of climate change on hydrological processes 

using downscaled and bias corrected data from projected Global Climate Models or 

Regional Climate Model outputs in studies such as (Cervigni et al., 2013 ) where either 

climatic variables (such as rainfall, temperature, relative humidity, solar radiation) are 

utilised in the impact studies. 

Modelling climate change impact on individual dams is important as spatial differences 

affect the magnitude of impact on hydropower (Mukheibir, 2007).   This study explores 
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the application of bias corrected Regional Climate Model data under climate scenario 

forcing 4.5 as input in SWAT model to model changes in streamflow in the future.  

 

2.2 Review of Related Studies 

Mukheibir (2007) studied the potential climate change impact on large-scale hydropower 

schemes in Zambezi basin and Congo basin located in the Southern Africa as the authors 

study area. The study was based on the work and results obtained by Tadross et al. (2005). 

Tadross et al. (2005) downscaled a period of ten years for control and ten years for future 

(2070-2090) Southern Africa climatic conditions from two regional climate models 

(RCMs) nested in HadAM3 general circulation model and forced with A2 SRES emission 

scenario (climate change storyline scenarios from IPCC).  

This produced results for average surface temperature and early and late summer rainfall 

for the periods. The author attested that by 2000 in the twenty-first century, there were 5 

occurrence of years with warmer conditions in Africa since the year 1988 with the 1988 

and 1995 being the years which were warmest among the 5 years with warmer conditions. 

The 2070 predictions for Southern Africa along the coast was showed 1 °C  increase in 

temperature and an increase ranging from 3-5 °C inland of the coastal mountain. The 

result for the simulation changes for 2070 in seasonal rainfall which was predicted by the 

regional climate models forecast for of the sub-continent and the tropical western side 

indicates dryer conditions the specific months, October to November and for January to 

March. The RCMs show that towards the western parts of the tropics, precipitation will 

decrease below the baseline amount and precipitation increase towards the eastern and 

the south-eastern parts which were in agreement to the findings of Hewitson and Crane 

(2006) (Mukheibir (2007). The analysis implied that changes in precipitation and 

temperature poses risk to current the present hydropower installations in four (4) major 
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ways, such as reduction in generated runoff during droughts, losses through evaporation 

of surface water, and increased runoff in wet years and siltation deposits. The Congo 

basin was less prone to evaporation by temperature rise than the Zambezi basin since its 

catchment has more humidity than Zambezi basin. Flooding and rainfall in both Zambezi 

and Congo basin will increase leading to siltation and deposition on hydroelectricity 

installations.  The author concluded that further investigation must be carried on to assess 

the potential impact on the individual catchment sites. 

The study utilised RCM models which have higher resolution than Global Climate 

Models (GCM) and are more specific and closer to actual climate statistics of the place 

(African Climate Policy Centre, United Nations Economic Commission for Africa, 2011). 

Although the study discovered that the Congo basin will be less affected by climate 

change, Strzepek and McCluskey (2006) proved an adverse impact of climate in Southern 

Africa resulting in the reduction in streamflow. 

Schaefli et al. (2007) sought to address the challenges of incorporating a large range of 

scenarios for potential climate change impacts and quantification of related modelling 

uncertainties on the basis of water resources. They utilised four models which were water 

management model, hydrological model, glacier surface evolution model and models for 

generation of local scale meteorological time series under climate change scenario in a 

simulation tool for the Swiss Alps hydropower plant that uses discharge of glacierised 

catchment.  Meteorological time series data was obtained for 1961- 1990 as control period 

and future climate scenarios for period 2070-2099 using RCMs for a range of climate 

change scenarios for to obtain input values such as daily mean temperature, precipitation 

and evapotranspiration and calibration made for these values using a meteorological 

station in the catchment. Penman-Monteith technique was adopted in calculating daily 

evapotranspiration.  The daily discharge was simulated by a hydrological and glacier 
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surface model developed by Schaefli et al. in 2005. They (Schaefli et al. in 2005) also 

developed a deterministic-stochastic model of water release (management model); the 

deterministic side dealing with release based on summer and winter demand and 

stochastic simulate variation in daily release based on electricity demand in the market. 

The modelling uncertainties of each modelling type (in each of the four model) were 

characterized and quantified separately. Monte Carlo simulations was used to simulate 

the overall modelling uncertainties of the behaviour of the system for both the control and 

future time periods. 

The study depicted that there will be an increase of 3.4 °C in the mean daily temperature 

and the minimum simulated mean temperature will be -2.9 °C suggesting the future 

temperature was strictly higher than the temperature of the control period. The 

evapotranspiration simulated was higher in the future value than the control. The 

precipitation distribution varied with some little changes from the control over the future 

period (precipitation slightly decreases in the future). Thus the increase in temperature 

and reduced precipitation connoted increase in glacier melting and increasing in 

vulnerability of release (average difference between planned and actual release through 

turbines). The water through spillage and overtopping was negligible. The study 

concluded that the management system was able to handle the changes imposed by 

climate change. Also a consistent methodology was developed for potential impact 

analysis that illustrate the statistical impact of climate change are significant.   

Chiang et al. (2013) did a similar research on the potential climate change impact on 

hydroelectricity generation on the Kaoping River using river discharge generation as a 

criteria in Taiwan. They utilised a hydrological model GWLF, while the simulated rainfall 

and temperature data were downscaled from four GCMs under emission scenarios A2 

and B2 from IPCC. The findings portrayed that the range of discharge variations was -
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10% to 82% in the wet season and -26 % to 15 % in the dry season. The researchers 

asserted that climate change had the potential to impact the discharge of the river. There 

were uncertainties in modelling as some GCM models predicted high annual rainfall 

whilst others predicted far less with uneven distribution of rainfall.  

Bekoe & Logah, (2013) examined the effects of droughts on the operations of 

hydroelectricity generation in Ghana by analyzing the rainfall in the basin and lake (thus 

dam water levels at point of intake) water levels of the Akosombo dam and establish 

whether previous years of  power crisis in 1943/84, 1997-98, 2003, 2006-2007 were as a 

result of hydrological drought. Rainfall data over a range between 1971 – 2007 from six 

meteorological stations in Bole, Kete-Krachi, Tamale, Yendi, Wa and Navrongo all in the 

Volta basin Catchment and the dam levels spanning 1970 to 2005 were collated for 

analysis. Analysis of rainfall, droughts and water levels were carried out to establish 

occasional water shortages in the crisis years and the resultant power rationing in those 

years was due to hydrological droughts. Thiessen polygon technique and probability of 

exceedance for rainfall were used in the analysis.  

The study highlighted that 1983-84, 1992 and 2001 were actual drought years whilst 

1977, 1988, 1993 and 2006 were nearing drought years. The year 2003 was not a drought 

year but proceeded after a series of drought years causing the shortfall in water in the 

reservoir. The studies also deduced that the return periods of droughts is 10 years and 

affirmed that droughts are major challenge on hydropower dams prompting power 

rationing. 

Although the analytical approach was able to estimate the drought years as a result of the 

variations in the frequency and amount of rainfall received, some factors of the climatic 

system was not included in the analysis, such as temperature and its corresponding 
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evaporation effect on the catchment and the dam, the effect of wind. It appeared this 

method could not be used for future forecasting for evaluating scenarios of climate change 

in order to assess the dam’s vulnerability.  

Ravazzani et al. (2015) also examine climate change impacts on hydropower production 

in the Toce Alpine river basin in Italy. They sought out to quantify the influence of climate 

change on power generation of power plants situated in the Toce Alpine river basin. 

Analysis were performed using two time periods, which are 2001-2010 (past) and 2041-

2050 (future). Two climate models RCMs were used, namely the REMO and RegCM3 

was used for simulations of meteorological forcings and were driven by same global 

ocean-atmosphere-coupled model ECHAM5 using greenhouse emission scenario A1B 

which was the situation in 2001-2010. It used 27 nodes and 64 networks for hydropower 

system where nodes represented by intake and reservoirs, and further each characterized 

by inflow time series that described natural discharge.  FEST-WB model is used to 

simulate continuous streamflow which computes flow routing, surface runoff, infiltration, 

snow and glacier dynamics and subsurface flow. Also, to evaluate how the management 

system and hydropower production are affected by climate change, simulations of three 

periods (2001-2010, 2011-2030 and 2031-2050). BPMPD solver was used in conjunction 

with best management value to compute the economic value. 

Comparing of the findings from 2041-2050 to 2001-2010 (base year) from FEST-WB 

results driven by each, the REMO and that RegCM3, REMO recorded temperature rise 

and increased in precipitation of 1.3 K and 13 % respectfully, whilst RegCM3 recorded 

temperature rise and increased in precipitation of 1.1 K and 25 % suggesting an increased 

in evapotranspiration and discharge for all the durations of the flow curve. There was an 

increase in production in 2030-2050 in autumn from 2001-2010. Significant change in 
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the reservoir management was required deferring what Schaefli et al. (2007) discovered 

in the Swiss Alpine basin.  

The catchment irrigation was not evaluated and the water utilised as drinking water was 

also made negligible as simulations were only steered towards power production. 

Salami et al. (2011) investigated the influence of climate change impacts on water 

resources in the Kainji Hydropower Reservoir catchment. The data series collected were 

reservoir inflow, temperature, rainfall from the hydropower station. The researchers 

utilised statistical analyses techniques such as Mann-Kendall, for assessing the trend of 

the data reduction pattern methods and linear regression. The statistical significance was 

tested to determine whether the trends detected in each data series using Mann-Kendall 

and regression analyses were significant. The fluctuation in the each data series were 

examine using reduction pattern analysis over the period of analysis of the data series. 

Mann-Kendall test indicated a positive trends for rainfall and temperature indicating that 

these parameters have possibly increasing but the significance test demonstrated that only 

temperature was significant. The reservoir inflow had a negative but the trend was not 

significant indicating the possibility of reservoir inflow to reduce slightly over time and 

likely to be unnoticed. They concluded that infrastructure development upstream will 

account for the slight decrease in the reservoir inflow to the dam therefore climate change 

has a negative impact on hydropower generation. 

Fuka et al. (2013) investigated the use of Climate Forecast System Analysis (CFSR) 

meteorological data as an alternative for conventional in situ data for hydrological 

watershed modelling. They examined the performance of CFSR data performance in the 

calibration and validation of SWAT physically based semi-distributed model against 

conventional in situ data which mostly does not adequately represent watershed processed 
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due to their low spatial resolution and may have inherent missing data values. The result 

indicated that CFSR (precipitation and temperature datasets) had a good performance in 

modelling hydrological watershed which was similar to utilising conventional In situ data 

for modelling the same watershed. The authors concluded that CFSR is suitable for 

forcing hydrological model with good performance equally as observed data or even 

better when ground stations are more than 10 km apart.  

Oyerinde et al. (2016) worked to assess climate change impacts on the production of 

hydropower by Kainji hydroelectric dam in Niger River Basin, Nigeria and also account 

for uncertainties in modelling these changes. They estimated the runoff generated in the 

watershed which is flowing from upstream into the reservoir utilising hydrological model 

called Hydromad. Climatic input data of the model were obtained from a number of 

dynamically downscaled GCMs which are part of models used in CMIP5 by utilising a 

RCA regional climate model from the Rossby Centre. These data were used to simulate 

the inflow into the reservoir with two emission scenarios (RCP 4.5 and  RCP 8.5) obtained 

from Africa regional downscaling experiment which are part of the CORDEX 

downscaling experiments. 2010-2035 and 2036-2100 was used as the near future and far 

future years respectively. The observed dam data from Kainji dam was utilised to generate 

a hydropower generation model to predict energy production of the plant in the future. 

IHACRES and ARMAX model were used to model the inflow to the reservoir. GCM 

were downscaled to a resolution of 0.45o × 0.45o resolution with SMHI-RCA RCM within 

CORDEX-Africa regional downscaling experiment. Models were corrected. The study 

suggested that there would be increase in discharge flow to the reservoir resulting to 

increase in hydropower generation for most of the GCM data by both emission scenarios 

considered. Upstream rainfall and potential evapotranspiration will rise with reference to 

the base period due to climate change. Large uncertainties present in the amount of 
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deviations from normal conditions projected across eight downscaled general circulation 

models resulted from large inconsistencies related to precipitation simulations by RCMs 

in West Africa. However, the study did not capture other uncertainties such as the 

utilization and irrigation schemes and also the stochastic nature of dam operating rule.  

The study was not able to include other uncertainties such utilization of the water for 

drinking water and irrigation. With increasing temperature, the amount of evaporation on 

the reservoir surface as a result of the reservoir surface area to volume ratio will affect 

the amount of water formed. A predictive model will be needed to predict changes in the 

management of the dam due to the increase discharged.  

A predictive model will be needed to predict changes in the operating rule of dam due 

increasing or decreasing discharge due to effect of the changing climate. Furthermore, 

modelling climate change impact on individual dams is important as the spatial 

differences as a result of hydroclimatic condition of the dam location and dam design 

might affect the magnitude of the impact on hydropower. 

Climate change future projections are based on models and their dependencies on models 

is important for the accuracy of the predictions. Regional models are generally accurate 

when used in modelling than GCMs in magnitude and even the direction of change, 

resulting in very low confidence in projections of future runoff for hydropower planning 

purposes. Multiple GCM models is required for modelling when they are primarily used 

or they have to be downscaled by RCMs. Prudhomme and Davies (2009) suggested that 

development of further high resolution RCMs is required, at the sub-basin level and 

reaffirming that fact that uncertainties are increases from downscaling techniques of 

different GCMs than RCM. Modelling climate change impact on hydropower dams 

should be based on individual dams as the spatial differences reflect on the magnitude of 
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impacts (Mukheibir, 2007) which prompts the quantifying of the potential impact of 

climate change on Shiroro dam. 
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CHAPTER THREE 

3.0                                       MATERIALS AND METHODS 

3.1 Data Collection 

3.1.1 Land Use Land Cover data 

The Soil and Water Assessment Tool (SWAT) model needs a Land management 

information such as land use data, which serve as model data for the hydrological model 

for simulation. Land use and cover (LULC) information is one of the essential features 

that influences the simulation of streamflow, surface erosion, sedimentation load and 

evapotranspiration in a watershed. Moderate Resolution Imaging Spectroradiometer 

(MODIS) annually compiled Land cover data MCD12Q1 served as the source of Land 

use data. The study area lies within two MODIS tiles h18v07 and h18v08. The MODIS 

land cover datasets were acquired for the year 2013. 

 

3.1.2 River Discharge Gauge Data 

River discharge gauge data values for inflow and outflow tributaries within the Kaduna 

watershed over 24 years of one gauging station was obtained from Shiroro Hydropower 

Station. Discharge data were divided into two parts and used for model calibration and 

validation purposes. Other data such as water level and dam capacity were also used to 

model the management response to the changes in streamflow upstream corresponding to 

the power generated.  

 

3.1.3 Digital Elevation Model (DEM) Data 

Digital Elevation Model (DEM) is an essential geospatial data type in the analysis and 

modelling of different hydrological phenomenon. A well-prepared DEM is essential for 

visualizing the floodplain topography and for accurate modelling of the hydrology of a 
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location (Kalyanapu et al., 2013). Topography of the watershed were obtained from the 

digital elevation model that defines the height of any location in a particular region at an 

exact resolution spatially. DEM with a spatial resolution of  90 m by 90 m was 

downloaded from The Consortium for Spatial Information of the Consultative Group for 

International Agricultural Research (CGIARS-CSI) SRTM (Shuttle Radar Topography 

Mission) website which are post processed and freely distributed. The void filled SRTM 

data available on the CGIARS_CSI SRTM was post processed by Jarvis et al. (2008). 

 

3.1.4 Soil Data of the catchment 

Data required by the SWAT model includes soil data (silt, clay, loam and sand), available 

water content, soil texture, infiltration rate, organic carbon content, hydraulic 

conductivity and bulk density of the catchment area of the basin based on the varying 

layers of each type of soil. Soil records for the basin was acquired from Food and 

Agriculture Organisation’s (FAO) the Digital Soil Map of the World (FAO, 2003) which 

was obtained from the waterbase website 

(http://www.waterbase.org/download_data.html). The information on the various soil 

property was obtained from the global soil table in the MWSWAT database. 

 

3.1.5 Observed and GCM Climatic Data 

Observed in situ daily climate data were obtained from Nigerian Meteorological Agency 

(NiMet). These data were essential to accomplish the requirement of the first Objective 

of this research. The observed climate data was used for the analysis of climate change 

and climate variability of the study area. The in situ data from NiMet was obtained from 

the year 1981 to 2015 for all the synoptic stations. 

http://www.waterbase.org/download_data.html
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The Climate Forecast System Reanalysis data are high spatial resolution data which have 

application in climate and hydrological research studies (Saha et al., 2010). The Climate 

Forecast System Reanalysis (CFSR) data served as the model input climate data which 

was utilised for the initial calibration of the model and also used for validation. The CFSR 

records are provided by the National Center for Environmental Prediction (NCEP) which 

is also available for download on the Texas A&M University spatial sciences website, 

globalweather.tamu.edu. The CFSR data were download from the year 1981 to 2013 from 

the SWAT global weather website since the last year (2014) of the data provided on the 

website was not complete. The number of weather stations (Appendix E) which were 

within the bounding box (coordinate bound shown in Table 3.1) of download were 72 

with 17 stations actually positioned in the watershed after delineation. 

The climate model output data were obtained from the output of the Coordinated Regional 

Downscaling Experiment (CORDEX) atmospheric model simulations. These climate 

change data were easily sourced from West Africa Science Service Centre on Climate 

Change and Adapted Land Use (WASCAL) Centre in Federal University of Technology 

Akure, West Africa Climate System (WACS). This data was key in the modelling of the 

projected river discharge into the Shiroro Dam catchment.  Both historical and future 

scenario data (RCP 4.5 and 8.5) were obtained from the centre. Although ensemble mean 

data of parameters are ideal for reducing the uncertainty associated with climate model 

output, due to unavailability of ensemble mean, the available outputs of WRF331 RCM 

model driven by NCC-NorESM1-M (RCP 4.5 & 8.5) were utilised for the analysis. NCC- 

NorESM1-M general circulation model is a model developed by the Norwegian Climate 

Centre and the Weather Research and Forecasting Model (WRF) is a Regional Climate 

Model developed through joint efforts of the National Oceanic and Atmospheric 

Administration’s (NOAA) National Center for Environmental Prediction, the Air Force 

http://www.globalweather.tamu.edu/
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Weather Agency (AFWA), the Forecast Systems Laboratory (FSL) the Federal Aviation 

Administration, the Nava Research Laboratory and the University of Oklahoma. 

Table 3.1: Climate data collected and the parameters used in the study 

Data Name Data ID 

Location (degree 

Decimal) 

Lon 

(E) 

Lat 

(N) 
 

Data Used 

CFSR  
6.4 9.15 

9.077 11.5 
 

Temperature 

(Maximum and 

Minimum) 

Solar Radiation 

Wind Speed 

Relative Humidity 

Precipitation 

NiMet 

Jos 

Kaduna 

Minna 

Zaria 

8.9 9.867 

7.45 10.6 

6.533 9.617 

7.683 11.133 

  
 

Temperature 

(Maximum and 

Minimum) 

Precipitation 

CORDEX 

AFR-44_NCC-

NorESM1-

M_rcp45_r1i1p1_ 

WRF331_v4_day 

6.4 9.15 

9.077 11.5 
 

Temperature 

(Maximum and 

Minimum) 

Precipitation 

 

AFR-44_NCC-

NorESM1-

M_rcp85_r1i1p1_ 

WRF331_v4_day 

6.4 9.15 

9.077 11.5 
 

Temperature 

(Maximum and 

Minimum) 

Precipitation 

Source: Authors compilation, 2017. 
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3.2 Software Programmes used in the Study 

A number of software programs were used in the conduct of this study. The Table 3.2 

highlights the 8 standalone softwares adopted for the study.  

