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ABSTRACT 

Pressure on water resources is increasing worldwide due to constantly growing population. This 

study aims to develop a spatial model and demonstrate its utility for water productivity mapping 

(WPM) in a smallholder informal irrigation system around Lake Bam (Burkina Faso) with 

emphasis on tomato. The study involved three major steps leading to WPM: (1) Sentinel-2 (S-2) 

data were used for crop productivity mapping involving crop classification with random forest 

algorithm, crop yield modelling with remote sensing (RS) indices, and yield model extrapolation 

to a larger area; (2) crop water use estimation by multiplying the irrigated surface area by the 

actual seasonal evapotranspiration developed through the surface energy balance model 

‘METRIC’ with Landsat8 (L8) data; and (3) WPM produced by dividing raster layers of the two 

steps above. An overwhelming 89.46% (769.16 ha) of irrigated tomato area for the season 2016–

2017 falls in low WP category of 2.5 kg.m-3 or less. Only 10.5% of the tomato cultivated area 

had a WP value of 2.5 kg.m-3 or higher. About 82.05% of the tomato area had values lower than 

1.63 kg.m-3. The results imply that there is significant scope for increasing WP without having 

to increase cultivated area or quantity of water utilised. The areas of low WP are spatially pin-

pointed and can be used as focus for WP improvements through better land and water 

management practices. 

Keywords: water productivity, evapotranspiration, remote sensing, food and water security, 

Burkina Faso 
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RESUME 

Les ressources en eau subissent une pression croissante due à l’augmentation de la population. 

L’objectif de cette étude est de développer un modèle spatial et de démontrer son utilité pour la 

cartographie de la productivité de l’eau (PE) dans un système informel d’irrigation à petite 

échelle autour du Lac de Bam (Burkina Faso) ayant pour culture cible la tomate. La présente 

étude comprend trois étapes majeures conduisant à la production de carte de productivité de l’eau 

(CPE) : (1) à partir de données de Sentinel-2, l’algorithme de classification supervisée « Random 

Forest », puis une modélisation du rendement des cultures grâces aux indices de 

végétation/paramètres biophysiques, enfin une extrapolation à des zones plus grandes a permis 

d’établir la cartographie de productivité des cultures (kg.m-2) ; (2) l’estimation de l’eau utilisée 

des cultures (m3) en multipliant la surface irriguée par l’évapotranspiration saisonnière réelle 

obtenue à l’aide du modèle de bilan énergétique de surface « METRIC » grâce aux données de 

Landsat 8 ; (3) la CPE a été calculée en divisant les couches matricielles des deux étapes 

précédentes. Pour la saison de culture 2016-2017, la majorité des champs de tomates, 769,16 ha 

soit 89,46 % se situent dans la catégorie de faible PE avec des valeurs de 2,5 kg.m-3 ou moins. 

Seulement 10,5 % ont obtenu une valeur de PE de 2,5 kg.m-3 ou plus. Plus de 82,05 % des 

champs de tomate ont des valeurs de PE inférieures à 1,63 kg.m-3. Ces résultats indiquent 

clairement qu’il existe des possibilités de stimuler considérablement la production alimentaire 

actuelle sans nécessairement augmenter la surface cultivée ou la quantité d’eau utilisée. Les 

zones de faible PE géographiquement localisées peuvent être utilisées comme point d’intérêt 

pour les améliorations de la PE grâce à de meilleures pratiques de gestion des terres et de l’eau. 

Mots clés: productivité de l’eau, évapotranspiration, télédétection, sécurité alimentaire et de 

l’eau, Burkina Faso  
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I. INTRODUCTION 

I.1. Background 

Water is considered as the most critical resource for sustainable agricultural development 

in the world. Growing water scarcity is a major factor increasingly constraining food 

production, causing adverse impacts on the goals of food security and human well-being 

(Rosegrant, Ringler, and Zhu, 2009). In Burkina Faso, population growth rate averages three 

percent, which is among the highest in the world. Food insecurity and malnutrition rates are 

chronically high. The number of people undernourished rose from 3.8 million in 2008-10 to 

4.4 million in 2011-13, corresponding to nearly a quarter of the total population (FADPA, 

2014). These statistics call for an increase in food production to sustain the increasing 

population, but with the limited and increasingly diminishing water resources available. 

Considering the current scarcity of land and water for agriculture, there is an urgent need to 

pursue practices that achieve ‘more crops per drop’. In other words, improving crop water 

productivity can boost current food production without necessarily increasing cultivated areas 

or quantity of water utilised. Water productivity (WP) has been defined as the ratio of the net 

benefits from crops, forestry, fisheries, livestock and mixed agricultural systems to the amount 

of water used to produce those benefits. In its broadest sense, it reflects the objectives of 

producing more food, income, livelihoods and ecological benefits at less social and 

environmental costs per unit of water consumed (Molden et al., 2010). Its data allows the 

ranking and labelling of agricultural fields, according to their water use efficiency (WUE), as 

an indicator of sustainability (Cai et al., 2010). 

In order to derive accurate WP information for decision-making, adequate agricultural 

supervision systems in water use (WU) assessment, WUE evaluation and irrigation monitoring 

should be designed. Remote sensing (RS) data have, in the past, been useful in assessing WP 

of irrigation systems (Abdullaev and Molden, 2004; Yan and Wu, 2014). However, until 

recently, RS instruments have suffered from bad temporal and spatial coverage partly due to 

excessive cloud cover and other unfavourable environmental conditions. Additionally, the 

processing of the data required expert knowledge and advanced signal processing. With the 

launch of improved Earth observation (EO) sensors, the spatial resolution has been improved 

and the revisit time is much higher (e.g. Sentinel-2). At this time, the operational use of dense 

time series of multispectral imagery at high spatial resolution makes crop monitoring feasible 

(Forkuor et al. 2014; Dahms et al., 2016), capturing crop water use across the growing season, 

using RS data with suitable temporal and spatial resolutions (Calera et al., 2017). Despite these 
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improvements, there is been limited efforts at using of RS data to map and assess water 

productivity in West Africa (Zwart, 2010). 

I.2. Problem Statement 

Lake Bam, the largest natural freshwater lake in Burkina Faso, is drying. The depletion 

of the lake’s water resources has resulted in the loss of 1/3 of its depth which has negatively 

impacted smallholder farmers’ production performance and the capacity of the population to 

safeguard sustainable access to adequate quantities of water to support their livelihoods and 

well-being. 