 

Table 3.2: Software programs utilised in the study 

Software Purpose Source 

RSTUDIO Statistical Analysis 

and quality Check 

RStudio  

https://www.rstudio.com/products/rstudio/downlo

ad/   

RCRAN Statistical Analysis 

and quality Check 

R-Cran project 

https://cran.r-project.org/bin/windows/base/ 

ARCGIS Model input Spatial 

data processing  

ESRI  

http://www.esri.com/en/arcgis/products/arcgis-

pro/Overview  

MODIS 

Reprojection Tool 

(MRT) 

Processing and 

reprojection of land 

cover product 

Land Processes Distributed Active Archive 

Center 

https://lpdaac.usgs.gov/system/files/tools/MRT_d

ownload_Win.zip  

MapWinGIS Processing of 

Spatial data  

MapWindow  

www.mapwindow.org  

SWAT Development and 

Setup of Model 

Texas A&M University  

http://swat.tamu.edu/software/swat-executables/   

CMHyd Downscaling and 

Bias Correction 

Hendrik Rathjens  

http://swat.tamu.edu/software/cmhyd/    

EXCEL Input data 

preparation and 

computation  

Microsoft Corporation  

www.microsoft..com  

WGN Excel 

Macros 

Weather Generator 

file Statistics 

calculation 

Gabrielle Boisramé 

http://swat.tamu.edu/media/41583/wgen-excel.zip 

SWAT-CUP Calibration, 

Uncertainty 

Analysis and 

Validation of Model 

Neprash Technology  

http://www.neprashtechnology.ca/downloads/  

ArcSWAT Development of 

Model 

Texas A&M University  

http://swat.tamu.edu/software/arcswat/  

   

   

Source: Authors compilation, 2017. 

https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
https://lpdaac.usgs.gov/system/files/tools/MRT_download_Win.zip
https://lpdaac.usgs.gov/system/files/tools/MRT_download_Win.zip
http://www.mapwindow.org/
http://swat.tamu.edu/software/swat-executables/
http://swat.tamu.edu/software/cmhyd/
http://www.microsoft..com/
http://www.neprashtechnology.ca/downloads/
http://swat.tamu.edu/software/arcswat/


 

33 
 

The swat model input climate weather files were prepared using Excel and WGN Excel 

Macro was used to compute the weather generator parameters (WGEN statistics). The 

input spatial files were processed for the SWAT model using Map Window, ArcGIS and 

ArcSWAT. Soil and Water Assessment Tool Calibration and Uncertainty Program 

(SWAT-CUP) which is a stand-alone software was use for the model calibration, 

accounting for uncertainties and model validation. CMhyd was utilised to extract climate 

change data for prediction of future hydrological runoff. RStudio was used to achieve the 

Objective 1 by using it to detect trend in data and for other exploratory data analysis. 

MRT was utilised to process MODIS land cover product. 

 

3.3 Processing Hydrometeorological Data 

3.3.1 Data Quality Control 

Importance of data quality in hydrological research cannot be overestimated as it can 

affect the results and conclusion derived. Basic data quality control was done by checking 

whether maximum temperature (Tmax) series where not lower than minimum 

temperature (Tmin) series. There were no negative values for precipitation data and 

replacement of missing data with -99 (which is the accepted value for the SWAT model 

data format) for both climatic and hydrological streamflow data (Neitsch et al., 2010). 

Quality control was conducted using RClimDex quality control component to assess the 

data obtained which assist in the identification of errors such as Tmin greater than Tmax 

and precipitation values lesser than 0.0 mm (Wang, 2010).  
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3.3.2 Homogenisation   

3.3.2.1 Observed Climate data  

High quality and homogenous time series of climate data are important for analysing and 

detecting climatic trend over the study area. Often, climatic long term time series usage 

is hampered due to the presence of inhomogeneity in the data as a result of change in 

instrumentation of sites, changes in the approaches used to record the data overtime and 

systematic errors during data recording. The essence of trend analysis is to detect changes 

as a result of climatic condition, which makes a case for homogenisation of dataset where 

inhomogeneity exist (Wang and Feng, 2013). In this study, the Penalised Maximal F test 

and Penalised Maximal t test without reference series (Wang, 2008a) was used to assess 

homogeneity of the climate data using a package RHtestv4 developed for R statistical 

software environment for detecting and homogenising the Maximum and Minimum 

Temperature series in the in situ weather station data The RHtestV4 was also used to 

homogenised monthly precipitation series (Wang and Feng, 2013). The application in R 

was written and is maintained by Xiaolan Wang and Yang Feng from the Environment 

Canada and available at http://etccdi.pacificclimate.org/software.shtml which has 

functions utilised for detecting potential discontinuities in a base climate series (Wang 

and Feng, 2013). The hormogenisation of the climate data were performed without the 

use of metadata information from the weather stations (Wang, 2008b). In this approach, 

the RHTestV4 detected change points which are identified as type-1 or significant and 

type-0 ‘changepoints’ which are only significant they it is in agreement with metadata at 

5 % significance level. Only ‘changepoints’ which were type-1 was used in the 

homogenization process due absence of metadata. 

http://etccdi.pacificclimate.org/software.shtml
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3.3.2.1 Observed Streamflow 

A number of homogenisation test such Standard Normalised Homogeneity Test (SNHT), 

Pettitt’s Test, Von Neumann ratio test and Buishand’s Range test are statistical test used 

popularly in hydroclimatological studies to check if hydrological time series has been 

obtained from a homogenous or heterogeneous records and also detect data variability 

and natural breaks in these data series (Seyam and Othman, 2014). Homogenization is 

one of the fundamental and preliminary data quality analysis applied to hydrological data 

series. Homogenous data series implies that the similar methodology, instrument and 

location of the gauge were used to obtain the data records (Kang and Yusof, 2012). These 

test were applied to the streamflow data series obtained from the Shiroro Hydropower 

Station. 

 

3.4 Data Analysis 

3.4.1 Methods for Achieving Objective 1 

3.4.1.1 Observed Climate Data Analysis 

Five ground observation stations were obtained from Nigerian Meteorological Agency 

(NiMet). A total of three stations are situated in the catchment out of the five whiles the 

other two are closer to the catchment. The stations positioned in the catchment were 

Kaduna, Zaria and Jos with Minna closer to the surroundings of the catchment. The 

stations obtained from the Nigerian Meteorological Agency was first tested for Normality 

to determine the type of statistical test to be applied whether parametric or non-parametric 

test. Normal distribution test. The Anderson- Darling normality test and the Shapiro-

Wilks test were compared in testing the climatic (temperature, precipitation, Solar 

radiation and variables obtained from the weather respectively at a 95% significance 

level. 
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Anderson- Darling Test Equation 

 𝐴𝑑
2=−Np−Ss ( 1) 

 

 𝑆𝑠 =∑
(2𝑡 − 1)

𝑁𝑝
[𝑙𝑛𝐺(𝐻𝑡) + ln(1 −  𝐺(𝐻𝑁𝑝1−𝑡))]

𝑁

𝑡=1

 ( 2) 

 

where Np = total number of sample, Ss = Sigma, t = the 𝑡𝑡ℎ sample of the records arranged 

according to ascending order and 𝐴𝑑
2 is known as Anderson Darling Statistics, and G is 

the cumulative distribution function of the specified distribution. 𝐻𝑖 are the ordered data 

3.4.1.2 Detecting Statistical Trend in Data 

Trends in a random variable refers to the long term significant change demonstrated by 

the variable and which can be assessed through parametric and non-parametric statistics 

techniques (Longobardi and Villani, 2009). Nonparametric techniques such as Mann-

Kendall (Mann, 1945; Kendall, 1975) has been found to have more power in detecting 

trend than t test in cases where a non-normal distributed variable or the variable’s 

probability demonstrate skewness (Kundzewicz and Robson, 2000; Yue et al., 2002; 

Önöz and Bayazit, 2003; Traore et al., 2014). Autocorrelation is one of the effect that 

affects the detection in trend and it analysis using non-parametric tests such as Mann-

Kendall. The selected stations were tested for their suitability of the application of Mann-

Kendall. Positive autocorrelation can result in a type I or II error of a data during trend 

detection analysis (Ahmad et al., 2015). 

3.4.1.3 Autocorrelation  

The NiMet data were tested for the presence of autocorrelation coefficient in the time 

series. The precipitation and temperature (maximum (Tmax) and minimum (Tmin)) for 
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each station were tested at 5 % significant level for autocorrelation coefficient. The Partial 

autocorrelation function (PACF) and the autocorrelation function (ACF) were used to 

calculate the autocorrelation coefficient.  

Autocorrelation Equation: 

The test equation for two sample autocorrelation coefficient calculations. 

 
𝜌 =

𝐸[(𝑚1 − 𝜇1)(𝑚2 − 𝜇2)]

𝜎1𝜎2
= 
𝐶𝑜𝑣(𝑚1,𝑚2)

𝜎1𝜎2
 

 

( 3) 

Where E is the expectation operator, 𝜇1  and 𝜇2 are the means for 𝑚1 and 𝑚2  

respectively. 𝜎1 and 𝜎2 are their standard deviations. For the equation which describes 

the test of autocorrelation for a single variable. 𝑚1 is the original series and 𝑚2 refers to 

the lag series of the original data. Sample autocorrelations of order k = 0,1,2, 3,…,np can 

be obtained from the equation below by calculating the lag variable from the original 

observed series 𝑚𝑖, i=1,2,3,…,np. 

 

𝜌(𝑘) =

1
𝑛𝑝 − 𝑘

∑ (𝑚𝑖 − �̅�)(𝑚𝑖−𝑘 − �̅�)
𝑛
𝑖=𝑘+1

√
1
𝑛𝑝
∑ (𝑚𝑖 − �̅�)
𝑛
𝑖=1 √

1
𝑛𝑝 − 𝑘

∑ (𝑚𝑖−𝑘 − �̅�)
𝑛
𝑖=𝑘+1

 

 

(4) 

where �̅� refers to the average value of the variable. 

Partial Correlation Equation 

 𝑚𝑖 = 𝛾(𝑢) + 𝜌1
(𝑢)𝑚𝑖−1 +⋯+ 𝜌𝑢

(𝑢)𝑚𝑖−𝑢 + 𝜀𝑖 ( 5) 

The superscript “(u)” is placed on all the coefficients in regression equation 5 to show 

that all the coefficients, are all defined by u, which refers to the number of lags. We can 
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compute the sample PACF or empirical PACF, up to order U by utilising regression (5) 

for u = 1,…, u and retaining only the estimate  �̂�𝑢
(𝑢)

½(u) for each u. 

3.4.1.4 Mann Kendall and Modified Mann Kendall test 

The Mann-Kendall test is one of the statistical test used to detect possible trends in 

observed climatic data obtained from Nigerian Meteorological Agency (NIMET) and was 

originally devised by Mann in 1945 as a non-parametric test for trend. Later the exact 

distribution of the test statistic was derived by Kendall 1975 (Akpoti, 2016). Sen’s slope 

estimator was utilised for the estimation of the true slope of the monotonic trend in the 

climate data. This time series analyses were conducted on the meteorological data and 

using fume package (Santander Meteorology Group, 2012) in R software (R Core Team, 

2017). The package and the codes used for calculating the Modified Mann-Kendall are 

detailed in Appendix D. Results was presented using tables and graphs. The formula for 

computing the Mann-Kendall test statistic (Sk) is expressed in Equation (4) (Yue, 2004). 

 𝑆𝑘 =∑ ∑ sgn(𝑋𝑏 − 𝑋𝑎)
𝑁𝑑

𝑏=𝑎+1

𝑁𝑑

𝑎=1
 ( 6) 

Where  𝑋𝑏 and 𝑋𝑎 are monthly data values in years such that b is greater than a and where 

sgn function is expressed as: 

 sgn(𝑋𝑏 − 𝑋𝑎) = {

1 if (𝑋𝑏 − 𝑋𝑎) > 0
0 if (𝑋𝑏 − 𝑋𝑎) = 0
−1 if (𝑋𝑏 − 𝑋𝑎) < 0

 ( 7) 

Under the null hypothesis of no trend and independence of the series terms, the variance 

of the Mann-Kendall statistic is calculated as: 

 𝑉𝑎𝑟(𝑆𝑘) =
𝑁𝑑(𝑁𝑑 − 1)(2𝑁𝑑 + 5) − ∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑗
𝑝=1

18
 ( 8) 

in which Nd refers to the sample size, j represents the number of groups which are tied 

and t denotes size of the t th group. The summation of the data series in the numerator is 
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employed only in situations where the data series comprises of tied values. For sample 

size Nd ≥ 10, the statistic S assumes normal distribution, the standard normal test statistic 

Zk is computed using 

 𝑍𝑘 =

{
 
 

 
 

𝑆𝑘 − 1

√𝑉𝐴𝑅(𝑆𝑘)
, for  𝑆𝑘 > 0

0, for          𝑆𝑘 = 0
𝑆𝑘 + 1

√𝑉𝐴𝑅(𝑆𝑘)
, 𝑆𝑘 < 0

 ( 9) 

The equation 9 compute the likelihood linked with this normalised statistical test. The 

probability density function for a Gaussian distribution with a mean value of 0 and a 

standard deviation of 1 is expressed by the subsequent equation: 

 

 𝑓(𝑍𝑘) =
1

√2𝜋
𝑒−

𝑍𝑘
2

2  ( 10) 

The change detected in the data series suggest a declining trend if Zk is negative and the 

calculated probability is greater than the level of significance. When the Zk is positive, it 

means the trend in the data series is increasing and the calculated probability is more than 

the level of significance. If the calculated probability is less than the level of significance, 

the condition of no trend is assumed. 

3.4.1.5 Modified Mann Kendall Test  

Autocorrelation in a data series affect the power of the as it increases the likelihood of the 

null hypothesis of the Mann Kendall test of no trend to be rejected (Yue et al. 2004). 

The equation for modified Mann Kendall test with the correction factor are presented 

below as it appeared in Hamad and Rao (1998) and Yue (2004). 
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 𝑉𝑎𝑟∗(𝑆𝑘) =  𝑉𝑎𝑟(𝑆𝑘)  × 
𝑁𝑑

𝑁𝑑∗
 ( 11) 

Where Nd is the actual sample size of data (ASS), Nd* is the effective or equivalent 

sample size (ESS) and 
𝑁𝑑

𝑁𝑑∗
 is the correction factor for correcting the serial dependence. 

For the computation of the effective sample size (ESS)  

 𝑁𝑑∗ =
𝑁𝑑

1 + 2 × ∑ (1 −
𝑘
𝑁𝑑
) × 𝜌𝑘

𝑁𝑑−1
𝑘=1

 ( 12) 

For autoregressive of lag-1 process (Yue, 2004) 

 
𝑁𝑑∗ =

𝑁𝑑

1 + 2 ×
𝜌𝑁𝑑+1 − 𝑁𝑑 × 𝜌12 + (𝑁𝑑 + 1) × 𝜌1

𝑁𝑑(𝜌1 − 1)2

 
( 13) 

With these correction factor applied to equation 6 as illustrated in equation 9, the 

corrected 𝑉𝑎𝑟∗(𝑆𝑘) is substituted into equation 7 and the correction is translated to 

subsequent equations. 

3.4.1.6 Theil-Sen’s Slope Estimator  

The Theil-Sen’s slope estimator is utilised to establish the true or exact slope of data series 

(such as hydroclimatological data) wherever it is present in the time series. It is a robust 

method for fitting a line to a time series data by utilising the median of the slopes of all 

through pairs of two dimensional sample points. An unbiased median slope estimator 

approach is used to estimate the magnitude of the trend which was proposed by Sen 

(1968) and further modified by Hirsch et al. (1982). 

Assuming that the trend is monotonic and linear, the Sen’s slope estimation is expressed 

as follows: 

 𝑏′(𝑡) = 𝑉𝑡 + 𝐴 ( 14) 
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Where V refers to the slope and A is the constant. With respect to the Nd pair of time 

series, the subsequent equation defines the slope as: 

 𝑉𝑎 =
𝑥𝑏 − 𝑥𝑐
𝑏 − 𝑎

  𝑓𝑜𝑟 𝑎 = 1,… , Nd and all c < b ( 15) 

where Va denotes the slope between data points xb and xc, xb  refers to data values at time 

b , xc  refers to data values at time c.  Nd =  
𝑛(𝑛−1)

2
   for single observation in each time 

period or Nd < 
𝑛(𝑛−1)

2
, where 1<c<b<n, n refers to the total number of observations for 

each period.  The Nd values of Va are ranked from least number to largest number and 

median of these N values of Va is the Sen’s estimate of slope computed as: 

 𝑉𝑚𝑒 = {
𝑉 [
(𝑁𝑑 + 1)

2
] , 𝑤ℎ𝑒𝑛 𝑁𝑑 𝑖𝑠 𝑜𝑑𝑑 

𝑉 (
𝑁𝑑

2
) + 𝑉 [

𝑁𝑑 + 2

2
] , 𝑤ℎ𝑒𝑛 𝑁𝑑 𝑖𝑠 𝑒𝑣𝑒𝑛

 ( 16) 

The significance of the median 𝑉𝑚𝑒 is evaluated using the two tailed test at a specified 

alpha value (the alpha (α) used in the analysis was 0.05). The sign of 𝑉𝑚𝑒 and its value 

shows the direction of the trend inherent in the time series data and the steepness of the 

trend. Equation 11 below illustrates the confidence interval for 𝑉𝑚𝑒 is calculated as. 

 𝐶𝛼 = 𝑍1−𝛼 2⁄
√𝑉(𝑆𝑘) ( 17) 

 

𝑉(𝑆𝑘) representing the Mann-Kendall statistics variance is expressed in equation 8 or 

equation 11 when the time series is serially correlated while 𝑍𝑘(1−𝛼 2⁄ ) is derived from 

the standard normal distribution table.  
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3.4.2 Methods for Achieving Objective 2 

3.4.2.1 Model Description 

Soil and Water Assessment Tool is a physical based semi-distributed model made for the 

United State Department of Agriculture subsidiary Agricultural Research Service (ARS) 

for the assessment of water quantity and quality (sediment and chemically yield) and 

complex watersheds with varying soils and land use as a result of land use practices on 

water resources (Arnold et al., 2012). Soil and Water Assessment Tool (SWAT) model 

have been widely utilised worldwide for assessment of water quantity and quality issues. 

SWAT possess ability to model a particular watershed or a network of several watersheds 

which are hydrological linked in a location. The model runs on daily time step which is 

capable of simulating hydrology of a watershed on a continuous (long term) basis but not 

intended to capture detail in simulation or single-event flood routing (Neitsch et al., 

2010). The model comprises of eight major components namely weather, hydrology, 

sedimentation, soil, temperature, crop growth, pesticides, nutrients and agricultural 

managements. 

The SWAT model divides the watershed into sub-basins (which is the first level of 

subdivision). The sub-basins are subdivided into Hydrological Response Units (HRU) 

based on the land uses, soil and slope distribution in the watershed. The HRU signifies 

the basic unit of the watershed which are homogenous. The water balance equation is the 

principle used by the SWAT model to simulate the hydrology of a watershed. The 

hydrology of the watershed model (Figure 3.1) can be divided into the land phase of the 

hydrology cycle and the water or routing of the hydrologic cycle. The land phase regulates 

the sediment, amount of water, pesticides and nutrients loadings of the main channel in 

each sub-basin. The routing phase comprises the movement of water, sediments, nutrient 

and pesticides through the main channel (Neitsch et al., 2011).  The equation below 
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defines the water balance: 

 𝑆𝐶𝑡 = 𝑆𝐶𝑜 + ∑ (𝑃𝑑𝑎𝑦 − 𝑞𝑠 − 𝐸𝑑
𝑡
𝑖=1 −𝑊𝑠 − 𝑞𝑔 ( 18) 

where 𝑆𝐶𝑡 is the water content of the soil during the last or the final stage (mmH2O) 

𝑆𝐶𝑜 is the water content of the soil during the beginning or the initial stage (mmH2O) 

𝑃𝑑𝑎𝑦  is the quantity of precipitation recorded on a day i (mmH2O) 

𝑞𝑠  refers to surface runoff amount recorded on a particular day i (mmH2O) 

t refers to the period (or time) (days) 

𝐸𝑑  is the recorded evaporation amount on a day i (mmH2O)) 

𝑊𝑠  refers to the quantity of water flowing into the vadose region from the soil profile on 

i th day (mmH2O) 

𝑞𝑔  the return flow quantity on day i (mmH2O) 
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Figure 3.1. The hydrologic cycle (Source: Neitsch et al. 2010, with author’s 

modification) 
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Surface runoff  

Surface runoff is as a result of rate of precipitation or water application exceeding the rate 

of infiltration of the soil. There are two approaches provided in SWAT for the estimating 

surface runoff. The approaches are the Soil Conservation Service (SCS) curve number 

approach (SCS, 1972) and the Green and Ampt infiltration method (Green and Ampt, 

1911) which are used to simulate peak rates and runoff volume in SWAT (Neitsch et al., 

2010).  

The curve number technique employs daily time step when it is estimating the volume of 

the surface runoff in SWAT but it is unable account for infiltration directly. However, the 

quantity of water entering into the soil is calculated as the change between the amount of 

precipitation and the amount of surface runoff. Green and Ampt infiltration method on 

the other hand requires sub-daily increments data to calculate directly compute the 

infiltration in the mode (Neitsch et al., 2011). The SCS curve number technique was 

employed in this research due to the daily data which were more available. The equation 

19 defines the curve number equation:  

 𝑞𝑠 =
(𝑃𝑑𝑎𝑦 − 𝐼𝑠)

2

(𝑃𝑑𝑎𝑦 − 𝐼𝑠 + 𝑆𝑟 )
 ( 19) 

 

where 𝑞𝑠 is collected runoff (excess of precipitation) in mmH2O  

𝑃𝑑𝑎𝑦  is the precipitation depth for the day in mmH2O 

𝐼𝑠 is the initial abstraction which includes surface storage ; interception and infiltration 

prior to runoff 

𝑆𝑟  is the parameter of retention ( mmH2O) which is expressed as: 
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 𝑆𝑟 = 25.4 (
1000

𝐶𝑁
− 10) ( 20) 

 

where CN is the curve number for the day. Is is commonly given as 0.2S, hence the 

equation 

18 is expressed as:  

 𝑞𝑠 =
(𝑃𝑑𝑎𝑦 − 0.2𝑆)

2

(𝑃𝑑𝑎𝑦 + 0.8𝑆)
 (21) 

In this equation, runoff is generated when 𝑅𝑑𝑎𝑦 > 𝐼𝑎 . The SCS curve number is a function 

the permeability of the soil, land use and antecedent soil condition (Neitsch et al., 2010). 

The soil moisture conditions are classified into four hydrological groups which are 

defined by their infiltration rate by the U.S. Natural Resources Conservation Service 

(NRCS). Group A refers to high infiltration, B for moderate infiltration, C for slow 

infiltration and D for very slow infiltration.  

Hydrologic group refer to a group of soils similar runoff potential under similar storm 

and cover conditions. 

3.4.2.2 SWAT Input Data Analysis 

DEM Processing 

CGIAR-CSI’s (http://srtm.csi.cgiar.org) Digital Elevation Model (DEM) was 

downloaded from at a spatial resolution of 90 m by 90 m in Geographic Coordinate 

System with datum WGS 84. The study area lies between two tiles of DEM provided by 

CGIAR- CSI srtm38_10 and srtm37_10. The DEM was merged using subtraction 

technique in Map Window. The two DEM tiles were merged in Map Window. Using the 

approach illustrated in Leon (2011), a rectangular shape file was created around the study 
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area to clip the merged SRTM DEM file to reduce computational time. The shape file 

covered approximately 152 000 km2 around the study area. The shape file served as 

boundary area for the study area. The clip shapefile was then projected to UTM 32 with 

datum WGS 84. The merged DEM was clipped using a clip shapefile in the Geographic 

Coordinate System (GCS) World Geodetic System 1984 (GCS WGS 84) and then 

projected to UTM 32 zone. The projected DEM was re-clipped using the projected clip 

shapefile to remove any missing values. 

Land Use Processing 

Land Cover data downloaded from MODIS (MCD12Q1) for the year 2013 required to be 

preprocessed and utilised asSWAT model input file. The MODIS data are supplied in 

HDF format and in Sinusoidal Coordinate System showing no datum. MODIS 

Reprojection Tool software (MRT) was downloaded from MODIS website for processing 

the land cover data. The study area was located in MODIS tile h18v07. The MRT was 

used to reproject the MODIS data from sinusoidal projection to GCS WGS 84 coordinate 

system. The International Geosphere–Biosphere Programme (IGBP) land cover tile was 

selected for reprojection (Table 3.3). The bounding shapefile created during the 

processing of the merged DEM tile was used to clip the reprojected MODIS data. The 

MODIS data was then processed by updating the class name found in land cover unique 

value in Symbology in ArcGIS. This was achieved by allocating class names to the 

corresponding MODIS land cover type. Sixteen (16) land cover classes (Table 3.3) were 

identified in the MODIS data. The sixteen land cover types of the MODIS data in IGBP 

classification system were reclassified in the SWAT model to the closest class in the 

SWAT land use classes by creating a lookup table (Table 3.4). 
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Table 3.3: Land cover classes of MODIS data in IGBP land cover classification 

Class IGBP (Type 1) 

0 Water 

1 Evergreen Needleleaf forest 

2 Evergreen Broadleaf forest 

3 Deciduous Needleleaf forest 

4 Deciduous Broadleaf forest 

5 Mixed forest 

6 Closed shrublands 

7 Open shrublands 

8 Woody savannahs 

9 Savannahs 

10 Grasslands 

11 Permanent wetlands 

12 Croplands 

13 Urban and built-up 

14 Cropland/Natural vegetation mosaic 

15 Snow and ice 

16 Barren or sparsely vegetated 

254 Unclassified 

255 Fill Value 

Source: Land Process Distributed Active Archive Center 

(http://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1) 

 

http://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
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The Land Use reclassification were done for these land cover types as required by the 

SWAT model as illustrated by Table 3.4. 

Table 3.4: Reclassification of land cover types into SWAT database land Use 

classes 

SWAT LAND USE type IGBP land cover type 

Water Water 

Evergreen Forest Evergreen Needleleaf and Broadleaf forest 

Deciduous Forest Deciduous Needleleaf and Broadleaf Forest 

Mixed Forest Mixed forest 

Rangeland and Brush Closed shrublands, Open shrublands, Woody 

savannahs,  

Rangeland and grassland Savannahs, Grasslands 

Urban Urban and built-up 

Agriculture Croplands, Cropland/Natural vegetation 

mosaic 

Bareland Barren or sparsely vegetated, Snow and ice 

Wetland Permanent wetlands, 

Source Author’s compilation, 2017. 
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Soil Map Processing. 

The soil map contains FAO classified so maps and properties. The soil map was in GCS 

WGS 84 coordinate system. The soil map was subsetted by using the boundary shapefile 

(clip file) creating during the DEM processing and the resulting raster map reprojected to 

UTM 32 zone with datum WGS 84. The new soil map raster was then reclipped with the 

projected boundary shapefile (clip file in UTM 32 zone) to remove missing data values. 

In order to utilise the soil map in ArcSWAT, the new soil map had to be converted to 

ESRI GRID file format. The new projected soil map in UTM 32 was exported to ESRI 

GRID format. The ArcSWAT soil database (usersoil table) was updated with the Global 

Soil properties from MWSWAT database. The soil database of MWSWAT Global Soil 

has already incorporated FAO soil properties in their database. 

Slope Classification 

The study area’s slope classes of was obtained by using the Slope function in ArcGIS 

10.1 to define the slope classes. The slope and elevation as a topographical parameter of 

the watersheds were generated from the DEM using the Slope function. Five slope classes 

were identified in degrees. The slope classes used in the Hydrological Response Unit 

definition were 0o – 2.868o, 2.868o – 5.497o, 5.497o – 8.844o, 8.844o – 12.668o and greater 

than 12.668o. The highest elevation in the study area was 1582 m high, the mean elevation 

was 676.47 m and the lowest was 283 m above sea level. 

Watershed Delineation 

A new ArcSWAT project was created. Under watershed delineator menu, Automatic 

watershed delineator was selected and the processed DEM was loaded into the ArcSWAT 

project. No mask or predefined watershed shapefile was loaded. The area used was 80000 

hectares for the delineation at DEM based under stream definition. The Shiroro Dam 

coordinates was obtained in GCS WGS 84 and projected to UTM 32 which aided in the 
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location of the reservoir outlet. The delineate watershed was clicked to delineate the 

watershed. 

Hydrological Response Unit (HRU) Definition 

This is the fundamental unit in the SWAT model derived from the subdivision of sub-

basins based on the homogenous spatial location of slope, type of the soil and land use 

classification. The combination of these three (into separate HRU) controls the modelling 

of surface runoff in the watershed. The land use raster was loaded and reclassified using 

a lookup table to define the land cover into SWAT land use types as specified in Table 

3.6 above. The processed soil map was loaded into the HRU menu. A lookup table was 

made to reclassify the soils according to the soil in the usersoils table. Slope intervals 

representing each slope class were inputted in to the Land Use, Soil and Slope definition 

menu.  The SWAT model allows four types of HRU definition under the these options: 

the use of dominant HRU, the use of dominant land use, soil, slope, Target Number of 

HRUs and the use of multiple HRUs options. The multiple HRU options was used to 

setup the model in this study. 

In order to reduce computational time and preserve detail in the HRU definition, the 

threshold area percentage of slope, land use and soil were set for HRU definition over 

sub-basin areas. The thresholds values of 10 %, 10 % and 5 % for land use classes, soil 

classes and slope classes respectively was set. 

Weather Data Preparation 

Weather data available in ArcSWAT format. SWAT model requires a weather generator 

file (.wgn) to run. This allows for missing weather variables to be generated statistically 

during modelling. WGEN file maker a Microsoft Excel macro developed by Gabrielle 

Boisramé, was downloaded for computing the statistics of the CFSR weather stations 
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required in weather generator file (.wgn). Dew point software Dew02 (Liersch, 2003) was 

downloaded from the SWAT website (http://swatmodel.tamu.edu/software/links‐to‐

related‐software) to compute dew point temperature from temperature (maximum and 

minimum) and relative humidity which one of the parameters needed for creating the wgn 

file. Aside the latitude, longitude and elevation values of each weather stations needed in 

the weather generator file, fifteen (15) statistical parameters are computed to build the 

weather generator file for each stations both WGEN and dew02. 

The statistical parameters are: 

TMPMX (monthly): average daily maximum air temperature for a month (ºC). 

TMPMN (monthly): average daily minimum air temperature for a month (ºC). 

RAINYRS: the number of year of maximum monthly half hour (0.5 h) precipitation data 

utilise to describe values for RAINHHMX (monthly).  

TMPSTDMX (monthly): standard deviation for daily maximum air temperature in month 

(ºC). 

TMPSTDMN (monthly): standard deviation for daily minimum air temperature in month 

(ºC). 

PCPSTD (monthly): standard deviation for daily precipitation in month (mm 𝐻2𝑂/day). 

PCPMM (monthly): average precipitation for a month (mm 𝐻2𝑂). 

PCPSKW (monthly): skew coefficient for daily precipitation in a particular month (%). 

PR_W (1, monthly): probability of wet day following a dry day in a month. Here, the wet 

day calculation is defined as any day with precipitation value greater than zero mm (> 0 

mm). 

http://swatmodel.tamu.edu/software/links‐to‐related‐software
http://swatmodel.tamu.edu/software/links‐to‐related‐software
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PR_W (2, monthly): probability of wet day following a wet day in a month. 

PCPD (monthly): average number of days of precipitation in a month for year of record. 

RAINHHMX (monthly): maximum half hour (0.5 hour) rainfall in entire recording period 

in a month (mm 𝐻2𝑂).  

SOLAVAV (monthly): average daily solar radiation for a particular month for year of 

record (MJ/m2/day).  

DEWPT (monthly): average dew point temperature for each month (°C). 

WNDAV (monthly): average daily wind speed in particular month for all the years of 

record (m/s) 

The values of the DEWPT monthly values were computed using the dew02 software. All 

the other parameters were computed using the WGEN maker Microsoft Excel macro. 

Thirty years of record were used to compute the CFSR stations statistics from 1981 to 

2010 which was more than the minimum of 20 years recommended by (Neitsch et al., 

2010). RAINHHMX records are not provided as part of the CFSR data. One third of 

maximum daily precipitation of a month data were assumed as RAINHHMX data for all 

the stations based on the recommendation in the SWAT user group 

(https://groups.google.com/forumswatuser/kpZMCke3BvU). 

 

3.4.2.3 Sensitivity, calibration, Uncertainty analysis and validation  

Parameter Sensitivity analysis 

Parameters of SWAT model are calibrated either manually or automatically. The 

sensitivity analysis is carried out to identify the most influential parameters in the SWAT 

model for streamflow simulation before calibration takes place (Griensven et al., 2006). 

https://groups.google.com/forumswatuser/kpZMCke3BvU
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This is because there are numerous parameters in ArcSWAT and not all of them are 

significant to the contribution of streamflow. Sensitivity analysis helps to identify the 

important parameters and reduces the number of parameters used in calibration and 

improve precision of a parameter the sensitivity analysis were done in two ways. 

Parameters selection were also based on parameters sensitive to streamflow in Abbaspour 

et al. (2004), other parameters likely to influence streamflow, Schuol et al. (2008) and 

Akpoti et al. (2016), with the latter two working in similar climatic zone as the study area. 

The Global Sensitivity Analysis (where all parameters were varying simultaneously) was 

used to analyse the sensitivity of the parameters used in the calibration process. Fourteen 

(14) parameters were used in the calibration process.  The Global Sensitivity employs 

multiple regression systems that regresses Latin hypercube generated parameters against 

the objective function (Abbaspour, 2015). The relative significance of each parameter is 

determined by using the statistical test t-test. The sensitivities values obtain give average 

changes in objective function derived from changes in parameter while all other 

parameters are simultaneously changing. The t-stats refers to the coefficients of the 

parameter divided by the standard error and is the extent of the precision to which the 

coefficient of regression is measured, hence the larger the values in absolute and the 

smaller the p-value (less than 0.05), the more sensitive the parameter (Abbaspour, 2015). 

Thus, there exist a 95 % chance of being correct about the sensitivity of the parameters 

based on the t-stats and the p-value (at 0.05). The parameters used in the calibration are 

illustrated in Table 3.5 below. 
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Table 3.5: Parameters used in the calibration of the SWAT model of the Study 

area 

H Definition Absolute 

SWAT 

values 

r__SOL_K().sol     Saturated hydraulic conductivity 0 – 2000  

v__ALPHA_BF.gw Baseflow alpha factor (days) 0 – 1  

r__CN2.mgt    SCS runoff curve number f 35 – 98  

v__CH_N2.rte    Manning's "n" value for the main channel -0.01 – 0.3  

v__ESCO.hru   Soil evaporation compensation factor 0 – 1  

v__CH_K2.rte Main channel’s effective hydraulic conductivity 

alluvium 

-0.01 – 500  

r__SOL_BD().sol Moist bulk density 0.9 – 2.5  

v__GW_REVAP.gw Groundwater "revap" coefficient 0.02 – 0.2  

v__OV_N.hru     Manning's "n" value for overland flow 0.01 – 30  

v__CANMX.hru  Maximum canopy storage 0 – 100  

v__RCHRG_DP.gw Deep aquifer percolation fraction 0 – 1 

v__GWHT.gw     Initial groundwater height (m). 0 – 25 

v__GWQMN.gw Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 

0 – 5000  

r__SOL_AWC().sol Water capacity available to the soil based on the 

soil layer. 

0 – 1  

Source: Authors compilation, 2017. 
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The model codes r_, v_ and a_ refers to the type of changes applied to the parameters. r_ 

refers to the value of the current parameter is multiplied by (1+ a given value), v_  means 

the default parameter value is substituted by a particular value and a_  means a specified 

amount is added to the default value Abbaspour, 2015). r_ is normally preferred for spatial 

parameters such as .mgt and .sol parameters. 

 

 Performance Evaluation 

The SWAT model performance is evaluated after the calibration and validation on the 

initial model simulation run. The model is evaluated by performance on its ability to 

simulate and project flow by using primarily three objective functions known as the Nash-

Sutcliffe Efficiency (NSE), coefficient of determination (R2) and Percent Bias (PBIAS) 

(Abbaspour et al., 2015).  These statistics of goodness of fit were employed to assess the 

performance of the model. The equations (19) to (21) define these statistical objective 

functions. 

 𝑅2 =
[∑ (𝑋𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠)(

𝑛
𝑖=1 𝑋𝑠𝑖𝑚,𝑖 − �̅�𝑠𝑖𝑚)]

2

∑ (𝑋𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠  )2 
𝑛
𝑖=1 ∑ (𝑋𝑠𝑖𝑚,𝑖−�̅�𝑠𝑖𝑚 )2 

𝑛
𝑖=1

 (19) 

 𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑠𝑖𝑚,𝑖 − 𝑋𝑜𝑏𝑠,𝑖 )

2 𝑛
𝑖=1

∑ (𝑋𝑜𝑏𝑠,𝑖 − 𝑋𝑜𝑏𝑠 )2 
𝑛
𝑖=1

 ( 20) 

 𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑋𝑜𝑏𝑠 − 𝑋𝑠𝑖𝑚 )𝑖
𝑛
𝑖=1

∑ 𝑋𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

 ( 21) 

where: 

𝑋𝑜𝑏𝑠,𝑖 is the observed flow at time i  (𝑚
3

𝑠⁄ ) 

𝑋𝑠𝑖𝑚,𝑖 is the simulated flow at time i (𝑚
3

𝑠⁄ ) 

𝑋𝑜𝑏𝑠 is the measured variable (𝑚
3

𝑠⁄ ) 
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𝑋𝑠𝑖𝑚 is the simulated variable (𝑚
3

𝑠⁄ ) 

i is the ith measured or simulated data  

�̅�𝑜𝑏𝑠 is the average or mean of the measured variable  

�̅�𝑠𝑖𝑚 is the average or mean of the simulated variable  

n is the total number of data points to be matched. 
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Table 3.6: Performance and interpretation of the values of objective functions used 

for Monthly time step calibration 

Objective 

Function 

Performance 

 Very Good Good Satisfactory Unsatisfactory 

R2 >0.85 0.75 < R2 ≤ 0.85 0.6 < R2 ≤ 0.75 R2 ≤ 0.6 

NSE 

0.8 <NSE ≤ 

1.0 

0.7 < NSE ≤ 0.8 0.5 <NSE≤ 0.7 NSE ≤ 0.5 

PBIAS 0 ≤ ± 5 

± 5 <PBIAS< ± 

10 

±10 < PBIAS< ± 

15 

PBIAS ≥ ± 15 

The goodness of fit values for objection functions are based on recommendations by 

Moriasi et al. (2015). 
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Calibration, Validation and Uncertainty Analysis 

The SWAT simulation methodology consisted of an initial calibration and validation 

phase proceeded by another phase whereby the impact of variations in climatic inputs are 

assessed for the hydrology of Kaduna River basin. Based on the approached of Abbaspour 

et al. (2015) more half (approximately 65 %) of the streamflow records from the gauging 

station at the Shiroro dam was utilised for calibration and the rest used for the model 

validation. The SWAT model tries to mimics physical processes in reality. The Soil and 

Water Assessment Tool – Calibration and Uncertainty Programs (SWAT-CUP) which is 

a standalone program was used for the calibration and validation of the SWAT model. 

The model is initially run for the calibration between the periods 1990 – 2005 and for 

validation period from 2006 – 2013 in the SWAT-CUP program. The SUFI-2 algorithm 

was used for the calibration. The calibration are based on improvement of the goodness 

fit after every iteration made. The process of calibration ends when a goodness of fit 

statistics stops (normally after 3 iterations are recommend) improving with iterations. 