A possible cause of this problem is declining rainfall, high inter and intra-annual rainfall 

variability and climate change effects in the Sahel and semi-arid zones (West, Roncoli, and 

Ouattara, 2008; Salack et al., 2015). In addition, poor water management and unsustainable 

consumption patterns in irrigation systems in West Africa as a result of inadequate information 

on areas and extent of land irrigated, spatial distribution of crops irrigated, actual production 

and yield. In fact, in this informal irrigation system around Lake Bam, irrigation authorities do 

not monitor water extraction from the lake, but rather water is pumped out with motor pumps, 

which were estimated to be over 1,000 in 2014 (A. Ouedraogo, 2014). Water is extracted over 

a distance of up to two kilometers from the lake for irrigation. But there is limited information 

on water usage. The unavailability of these information makes WP studies challenging. 

Enhancing WP is thus a critical response to growing water scarcity, including the need 

to ensure availability of water in rivers and lakes/reservoirs to sustain ecosystems to meet the 

growing demands of cities and industries (Molden et al., 2010). Arising knowledge on WP in 

informal irrigated systems like the one in Lake Bam might help stakeholders (decision-maker 

and small farmers) to manage water in an optimal manner in water scarce environments. 

I.3. Objectives 

The overall objective of this study is to develop a spatial model and demonstrate its utility 

for water productivity mapping (WPM) by using multi-temporal high resolution RS data from 

Sentinel-2 and Landsat 8. This is applied in conjunction with field-plot information in a 

smallholder informal irrigation system in Burkina Faso. The crop of interest here is tomato 

(Solanum lycopersicum). 

In order to achieve the stated objective, the following specific objectives were pursued: 
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 map different irrigated crop types around the lake and model the spatial distribution of 

crop yield (biomass) of tomatoes; 

 estimate the temporal WU for all irrigated fields as well as only for tomatoes; and 

 investigate potentials/possibilities for increasing agricultural WP around the Lake. 

The relevance of this study lies in exploration of operational capabilities of high to moderate 

spatial resolution EO data (Landsat and Sentinels) for a better cropping system characterisation 

and water management sustainability. The case of Lake Bam where water is scarce relative to 

land needs a way to increase productivity and focus on getting more production per unit of 

water. 

I.4. Research Question and Hypotheses 

Crop WP is a key element in longer-term and strategic water resource planning, but its 

actual and practically feasible values are hardly understood. Most of the WP studies with RS 

technologies deal with wheat, rice, cotton and maize (Zwart, 2010; Sadras, Grassini, and 

Steduto, 2012). Little is known about the case of tomatoes, especially in Africa. In the whole 

world, tomato is the second most valuable vegetable crop next to potato (FAO, 2017). In 

Burkina Faso, it is the most commonly used cultivated species due to its high economic value 

(Mertz, Lykke and Reenberg, 2001). So, the use of EO data as a base for establishing 

monitoring system is innovative in the context of Burkina Faso. 

This research aims at investigating the use of satellite-based approaches to map crop WP 

in an informal irrigation system around Lake Bam in Burkina Faso and to recommend possible 

improvements in the utilisation of water resources for increased food and water security. The 

study focuses on estimating physical WP, i.e. the amount of agricultural production 

(harvestable yield) that can be attained per unit of water used, rather than on the economic WP 

where the production term is replaced by revenue or profit. The following hypotheses have 

been formulated: 

 availability of high temporal and spatial resolution RS data can enhance the prediction 

of crop yield prior to harvest season; 

 satellite-based evapotranspiration (ET) coupled with crop type information can 

improve the estimation of irrigation water use in informal irrigation systems in West 

Africa; and 

 the determination of WP for irrigated tomatoes can help in evaluating current 

production performances and determine future cultivation trends. 
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I.5. Thesis Structure 

The work flow and inter-linkages among the various aspects of the research is displayed 

in Figure 1.1. 

An overview of the theory concerning crop WP, RS based yield (biomass) modelling and ET 

derivation will be reviewed in chapter II. Chapter III gives a brief description of the Bam 

watershed, including geography, climate, agriculture, hydrology, demography and water 

management. 

In chapter IV, the methods used to retrieve primary productivity and actual evapotranspiration 

(ETa) will be given and the use of RS to extrapolate these calculations for WP analysis will be 

highlighted. 

 Chapter V presents the results on the crop productivity model, temporal crop water use and 

crop water productivity mapping.  

Finally, chapter VI evaluates and discusses the results. 

  Figure 1.1: Overview of the data and methodological components corresponding to the 

objectives 
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II. LITERATURE REVIEW 

The rapidly growing world population has intensified pressure on the limited fresh water 

resources. Irrigated agriculture is the largest water-consuming sector and it faces competing 

demands from the industrial sector. With an increasing population and less water available for 

agricultural production, the food security for future generations is at stake. Improving the 

efficiency with which water is used for agriculture can help reduce potential food insecurity. 

The use of EO data to model crop WP, especially in data poor regions like West Africa, is of 

great interest in the research community. In this domain, new methodological approaches are 

constantly being developed. Thus, to be able to properly apply them, some elementary 

knowledge is required. 

The aim of this chapter is to shortly present the basic concepts of crop WP and thoroughly 

examine the tasks to be undertaken to model crop productivity and ET. The first sub-section 

will deal with terminology related to WP and its calculation. Second, yield prediction using RS 

data will be performed and discussed. Finally, approaches to estimated ET will be reviewed 

and implemented. The ease or difficulty in deriving ET via RS will be discussed. 

II.1. Crop Water Productivity 

Improvement in WP (Eq. 2.1) reflects the objectives of producing more food, income, 

livelihoods and ecological benefits at less social and environmental costs per unit of water 

consumed (Molden et al., 2010).  

𝑾𝑷 =
𝑨𝒈𝒓𝒊𝒄𝒖𝒍𝒕𝒖𝒓𝒂𝒍 𝒃𝒆𝒏𝒆𝒇𝒊𝒕   

𝑾𝒂𝒕𝒆𝒓 𝒖𝒔𝒆 
 

WP is water productivity (kg.m-3 or $.m-3), agricultural benefit is crop yield productivity 

(kg.m-2 or tons.ha-1) or economic value ($.ha-1), water use is seasonal actual ET (mm, m3.m2 

or m3.ha-1). 