Under the SUFI-2 approach, 200 runs were done for each iterations and each parameters 

updated automatically, the new values fall within the Absolute Swat values range of 

parameters in the SWAT-CUP program. More iterations are performed to improve the 

statistics of the goodness of fit of the model. In this study, five iterations were performed 

and the best solution selected from them. 

Downscaling and Bias Correction of Climate model data 

In order evaluate the effect of the different climate change scenarios on the hydrological 

processes in the watershed, the two scenarios collected were downscaled and bias 

corrected using the observed climate data (CFSR). The CMhyd software was used for 

extracting point station projected scenarios and bias correction of temperature (maximum 

and minimum temperature) and precipitation. The Distribution Mapping bias correction 
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method were used for both temperature and precipitation downscaled values. This 

approach used in the CMhyd program are well illustrated in Teutschbein and Serbert 

(2012). The Figure 3.2 illustrates the schematic approach used in the bias correction 

approach and utilisation of the data in the model. 
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Figure 3.2. A simple flow chart to use bias corrected RCM outputs in SWAT model. 

(Source: Fiseha et al., 2014, with author’s modification) 
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3.4.3 Methods for Achieving Objective 3 

3.4.3.1 Modelling of Hydropower dam data. 

Stochastic Dynamic Programming was used to model the dam optimization efficiency 

due to the unpredictable management policy of the dam. An existing power model utilised 

in the Jimoh (2008) and Cervigni et al. (2013). 

In expressing the objective function of fig. 9 which illustrate a hydropower power 

reservoir systems, equation 22 is used which is expressed below: 

 Oi = Ai + Ai−1+. . . +AI + OI+1 ( 22) 

where:  

Ai refers to the water return at stage i that is as a result of the release R given the final and 

initial storages, and  the water value at the end of  stage I is represented by OI+1 is the last 

stage in the twelve (12) month planning periods. These benefit is to exploit fully the area 

under the energy generated. In previous studies (Jimoh, 2008 & Cervigni et al., 2013) the 

model has been utilised, first for the objective criteria used were to maximise production 

of energy at a price of ₦12 /KWh (kilowatt hour) for firm power, a penalty for deficit 

power at ₦12 /KWh and a ₦6 /KWh secondary price for any extra power above the firm 

power (secondary power) produced. The second objective is to decrease water spill (as 

part of flood control measures) whiles ensuring water use and demand downstream are 

satisfied. 

The Bellman’s optimization principle was used for the analysis which begin from a time 

T and moves backward (from final state to initial state and decisions). The Bellman’s 

state that “an optimal policy has the property that whatever the initial state and initial 
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decisions are, the remaining decisions must constitute optimal policy for the state 

resulting from the first decision”.  

The following equations 23 to 29 illustrate the operation of the hydropower and Figure 

3.3 highlights the schematic diagram of the hydropower plant. 

 

Figure 3.3. The schematic diagram of Hydropower generating plant. S is the storage, 𝐼𝑛𝑖   

is the inflow to the reservoir, U is the losses from evaporation and seepage, q is the 

release and  𝑞𝑇𝑖is the discharge through the turbines and i represents time (Jimoh, 2008) 
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Continuity equation: 

 𝑆𝑖−1 + 𝐼𝑛𝑖 − 𝑈𝑖 − 𝑞𝑖 = 𝑆𝑖 ( 23) 

Where 𝑞𝑖 refers to the outflow from the reservoir at time i,  𝑈𝑖 is the loss from the reservoir 

at time i, 𝐼𝑛𝑖 is the reservoir inflow at time I and 𝑆𝑖 is the reservoir storage (Figure 3.3) 

Storage Constraints: 

 𝑆𝑑𝑒𝑎𝑑 < 𝑆𝑖 < 𝑆𝑚𝑎𝑥𝑖 ( 24) 

 𝑆𝑖+1 ≤ 𝑆𝑚𝑎𝑥𝑖 ( 25) 

The 𝑆𝑑𝑒𝑎𝑑 is the reservoir dead capacity storage also known as the minimum storage. 

𝑆𝑚𝑎𝑥𝑖 refers to the maximum water storage at time i.  

Release Control: 

 

 𝑞𝑖 ≥ 𝑚𝑎𝑥𝑞𝑜 ( 26) 

Where 𝑞𝑜 defined the fixed water requirement at time i required to be released to support 

water supply, ecology and irrigation schemes downstream (minimum demand) from the 

reservoir. 𝑚𝑎𝑥𝑞𝑜 refers to the maximum mandatory water requirement for satisfying 

demand of water at downstream. 

Power production Equation 

  𝐸𝐶𝑖 = 𝑓 × 𝑞𝑇 × 𝐻𝑎𝑇 × ŋ ( 27) 

Where 𝐸𝐶𝑖 is the energy production capacity, f is the electrical energy conversion potential 

factor and 𝐻𝑎𝑇 is the average head over the turbine. 𝑞𝑇 refers to the flow going to the 

turbine and ŋ is the efficiency of the power plant.  
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There exist restriction on the energy to be produced by the power plant which is dependent 

on the available number of hours for production of energy (ℎ𝑛) and the plant capacity 

(𝑃𝑐). This implies that, the maximum peak power produced 𝑃𝑀𝑃 can be expressed as: 

 𝑃𝑀𝑃𝑖 = 𝑃𝐶𝑖 × ŋ × ℎ𝑛𝑖  ( 28) 

Therefore, at any time i, the power produced is defined as: 

 𝑃𝑍𝑖 = min (𝑃𝑇𝑖 , 𝑃𝑀𝑃𝑖) ( 29) 

𝑃𝑍𝑖 is the peak power produced, 𝑃𝑇𝑖 is the total power produced at a specific time i.  

The stochastic dynamic programming power model facilitated the determination of the 

reservoir’s monthly release policy for where the reservoir storage is the state variable Si 

at the beginning of a stage and the release from the reservoir is the decision variable. The 

solution derived from equation 22 by working from the end of the decision horizon for a 

period of 12 months. There are a number of discretisation of storage for the reservoir on 

a monthly scale. Equation 27, 28 and 29 was used to compute the power produced for 

each month. The hydropower reliability of the power plant is examined using the energy 

produced and the release policy. Reliability can be defined as the number of successful 

times the monthly power goal is achieved against the number of operational months 

(Jimoh, 2008). 

 

 

 

 



 

66 
 

CHAPTER FOUR 

4.0                                          RESULTS AND DISCUSSION 

4.1 Normality  

The normality test is one of the basic statistical techniques applied to the data series. 

These test determine the appropriate of a statistical technique to be applied on the data 

series. The normality test conducted on the monthly temperature (maximum and 

minimum), rainfall and streamflow indicates that all the data series does not exhibit 

Gaussian distribution when the Anderson-Darling normality test was applied to all the 

data series. Table 4.1(a, b and c) illustrate the test results of the Anderson Darling Test.  

 

Table 4.1a: Anderson-Darling test for normality of the temperature and rainfall 

data 

Weather 

Stations 

Maximum Temperature Minimum Temperature Precipitation 

A2 p-value A2 p-value A2 p-value 

Jos 42.251 2.2 × 10−16 301.34 2.2 × 10−16 2676.7 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Kaduna 39.371 2.2 × 10−16 132.65 2.2 × 10−16 2928.5 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Minna 82.966 2.2 × 10−16 68.597 2.2 × 10−16 3001.1 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Zaria 42.633 2.2 × 10−16 173.88 2.2 × 10−16 3161.5 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Source: Authors compilation, 2017.A2 is the Anderson-Darling test statistics. W is the 

Shapiro-Wilk test statistics. 
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Table 4.1b: Anderson-Darling and Shapiro-Wilk tests for normality for monthly 

streamflow from 1990 to 2014 at the Shiroro Dam 

Anderson-Darling Result 
Shapiro-Wilk Results 

A2 29.9297 
W 0.7482 

P-value < 0.00010 
P-value < 0.00010 

Alpha 0.05 
Alpha 0.05 

Source: Authors compilation, 2017.A2 is the Anderson-Darling test statistics. W is the 

Shapiro-Wilk test statistics. 

 

Table 4.1c: Shapiro-Wilk test for normality of the temperature and rainfall data 

Weather 

Stations 

Maximum 

Temperature 

Minimum Temperature Precipitation 

W p-value W p-value W p-value 

Jos 0.9289 

6.73

× 10−13 

0.9289 

3.06

× 10−13 

0.8528 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Kaduna 0.9738 

7.22

× 10−7 

0.9322 

6.94

× 10−13 

0.8176 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Minna 0.9466 

3.63

× 10−11 

0.9882 0.001738 0.8514 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Zaria 0.9636 

1.07

× 10−8 

0.9339 

1.09

× 10−12 

0.8016 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟔 

Source: Authors compilation, 2017.A2 is the Anderson-Darling test statistics. W is the 

Shapiro-Wilk test statistics. 
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The Null hypothesis H0 of the Anderson-Darling test and the Shapiro-Wilk states that the 

variable in the sample belong to population which is a normal distribution. The Null 

hypothesis of the Shapiro-Wilk test is rejected and the alternative accepted for all the data 

series, which is also same as the Anderson-Darling. The test for the data series were 

performed at a significance level of p ≤ 0.05, implying that any p-value below the 

significance means the H0 of the Anderson-Darling test which state that the data follows 

a specified distribution is rejected and the alternative accepted. A non-parametric test 

approach is therefore suitable to analyse these data series.      

 

4.2 Homogeneity of Data                      

The Table 4.2a shows the result of the homogenization test using the RHtestv4 software. 

The maximum and minimum series of Kaduna was homogenous. The homogeneity test 

results for maximum temperature displayed that Kaduna, Jos, Minna and Zaria were 

homogenous. The RHtestV4 homogenisation technique were also applied to minimum 

temperature series from Jos, Minna and Zaria except Kaduna which was homogenous. 
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Table 4.2a: Homogeneity test and homogenisation of Temperature (maximum and 

minimum) and rainfall for the weather stations 

Weather 

Stations 

Maximum 

Temperature 

Minimum Temperature Precipitation 

H HG H HG H HG 

Jos Yes No No Yes No Yes 

Kaduna Yes No Yes No No Yes 

Minna Yes No No Yes No Yes 

Zaria Yes No No Yes No Yes 

Source: Authors compilation, 2017. H means homogenous (if dataset was homogenous), 

HG refers to Homogenised series (if dataset was homogenised). 

 

Table 4.2b: Homogeneity test and of Streamflow data from Shiroro Dam 

Homogenisation Test 

Shiroro Flow Station 

Test T p-value 

Standardised Normal 

Homogenisation Test 

T0=2.6078 7/1/2009 0.8769 

Pettitt’s Test 
K=1835.0000 5/1/2009 0.8038 

Von Neumann’s Test 
N=0.6329  < 0.0001 

Buishand’s Test 
Q=11.5424 7/1/2009 0.7159 

Source: Authors computation, 2017. 
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Homogenisation test on precipitation for Kaduna proved otherwise from the result on 

temperature series. The precipitation data from Kaduna was not homogenous when the 

RHtestV4 was applied to the monthly series of the data. Monthly precipitation data from 

the other stations such as Jos, Minna and Zaria were also not homogenous and thereby 

required homogenisation.  

Homogenisation test for streamflow was performed using statistical test which have been 

applied to streamflow. Four statistical test were used to test the Homogeneity of the 

streamflow data obtained from Shiroro dam. Results obtained from three of these test 

(Buishand’s test, Standardised Normal Homogeneity test and Pettitt’s test) for monthly 

streamflow data exhibited that the data was homogenous and were drawn from similar 

technique of flow recording and instruments.  Table 4.2b shows the results of The Von 

Neumann’s test statistics pointed out that the p-value obtained was lesser than the 

significant level indicating that the data is in homogenous. The data was classified as 

being homogenous without any further homogenisation techniques applied to it since 

three out of the four test affirm this conclusion.  

 

4.3 Trend Analysis 

4.3.1 Autocorrelation 

The data series from the weather stations (maximum and minimum temperature and 

precipitation) and the Shiroro dam (streamflow) were tested for serial correlation. This 

prior test is to ensure the data series are drawn from independent series. Figure 4.1, 4.2 

and 4.3 illustrate the test of autocorrelation using autocorrelation function for annual 

averaged maximum temperature, minimum temperature, and annual summed 

precipitation and streamflow for the weather stations and the Shiroro dam respectively. 

Figure 4.4, 4.5 and 4.6 shows the partial correlation test for the maximum temperature, 
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minimum temperature, and precipitation and streamflow for the weather stations and the 

Shiroro dam respectively. The autocorrelation or partial correlation which are present at 

any lag will exceed the confidence bound (blue lines) on the plots which are obtained 

from a 95% confidence level. 
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Figure 4.1. Autocorrelation plot of Maximum Temperature for the weather stations 
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Figure 4.2. Autocorrelation plot of Minimum Temperature for the weather stations 
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Figure 4.3. Autocorrelation plot of Precipitation for the weather stations and Shiroro 

Dam streamflow  
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Figure 4.4. Partial autocorrelation plot of Maximum temperature for the weather 

stations  
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Figure 4.5. Partial autocorrelation plot of Minimum temperature for the weather stations  
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Figure 4.6. Partial autocorrelation plot of Precipitation for the weather stations and 

streamflow at Shiroro Dam  
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All the stations evaluated reported no autocorrelation at lag 1 in the maximum 

temperature series. Minimum temperature series test of autocorrelation for each stations 

at lag 1 as shown in Figure` 4.2 and 4.5 demonstrated the presence of autocorrelation in 

Jos, Kaduna and Zaria series.  Precipitation series from each stations outlined the presence 

of autocorrelation at lag 1 in Kaduna series. Streamflow data had no autocorrelation at 

lag 1. These results affirmed the importance of utilising the modified Mann-Kendall test 

to analyse the trend of the series.  

 

4.3.2 Mann-Kendall trend test 

4.3.2.1 Temperature 

Figures 4.7 and 4.8 illustrate the plot 12 months average observed maximum and 

minimum temperature of the stations within Shiroro catchment basin and and its 

surroundings, beginning from the year 1981 to 2015. The station in Minna is located 

outside the Shiroro catchment whiles Jos, Kaduna and Zaria are located in the basin.   

The Mann-Kendall test was applied to the maximum temperature values of each stations 

at a confidence level of 95 %. The results are shown in Table 4.3 for the annual time 

series, the p-value was set at 0.05, implying that any station statistics that produces a p-

value less than the set significance level (α) of 0.05 will lead to the H0 being rejected. 

This implies that a trend is present in the data series and that trend is significant 

statistically. On the other hand, where the p-value obtained was more than the level of 

significance (α), the H0 of no trend is accepted.  

Maximum and Minimum Temperature 

The Mann-Kendall test shows interesting result for the stations analysed for the maximum 

and minimum temperature, average annual temperature and seasonal maximum and 

minimum temperature. 



 

79 
 

The result of the Mann Kendall test for the annual time series shows that maximum 

temperature of the stations in Kaduna, Jos, Minna and Zaria was increasing. Amongst 

these stations, Kaduna, Jos and Zaria stations showed that the positive trend in maximum 

temperature were statistically significant, thereby suggesting that H0 can be rejected 

whilst the trend of maximum temperature in Minna was statistically not significant. Zaria 

time series recorded the second highest S of 295 but the τ = 0.4957983 was poor 

indicating a weak trend.  Jos, Kaduna and Minna also displayed τ values less than 0.5 

indicating a weak strength of the trend. The Sen’s slope suggested that the annual 

maximum temperature of Kaduna, Jos, Minna and Zaria  which had increasing trends 

having slope magnitude of 0.0161 °C/annum, 0.0122 °C/annum, 0.0162 °C/annum and 

0.0280 °C/annum respectively. Zaria recorded the highest increase in maximum 

temperature among all the stations. 



 

80 
 

 

Figure 4.7. Plot of the Maximum Temperature averages of the Stations ( Kaduna, Jos, 

Minna and Zaria) 
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Figure 4.8. Plot of the Minimum Temperature averages of the Stations (Kaduna, Jos, 

Minna and Zaria) 
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Table 4.3: Mann-Kendall test result for the annual Maximum Temperature time 

series (from 1981 to 2015) 

Mann-Kendall Test Stations 

 Kaduna Jos Minna Zaria 

Mann-Kendall Score 

(S) 
197.0 173.00 187.0 295.00 

Kendall’s Tau 0.33109 0.29076 0.31429 0.49580 

Var (S) 4958.33 4958.33 4958.33 4958.33 

Z 2.78348 2.44265 2.64147 4.17522 

p-value (two tailed 

test) 
0.00538 0.01458 0.00825 2.98×10-5 

Var*(S) 1565.603 4958.333 4958.33 4958.33 

Corrected Z 4.95354 2.44265 2.64147 4.17522 

N/N* 0.31575 1 1 1 

Sen’s Slope 0.01609 0.01216 0.01617 0.02801 

Corrected p-value 7.2877×10-7 0.01458 0.00825 2.98×10-5 

Alpha (α) 0.05 0.05 0.05 0.05 

Test Interpretation Reject H0 Reject H0 Reject H0 Reject H0 

Source: Authors compilation, 2017. 

The Mann-Kendall was applied to the annual minimum temperature series from the 

stations between the time period of 1981 to. Table 4.4 illlustrate the result of the Mann 

Kendall test statistics for all the stations that were investigated. Jos and Minna exhibit a 

decreasing trend in minimum temperature series over the period. The trend exhibited by 

these stations were statistically significant. Kaduna and Zaria also recorded positive 

trends in the observed period wich were also statistically significant. The Thiel Sen’s 

slope results  suggest that the minimum temperature in Kaduna and Zaria are increasing 

annually at a magnitude of 0.018958 °C/annum and 0.07012 °C/annum respectively 

whilst Jos and Minna were decreasing with an annual magnitude of -0.0600 °C/annum 

and -0.07704 °C/annum respectively. The change in minimum temperature in Jos was the 

highest among the stations investigated. 



 

83 
 

Table 4.4: Mann-Kendall test result for the annual Minimum Temperature time 

series (from 1981 to 2015) 

Mann-Kendall 

Test 
Stations 

 Kaduna Jos Minna Zaria 

Mann-Kendall 

Score (S) 
241 -471 -485.0 519 

Kendall’s Tau 0.40504 -0.79160 -0.815 0.872 

Var (S) 4958.333 4958.333 4958.33 4958.333 

Z 3.40834 -6.67467 -6.87349 7.35634 

p-value (two tailed 

test) 
0.00065 2.4778×10-11 6.2649×10-12 1.89×10-13 

Var*(S) 1702.61 2887.1505 4958.33 4958.333 

Corrected Z 5.81639 -8.74708 -6.87349 7.35634 

N/N* 0.34338 0.58228 1 1 

Sen’s Slope 0.01895 -0.0600 -0.07704 0.07012 

Corrected p-value 6.01×10-9 2.1894×10-18 6.2649×10-12 1.89×10-13 

Alpha (α) 0.05 0.05 0.05 0.05 

Test 

Interpretation 
Reject H0 Reject H0 Reject H0 Reject H0 

Source: Authors compilation, 2017. 
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Annual Temperature 

The annual temperature were obtained by finding the average between the annual 

maximum and minimum temperature series for each station. Mann Kendall test on the 

average temperature of each station depicted the presence of significant trend in the 

temperature series. Jos and Minna revealed genarally decreasing trend in mean annual 

temperature with annual rate of -0.06 °C, -0.02 °C and -0.03 °C respectively. The statistics 

obtained from Jos was in agreement with Akinosola and Ogunjobi (2014) with the 

decreasing trend of Minna contrasting their findings. These decrease in temperature are 

far below the global annual increase of 0.25 °C to 0.27 °C per decade. Kaduna and Zaria 

which are found in the northern part of the catcment has an increasing trend in average 

temperature with magnitude of 0.018 °C  and 0.049 °C per annum respectfully. Kaduna 

rate of annual temperature change were similar to the findings of Okpara et al. (2013) of 

change in the Lower Niger of 0.0163 °C whilst Zaria rate of change was above their 

average obtained and lower than the global mean temperature change from 2001 to 2005 

(IPCC, 2007c). The mean annual temperature and the minimum temperature trend 

decrease of Jos and Minna were in agreement whiles their maximum temperature 

indicated an increasing trend. Kaduna and Zaria mean, maximum and minimum annual 

temperature were in agreement connoting an increasing trend.  
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Table 4.5: Mann-Kendall test result for the annual Average Temperature time 

series (from 1981 to 2015) 
Mann-Kendall 

Test 
Stations 

 Kaduna Jos Minna Zaria 

Mann-Kendall 

Score (S) 
259 -341 -375 445 

Kendall’s Tau 0.435 -0.573 -0.63 0.748 

Var (S) 4958.333 4958.333 4958.333 4958.333 

Z 3.66397 -4.82849 -5.31134 6.30544 

p-value (two tailed 

test) 
0.00025 1.3757×10-6 1.0882×10-7 2.874×10-10 

Var*(S) 1494.206 4181.963 4958.333 4958.333 

Corrected Z 6.67443 -5.25767 -5.31133 6.30543 

N/N* 0.30135 0.84340 1 1 

Sen’s Slope 0.01809 -0.02132 -0.03042 0.04915 

Corrected p-value 2.4819×10-11 1.4589×10-7 1.0882×10-7 2.874×10-10 

Alpha (α) 0.05 0.05 0.05 0.05 

Test Interpretation Reject H0 Reject H0 Reject H0 Reject H0 

Source: Authors compilation, 2017. 