Physical quantification of WP is represented in units of kilograms per cubic metre. 

Another option is economic value of WP expressed in ($.m-3). Basically, WP aims at enabling 

rapid comparisons between water use systems in space and time. It can be used to set standards 

and as a baseline to monitor improvement. It can be derived for an individual farm, an irrigation 

system or even at national or continental scale. 

The time period over which WP is estimated is determined by the cycle of agricultural 

production that drives the system (Cook, Gichuki, and Turral, 2006). Normally, this would 

include at least one complete crop cycle, extended over a complete year to account for 

(2.1) 
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productive and non-productive water uses. Assessment may be extended over several years to 

derive estimates of average, minimum or maximum water productivity within each season. 

For any WP estimation, both the production system (field-by-field, farm-scale, multiple 

administrative units) and the area water consumption (plot, field, sub-basin or basin) must be 

delineated. According to Molden et al. (2010), priority areas where substantive increases in 

water productivity are possible include: 

- areas where poverty is high and water productivity is low;  

- areas of physical water scarcity where competition for water is high; 

- areas with little water resources development where high returns from a little extra 

water use can make a big difference; and areas of water-driven ecosystem degradation, 

such as falling groundwater tables, and river desiccation. 

II.1.1. Physical and Economic Productivity 

The beneficial outcome of agriculture is summarised in Table 2.1. This value can be 

displayed in a range of forms like yield (kg, Mg, t) or food equivalent (calories). Income ($) or 

others agreed measure of well-being derived from the goods and services coming from the 

agricultural system. 

 

Table 2.1: Possible forms of numerator for estimating water productivity                             

(Cook, Gichuki, and Turral, 2006)  

 

 Physical Productivity 

Approaches to quantify the physical productivity vary from direct measurement of yield 

or by crop survey to usually secondary statistics as total tonnage for a given administrative 

area. 

Parameter Numerator 

Physical water productivity 

at field, farm or system 

level. 

Yield (kg) of total biomass, or above ground biomass, 

or grain, or fodder. 

Economic water 

productivity at farm level. 

Gross value of the product, or net value of the product, 

or net benefit of irrigated production compared with 

rainfed production. 

Economic water 

productivity at basin scale. 

Any of the above valuations including those derived 

from raising livestock, fish or agroforestry. 

Macroeconomic water 

productivity at regional or 

national scale. 

Monetary value of all direct and indirect economic 

benefits minus the associated costs, for all uses of 

water in the domain of interest. 
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Traditionally, in-situ measurement cannot capture large-scale variations of above 

biomass. EO monitoring can help identify factors affecting output (Cai and Thenkabail, 2010). 

Simulation model provides one empirically derived value for the yield response to water. Yet, 

this value can vary greatly both temporally and spatially between crops, crop varieties and 

within single cultivars based on microclimates, soil environments and nutrient availability, 

thereby limiting accuracy of model outputs (Singh, Rao and Regar, 2010). 

Crop yield forecasting at regional, national and continental levels requires reliable and 

near real time indicators of vegetation status able to cover extensive areas with high temporal 

frequency. Satellite EO systems have the potential to support operational activities in crops 

monitoring and yield forecasting as they provide spectral vegetation indices related to plant 

status or direct estimations of relevant biophysical parameters such as the leaf area index (LAI) 

or the fraction of absorbed photosynthetically active radiation (fAPAR) with global coverage 

on a daily basis (Baret et al., 2007). 

 Economic Productivity 

The simplest measure of economic productivity at a field scale is gross margin (GM) for 

a single product during a single phase of the crop rotation. The system may require estimates 

of GM from several seasons to cover all phases of a farming system. For areas that contain 

different production systems, a composite measure is standardised gross value of the product 

(SGVP) in which the price of the product is converted to the equivalent price of a standard 

crop, such as rice, then converted to the world market price. Expressed in a formula:  

𝑺𝑮𝑽𝑷 =  ∑ (𝑨𝒓𝒆𝒂 × 𝒀𝒊𝒆𝒍𝒅 × (
𝒍𝒐𝒄𝒂𝒍 𝒑𝒓𝒊𝒄𝒆

𝒃𝒂𝒔𝒆 𝒑𝒓𝒊𝒄𝒆
) 𝑾𝒐𝒓𝒍𝒅 𝒎𝒂𝒓𝒌𝒆𝒕 𝒑𝒓𝒊𝒄𝒆)

𝒆𝒂𝒄𝒉 𝒄𝒓𝒐𝒑

 

However, the utility of SGVP may be questioned since it includes no estimate of costs, 

and therefore attributes average total benefit of all farming inputs to water (Cook et al., 2006). 

II.1.2. Consumed Water 

Planning and monitoring of consumptive water use is necessary for sound management 

of scarce water resources. Consumptive use influences social, economic, agricultural, and 

environmental development. Water is consumed through ET which is the sum of evaporation 

from the land surface plus transpiration from plants. It transfers water from the land surface to 

the atmosphere in vapour form. Energy is required for ET to take place (for changing liquid 

water into vapour). 

(2.2) 
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If precipitation over a specific land cover exceeds ET (e.g., forests), such a land cover 

class is a net producer of water resources. If, however, ET exceeds precipitation, such a land 

cover class will be a net consumer of water resources. Non-consumed water from precipitation 

feeds streams, rivers and aquifers. ET information can thus be used for water productivity 

(Zwart, 2010). 

A number of techniques are used to derive ET, ranging from conventional point 

measurements to modelling and spatially distributed RS estimates.  

At individual plant and field scales, lysimeters, heat pulse velocity, Bowen ratio, 

scintillometry, surface renewal, and eddy correlation systems are commonly used (Meijninger 

et al., 2002; Nagler et al., 2005). Although ground values of ET are generally considered 

accurate, those are point measurements and cannot capture spatial variability. The equipment 

cost, extensive labour, and coverage issues restrict use of these techniques at large scale. 

It may be possible to represent the effect of climate variation on rainfed-crop WP by 

coupling a weather generator with crop simulation models for large areas (Nieto et al., 2012). 

However, more complex 2- and 3-dimensional modelling may be necessary to understand the 

consequences of land-use change on water availability and consumptive water use. Where the 

system is governed by surface water supply with limited groundwater, a simple node-link 

model like the Stockholm Environment Institute’s water evaluation and planning (WEAP) 

system may be adequate to represent water budgets. If the system is dominated by rainfed 

agriculture, then soil and water assessment tool (SWAT) model, which integrates land use and 

hydrology may be preferred (Cook et al., 2006). Still, the data requirements may be daunting. 