4.3.2.4 Total Annual Precipitation 

Total annual precipitation for all the stations were tested for presence of trend by 

employing the Mann-Kendall trend test and Sen’s slope. Table 4.6 illustrates the test 

statistics obtained from the Mann-Kendall trend test. All the precipitation data from all 

the stations unveils the presence of positive trend in the dataStations that indicated 

significant positive trend were Kaduna, Minna and Zaria with magnitude of 6.81 mm per 

annum, 5.378 mm per annum and 7.983 mm per annum respectively.  
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Figure 4.9: Plot of the Precipitation of the stations (Kaduna, Jos, Minna and Zaria) and 

averages discharge from the Shiroro Dam 
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Table 4.6: Mann-Kendall test result for the annual precipitation time series (from 

1981 to 2015) 

Mann-Kendall 

Test 
Stations 

 Kaduna Jos Minna Zaria 

Mann-Kendall 

Score (S) 
129 63 151 205 

Kendall’s Tau 0.22 0.11 0.25 0.345 

Var (S) 4958.333 4958.333 4958.333 4958.333 

Z 1.8178 0.8805 2.1302 2.8971 

p-value (two 

tailed test) 
0.069 0.3786 0.0332 0.0037 

Var*(S) 3472.321 1417.587 4958.333 3127.221 

Corrected Z 2.1722 1.6467 2.1302 3.6479 

N/N* 0.7003 0.2859 1 0.6307 

Sen’s Slope 6.81 1.75 5.378 7.983 

Corrected p-

value 
0.0298 0.0996 0.0332 0.00026 

Alpha (α) 0.05 0.05 0.05 0.05 

Test 

Interpretation 
Reject H0 Accept H0 Reject H0 Reject H0 

Source: Authors compilation, 2017. 

4.3.2.5 Streamflow and evaporation trend at Shiroro dam 

Mann-Kendall trend test was applied on streamflow data spanning 25 years from the year 

1990 to 2015. The results as illustrated in Table 4.7 show the presence of positive trend 

in the time series but the trend was statistically not significant having computed the p-

value of 0.0721 which is greater than the significant value of 0.05. Evaporation data 

(Figure 4.10) at the dam site reveal a negative trend which was in agreement with the 

temperature trends in Minna situated downstream of the dam. The statistics of climate 

from the surrounding stations (Minna) demonstrates decreasing temperature trends years 

whilst there are no significant trends in precipitation. 
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Table 4.7: Mann-Kendall test result for the annual Streamflow series (from 1981 to 

2015) for the Shiroro Dam 

Mann-Kendall Test 

Shiroro Station 

Streamflow  

Mann-Kendall Score (S) 78  

Kendall’s Tau 0.26  

Var (S) 1833.333  

Z 1.7983  

p-value (two tailed test) 0.0721  

Var*(S) 1833.333  

Corrected Z 1.7983  

N/N* 1  

Sen’s Slope 20.74  

Corrected p-value 0.0721  

Alpha (α) 0.05  

Test Interpretation Accept H0  

Source: Authors compilation, 2017. 

 

In summary, there exist climate variability existence in the Shiroro catchment supported 

by statistics from Zaria, Kaduna, Jos and Minna. Kaduna stations stations reveal a positive 

trend in maximum temperature values with a low Tau value of 0.33 implying lower 

strength of the trend which is significant, minimum temperature has a positive trend with 

a Tau value of 0.4 indicating low strength of the trend inherrent in the data. Precipitation 

also shows an increasing trend with a Tau value of 0.22. The same situation occurs in the 

precipitation time series with a positive trend but a low Tau value. Similarly, the Zaria 

time series of maximum temperature, minimum temperature average air temperature and 
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precipitation all record an increasing trends with Tau values of 0.495, 0.872, 0.748 and 

0.345 respectively. The maximum daytime temperature and night time (minimum) 

temperature in the Zaria and Kaduna station indicates increasing trend which agrees with 

the average temperature time series which could suggest an increase occurence of hotter 

days and hotter nights. The evaporation is likely to increase with increasing temperature 

whilst the trends in precpitation shows lower strength in magnitude will not be enough to 

compensate for water losses from surfaces. Jos stations shows a lower strength of positive 

trend in maximum temperature, minimum temperature records a strong negative trend 

with Tau values of -0.74. Thus, implying more rapid lower temperature and hotter 

temperatures. The average air temperature had strong negative trend with Tau value of 

0.748. Precipitation showed positive trend which was not siginificant. Stations 

surrounding the catchment such as Minna had strong negative trends in average air 

temperature with Tau values of -0.883 and -0.63 respectively. Precipitation in Minna had 

low strength. Night time temperature in Minna experiences a cooling trend whilst daytime 

temperature is increasing with low strength in the trend compared to minimum 

temperature. Streamflow data shows positive trend in the period observed but was not 

significant. 
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Figure 4.10. Evaporation Trend at Shiroro Dam (from 1991 to 2014) (source: Author) 

 

4.4 Soil and Water Assessment Tool Setup, Calibration and Validation Analysis 

4.4.1 Model Setup  

The characteristic soil map, slope map and land use maps reclassified during the model 

setup are shown in Figure 4.11 – 4.13. The total Shiroro dam catchment area delineated 

is 3468410.2514 ha (34684.102514 km) with 21 subbasins and 109 hydrologic response 

units. The dominant land use in the catchment is agricultural comprising 86.43% of the 

total catchment area, 12.46 % of the area are covered by range and grasses, with minor 

land uses such as residential, forest (mixed and deciduous), range and brush, barren land 

and wetlands account for 0.52 %, 0.02 %, 0.11 %, 0.1 % and 0.05 % respectively. Table 

4.8 shows the dominant soil in the catchment. 
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Figure 4.11. Shiroro Catchment Map showing the land use and the Kaduna River Basin 

  



 

92 
 

Table 4.8: Soil types, textural class and hydrologic groups found the Shiroro 

catchment 
Dominant Soil 

Name 

Soil 

classification 

Hydrologic 

Group 

TEXTURE Watershed Area 

% 

Lithosols I-60 C LOAM 0.76 

Lithosols I-c-99 C LOAM 0.46 

Ferric Acrisols Af12-2b-1020 D SANDY_CLAY_LOAM 1.54 

Orthic Acrisols Ao43-1b-1056 C LOAMY_SAND 1.56 

Lithosols I-Lf-1255 C SANDY_CLAY_LOAM 1.46 

Lithosols I-bc-1324 C LOAM 0.42 

Ferric Luvisols Lf1-1420 C SANDY_CLAY_LOAM 0.02 

Ferric Luvisols Lf41-1-2a-1468 C SANDY_LOAM 0.98 

Ferric Luvisols Lf42-1a-1470 C SANDY_LOAM 11.77 

Ferric Luvisols Lf49-1a-1476 C SANDY_LOAM 39.1 

Ferric Luvisols Lf53-1480 C SANDY_CLAY_LOAM 0.61 

Ferric Luvisols Lf8-1493 C SANDY_CLAY_LOAM 24.71 

Gleyic Luvisols Lg26-2a-1511 C SANDY_CLAY_LOAM 16.25 

Luvic Arenosols Ql5-1632 C SANDY_LOAM 0.37 

Source: Authors compilation, 2017. 
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Figure 4.12. Catchment map of Shiroro Dam showing River network and the outlet (top 

map) and the Subbasins (bottom map) 
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Figure 4.13. Catchment map of Shiroro Dam showing the slope classification 
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Luvisols forms a greater part of the catchment with a total percentage of 93.44 % of the 

total catchment. Other soil types are Lithosols and Acrisols having 3.1 % area each in the 

catchment with Arenosols being the least present soil having a catchment area percentage 

of 0.37 %. The slope class with the highest percentage in the subbasin is 0° – 2.868° 

accounting for 61.31 % of the catchment area indication that majority of the land surface 

of the catchment is near flat surface (near level lands). 30.15 % of the catchment have a 

slope class between 2.868° – 5.497° which can be classified as gentle sloping land. 5.497° 

– 8.844° (moderate slope) which is 3.97 % of the total catchment area,  8.844° - 12.668° 

%  (strong slope) which is 1.50 % of the total catchment area and 12.668° - 9999° or > 

12.668° (strong slope to very steep). These interpretation of slopes are based on the 

classification of slopes by the Barcelona Field Studies Centre.  

4.4.2 Sensitivity Analysis 

Soil Water Assessment integrates several parameters which are used for the calibration 

of models. Some of these parameters are location specific (Temperate regions and 

Tropical Regions) and also differs in sensitivity in different watersheds and even sub-

watersheds during the calibration process of the model. The Global Sensitivity analysis 

was used to identify most sensitive parameters for the model calibration. This approach 

varies parameters simultaneously and thereby nullifies the issues associated with One at 

a Time sensitivity analysis (OAT). The most sensitive parameters during the calibration 

stage are illustrated in Table 4.9.  Four parameters were sensitive out of the fourteen 

parameters used for the calibration of the model. 
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Table 4.9: Parameters Most Sensitive to flow in the Shiroro catchment 

Parameter Name t-stat p-value Min value 

Max 

value 

Fitted 

Value 

R__CN2.mgt 4.94 0.000002 -0.209959 0.063959 

-

0.113403 

V__GW_REVAP.

gw 

4.86 0.000003 0.073671 0.221329 0.197335 

V__GWQMN.gw 4.12 0.000057 1041.76599 

3683.234

13 

3452.105

5 

V__ESCO.hru 3.10 0.002255 0.480847 0.64066 1.0 

Source: Authors compilation, 2017. 

SUFI-2 algorithm fitted these parameters as sensitive with values having absolute t-stats 

values and lower p-value less than 0.05 significant level. The most sensitive parameter 

was the CN2 and least sensitive among the parameters was the ESCO. 

 

4.4.3 Calibration and Validation of the Model 

The SWAT model was initially setup using daily values of precipitation, relative 

humidity, solar radiation, maximum and minimum temperature, and wind in ArcSWAT. 

During the calibration, monthly values of streamflow data were used for the calibration 

of the model in the SWAT-CUP.  Nash-Sutcliffe Efficiency was the objective function 

employed during the calibration of the model. A Nash-Sutcliffe objective function ranges 

between negative infinity (-∞) to one (1) (Abbaspour, 2015). Table 4.10 indicates the 
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results of calibration from the five iterations with 200 simulations using SUFI-2 

algorithm.  

 

Table 4.10: Calibration results for 200 simulations for each iterations 

Iteration Summary Statistics 

NSE R2 PBIAS P-

factor 

r-

factor 

Mean Sim (mean Obs 

value) 

1st 0.38 0.49 2.9 0.92 2.80 277.77 (286.01) 

2nd 0.43 0.51 -0.2 0.79 1.27 286.64 (286.01) 

3rd 0.46 0.55 17.8 0.67 0.80 235.08 (286.01) 

4th 0.47 0.55 13.9 0.56 0.50 246.32 (286.01) 

5th 0.22 0.47 -14.4 0.82 1.52 327.14 (286.01) 

Source: Author’s compilation, 2017. Sim refers to the simulation values obtained and Obs 

is the observed values measured. 

 

Based on Moriasi et al. (2015), the results of NSE and R2 from the five iteration were 

unsatisfactory for monthly scale calibrations whilst the PBIAS for the 1st and 2nd iteration 

could be said to be very good. PBIAS of the 3rd iteration was unsatisfactory whilst those 

of the 4th and the 5th iteration suggest a satisfactory results for the calibration. Although 

an NSE value of one represents the models simulated streamflow values having perfect 

agreement with the observed streamflow values, values of NSE higher than zero of a 

model is considered acceptable performance level and a less than or equal to zero value 

shows that the average of the observed data is a better at prediction than the model (Dile 

and Srinivasan, 2014). The 2nd iteration simulated streamflow average (286.64 m3 s⁄ ) 

value was the closest the observed average streamflow value of 286.01 for the calibration 
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period also indicating an overestimation. The 1st iteration simulated average streamflow 

(277.77 m3 s⁄  (underestimation)) was the next in good estimate closer to average 

observed streamflow, other iterations such as 4th iteration (246.32 m3 s⁄  

(underestimation)), 5th iteration (327.14 m3 s⁄  (overestimation)) and 3rd iteration 

(235.08 m3 s⁄  (underestimation)) follow in the order of difference of simulated 

streamflow values from the observed streamflow values. In accounting for uncertainty in 

the calibration of the model, all the p-factor representing the amount of observed 

streamflow values enclosed by the 95PPU band were all greater than 0.5 for all iterations 

revealing that higher amount of observed streamflow were bracketed. The r-factor being 

the depth of the enclosed 95PPU band bracketing the observed data were also good except 

for the value obtained in the 1st iteration which was rather large.  

In selecting the goodness of fit iteration for as the best solution out of these results, the 

recommendations of Abbaspour et al. (2015) based on uncertainty analysis. They 

recommended a p-factor greater than 0.7 and r-factor less than 1.5. Therefore, the 2nd 

iteration was selected as a good fit using this criteria. The 2nd iterations had the best 

average simulated streamflow to average observed streamflow in prediction. The value 

of PBIAS of -0.2 was significantly good even though the negative sign suggested an 

overestimation of the simulated streamflow to the observed streamflow. The NSE value 

obtained during calibration range was in agreement with the range stipulated in the results 

of Schuol et al. (2008) in the basin. Figure 4.14 shows the plot of the simulated and 

observed streamflow obtained in the calibration. 
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Figure 4.14. Calibration of model from the year 1990 to 2005 

The calibrated model was able to simulate flow peaks at similar periods as the observed 

peak flow but the simulated discharge reveals patterns of underestimation and 

overestimation of flow in a number of the years. The periods June 1990 to Dec 1990, July 

1998 to January 1999, July 1999 to January 2000, July 2003 to January 2004 and July 

2004 to January 2005 indicates the period where underestimation of simulated peak flow 

by the calibrated model. The model overestimate peak flow between July 1993 to January 

1994, July 1995 to January 1996 and July 2002 to January 2003. There is a record of a 

drought year by the simulated flow between the periods of June 2000 to January 2001 

where peak flow recorded in the simulated flow as against the observed flow for that 

period was extremely low. This is as a result of the precipitation data used in modelling 

(Srinivasan, 2013). During that period NCEP CFSR precipitation data from all the 

stations recorded very low rainfall. Applying an assumption that closer weather stations 
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of CFSR to an in-situ weather station should have similar climatic features, in- situ 

observed weather stations’ (located in the Shiroro catchment) monthly precipitation series 

were compared with CFSR weather station points close-by to investigate the low peak 

recorded between the periods of June 2000 to January 2001. Figure 4.15 illustrates the 

monthly precipitation values of the weather stations of observed in-situ stations and 

nearby CFSR weather stations. From the plot Figure 4.15 and 4.16 the CFSR peak 

precipitation records fall below the observed in-situ peak precipitation average amount 

by about 150 mm for both Kaduna and Zaria stations. Figure 4.17 reveal not much of 

significant difference between the periods. The annual precipitation of the CFSR stations 

in close proximity to Zaria, Kaduna and Jos were compared with annual precipitation of 

these stations. CFSR (p11175 (330.12 mm) and p11178 (347.67 mm)) stations close to 

Zaria weather station (1089.9 mm) were less than the annual precipitation of the observed 

records by a range of 742.23 mm to 759.78 mm (0.68 % to 0.0.69 % of the observed 

annual precipitation) in the year 2000. Also, CFSR stations (p10572 (321.39 mm), 

p10575 (451.32 mm) and p10875 (423.27 mm) in close proximity to Kaduna (1232.8 

mm) weather station were less than the annual precipitation of the observed records by a 

range of 781.48 mm to 911.41 mm (0.63 % to 0.74 % of the observed annual 

precipitation) in the year 2000. Finally, CFSR stations (p9888 (672.56 mm), p9891 

(705.39 mm) and p10188 (415.28 mm) near Jos (1160 mm) weather station were less than 

the annual precipitation of the observed records by a  range of 454.61 mm to 744.72 mm 

(0.39 % to 0.64 % of the observed annual precipitation). These deficits in annual 

precipitation amount in the year 2000 may account for the low prediction in the model 

during the calibration stage.    
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Figure 4.15. Monthly precipitation of Kaduna Station and nearby CFSR weather 

stations in the Catchment 

 

 

Figure 4.16. Monthly precipitation of Zaria Station and nearby CFSR weather stations 

in the Catchment 
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Figure 4.17. Monthly precipitation of Jos Station and nearby CFSR weather stations in 

the Catchment 

 

 

Figure 4.18. Validation of model from the year 2006 to 2013 
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During the validation stage of the model (Figure 4.18), the statistical results from the 

validation of the model reveal improved values of NSE and R2 compared to the calibration 

period. The NSE value for the validation period was 0.77, R2 was 0.79 and PBIAS was 

8.3. According to Moriasi et al. (2015), these values obtained for all the performance 

evaluation criteria are classified as good during the evaluation period. The p-factor of 

0.77 and the r-factor of 0.77 values were within the recommended range of p-factor > 0.7 

and r-factor < 1.5. The average simulated streamflow values was 278.35 m3 s⁄   whiles 

the observed streamflow values was 327.65 m3 s⁄  indicating underestimation by the 

model during the validation period. The Most sensitive parameters during the calibration  

period are edited in the ArcSWAT project and the model run from the base years to the 

projected future scenario of 2100 for both RCP 4.5 and 8.5.  