A major lesson is that one needs to ‘proceed with caution’, since propagation of errors within 

data-hungry models can render complex results meaningless. 

RS provides relatively frequent and spatially continuous measurement of biophysical 

variables used in estimating ET at different spatial scales. This includes radiation, land surface 

temperatures, vegetation coverage and density, precipitation, soil moisture, weather and 

climate variables. 

RS based mapping of ET is a cost-effective way to estimate and monitor this flux. Definitely, 

satellite data are ideally suited for deriving spatially continuous fields of ET using energy 

balance techniques. 
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II.2. Phenological and Crop Productivity Remote Sensing Monitoring 

The estimation of crop yields by space-borne instruments has been very well investigated 

(Bastiaanssen and Ali, 2003; Fortes et al., 2015) and the relationships have improved with the 

use of modern high spectral and spatial resolution sensors (Enclona et al., 2004). For example, 

the normalised difference vegetation index (NDVI) was found to correlate with net primary 

production, biomass, vegetation fractions, and yield (Teixeira, 2011). 

The solar radiation reaching the surface on the 0.4-0.7μm spectral region is known as the 

photosynthetically active radiation (PAR). Fraction of absorbed photosynthetically active 

radiation (fAPAR) refers to the fraction of PAR that is absorbed by a vegetation canopy. 

fAPAR is difficult to measure directly, but is inferred from models describing the transfer of 

solar radiation in plant canopies, using RS observations as constraints (Gobron and Verstraete, 

2009). Estimated through a radiation balance equation, the systematic record of fAPAR is 

suitable to reliably monitor the seasonal cycle and inter-annual variability of vegetation 

photosynthetic activity over terrestrial surfaces. Indeed, investigations showed that fAPAR 

increases rapidly with the day of year during the vegetative stage, remains relatively stable at 

the stage of reproduction, and finally decreases slowly during the senescence stage (F. Zhang, 

Zhou, and Nilsson, 2013). 

Dong et al. (2015) and Dahms et al. (2016), after highlighting the relationship between 

field measure of fAPAR and vegetation indices (VIs), found that red-edge region is the most 

accurate spectral index for fAPAR estimates that are independent of crop types during the 

entire growing season. However, fAPAR retrieved from space-based instruments for that 

matter is an instantaneous value, i.e. the value at the time of the satellite overpass. So, the 

cumulative productivity of the vegetation can be assessed by the integral of fAPAR over time; 

such a number is usually well-correlated with the primary productivity of the environment 

(biomass production) or the yield of the observed crop (López-Lozano et al., 2015). 

Moreover, most of the WP studies with satellite data have been done at regional level, 

using low-resolution images, resulting in a lot of generalisations. Sentinel-2 data contains 

multispectral information with a high frequency of revisiting for the systematic global coverage 

of land surfaces. This capability that forms the core of the Sentinel-2 sensors makes the 

classification of land use/land cover (LULC) more accurate than other moderate resolution 

sensors (Topaloǧlu, Sertel and Musaoǧlu, 2016). 
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II.3. Remote Sensing Modelling of Actual Evapotranspiration 

Owing to its high cost-effectiveness, wide and repeatable coverage, and reasonably 

favourable accuracy, satellite RS retrieval of ET has become a popular tool and study area in 

the past two to three decades. RS based ET estimation started around the 1980s and has evolved 

into a variety of approaches and models (K. Zhang, Kimball, and Running, 2016). 

II.3.1. Approaches of RS Based Evapotranspiration Estimation 

Various algorithms have been developed utilising information from various types of 

space-borne sensors and often in conjunction with ancillary surface and atmospheric 

observations for the estimation of these parameters. 

II.3.1.1. Surface Energy Balance Methods 

The early one-source surface energy balance (SEB) models were usually used and 

suitable for local and micro-scale applications due to their dependence on local calibration, 

local reference surface fluxes or other data, lack of spatiotemporal scaleability, and other 

factors (Bastiaanssen et al., 2002). To overcome these limitations, Bastiaanssen et al. (2002) 

developed the Surface Energy Balance Algorithm for Land (SEBAL) algorithm. The SEBAL 

model empirically estimates the spatial variation of most essential hydro-meteorological 

parameters. It requires only field information on shortwave atmospheric transmittance, surface 

temperature and vegetation height. Based on the SEBAL algorithm, Allen et al. (2011) 

designed the Mapping EvapoTranspiration with high Resolution and Internalised Calibration 

(METRIC) model that internally calibrates the SEB using ground-based reference ET to reduce 

computational biases inherent in the RS-based energy balance and to provide congruency with 

traditional ET estimation methods. 

The SEB System (SEBS) developed by  Su (2002) is another well-known one-source 

SEB model. SEBS consists of a set of tools to determinate the land surface’s physical 

parameters from spectral reflectance to radiance measurements. A model for estimating the 

roughness length for heat transfer and a formulation to determine the evaporation fraction for 

limiting cases. In contrast to the one-source SEB, two-source SEB models account for the 

individual contributions of soil and vegetation to the total heat flux, and were designed for use 

with incomplete canopies (Norman et al., 2003). 

II.3.1.2. Penman-Monteith and Priestley-Taylor Methods 

The Penman-Monteith (PM) ET mapping models essentially compute ET/λE (λE= latent 

heat accompanying ET) directly and/or estimate sensible heat (H) in conjunction with the 
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energy balance equation. The PM models include one-, two- or multi-source models depending 

on how they account for the sources of ET. For two- or multi-source PM models, ET is usually 

partitioned into soil evaporation and canopy transpiration by partitioning available energy for 

ET using fractional vegetation cover (fCover) derived either from a satellite observed 

vegetation index or LAI. 

The Priestley-Taylor model (Priestley and Taylor, 1972) is a simplification of the PM 

equation and was originally used to estimate ET under water unstressed conditions without 

computing aerodynamic and surface conductance. 

II.3.1.3. Other Methods 

 Ts-VI Space Methods  

The Ts-VI space methods use spatial variation of Ts and the relationship between surface 

temperature (TS) and VIs to partition Rn into λE and H. 

 MEP Method 

The MEP method formulates turbulent latent, sensible and ground heat fluxes over the 

land surface in terms of analytical functions of surface net radiation, temperature, and humidity 

(J. Wang and Bras, 2009). 

 Water Carbon Linkage Methods 

Some efforts have been devoted to building RS driven models that connect 

photosynthesis or vegetation productivity and ET. Some models adopt modules that have been 

implemented in land surface models or biosphere models to build process – based models 

(Long, Longuevergne, and Scanlon, 2014). 

 Water Balance Method 

Because E is also a component of the water budget, it can therefore be estimated as a 

residual of the water balance equation: 𝐸𝑇 = 𝑃 − 𝑅 − 𝛥𝑆𝑤, where P is precipitation, R is 

runoff, and ΔSW is the change in water storage. 

 Empirical Models 

Almost all of the empirical models use statistical methods, ranging from simple single 

parameters or multivariate methods to complex machine learning approaches, linking ET to 

various explanatory variables that are more easily observed or obtained from ground and 

satellite RS  (K. Wang, Li, and Cribb, 2006). 
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II.3.2. Inter-comparison Methods for Remote Sensing Evapotranspiration Estimation 

Although there are a large number of RS ET models and approaches, there is no 

consensus on which one is the best because each method has both advantages and 

disadvantages relative to the other approaches (APPENDIX A). However, energy balance can 

detect reduced ET caused by water shortage, salinity or frost as well as increased ET caused 

by evaporation from bare soil or water intercepted by plant canopies following wetting events. 

In fact, using energy balance over vegetation-based methods means that actual ET rather than 

potential ET (based on amount of vegetation) is computed so that reductions in ET caused by 

disease, salinity or shortage of soil moisture are captured (Allen et al., 2011). 

The ET of a well-irrigated crop is usually approached through an empirical equation 

using reference ET (ETo) and crop coefficients (Kc) (Vanuytrecht et al., 2014). However, Kc 

incorporates and synthesises all the effects on the ET related to morpho-physiological 

characteristics of the different crops, phenological stage, degree of soil cover, soil and climate 

conditions, which make them different from the reference crop (Vanino et al., 2015). Water 

depletion is mainly caused by seasonal ETa from a range of crops and natural vegetation types, 

soil, built-up areas and water bodies. 

A proper knowledge of ETa for various land cover is essential for managing scarce water 

resources and keeping long-term ETa in balance with precipitation. Indeed, the accurate 

determination of ETa significantly reduces uncertainties in the water balance of a (sub-) basin 

(Mu et al., 2007), providing water managers with information on water resources being 

consumed and thus no longer available for downstream users, and water productivity, i.e., the 

consumption of water in terms of biomass production per unit of water (Molden et al., 2007). 

The Concept and measurement of crop WP has been defined. It can be expressed either 

in physical or monetary value. Vegetation indices and biophysical parameters retrieved from 

satellite products have been investigated and satisfactory correlation with yield has been 

achieved. Definitely, in numerous RS ET models and approaches identified, there is no 

consensus on which one is the best considering that each method has pros and cons relative to 

other methods.  
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III. DESCRIPTION OF THE STUDY AREA 

This part of the thesis describes the study area and is divided into four main sections. 

Overall, it gives a brief description of the watershed of Lake Bam, including its physical and 

human characteristic. The first section (III.1) marks location of the study area at the regional 

and local scales. It provides geophysical characteristics like climate, soils and vegetation of the 

region. Section III.2 displays the demographic setting of the population followed by the land 

use aspect in section III.3. Finally, the water resources and its management are discussed 

(section III.4).  

III.1. Geographic and Climatic Settings 

 Localisation 

Lake Bam (13 ° 24’ North, 1 ° 30’ West), located in Burkina Faso to the north of the 

capital Ouagadougou (110 km), is the largest natural reservoir of water in the country 

(Figure 3.1). It is in the Bam District with Kongoussi as its capital. With an area of 25–22 km2 

at high water altitudes (Moser et al., 2014), this permanent freshwater situated along the 

Nakambé River (White Volta) is positioned 300 m above mean sea level.   

 

Figure 3.1: Localisation of the study area: Lake Bam (Burkina Faso, West Africa) 
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 Climate 

The Bam region is considered as a part of the Sudano-Sahelian zone of West Africa 

because it shares biological and climatological characteristics of both the semi-arid Sahel and 

the wetter and more densely wooded Sudanian geographical area.  

From the closest synoptic meteorological station (Ouahigouya: 13 ° 35’ North, 2 ° 26’ West) 

to the lake, the mean annual rainfall from 1970 to 2016 is 639 mm with a maximum summer 

temperatures of up to 41 °C in 2016 (Figures 3.2 and 3.3).  

 

Figure 3.2: Average monthly rainfall and temperature at Ouahigouya (1970 to 2016) 

Figure 3.3: Annual rainfall from Ouahigouya 
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There are two distinct seasons in the study area – rainy and dry seasons. The rainy season spans 

from May/June to September/October. It is characterised by a high degree of temporal and 

spatial inter-variability which affects the lake’s size. Figure 3.4 shows the inter/intra-annual 

changes in the lake’s surface areas from 2000 to 2017. 

Figure 3.4: Inter-annual rainfall variability affecting the Lake Bam size 

 

 Relief, soil and vegetation 

The watershed, characterised by a low topographical variation, consists of an elevated 

plain with some scattered ranges of small mountains that reach 400 m (Figure 3.1). The poor 

laterite soils have little amount of organic matter and nutrients. The soils of the province are 

predominantly tropical ferruginous and have two variants: 

 shallow tropical ferruginous soils and laundry on the glacis and plateaus; and 

 deep tropical ferruginous soils in the lowlands. 

Vegetation is primarily a mosaic of thorny scrub interspersed with savannah grasslands  

III.2. Demographic Setting 

In 2014, the population of the Bam District was estimated at 344,628 (Institut National 

des Statistiques de la Démographie, 2015). 90% of them live in rural area. Majority of the 

communities are Mossi and Fulani. Agriculture and human settlements are on the banks of the 
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lake. The inhabitants try as livelihood strategy to diversify their principal activity. So, apart 

from agriculture and cattle breeding, wood selling and artisanal mining activities are 

undertaken. However, the trend currently is the migration to the southern part of Burkina Faso 

or neighbouring countries (e.g. Côte d’Ivoire and Ghana) for arable land and jobs. It is reported 

that 25%-30% of the population of Bam have migrated (R. Ouedraogo, 2010). 