4.4.3.1 Projected Trends in HydroClimatic Parameters 

Changes in the hydroclimatic variables were analysed for the base year and the three 

projected periods of 2021 to 2045 (near future period), 2046 to 2070 (mid future period) 

and 2071 to 2095 (far future period). Average 25-year records of these future periods for 

the RCP 4.5 and RCP 8.5 were compared against 25-year period of the observed base 

period (1990 to 2014). The average annual changes in the hydroclimatic variables such 

as streamflow, potential evapotranspiration (PET), temperature (maximum and 

minimum) in the catchment were assessed relative the baseline period from 1990 – 2013 

(Table 4.11). The average maximum temperature, minimum temperature, potential 

evapotranspiration, streamflow and precipitation for the baseline period were 29.12 °C, 

18.32 °C, 208 mm, 299.02 m3 s⁄   and 1286.094 mm respectively. Maximum temperature 

values based on the simulation of the downscaled NCC-NorESM1-M with WRF331 

model depicts an increase in the near future (NF) of 9.79 %, a further increase of 10.77 

% in the Mid Future period and 12.89 % towards the end of the 21st century (Far Future) 
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under RCP 4.5 representing an increase of 2.85 °C for NF, 3.13 °C for MF and 3.40 for 

FF. The RCP 8.5 predicts 9.94 % increase in maximum temperature in the immediate 

future (NF), 12.88 % increase in the mid future and a drastic increase of 16.22 % towards 

the turn of the century which indicated an increase of 2.89 °C, 3.75 °C and 4.17 °C 

respectively for NF, MF and FF. Minimum temperature projection followed the same 

trend as the maximum temperature under both RCP4.5 and 8.5 but had lower percentage 

of increase relative to the baseline period (Table 4.11). In the near future, minimum 

temperature rose by 4.85 %, 6.15 % in the mid future period and 8.18 % under RCP 4.5 

which represents an increase of 0.89 °C, 1.13 °C and 1.5 °C in the NF, MF and FF 

respectively. Under RCP 8.5, minimum temperature values showed an increase of 4.81 

% in the near future, 9.89 % in the mid future (actually showing a decline from the initial 

increase) and 15.17 % towards the end of the century (Table 4.11). Precipitation in both 

RCP 4.5 and 8.5 shows an initial increase of 21.12 % and 22.13 % in the near future (NF) 

respectively, 19.10 % and 18.89 % in the mid future (MF) respectively and 18.25 % and 

6.77 % respectively towards the end of the century (Table 4.11). Precipitation projection 

is observed to decrease drastically towards the year 2100 but it is still higher than the 

baseline average.  These increase in precipitation can be as a result of inability of Regional 

Climate Models to simulate precipitation in West Africa and uncertainties inherent in the 

models (Sylla et al., 2008, Oyerinde et al., 2016). Streamflow will increase in the near 

future and mid future and reduce towards the end of the 21st century under RCP 8.5 in 

line with the decreasing precipitation. The reduction in the streamflow towards the year 

2100 exceeded that of the baseline streamflow average. Generally, the increase in 

temperature, precipitation, streamflow, PET and temperature values in RCP 8.5 were 

higher than in RCP 4.5 projections. Nevertheless, the increase in streamflow are 
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characterised by extreme events of precipitation which resulted in high streamflow within 

particular years. This also resulted in intermittent streamflow generation by the model. 

 

Table 4.11: Percentage hydroclimatic trends in the near future (NF, 2021-2045), 

mid future (MF, 2046- 2070) and far future (FF, 2071-2095) comparative to the 

historical (1990-2014) 

Hydroclimatic 

variables 

RCP 4.5 RCP 8.5 

NF MF FF NF MF FF 

Streamflow 

(%) 
38.01 39.83 48.49 43.02 67.77 14.57 

Precipitation 

(%) 
21.12 19.10 18.25 22.13 18.89 6.77 

Potential 

Evaporation 

(%) 

26.47 28.56 28.44 28.44 30.51 33.58 

Maximum 

Temperature 

(%) 

9.79 10.77 11.70 9.95 12.89 16.24 

Minimum 

Temperature 

(%) 

4.85 6.15 8.18 4.81 9.89 15.17 

Source: Authors compilation, 2017.NF is near future (2021 – 2045), MF is mid future 

(2046 – 2070) and FF is Far Future (2071 – 2095). RCP is Representative Concentration 

Pathways. 
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4.5 Energy Projections   

The annual energy generation from the dam were analysed under RCP 4.5 and RCP 8.5 

scenarios. The hydropower generation outputs were modelled by assuming an ideal 

situation where the plant is capable of operating at full capacity without occurrence of 

malfunctioning units (or scenario of timely maintenance practices) in the years modelled. 

The output of the model for all the scenarios and time period under observation are 

represented in appendix A, B and C for Near future (2021 – 2045), Mid future (2046 – 

2070) and Far future (2071 – 2095) respectively.  

 

4.5.1 Energy Analysis in the Near Future (2021 – 2045)  

The annual projected streamflow magnitude in RCP 8.5 were slightly higher than those 

in RCP 4.5 (Figure 4.19) which directly correlates with the energy production (Figure 

4.20) in the near future period. Under RCP 4.5, average annual flow in the near future 

was lower than the average annual flow in RCP 8.5 by 3.63 % but total energy produced 

in RCP 4.5 was slightly greater than in RCP 8.5 in the near future by 0.17 %. Contrarily, 

the total revenue produced is projected to be 1.4 % (5.6 billion Naira) more under RCP 

8.5 scenario than in RCP 4.5 scenario for the entire near future period. The increase in 

revenue under RCP 8.5 scenario can be attributed to the seasonality in flow where a high 

annual flow could be a result of high intermittent flow within the year as against an 

average flow thoughout the year. Intermittent flow with dry spells or month with low 

flowmight result in low power generation as against steady mean flow. Thereby 

suggesting that the reliability of the plant in the near future under RCP 4.5 was slightly 

lower than under RCP 8.5 (Table 4.12).  Maximum energy produced under each scenario 

above 2000 GWh/year were produced in the years 2030, 2034, 2039 and 2040 under RCP 
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8.5 scenario whilst under RCP 4.5 scenario, it was produced in the years 2027, 2029, 

2033, 2038 and 2039 under RCP 4.5 scenario.  

 

 

Figure 4.19. Annual average streamflow in the Near Future for both RCP 4.5 and RCP 

8.5 scenario 
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Figure 4.20. Annual Energy generation under both RCP 4.5 and 8.5 scenarios in the 

Near Future 

 

Figure 4.21. Annual Revenue in Millions Naira in the Near future 
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Revenue generated in millions of Naira (Figure 4.21) also shows considerable benefits of 

the power plant under RCP 8.5 scenario with more than 50 % of the years reporting 

benefits of 1 billion Naira or more. Lowest amount of revenue generated is likely to occur 

under RCP 4.5.  

 

4.5.2 Energy Analysis in the Mid Future (2046 – 2070) 

In the Mid future, the magnitude of the annual average streamflow under RCP 8.5 remains 

higher than those in RCP 4.5 (Figure 4.22) which directly correlates with the energy 

production (Figure 4.23) in the mid future period similar to the near future. Maximum 

energy of 2000 GWh/year and above were produced in the years 2024, 2028, 2031 to 

2050, 2055, 2056, 2061, 2067 and 2068 under RCP 8.5 scenario whilst its was produced 

in the years 2046, 2054, 2055, 2060, 2066 and 2067 under RCP 4.5 scenario. 

 

Figure 4.22. Annual average streamflow in the Mid Future under both RCP 4.5 and 

RCP 8.5 scenario 

0

100

200

300

400

500

600

700

800

900

1000

2
0

4
6

2
0

4
7

2
0

4
8

2
0

4
9

2
0

5
0

2
0

5
1

2
0

5
2

2
0

5
3

2
0

5
4

2
0

5
5

2
0

5
6

2
0

5
7

2
0

5
8

2
0

5
9

2
0

6
0

2
0

6
1

2
0

6
2

2
0

6
3

2
0

6
4

2
0

6
5

2
0

6
6

2
0

6
7

2
0

6
8

2
0

6
9

2
0

7
0

In
fl

o
w

 (
m

m
^3

/s
)

Year

RCP 4.5

RCP 8.5



 

110 
 

 

 

Figure 4.23. Total Annual Energy generation under both RCP 4.5 and 8.5 scenarios in 

the Mid Future 

 

 

Figure 4.24. Total Annual Revenue in Millions Naira in the mid future 
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Energy generated under RCP 4.5 was slightly higher than energy generated under RCP 

8.5 even though streamflow under RCP 8.5 was slightly higher than RCP 4.5. This 

disparity can be accounted in the additional sale of secondary power after the target has 

been achieved. Revenue margins in Millions of Naira (Figure 4.24) reveal a projected 

loss made by the power plant under both RCP 4.5 and RCP 8.5 scenarios in the years 

2051 (1.1 billion Naira), 2062 (3.1 billion Naira) and 2069 (507.37 million Naira) under 

RCP 4.5 scenario and 2052 (1.02 billion Naira) and 2070 (460.09 million Naira). Also, 

benefits in the years 2051 and 2063 under RCP 8.5 scenario are very low and below 800 

million Naira per annum. These net losses are as a result of the power plant inability to 

produce power to achieve the target (firm power) when the penalty rule is applied for 

each month in a particular year. The relationship between power generated and revenue 

is not linear when the power generated is below the target. Thus, months that reached 

firm power mimic increasing linear curve whilst the contrary is also true.  

 

4.5.3 Energy Analysis in the Far Future (2071 – 2095) 

The projected annual average streamflow magnitude (Appendix C) in RCP 4.5 were 

slightly higher than those in RCP 8.5 (Figure 4.25) which directly correlates with the 

energy production (Figure 4.26) in the far future (FF) period. Under RCP 4.5, average 

annual flow in the near future was marginally higher than the average annual flow under 

RCP 8.5 scenario by 22.8 % of average annual streamflow under RCP 4.5 scenario. Also, 

total energy produced under RCP 8.5 scenario was slightly more than under RCP 4.5 in 

the far future by 0.69 % of total annual energy generated under RCP4.5 scenario. 

Comparatively, the total revenue produced is projected to be 0.7 % (3.1 billion Naira) 

more under RCP 8.5 scenario than in RCP 4.5 scenario for the entire far future period. 

Though the streamflow under RCP 4.5 increased more than streamflow simulated under 
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RCP 8.5, the power production were based on constraints highlighted in equation 23 – 26 

and are stochastic in nature. The increase in revenue under RCP 8.5 are as a result 

consistent average flow in a year as against intermittent high flow under RCP 4.5 is going 

to affect energy production as explained earlier and reliability of the plant in months with 

dry spells (Figure 4.26). The reliability of the plant in a particular month affects the 

pricing of the energy.  

 

 

Figure 4.25. Annual average streamflow in the Far Future under both RCP 4.5 and RCP 

8.5 scenario 
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Figure 4.26. Annual Energy generation under both RCP 4.5 and 8.5 scenarios in the Far 

Future 

 

Figure 4.27. Annual Revenue in Millions Naira in the Far future 
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The revenue generated in millions of Naira (Figure 4.27) reveal a projected revenue of 

the power plant in the far future made by the power plant under both RCP 4.5 and RCP 

8.5 scenarios. In the far future period, the plant is projected to record revenue with 

minimum revenue (benefits) of 800 million Naira in both RCP 4.5 and 8.5 scenario. There 

are no losses reported in any particular for both the scenarios. 

 

4.5.4 Reliability of Hydropower plant 

In modelling the monthly power generation using the dynamic stochastic model, the 

reliability of the plants was based on the ability of plant to reach the target which was the 

firm power set at 138 KWh/month. The reliability of the power plant in the various 

scenarios under RCP 4.5 and 8.5 for all the future periods (NF, MF and FF) are illustrated 

in Table 4.12. 

Table 4.12: Reliability and Revenue for the possible future periods under both 

climate change scenarios 

 RCP 4.5 RCP 8.5 

Period NF MF FF NF MF FF 

Reliability 

(%) 

0.68 0.64 0.7 0.7 0.69 0.72 

Revenue 

(million 

Naira) 

372294.9 380614.5 434167.5 377858.2 362179 437273.9 

Source: Authors compilation, 2017.NF is near future (2021 – 2045), MF is mid future 

(2046 – 2070) and FF is Far Future (2071 – 2095). RCP is Representative Concentration 

Pathways.  
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The reliability of the power plant was evaluated under each scenario and periods in the 

future and revenue generated (Table 4.12). Under RCP 4.5, the reliability of the power 

plant was 0.68 % in the near future (2021 – 2045), reduced in the mid future (2046 – 

2070) at 0.64 % and increased in the far future at 0.7. Similar results are projected by 

RCP 8.5 scenario with 0.7 % reliability factor of the plant in the near future, reducing to 

0.69 in the mid future and 0.72 in the far future period. Comparing these reliability factors 

obtained in another study by Cervigni et al. (2013), the report an initial reliability factor 

of 0.68 % to 1 % in the year 2020 and an increase 0.89 % to 1 % in the 2050. The results 

in the near future (2021 – 2045) similar to their observation in the 2020 whilst the mid 

future reliability differs from their reliability they obtained at the end of the year 2050.  

The reliability of the plant in scenario RCP 8.5 were higher than in scenario RCP 4.5 

during the period under consideration (Table 4.12) but lower than the acceptable value of 

0.75 implying that climate change will have severe impact on the plant. With the projected 

average annual streamflow being higher than the baseline in both scenarios, the 

occurrence of extreme precipitation events will force operators to spill water in order to 

protect the dam which can likely result in flooding downstream of the dam in periods 

where very high flow is occur.  
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CHAPTER FIVE 

5.0                             CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The first objectives of this study was to investigate the trends in hydroclimatic variables 

of stations situated in the Shiroro catchment and its immediate surroundings using Mann-

Kendall statistical techniques. The findings from the variables of the stations were 

significant at 95 % confidence level. Kaduna, Jos and Zaria indicated an increasing trend 

in the maximum temperature series whilst only Jos had a decreasing minimum 

temperature trend with Kaduna and Zaria illustrating positive trends in their minimum 

temperature. Average temperature in Kaduna and Zaria had positive trends. On the 

contrary, Jos average temperature suggested a decreasing trend.  Minna recorded negative 

trends for the average temperature series. Precipitation analysis showed no significant 

trend in Jos whilst positive weak trends were found in Kaduna, Minna and Zaria for the 

period under investigation. Streamflow time series showed the presence of trend which 

was not significant after statistical evaluation of data. Among the hydroclimatic variables 

analysed, there was high variation in the period observed for temperature time series. 

Thus, all the findings from each station indicating the presence of high climate variability 

in the catchment. Based on the findings of Okpara et al. (2013) in similar locations, these 

gradual changes can be associated with evidence of climate change occurring in the 

catchment.  

The second objectives were to assess the changes in streamflow in the catchment. The 

Soil and Water Assessment Tool (SWAT) was utilised to quantify changes in streamflow 

of the catchment. The Soil and Water Assessment Tool was used to setup a model for the 

Shiroro catchment and calibrated from the period of 1990 to 2005 and validated from 

2006 to 2013 on monthly time steps. The calibration results based on criteria 
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recommended by Moriasi et al. (2015) were unsatisfactory which was related to 

underestimation of rainfall by the CFSR precipitation datasets during the year 1999 and 

2000. Nevertheless, the best solution of the calibrated model was selected by utilising 

uncertainty fitting criteria recommended by Abbaspour et al. (2015). During the 

validation process, the validation statistics were adjudged good for the calibrated model.  

Streamflow was projected to increase under both RCP 4.5 and RCP 8.5 in the near future, 

mid future and far future more than the baseline. The streamflow under RCP 8.5 scenarios 

reduced towards the turn of the century but still remain higher than the baseline average 

streamflow value. These changes correlated with projected changes in precipitation at the 

dam sites. Temperature values rose gradually from near future, mid future and far future 

under both scenarios. 

In the assessment of the future power generation in the possible future, a stochastic 

dynamic model was utilised to assess impact of changes in streamflow on hydropower 

generation. Generally increase in streamflow correlated with the increase in energy 

generated. In the application of the optimisation operation rule constraints, increase in 

energy production does directly infer to generation of revenue as the ability of the energy 

generation of plant to achieve firm power influences the pricing of energy. The reliability 

of the plant of the plant from the near future reduces from 0.68 to 0.64 in the mid future 

and increases to 0.7 in the far future under RCP 4.5 scenario. Similarly, the reliability of 

the plant reduces from 0.7 in the near future to 0.69 in mid future and then increases to 

0.72 in the far future under RCP 8.5 scenario. Revenue under RCP 8.5 were in agreement 

with the changes in the reliability of the plant. Under RCP 4.5, revenue increases 

gradually from the near future to far future despite the dip in reliability during the mid 

future. The sale of secondary power in wet years may have accounted for the revenue 

increase even though reliability reduced in the mid future. Reliability obtained from all 
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the scenarios were below the acceptable value of 0.75 suggesting that the optimum benefit 

to be derived from the plant will be impacted by climate change as a result of occurrence 

of intermittent flow regimes in the catchment. Inter-basin water transfers such as Gurara 

Basin transfer to Shiroro are will be key in improving hydropower generation in the 

catchment. 

5.2 Recommendations 

From the findings of this work, it was observed that intermittent flow as result of climate 

change are likely to occur in the catchment. 

As a result of intermittent flow in the catchment, operators of the dam should adopt 

optimisation policy that will maintain water especially during periods of high inflow to 

protect the environment downstream of the dam.   

The spatial resolution of hydrological model input data affect the prediction of 

streamflow, we recommend that the application of other rainfall reanalysis and satellite 

products such as Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS), 

Tropical Applications of Meteorology using SATellite (TAMSAT), Tropical Rainfall 

Measuring Mission (TRMM), Era Interim Reanalysis data, Modern-Era Retrospective 

analysis for Research and Applications version 2 (MERRA-2), Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and 

Global Precipitation Climatology Project (GPCP) to improve streamflow modelling of 

the catchment. Other spatial datasets such as HydroSHEDS, Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER GDEM), European Space Agency 

(ESA) CCI Land Cover product. 
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Multiple GCMs output and ensemble mean from GCM outputs should be used in future 

to study the climate change impact on the hydrology and hydropower generation in the 

catchment. This will reduce the uncertainties associated in applying only one GCM. 

Inter-basin Transfer should be explored and manage effectively to help improve the 

reliability of the hydropower plant in the Shiroro Dam Catchment expecially in periods 

of low flow of water into the reservoir. 

Finally, climate change impact on sediments in both the present and future scenarios and 

their effect on power generations should be investigated. 
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APPENDICES 

Appendix A: Annual output from Energy Model in the Near Future (2021 – 2045). 

Year 

Streamflow (m3/s) Energy (KWh/year) Revenue (Million Naira) 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

2021 262.86224 372.42532 1206.5978 1605.9144 9044.0994 18354.393 

2022 361.91391 270.8844 1268.3788 985.01801 10314.506 3725.9458 

2023 381.24735 372.95898 1381.3227 1250.2501 11037.402 10091.757 

2024 367.93397 392.88245 1348.2199 1477.5742 12026.065 14398.771 

2025 441.60822 379.16276 1797.7508 1210.9294 19610.616 9148.0623 

2026 294.72509 455.08544 864.44031 1810.1174 831.84549 21298.25 

2027 474.06593 303.71966 2014.457 1067.8307 24658.307 5713.5682 

2028 343.17439 488.53371 1117.2104 1603.0264 6898.5686 15677.018 

2029 593.57853 353.64755 2269.4046 1424.3533 29672.394 14270.354 

2030 211.02909 611.69366 1000.9886 2075.3398 4109.3636 25371.914 

2031 395.4397 217.46939 1253.4236 951.85017 10167.804 2929.8035 

2032 451.86262 407.50792 1687.1833 1322.5517 18558.473 11826.878 

2033 597.51707 465.65279 2342.3932 1623.3359 30138.406 18012.593 

2034 507.97235 615.75239 1661.0794 2333.389 18329.014 30631.169 

2035 235.26928 523.4749 1206.4364 1873.0481 8614.0996 22721.916 

2036 342.8672 242.44935 1234.4749 1068.5202 9712.7946 5730.0051 

2037 284.13628 353.33099 843.41654 1092.0219 327.1564 6294.0453 

2038 712.69842 292.8077 2312.294 900.0946 30358.663 1687.7881 

2039 604.0228 734.44891 2393.5269 2308.2766 30551.911 30249.129 

2040 524.55633 622.45667 1771.4971 2370.3301 19502.13 31287.202 

2041 492.75732 540.565 1842.9998 1857.0844 22066.176 21566.41 

2042 215.77007 507.79553 1188.8085 1833.4415 8616.9203 22243.393 

2043 641.04868 222.35505 1882.3333 1072.9824 20222.214 5837.0953 

2044 275.28518 660.61253 1136.8697 1912.5969 7370.5096 20932.082 

2045 303.96907 283.68647 1227.9035 1157.2132 9555.4381 7858.6352 

Source: Authors compilation, 2017. 
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Appendix B: Annual output from SWAT model and Energy Model in the Mid 

Future (2046 – 2070). 