III.3. Land Use 

Rangelands, grasslands, forest, rainfed and irrigated agriculture are the main LULC in 

the Bam watershed. Around the lake, both rainfed and irrigated agriculture are practised. 

However, irrigated agriculture is applied only during long dry season at its banks from October 

to April. 

Irrigation water is supplied by pumping the lake’s water (Photo 3.1) using motorise pumps. In 

addition, Moser et al. (2016) found that irrigated land around the lake has increased during the 

last decade. Hence, the amplified numbers of those motor pump with over 1,000 in 2014 (A. 

Ouedraogo, 2014) extracting water along the lake up to two kilometers for irrigation. This has 

led to increased pollution of the scarce resource (e.g. from pesticide and fertiliser usage) and 

increased erosion and subsequent sedimentation of the lake. 

The main crops cultivated during irrigated agriculture are tomato, spring onion, green beans, 

green peppers, cabbage, and lettuce. Production of the main irrigated crop for the last seven 

years is given in Table 3.1. 

 

Table 3.1: Irrigated crop production from 2010 to 2017 in Kongoussi 

Crop 
Production/Year (in tons) 

2010 2011 2012 2013 2014 2015 2016 2017 

Tomato 16,738.75 15,242.3 13,953.31 15,977.18 17,642.24 17,568.02 19,796.2 19,302.27 

Onion 13,261.00 14,145 13,209 14,359 14,504 16,515 17,588 17,000 

Green 

beans 
745.45 953.7 1,598.4 1,371.43 1,818.99 1,916.74 2,212.53 2,268.28 

Data source : DPAAH/BAM (Direction Provinciale de l’Agriculture et des Aménagements 

Hydrauliques de Bam) 

 

  



17 
 

 

Photo 3.1: Spiders motor pumps at the shoreline. 

III.4. Water resources and Management 

The Bam Reservoir has a surface area of about 1200-1000 ha with a storage capacity of 

45 × 106 m3 (R. Ouedraogo, 2010). Its catchment is around 2,600 Km2 (Figure 3.1). The lake is 

part of the Nakambe (Volta) river system, which flows through the Central Plateau of Burkina 

Faso (dry southern-Sahel climate). 

R. Ouedraogo (2010) reported that if the current human pressure, water extraction and 

siltation continues, Burkina Faso’s largest natural freshwater lake might turn into a river in 

about 25 years. Indeed, between 1963 and 2006, siltation with the rate of 500,000 m3/year 

according to R. Ouedraogo (2010) has shrunk the lake to the 1/3 of its depth. 

Some restoration initiatives (e.g., constructing dikes along rivers to reduce sediment 

transportation or planting trees on the banks of the lake) have been carried out by local 

fishermen and farmers. However, the inability of authorities to control water withdrawal has 

led to water insecurity. Thus, the growing competition among the various uses of water is now 

a major concern in the basin. Water from the basin is utilised for agricultural production, cattle 

breeding, domestic supplies, fish farming but also serves to sustain the environment. Moreover, 

the recent discovery of gold in the area, and the proliferation of small-scale miners, will put a 

further strain on the lake’s resources and possibly aggravate the current level of pollution and 

environmental degradation. 

Lake Bam, the biggest natural lake of Burkina Faso constitutes an important source of 

income for its inhabitants. However, the mismanagement of this precious resource tends to 

cloud the horizon of future generations. Despite the difficult climatic conditions during the dry 

season, the efficient management of this resource can ensure food and water security for the 

population and subsequently improve their welfare.  

Source: Author 
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IV. DATA COLLECTION AND ANALYSIS 

This chapter provides details of the data used to develop the methodology for this study. 

The development of the desired methodology requires different types of data. This includes 

satellite data for delineating irrigated areas and estimating crop water use (section IV.1.1.). 

Additionally, ground truth/reference data are required for accurate satellite data interpretation 

(section IV.2.1). Section IV.1 will thus present all the data that were used in this study. Section 

IV.2 will detail the various steps that were followed to accurately delineate irrigated fields 

around Lake Bam and develop a yield model that predicts the spatial distribution of yield (for 

tomatoes) around the lake. The section further explains how crop water usage was estimated 

through satellite based evapotranspiration calculations. 

IV.1. Data Collection 

IV.1.1. Satellite Data and Pre-processing 

This study aims at fulfilling the minimum data requirements for crop monitoring in all 

irrigation zones around Lake Bam. Only the dry season has been considered because it is the 

season that irrigated agriculture is practised. Satellite data from two sensors were used –

 Sentinel-2 (S-2, tile number 30PXV) and Landsat 8 (L8, path 195 and row 51). Overview of 

the sensor configurations and the acquisition dates of the satellite sensors used are summarised 

in Table 4.1. In order to understand the temporal evolution of irrigated crops, it is important to 

obtain and analyse time series data. Nowadays, RS sensors improve chances of obtaining time-

series data due to shorter intervals between image acquisitions. 

IV.1.1.1. Sentinel 2 data 

Designed to perform continuous measurements for the next 20+ years, Sentinel sensors 

have been developed as part of the Copernicus program of the European Union Commission 

(ESA, 2017). The sensors have global coverage and provide free data in both the optical 

(Sentinels-2 and 3) and microwave (Sentinel-1) sections of the electromagnetic spectrum 

(Berger et al., 2012). This excellent initiative will greatly improve the scientific community’s 

access to high-resolution satellite images, enhance scientific investigations, open up new 

application areas, and subsequently improve decision-making and policy formulation. 

S-2 carries an innovative wide swath high-resolution multispectral imager (MSI) with 13 

spectral bands. The combination of high resolution (up to 10 m), distinctive spectral 

capabilities (e.g., three bands in the red-edge plus two bands in the SWIR), wide coverage 

(swath width of 290 km) and at least five-day global revisit time (with twin satellites in orbit) 
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has improved information retrieval by S-2, whose data have been freely available since 

November 2015, compared to earlier sensors (Drusch et al., 2012; ESA, 2017). S-2 data has 

been positively used for multi-temporal crop classification, land surface phenology and 

biophysical parameters illustrations (F. Zhang et al., 2013; Majasalmi and Rautiainen, 2016; 

Topaloǧlu et al., 2016).  

 Eighteen S-2 images were downloaded from Oct-01-2016 to May-10-2017. Out of the 

13 multi-spectral bands, 10 were used in this study for image analysis (Table 4.1). The reason 

to leave out band 1 (coastal aerosol) was that it was originally designed for coastal water and 

aerosol monitoring which does not match the study’s purpose. Bands 9 and 10 (water vapour, 

cirrus) were taking out because they focus on cloud identification, which is not needed at the 

classification stage when the cloud masking had already been performed. 

Dark object subtraction 1 (DOS1) atmospheric correction and bands set creation of all 

the data were performed using the open source Semi-Automatic Classification Plugin (SCP) in 

QGIS (Congedo, 2017). 

First, the red-edge and short-wave infrared (SWIR) spectral bands of S-2 were resampled 

to 10 m. Afterwards, using layers stacking, the 10 multispectral band images were obtained for 

each acquisition date (Table 4.1). S-2 multi-spectral data were used to map the spatial 

distribution of irrigated crops and other LULC classes. 

Table 4.1: Sensor configurations and the acquisition dates of Sentinel-2A 

NIR: Near infrared; SWIR: Short-wave Infrared 

Acquisition date Spectral bands 
Range 

(µm) 

Resolution 

(m) 

  Band 2 – Blue 0.458-0.523 10 

October 23rd   Band 3 – Green 0.543-0.578 10 

November 11th, 21st  Band 4 – Red 0.650-0.680 10 

December 
1st, 11th, 

21st, 31st  
Band 5 – Vegetation Red Edge 1 0.698-0.713 20 

January 10th; 30th Band 6 – Vegetation Red Edge 2 0.733-0.748 20 

February 9th; 19th Band 7 – Vegetation Red Edge 3 0.765-0.785 20 

March 
1st; 11th; 

21st, 31st 
Band 8 – NIR 0.785-0.900 10 

April 10th; 20th  Band 8A – Vegetation Red Edge 4 0.855-0.875 20 

May 10th  Band 11 – SWIR 1 1.565-1.655 20 

  Band 12 – SWIR 2 2.10-2.280 20 
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IV.1.1.2. Landsat 8 data 

Over the past 40 years, the Landsat mission has provided one of the most valuable 

datasets for mapping and monitoring the Earth’s surface (Zhu, Wang, and Woodcock, 2015). 

Launched in 2013, L8 has increased capabilities such as new spectral bands in the blue part 

and cirrus cloud-detection portion of the spectrum, two new thermal bands, improved sensor 

signal to noise performance and several developments in radiometric resolution and duty cycle 

that allows a significant increase in collection of a number of images per day (Roy et al., 2014). 

Composed of operational land imager (OLI) and thermal infrared Sensor (TIRS) images 

consist of nine spectral bands with a spatial resolution of 15 to 30 metres freely available for 

several applications (agriculture, urban planning, natural resource management, etc.). Thermal 

bands 10 and 11 are useful in providing more accurate surface temperatures for ET calculation. 

The thermal bands are acquired at 100-metre resolution, but are resampled to 30 metres in 

delivered data products (Table 4.2). Thermal information is essential for RS based mapping of 

ET. Nine L8 images were downloaded for evapotranspiration mapping (ETM) throughout the 

period of irrigated agriculture. 

L8 surface reflectance (SR) product is generated at 30 m spatial resolution on a Universal 

Transverse Mercator or Polar Stereographic mapping grid. SR product is available through the 

ESPA Ordering Interface (ESPA, 2017). It supports land surface change studies. Delivered 

information for L8 bands 1 to 7 is given. This will be used during determination to have 

information of the surface atmosphere during the process of ET modelling. 

Table 4.2: Sensor configurations and the acquisition dates of Landsat 8 data 

Acquisition date Spectral bands 
Range 

(µm) 

Resolution 

(m) 

  Band 2 – Blue 0.452-0.512 30 

November 20th Band 3 – Green 0.533-0.590 30 

December 06th, 22nd Band 4 – Red 0.636-0.673 30 

January 07th, 23rd  Band 5 – NIR 0.851-0.879 30 

February 08th, 24th  Band 6 – SWIR 1 1.566-1.651 30 

March 12th Band 7 – SWIR 2 2.107-2.294 30 

April 29th  Band 10 – TIRS 1 10.60-11.19 30 

  Band 11 – TIRS 2 11.50-12.51 30 

NIR: Near infrared; SWIR: Short-wave Infrared; TIRS: Thermal Infrared Sensor 
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IV.1.1.3. Digital Elevation Model 

A digital elevation model (DEM) is a raster providing elevation data. A 30 m DEM from 

the Shuttle Radar Topography Mission (SRTM) was downloaded and used to delineate the 

Bam watershed and estimate topographic features for accurate retrieval of land surface 

parameters during the process of ET computation. SRTM was a joint project between the 

National Imagery and Mapping Agency (NIMA) and the National Aeronautics and Space 

Administration (NASA). It produced digital topographic data for 80% of the Earth’s land 

surface (all land areas between 60º north and 56° south latitude), with data points located every 

1-arc-second (approximately 30 metres) on a latitude/longitude grid. The absolute vertical 

accuracy of the elevation data is 16 metres (at 90% confidence). 

IV.1.2. Ground Truth Data 

IV.1.2.1. Field Survey 

Field campaigns were organised in order to generate reference (or ground truth) data for 

satellite image interpretation. Training and validation data were collected for image 

classification and accuracy assessment, respectively. 

IV.1.2.1.1. Sampling Method 

The survey was purposive, samples are searched for and collected based on a desired 

need or outcome. A handheld global positioning system (GPS) was used to map representative 

plots of LULC classes, keeping the minimum mapping area at 30 m × 30 m. Each plot was 

mapped by walking around it and saving waypoints at its corners. As much as possible, trees 

were avoided in mapping agricultural fields. The GPS points were later processed into shapefile 

polygons using a standard GIS application. 

IV.1.2.1.2. Reference Data 

The reference data were divided into a training dataset for image classification and 

validation dataset to validate the results of the classification. The training and validation data 

are an important part of a classification process. The training data is used to train the classifier, 

i.e. to use areas with a known LULC type to statistically characterise it and subsequently use 

that information to classify unknown pixels. The validation data is used to validate the results, 

i.e. compare these areas with a known LULC type to the classification done with the developed 

methodology. 