Year 
Streamflow (m3/s) Energy (KWh/year) Revenue (Million Naira) 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.6 

2046 545.47003 364.93279 2189.4881 1103.0503 27820.374 6558.8472 

2047 286.78199 670.01299 1382.145 1965.7049 13257.118 23681.232 

2048 435.52441 352.26071 1339.9613 1182.4511 11703.516 8464.3429 

2049 507.61277 534.96433 1909.3009 1464.1137 22804.374 14574.939 

2050 178.95695 623.51207 1003.9506 2041.8485 4180.333 26031.536 

2051 219.90196 219.81681 1107.8576 861.7358 -1117.8134 766.93564 

2052 326.01147 270.11047 1220.8563 787.4313 9385.8304 -1016.4892 

2053 362.73686 400.44715 1084.3478 1141.8467 6109.8592 7467.6723 

2054 712.26044 445.55777 2187.7112 1157.2972 26921.806 7159.029 

2055 665.18034 874.88536 2544.8844 2292.2598 33767.581 29456.898 

2056 484.44149 817.05583 1884.3814 2583.8735 23006.039 34703.894 

2057 375.61394 595.05028 1374.0443 1716.1068 13062.699 18561.677 

2058 509.36229 461.37497 1905.0547 1674.0158 22736.394 20146.291 

2059 462.9452 625.66105 1895.9024 1703.3639 23355.553 18386.299 

2060 561.15752 568.6459 2149.0639 1895.6662 27634.494 23692.499 

2061 226.18571 689.28228 1132.0361 2131.2668 7254.5053 27393.922 

2062 261.38344 277.82895 702.52366 1104.1915 -3054.3922 6586.235 

2063 454.58454 321.06311 1524.7112 844.24936 15781.12 347.25831 

2064 262.44892 558.37632 1144.2815 1490.4238 7548.5111 13889.5 

2065 352.73747 322.37186 1356.7774 1312.4003 12648.53 11583.485 

2066 551.87786 433.2753 2109.5085 1055.2402 26146.631 5084.9407 

2067 734.37199 677.88387 2077.2591 2167.4377 26463.435 28027.76 

2068 210.37104 902.04548 1237.2037 2009.07 6880.2785 24831.578 

2069 225.31576 258.40344 946.93554 1090.5497 -507.37931 6258.8313 

2070 540.09201 276.76036 1701.1748 810.60965 16825.067 -460.09064 

Source: Authors compilation, 2017. 
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Appendix C: Annual output from SWAT model and Energy Model in the Far 

Future (2071 – 2095). 

Year flow Energy Revenue 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

2071 509.79341 404.16414 2208.4716 1776.6127 28697.503 18468.482 

2072 176.9369 388.02724 1033.3138 2003.505 4885.0495 24926.005 

2073 486.11138 134.67483 1483.1803 878.66872 13767.544 1173.4491 

2074 214.59806 370.00176 1025.5679 1645.4272 4699.1478 17882.105 

2075 842.60076 163.34046 2461.381 1037.9711 31932.924 4996.8232 

2076 403.88526 641.34224 1597.6971 2383.8339 17051.626 29847.92 

2077 481.58873 307.41567 2054.1491 1560.4838 26228.305 17152.869 

2078 374.57281 366.55936 1307.5985 1930.5394 9359.5133 23047.05 

2079 306.35229 285.10462 1358.2425 1568.8426 12098.951 15451.483 

2080 277.13988 233.17884 971.72832 1193.5491 3406.6361 6796.0699 

2081 776.96506 210.94393 2276.6678 917.19797 28286.014 2098.0304 

2082 230.20272 591.38389 1048.6282 2363.6082 4607.8904 31006.833 

2083 228.49518 175.21789 910.05385 1164.6416 1926.5705 8036.9171 

2084 241.26177 173.9182 865.28154 845.69531 851.67683 381.96694 

2085 441.06539 183.63544 1360.4379 897.33304 12736.265 1004.7507 

2086 554.44393 335.71518 2159.0563 1489.857 27287.745 15307.106 

2087 778.49363 422.01281 2754.6067 2104.4306 37435.585 26398.643 

2088 346.90444 592.54736 1435.2976 2742.9944 14113.879 37194.533 

2089 362.5048 264.04494 1584.121 1524.5814 18104.661 16246.802 

2090 485.61884 275.9191 1605.2034 1382.9004 18235.469 13275.605 

2091 595.85202 369.62686 2300.6253 1854.1521 30171.924 22505.557 

2092 754.36031 453.53041 2593.3017 2182.5178 34854.747 27370.319 

2093 580.06713 574.17837 2222.4326 2587.268 28280.495 34696.486 

2094 271.76785 441.51581 1331.2603 2212.5645 10969.837 28762.991 

2095 378.68964 206.85503 1426.3799 1410.3298 14177.533 13245.067 

Source: Authors compilation, 2017. 
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Appendix D: R Scripts for Mann-Kendall Analysis 

#timeseries Analysis (Mann-Kendall) 

getwd() 

setwd("~/Homogenisation_QC/Trend/") 

getwd() 

require(zoo); library(trend); require(ggplot2);require(Kendall) 

require(fume); require(hyfo) ;library(zoo); library(tis); library(plyr); library(trend); 

library(MASS); library(zyp); library(gimme) 

#read in data 1.Kaduna 

Kaduna <- read.table("Kad_Ann.csv",header=T,sep=",",dec=".") 

Kaduna2 <- read.table("Kaduna_h.csv",header=T,sep=",",dec=".") 

head(Kaduna) 

Kadmax <- as.vector(Kaduna[,3]) 

k1=ts(Kadmax,start=c(1981),frequency= 1) 

k1m=ts(Kaduna2[,2],start=c(1981),frequency= 12) 

Kadmin <- as.vector(Kaduna[,4]) 

k2=ts(Kadmin,start=c(1981),frequency= 1) 

Kadpcp <- as.vector(Kaduna[,2]) 

k3=ts(Kadpcp,start=c(1981),frequency= 1) 

#Autocorrelation 

Kadautocorrtmax <- acf(k1, type = "correlation") 

plot(Kadautocorrtmax, main="Autocorrelation ACF",xlim=c(1,16), panel.first = grid()) 

Kadpautocorrtmax <- pacf(k1) 

plot(Kadpautocorrtmax) 

Kadautocorrtmin <- acf(k2, type = "correlation") 

plot(Kadautocorrtmin, main="Autocorrelation Function",xlim=c(1,16), panel.first = 

grid()) 

Kadpautocorrtmin <- pacf(k2) 

Kadautocorrtpcp <- acf(k3) 

plot(Kadautocorrtpcp, main="Autocorrelation Function",xlim=c(1,16), panel.first = 

grid()) 

Kadpautocorrtpcp<- pacf(k3) 
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#save data 

write.csv(Kadautocorrtmax$acf, file = "acf_Kadmin.csv", row.names = T) 

write.csv(Kadautocorrtmin$acf, file = "acf_Kadmin.csv", row.names = T) 

write.csv(Kadpautocorrtmax$acf, file = "pacf_Kadmax.csv", row.names = T) 

write.csv(Kadpautocorrtmin$acf, file = "pacf_Kadmax.csv", row.names = T) 

write.csv(Kadautocorrtpcp$acf, file = "pacf_Kadpcp.csv", row.names = T) 

write.csv(Kadpautocorrtpcp$acf, file = "pacf_Kadpcp.csv", row.names = T) 

# Tmax (Maximum Temperature). 

Kaduna_maxtrend <- mkTrend(as.vector(k1), ci=0.95) 

Kad_sstmax <- sens.slope(k1) 

# Tmin 

Kaduna_mintrend <- mkTrend(as.vector(k2), ci=0.95) 

Kaduna_mintrend 

summary(MannKendall(k2)) 

Kad_sstmin <- sens.slope(k2) 

#pcp 

Kaduna_pcptrend <- mkTrend(as.vector(k3), ci=0.95) 

Kaduna_pcptrend 

summary(MannKendall(k3)) 

Kad_sstpcp <- sens.slope(k3) 

# Sen.slope significance test (Slope magnitude) with library(trend) 

# Tmax 

write.csv(Kaduna_mintrend, file = "trend_Kadmin.csv", row.names = T) 

write.csv(Kad_sstmin, file = "sst_Kadmin.csv", row.names = T) 

write.csv(Kaduna_maxtrend, file = "trend_Kadmax.csv", row.names = T) 

write.csv(Kad_sstmax, file = "sst_Kadmax.csv", row.names = T) 

write.csv(Kaduna_pcptrend, file = "trend_Kadpcp.csv", row.names = T) 

write.csv(Kad_sstpcp, file = "sst_Kadpcp.csv", row.names = F) 

#Kad_sstpcp 
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#------------------------------------------------------------------------------------------ 

#3. Jos 

Jos <- read.table("J_Ann.csv",header=T,sep=",",dec=".") 

head(Jos) 

Jmax <- as.vector(Jos[,2]) 

J1=ts(Jmax,start=c(1981),frequency= 1) 

Jmin <- as.vector(Jos[,3]) 

J2=ts(Jmin,start=c(1981),frequency= 1) 

Jpcp <- as.vector(Jos[,4]) 

J3=ts(Jpcp,start=c(1981),frequency= 1) 

#Autocorrelation 

Jautocorrtmax <- acf(J1, type = "correlation") 

plot(Jautocorrtmax) 

Jpautocorrtmax <- pacf(J1) 

plot(Jpautocorrtmax) 

Jautocorrtmin <- acf(J2, type = "correlation") 

Jpautocorrtmin <- pacf(J2) 

Jautocorrtpcp <- acf(J3) 

Jpautocorrtpcp<- pacf(J3) 

#save data 

write.csv(Jautocorrtmax$acf, file = "acf_Jmin.csv", row.names = T) 

write.csv(Jautocorrtmin$acf, file = "acf_Jmin.csv", row.names = T) 

write.csv(Jpautocorrtmax$acf, file = "pacf_Jmax.csv", row.names = T) 

write.csv(Jpautocorrtmin$acf, file = "pacf_Jmax.csv", row.names = T) 

write.csv(Jautocorrtpcp$acf, file = "ACF_Jpcp.csv", row.names = T) 

write.csv(Jpautocorrtpcp$acf, file = "pacf_Jpcp.csv", row.names = T) 

 

# Tmax 

J_maxtrend <- mkTrend(as.vector(J1), ci=0.95) 

J_sstmax <- sens.slope(J1) 
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# Tmin 

J_mintrend <- mkTrend(as.vector(J2), ci=0.95) 

J_mintrend 

summary(MannKendall(J2)) 

J_sstmin <- sens.slope(J2) 

 

#pcp 

J_pcptrend <- mkTrend(as.vector(J3), ci=0.95) 

J_pcptrend 

summary(MannKendall(J3)) 

J_sstpcp <- sens.slope(J3) 

 

#----------------------------------------------------------------------------------------------- 

#4. Minna 

#Minna 

Minna <- read.table("Min_Ann.csv",header=T,sep=",",dec=".") 

head(Minna) 

Mmax <- as.vector(Minna[,2]) 

M1=ts(Mmax,start=c(1981),frequency= 1) 

Mmin <- as.vector(Minna[,3]) 

M2=ts(Mmin,start=c(1981),frequency= 1) 

Mpcp <- as.vector(Minna[,4]) 

M3=ts(Mpcp,start=c(1981),frequency= 1) 

M3 

#Autocorrelation 

Mautocorrtmax <- acf(M1, type = "correlation") 

plot(Mautocorrtmax) 

Mpautocorrtmax <- pacf(M1) 

plot(Mpautocorrtmax) 

Mautocorrtmin <- acf(M2, type = "correlation") 
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Mpautocorrtmin <- pacf(M2) 

Mautocorrtpcp <- acf(M3) 

Mpautocorrtpcp<- pacf(M3) 

#save data 

write.csv(Mautocorrtmax$acf, file = "acf_MINNAmax.csv", row.names = T) 

write.csv(Mautocorrtmin$acf, file = "acf_MINNAmin.csv", row.names = T) 

write.csv(Mpautocorrtmax$acf, file = "pacf_MINNAmax.csv", row.names = T) 

write.csv(Mpautocorrtmin$acf, file = "pacf_MINNAmin.csv", row.names = T) 

write.csv(Mautocorrtpcp$acf, file = "ACF_MINNApcp.csv", row.names = T) 

write.csv(Mpautocorrtpcp$acf, file = "pacf_MINNApcp.csv", row.names = T) 

# Tmax 

M_maxtrend <- mkTrend(as.vector(M1), ci=0.95) 

M_sstmax <- sens.slope(M1) 

# Tmin 

M_mintrend <- mkTrend(as.vector(M2), ci=0.95) 

M_mintrend 

summary(MannKendall(M2)) 

M_KENDAL_Min = mk.test(M2) 

M_sstmin <- sens.slope(M2) 

 

#pcp 

M_pcptrend <- mkTrend(as.vector(M3), ci=0.95) 

M_pcptrend 

summary(MannKendall(M3)) 

M_sstpcp <- sens.slope(M3) 

 

#---------------------------------------------------------------------------------------------- 

#5. Zaria 

#ZARIA 

Zaria1 <- read.table("Za_Ann1.txt",header=T) 
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head(Zaria1) 

Zmax <- as.vector(Zaria1[,2]) 

Zmax 

Z1=ts(Zmax,start=c(1981),end=c(2015), frequency= 1) 

Z1 

Zmin <- as.vector(Zaria1[,3]) 

Zmin 

Z2=ts(Zmin,start=c(1981),end=c(2015), frequency= 1) 

Z2 

Zpcp <- as.vector(Zaria1[,4]) 

Z3=ts(Zpcp,start=c(1981),frequency= 1) 

#Autocorrelation 

Zautocorrtmax <- acf(Z1, type = "correlation") 

plot(Zautocorrtmax) 

Zpautocorrtmax <- pacf(Z1) 

plot(Zpautocorrtmax) 

Zautocorrtmin <- acf(Z2, type = "correlation") 

Zpautocorrtmin <- pacf(Z2) 

Zautocorrtpcp <- acf(Z3) 

Zpautocorrtpcp<- pacf(Z3) 

#save data 

write.csv(Zautocorrtmax$acf, file = "acf_ZARIAmax.csv", row.names = T) 

write.csv(Zautocorrtmin$acf, file = "acf_ZARIAmin.csv", row.names = T) 

write.csv(Zpautocorrtmax$acf, file = "pacf_ZARIAmax.csv", row.names = T) 

write.csv(Zpautocorrtmin$acf, file = "pacf_ZARIAmin.csv", row.names = T) 

write.csv(Zautocorrtpcp$acf, file = "pacf_ZARIAPCP.csv", row.names = T) 

write.csv(Zpautocorrtpcp$acf, file = "pacf_ZARIAPCP.csv", row.names = T) 

# Tmax 

Z_maxtrend <- mkTrend(as.vector(Z1), ci=0.95) 

Z_sstmax <- sens.slope(Z1) 
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# Tmin 

Z_mintrend <- mkTrend(as.vector(Z2), ci=0.95) 

Z_mintrend 

summary(MannKendall(Z2)) 

Z_sstmin <- sens.slope(Z2) 

 

#pcp 

Z_pcptrend <- mkTrend(as.vector(Z3), ci=0.95) 

Z_pcptrend 

summary(MannKendall(Z3)) 

Z_sstpcp <- sens.slope(Z3) 

 

#--------------------------------------------------------------------------------------------------------

---- 

flow=read.table("flow_annual1.csv",header=T,sep=",", dec=".") 

head(flow) 

fl=as.vector(flow[,2]) 

f1=ts(fl,start=c(1990),frequency= 1) 

fautocorr <- acf(f1, type = "correlation") 

plot(fautocorr) 

fautocorr <- acf(f1, type = "correlation") 

plot(fautocorr) 

 

setwd("C:/Users/Peter Rock Ebo Odoom/Documents/Homogenisation_QC/Trend/") 

Evap=read.table("evapo.csv",header=T,dec=".",sep=",") 

class(Evap) 

Ev=as.vector(Evap[,1]) 

E1=ts(Ev,start=c(1990), frequency = 1) 
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Appendix E: Climate forecast System Stations used in the study showing the 

number of raindays. 

STATION WLATITUDE WLONGITUDE WELEV RAIN_YRS 

9869 9.835 6.875 377 33 

9872 9.835 7.188 501 33 

9875 9.835 7.5 605 33 

9884 9.835 8.438 795 33 

9888 9.835 8.75 1170 33 

10169 10.147 6.875 367 33 

10172 10.147 7.188 513 33 

10175 10.147 7.5 523 33 

10178 10.147 7.813 649 33 

10181 10.147 8.125 600 33 

10184 10.147 8.438 733 33 

10188 10.147 8.75 912 33 

10572 10.46 7.188 659 33 

10575 10.46 7.5 608 33 

10578 10.46 7.813 641 33 

10581 10.46 8.125 606 33 

10584 10.46 8.438 606 33 

10588 10.46 8.75 844 33 

10872 10.772 7.188 628 33 

10875 10.772 7.5 646 33 

10878 10.772 7.813 615 33 

10881 10.772 8.125 603 33 

10884 10.772 8.438 691 33 

11172 11.084 7.188 637 33 

11175 11.084 7.5 645 33 

11178 11.084 7.813 624 33 

11181 11.084 8.125 666 33 

11472 11.396 7.188 629 33 

Source: Authors compilation, 2017. 
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ABSTRACTS 

The study evaluate the application of National Center for Environmental Prediction’s 

Climate Forecast System Reanalysis data for forcing Soil and Water Assessment Tool in 

Shiroro catchment to assess its suitability for predicting streamflow. Freely available 

remote sensing datasets such as FAO soil map, Digital Elevation Model and Moderate 

Resolution Imaging Spectroradiometer (MODIS) land cover were utilised in ArcSWAT 

to set up the watershed. Streamflow data obtained were divided into two with the first 

part used for calibration and the other part for validation of the watershed model. The 

calibration results were unsatisfactory for R2 = 0.51 and NSE=0.43 whiles PBIAS = -2 

was very good. The uncertainty criteria of the model p-factor was 0.79 and r-factor 1.27 

which were within the recommended range. The R2= 0.79 and NSE= 0.77 and PBIAS = 

15 values were good during the validation period with p-factor = 0.77 and r-factor = 0.77. 

With improvement being made in CFSR with introduction of CFSv2, its performance for 

rainfall-runoff modelling the catchment is likely to increase. 

Key Words: SWAT; CFSR; Hydrological Modelling; MODIS; Shiroro 

INTRODUCTION 

Water is huge resource which directly or indirectly influences the quality of life of people 

living in any community or country. It comes as no surprise that access to clean water 

supply and sanitation is part of the major goals of sustainable development. Globally, the 

risk of water scarcity are as a result of increasing population growth, climate change, 

globalization (Srinivasan et al., 2012) and poor water management practices. Increasing 

population contributes to the gradual loss in wetland over the past decade and in increase 

contamination of water resources in developing nation. It is an established fact that 

Climate change will disrupt the hydrological cycle as a result of variability in precipitation 

and temperature. Assessment of hydrology and their resilience to changes in the 

environment becomes unavoidable. 

mailto:podoom21@yahoocom
mailto:odjimoh@futminna.edu.ng
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Hydrological models have been developed to assess blue and green water quantity and 

quality to aid in management decisions and disaster planning. Hydrological models are 

used in the simulation of the hydrology of a location as they attempt to mimic the 

underlining physiochemical processes in the watershed for the prediction of streamflow, 

flood modelling, irrigation, groundwater and source of pollution (Benke et al, 2007). 

Most hydrological models are simulate the close interaction between precipitation events 

and runoff components in a hydrological system. Quality of precipitation data are 

important in understanding the hydrological cycle. In developing countries, accessibility 

of climatic data still remains a challenge as they are marred with in insufficient in-situ 

weather stations with low spatial resolution (Gruber et al., 2017; The World Bank, 2017) 

and in some cases missing data (Fuka et al, 2013; ). In Nigeria, the situation is not 

different (Leary et al., 2008) with the Nigerian Meteorological Agency (NiMeT) making 

frantic efforts to improve the density of observation in the country through the use of 

Automatic Weather System (Aderinto, 2006; www.nimet.gov.ng/press/nimet-establish-

1000-automatic-weather-stations). Precipitation products from reanalysis and satellites 

which are freely available to users provide good alternatives to in-situ observed data in 

hydrological modelling. Agunbiade and Jimoh (2013), Oyerinde et al (2016), Oyerinde 

et al. (2017) and Schuol et al (2008) have utilised reanalysis or satellite based 

precipitation products for understanding the interrelationship between rainfall and runoff 

in Nigeria.  There are a number of reanalysis datasets at high resolution with provides a 

wide range hydrometeorological variables such as European Centre for Medium-Range 

Weather Forecasts (ECMWF) interim Reanalysis (ERA-Interim), National Aeronautics 

and  Space Administration Modern-Era Retrospective Analysis Research Application 

(MERRA) and National Centers for Environmental Prediction’s Climate Forecast System 

Reanalysis (CFSR) (Saha et al., 2010)  at both high and temporal resolutions(Dile and 

Srinivasan, 2014). The Climate Forecast System Reanalysis data have application in 

climate and hydrological research studies. CFSR have been used in a number of studies 

such Fuka et al. (2013). The CFSR data suitability was evaluated for modelling one 

watershed in Ethiopia and four other watersheds in United States of America alongside 

in-situ observed data. Their findings confirmed that CFSR are good as observed in-situ 

data and even better when in-situ weather stations are more than 10 km apart. Dile and 

Srinivasan (2014) assessed the application of CFSR in forcing the SWAT model to 

simulate streamflow in 3 watersheds in Ethiopia. The CFSR was observed to be ideal for 

locations with scarcity of data whiles the in-situ observed climate data overall performed 

http://www.nimet.gov.ng/press/nimet-establish-1000-automatic-weather-stations
http://www.nimet.gov.ng/press/nimet-establish-1000-automatic-weather-stations
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better in gauged locations than CFSR. Precipitation is highly variable in West Africa due 

to the complex geography and coastline (Gbobaniyi et al, 2013). This makes it difficult 

to simulation of the features of West African Monsoon. Thus it is necessary to investigate 

the suitability of reanalysis datasets for modelling different locations in West Africa. This 

study aims to assess the suitability of SWAT model with forcing CFSR data in predicting 

streamflow in Shiroro catchment. 

Methodology 

Study Area 

Shiroro Hydroelectric Dam is situated in the Kaduna River Basin at Shiroro village in the 

Niger State of Nigeria.  It is a dam constructed on the course of River Kaduna and located 

at latitude 9⁰ 58’ N and longitude 6⁰ 50’ E. The Shiroro reservoir covers a total land area 

of about 320 km2 and has total storage capacity of 7 billion cubic metres (Suleiman and 

Ifabiyi, 2015). The entire catchment is in the Guinea Savannah zone of Nigeria and the 

rainfall of the catchment is influenced by the movement of the Inter Tropical Convergence 

Zone, the African Easterly Jet and the Tropical Easterly Jet (Omotosho and Abiodun, 

2007). The rainfall pattern is unimodal where the onset is in April and cessation in 

October. Figure 1 illustrate the Shiroro catchment with land use classification for SWAT 

model. 

Input Data 

Land use and Land Cover (LULC) is one of the most important factors that affect surface 

erosion, runoff, sedimentation load, and evapotranspiration in a watershed. Land Use 

Land Cover data was accessed from Moderate Resolution Imaging Spectroradiometer 

(MODIS) annually compiled Land cover data (MCD12Q1). MODIS Reprojection Tool 

software (MRT) provided by NASA EODIS LP DAAC was used reproject sinusoidal 

projection of the MODIS dataset to GCS WGS 84 coordinate system. The MODIS land 

cover datasets for the year 2013 was acquired and processed for the model input. The 

MODIS land cover datasets are provided by NASA EODIS Land Process Distributed 

Active Archive Center (LP DAAC) and available at Earth Explorer data portal 

(https://earthexplorer.usgs.gov/). 

https://earthexplorer.usgs.gov/
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Figure 1: Land use map of Shiroro Catchment showing CFSR point weather stations 

The International Geosphere–Biosphere Programme (IGBP) land cover classification was 

selected. The MODIS land cover was re-classified into land use types similar to existing 

SWAT model land use by creating a lookup table (Table 1). Topography of the watershed 

was defined by a DEM that describes the elevation of any point in a given area at a specific 

spatial resolution. A 90 m by 90 m resolution DEM was obtained from The Consortium 

for Spatial Information of the Consultative Group for International Agricultural Research 

(CGIARS-CSI) SRTM (Shuttle Radar Topography Mission) website srtm.csi.cgiar.org/ 

which are post processed and freely distributed (Jarvis et al., 2008). Soil information such 

as soil type, organic carbon content, hydraulic conductivity and texture influences the 

prediction of available water content, infiltration rate, and surface runoff of the catchment 

area. The Food and Agriculture Organisation (FAO) Digital Soil Map of the World (FAO, 

2003) was retrieved from waterbase website 

(http://www.waterbase.org/download_data.html). River discharge data to the Shiroro 

dam over the span of 25 years was obtained from Shiroro Hydroelectric Power Station. 

The Climate Forecast System Reanalysis (CFSR) data used to force the model during the 

calibration and validation process was taken from www.globalweather.tamu.edu. The 

http://www.srtm.csi.cgiar.org/
http://www.waterbase.org/download_data.html
http://www.globalweather.tamu.edu/
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CFSR data were download from the year 1981 to 2013 from the SWAT global weather 

website for the study area. CFSR points weather stations located in the catchment is 

illustrated in Figure 1. 

Soil and Water Assessment Tool 

Soil and Water Assessment Tool (SWAT) is a semi-distributed physical based model 

capable of modelling complex watersheds with varying soils and land use as a result of 

land use practices on water resources (Arnold et al., 1998). Soil and Water Assessment 

Tool (SWAT) model have been widely used worldwide to assess water quantity and 

quality issues. SWAT model possess ability to simulate single watershed or a network of 

multiple watersheds which are hydrological linked in a location. The SWAT model 

divides the watershed into sub-basins, then sub-basins to hydrological response units 

(HRU) based on the land use, soil (Table 2) and slope distribution in the watershed. The 

hydrology of the SWAT model is based on the water balance equation.  

Table 1: Reclassification of land cover types into SWAT database land Use classes. 

SWAT LAND USE type IGBP land cover type 

Water Water 

Evergreen Forest Evergreen Needleleaf and Broadleaf forest 

Deciduous Forest Deciduous Needleleaf and Broadleaf Forest 

Mixed Forest Mixed forest 

Rangeland and Brush Closed shrublands, Open shrublands, Woody 

savannahs,  

Rangeland and grassland Savannahs, Grasslands 

Urban Urban and built-up 

Agriculture Croplands, Cropland/Natural vegetation mosaic 

Bareland Barren or sparsely vegetated, Snow and ice 

Wetland Permanent wetlands, 

 

The slope as a topographical parameter of the watersheds were generated from the DEM 

using the Slope function. Five slope classes were identified in degrees. The slope classes 
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used in the Hydrological Response Unit definition were 0o – 2.868o, 2.868o – 5.497o, 

5.497o – 8.844o, 8.844o – 12.668o and greater than 12.668o. The highest elevation in the 

study area was 1582 m high, the mean elevation was 676.47 m and the lowest was 283 m 

above sea level. The delineation of the watershed was based on subjective judgement on 

the threshold value that best define the rivers and stream from the DEM. The area used 

was 80,000 ha which fell within the ranges 32,403 to 6,480,537 ha indicated during 

automatic watershed delineation for the stream definition. The dam location was used as 

the outlet for the delineation of Shiroro catchment area. A total of 109 HRUs were derived 

from 21 sub-basins based on the soil, land use and slope classification specified with a 

watershed area of 34,684.1025 km.  

Table 2: Soil types present in the catchment and their percentage in the catchment. 

Dominant 

Soil  Name 

Soil 

classification 

Hydrologic 

Group 

TEXTURE Watershed 

Area % 

Lithosols I-60 C LOAM 0.76 

Lithosols I-c-99 C LOAM 0.46 

Ferric Acrisols Af12-2b-1020 D SANDY_CLAY_LOAM 1.54 

Orthic 

Acrisols 

Ao43-1b-1056 C LOAMY_SAND 1.56 

Lithosols I-Lf-1255 C SANDY_CLAY_LOAM 1.46 

Lithosols I-bc-1324 C LOAM 0.42 

Ferric 

Luvisols 

Lf1-1420 C SANDY_CLAY_LOAM 0.02 

Ferric 

Luvisols 

Lf41-1-2a-1468 C SANDY_LOAM 0.98 

Ferric 

Luvisols 

Lf42-1a-1470 C SANDY_LOAM 11.77 

Ferric 

Luvisols 

Lf49-1a-1476 C SANDY_LOAM 39.1 

 

 

Sensitivity analysis, Calibration, Validation and Performance Evaluation 
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Parameters in SWAT are calibrated either manually or automatically. The sensitivity 

analysis is carried out to identify the most influential parameters in the SWAT model for 

streamflow simulation before calibration takes place (Griensven et al., 2006). Parameters 

selection were also based on parameters sensitive to streamflow in Abbaspour et al. 

(2004), other parameters likely to influence streamflow, Schuol et al. (2008) and Akpoti 

et al. (2016), with the latter two working in similar climatic zone as the study area. The 

Global Sensitivity Analysis was used to analyse the sensitivity of the parameters after 

each calibration run. Fourteen (14) parameters were used in the calibration process. The 

parameters selected for the calibration of the model were r__SOL_K(…).sol, 

v__ALPHA_BF.gw, r__CN2.mgt, v__CH_N2.rte, v__ESCO.hru, v__CH_K2.rte, 

r__SOL_BD(…).sol, v__GW_REVAP.gw, v__OV_N.hru, v__CANMX.hru, 

v__RCHRG_DP.gw, v__GWQMN.gw, v__GWHT.gw and r__SOL_AWC(…).sol. The 

Global Sensitivity employs multiple regression systems that regresses Latin hypercube 

generated parameters against the objective function (Abbaspour, 2015). The relative 

significance of each parameter is determined by using the statistical test t-test. The 

sensitivities values obtain give average changes in objective function derived from 

changes in parameter while all other parameters are simultaneously changing. The t-stats 

refers to the coefficients of the parameter divided by the standard error and is the extent 

of the precision to which the coefficient of regression is measured, hence the larger the 

values in absolute and the smaller the p-value (less than 0.05), the more sensitive the 

parameter (Abbaspour, 2015).  

The SWAT model performance is evaluated after the calibration and validation on the 

initial model simulation run. The model is evaluated by performance on its ability to 

simulate and project flow by using primarily three objective functions namely the 

coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE) and Percent Bias 

(PBIAS) (Abbaspour et al., 2015).  These goodness of fit statistics were used to evaluate 

the performance of the model. The equations below define these statistical objective 

functions. 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠𝑖𝑚,𝑖 − 𝑄𝑜𝑏𝑠,𝑖 )

2 𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑜𝑏𝑠 )2 
𝑛
𝑖=1

 𝑃𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚 )𝑖
𝑛
𝑖=1

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑛
𝑖=1
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𝑅2 =
[∑ (𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠)(

𝑛
𝑖=1 𝑄𝑠𝑖𝑚,𝑖 − �̅�𝑠𝑖𝑚)]

2

∑ (𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠  )2 
𝑛
𝑖=1 ∑ (𝑄𝑠𝑖𝑚,𝑖−�̅�𝑠𝑖𝑚 )2 

𝑛
𝑖=1

  

where 𝑄𝑜𝑏𝑠,𝑖 is the observed flow at time i  (𝑚
3

𝑠⁄ ), 𝑄𝑠𝑖𝑚,𝑖 is the simulated flow at time i 

(𝑚
3

𝑠⁄ ), 𝑄𝑜𝑏𝑠 is the measured variable (𝑚
3

𝑠⁄ ), 𝑄𝑠𝑖𝑚 is the simulated variable (𝑚
3

𝑠⁄ ), i is 

the ith measured or simulated data. 

About 65 % of the observed streamflow records from the gauging station at dam were 

used for calibration and the rest used for validation of the model. The Soil and Water 

Assessment Tool – Calibration and Uncertainty Programs (SWAT-CUP) which is a 

standalone program was used for the calibration and validation of the SWAT model. The 

model is initially run for the calibration between the periods 1990 – 2005 and for 

validation period from 2006-2013 in the SWAT-CUP program. The SUFI-2 algorithm 

was used for the calibration. The calibration are based on improvement of the goodness 

fit after each iteration. The calibration ends when the goodness of fit statistics stops 

improving with iterations. Under the SUFI-2 approach, 200 runs were done for each 

iterations and each parameters updated automatically, the new values fall within the 

Absolute Swat values range of parameters in the SWAT-CUP program. More iterations 

are performed to improve the statistics of the goodness of fit of the model. In this study, 

five iterations were performed and the best solution amongst them selected. 

Results and Discussion 

Sensitivity Analysis, Calibration and Validation of the Model 

Soil Water Assessment integrates several parameters which are used for the calibration 

of models. Some of these parameters are location specific (Temperate regions and 

Tropical Regions) and also differs in sensitivity in different watersheds and even sub-

watersheds during the calibration process of the model. The Global Sensitivity analysis 

was used to identify most sensitive parameters for the model calibration. The most 

sensitive parameters during the calibration stage are illustrated in Table 4.  Four 

parameters were sensitive out of the fourteen parameters used for the calibration of the 

model. 

 Table 0: Parameters Most Sensitive to flow in the Shiroro catchment. 

Parameter Name t-stat p-value 

R_CN2.mgt -4.94 0.000002 

V_GW_REVAP.gw 4.86 0.000003 

V_GWQMN.gw 4.12 0.000057 

V_ESCO.hru -3.10 0.002255 
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SUFI-2 algorithm fitted these parameters as sensitive with values having absolute t-stats 

values and lower p-value less than 0.05 significant level. The most sensitive parameter 

was the CN2 and least sensitive among the parameters was the ESCO. Monthly time steps 

of streamflow data were used in calibrating the model in the SWAT-CUP.  Nash-Sutcliffe 

Efficiency was the objective function employed during the calibration of the model. A 

Nash-Sutcliffe objective function ranges between negative infinity (-∞) to one (1) 

(Abbaspour, 2015). Table 5 indicates the results of calibration from the five iterations 

with 200 simulations using SUFI-2 algorithm. 

Table 5: Calibration results for 200 simulations for each iterations 

Iteration Summary Statistics 

NSE R2 PBIAS P-

factor 

r-

factor 

Mean Sim (mean Obs 

value) 

1st 0.38 0.49 2.9 0.92 2.80 277.77 (286.01) 

2nd 0.43 0.51 -0.2 0.79 1.27 286.64 (286.01) 

3rd 0.46 0.55 17.8 0.67 0.80 235.08 (286.01) 

4th 0.47 0.55 13.9 0.56 0.50 246.32 (286.01) 

5th 0.22 0.47 -14.4 0.82 1.52 327.14 (286.01) 

Sim refers to the simulation values obtained and Obs is the observed values measured. 

Based on Moriasi et al. (2016), the results of NSE and R2 from the five iteration were 

unsatisfactory for monthly scale calibrations whilst the PBIAS for the 1st and 2nd iteration 

could be said to be very good. PBIAS of the 3rd iteration was unsatisfactory whilst those 

of the 4th and the 5th iteration suggest a satisfactory results for the calibration. Although 

an NSE value of one represents the models simulated streamflow values having perfect 

agreement with the observed streamflow values, values of NSE higher than zero of a 

model is considered acceptable performance level and a less than or equal to zero value 

shows that the average of the observed data is a better at prediction than the model (Dile 

and Srinivasan, 2014). The 2nd iteration simulated streamflow average (286.64 m3 s⁄ ) 

value was the closest the observed average streamflow value of 286.01 m3 s⁄  for the 

calibration period also indicating an overestimation. The 1st iteration simulated average 

streamflow of 277.77 m3 s⁄  (underestimation), this was the next in good estimate closer 

to average observed streamflow. Other iterations such as 4th iteration, 246.32 m3 s⁄  

(underestimation), 5th iteration 327.14 m3 s⁄  (overestimation) and 3rd iteration 

235.08 m3 s⁄  (underestimation) follow in the order of difference of simulated streamflow 

values from the observed streamflow values. In accounting for uncertainty criteria in the 

calibration of the model, all the p-factor representing the amount of observed streamflow 
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values enclosed by the 95PPU band were all greater than 0.5 for all iterations revealing 

that higher amount of observed streamflow were bracketed. The r-factor being the depth 

of the enclosed 95PPU band bracketing the observed data were also good except for the 

value obtained in the 1st iteration which was rather large.  

In selecting the goodness of fit iteration for as the best solution out of these results, the 

recommendations of Abbaspour et al. (2015) based on uncertainty analysis was adopted. 

They recommended a p-factor greater than 0.7 and r-factor less than 1.5. Therefore, the 

2nd iteration was selected as a good fit using this criteria. The 2nd iterations had the best 

average simulated streamflow to average observed streamflow in prediction. The value 

of PBIAS of -0.2 was significantly good even though the negative sign suggested an 

overestimation of the simulated streamflow to the observed streamflow. The NSE value 

obtained during calibration range was in agreement with the range stipulated in the results 

of Schuol et al. (2008) in the basin. Figure 2 shows the plot of the simulated and observed 

streamflow during the calibration, while Figure 5 shows the result of the validation 

exercise. 

 

  

Figure 2: Calibration from 1990 to 2005 
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Figure 3: Average rainfall for Kaduna weather station and CFSR from 1981 to 2013 

 

 

 

Figure 4: Average rainfall for Zaria weather station and CFSR from 1981 to 2013 
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Figure 5: Validation from 2006 to 2013 

The calibrated model was able to simulate flow peaks at similar periods as the observed 

peak flow but the simulated discharge reveals patterns of underestimation and 

overestimation of flow in a number of the years. Between the periods June 1990 to Dec 

1990, July 1998 to January 1999, July 1999 to January 2000, July 2003 to January 2004 

and July 2004 to January 2005 indicates the period where underestimation of simulated 

peak flow by the calibrated model. The model overestimate of peak flow between July 

1993 to January 1994, July 1995 to January 1996 and July 2002 to January 2003. A 

drought year was recorded by the simulated flow between the periods of June 2000 to 

January 2001 where reasonable hit of peak flow was recorded in the simulated flow as 

against the observed flow for that period. This is as a result of the precipitation data used 

in modelling (Srinivasan, 2013). During that period NCEP CFSR precipitation data from 

all the stations recorded very low rainfall. Applying an assumption that closer weather 

stations of CFSR to an in-situ weather station should have similar climatic features, in-

situ observed weather stations Kaduna and Zaria (both located in the Shiroro catchment) 

monthly precipitation series (Figures 3 and 4) were compared with CFSR point weather 

stations close-by to investigate the low peak recorded between the periods of June 2000 

to January 2001. The CFSR peak precipitation records fell below the observed in-situ 

average precipitation peak amount by about 44.44 and 54.84 % of observed peak for 

Kaduna and Zaria stations respectively.  

The statistical results from the validation of the model revealed improved values of NSE 

and R2 compared to the calibration period. The NSE value for the validation period was 

0.77, R2 was 0.79 and PBIAS was 15 which good. The p-factor of 0.77 and the r-factor 

of 0.77 values were within the recommended range of p-factor > 0.7 and r-factor < 1.5. 

The average simulated streamflow values was 300.49 m3 s⁄   whiles the observed 

streamflow values was 327.65 m3 s⁄  indicating underestimation by the model during the 

validation period.  

Conclusion 

The CFSR data used to force the SWAT model in the catchment produced unsatisfactory 

results during calibration of the model. Nevertheless, the value obtained for NSE and R2 

were not far from the acceptable target of satisfactory in modelling watersheds with 

SWAT. The validation of the model and uncertainty were good. This findings opens up 
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the assessment of other reanalysis datasets suitability for modelling the hydrology of the 

Shiroro catchment. There also exist the opportunity of using CFSR dataset with in-situ 

weather data to improve their performance in modelling. 
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