To reach a successful classification, it is important to have complete and representative 

training data. This means that all classes should be described with some statistics that separate 
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them from one another. A total of 842 polygons were mapped for this study. In all, reference 

data for thirteen LULC classes were collected. Out of the fourteen classes, six LULC classes 

were selected to constitute the first level of image classification (LULC classification) for the 

study (Table 4.3). They are: 

 bare areas; 

 rainfed land: area dedicated for agriculture only during the rainy season; 

 irrigated land: area dedicated for agriculture only during the dry season; 

 scrublands; 

 forest; and 

 water bodies. 

All irrigated fields were treated as one class at the first level. From the irrigated land class, nine 

irrigated crops represented by tomato, spring onion, green beans and other minor crops 

(aubergine, carrot, cabbage, potato, pepper, tobacco) were used to map the spatial distribution 

of different irrigated crop types (crop classification). All non-tomato crop fields were finally 

considered as one class for the second level of classification. Spatial distribution and number 

of training sites used for both data sets and classification algorithms respectively LULC and 

crop classification is highlighted in Figure 4.1 and Table 4.3. 

Table 4.3: Number of training and validation fields used in crop classification 

LULC classification 

Class Training Validation Total 

Bare soil 44 14 58 

Rainfed land 42 24 66 

Irrigated land 186 115 301 

Shrub land 39 14 53 

Forest 27 12 39 

Water 15 11 26 

Total 353 190 543 

Crop classification 

Class Training Validation Total 

Tomato 73 58 131 

Non-tomato 

crop 
106 62 168 

Total 179 120 299 

Non-tomato crop: onions, green beans, aubergine, carrot, cabbage, 

pepper, tobacco 
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Figure 4.1: Spatial distribution and number of fields (crops only) surveyed 
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IV.1.2.2. Hydrometeorological Data 

Meteorological data for the period January 1980 to December 2016 were obtained from the 

national meteorological authorities (Table 4.4). The station of Ouahigouya (13 ° 35’ North, 2 

° 26’ West) was used for weather information because it is the closest synoptic station to the 

study area. As the meteorological station does not provide hourly radiation information essential 

for the ET modelling, this has been downloaded from Copernicus Atmosphere Monitoring 

Service (CAMS, 2017). It provides time series of global, direct, and diffuse irradiation on 

horizontal surface, and direct irradiation on normal plane for the actual weather conditions as 

well as for clear-sky conditions. The hydrometeorological data comprised of time series of daily 

temperature, precipitation, radiation, wind speed and relative humidity (Table 4.4). 

Table 4.4: Meteorological data used in this study 

Parameter Units Frequency Time period 

Temperature Celsius hourly 

1980–2017 

Relative humidity % hourly 

Wind speed m.s-1 hourly 

Precipitation mm daily 

Radiation* W.m-2 hourly 

Data source : DGM (Direction Générale de la Météorologie) 

Radiation data is from CAMS 

 

IV.1.2.3. Agricultural Statistics 

Provincial level (2nd administrative level) agricultural statistics for Kongoussi were 

obtained from the office of Agricultural Provincial Direction of BAM (DPAAH/BAM: Direction 

Provinciale de l’Agriculture et des Aménagements Hydrauliques de Bam). This data, together 

with those collected during fieldwork and questionnaire administration, contain information on 

crop calendar (i.e., planting, growing stages, harvesting) and production constitute agricultural 

census data. 

The data are for the 2016–2017 cropping season. The statistics are derived from surveys that 

were conducted by agricultural extension officers employed in Kongoussi, whereas the 

questionnaire administration was based on purposive approach (APPENDIX B). 

Tomato, Solanum lycopersicum, is a herbaceous annual crop in the family Solanaceae 

grown for its edible fruit. Most farmers around Lake Bam plough their fields between late 

October and early November, but not all fields in this area are seeded at the beginning of dry 
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season (Table 4.5). Field interviews conducted revealed that tomato has three planting dates with 

an interval of 2 weeks maximum for some fields. The earlier is in late November, the second 

group of tomatoes have their peak in late January whereas the last set in early May. 

Table 4.5: Cropping calendar for tomato in the study based on field survey results. 

The start or the harvest period indicated may differ by up to two weeks or more 

Crop 
2016 2017 

Oct Nov Dec Jan Feb Mar Apr May 

Tomato 1 

Tomato 2 

Tomato 3 

        : land preparation;           : crop development stage;    : harvesting period 

Production by farmers is expressed in terms of boxes. It is done through three main boxes 

called by local farmers Ghana box (big), Ouaga box (moderate) and Togo box (small). The 

weight of these boxes filled with tomato balances approximately 275 kg, 135.5 kg and 68.75 kg 

respectively for the box of Ghana, Ouaga and Togo (field survey). The yield is derived by 

dividing production by the area under cultivation. 

IV.2. Methodology 

WPM requires two main inputs: (1) estimation of crop productivity and (2) estimation of 

the quantity of water used to produce the benefit (Eq. 2.1). Therefore, the methodology section 

comprises two main sub-sections that explain how each input was derived. 

Sub-sections IV.2.1 will describe all the steps to accurately delineate and extrapolate the 

yield model from initially random forest classification. In sub-sections IV.2.2, water used 

estimation through evapotranspiration modelling to retrieve crop WU will be detailed. The last 

sub-sections (IV.2.3) will explain how the main inputs from both steps above could lead to 

deduction of WPM. 

IV.2.1. Crop Productivity Mapping 

Estimating crop productivity is one of the major components of WPM. In this study, crop 

productivity is represented by the crop yield, which is the quantity of crops produced per unit 

area. In order to obtain a spatial distribution of tomato yield in the whole study area, a yield 

model was developed based on satellite and survey data. Figure 4.2 presents the work flow to 

model crop productivity. First, satellite images were analysed to map the spatial distribution of 
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tomato fields in the study area. Then, a yield model was developed using samples yield data 

collected from the field and satellite data spectral information. Finally, the developed model was 

used to extrapolate yield for the whole study area. 

 

Figure 4.2: Flow chart of yield analysis process 

IV.2.1.1. Image Classification 

A classification technique (or classifier) is a systematic approach to building classification 

models from an input data set (Tan, Steinbach, and Kumar, 2006). Examples include decision 

trees (DTs) classifiers, rule-based classifiers, neural networks, support vector machines, naïve 

Bayes classifiers. Each technique employs a learning algorithm to identify a model that best fits 

the relationship between the attribute set and class label of the input data – accurately predict the 

class labels of previously unknown records.  

Evaluation of the performance of a classification model is based on the counts of test 

records (pixels) correctly and incorrectly predicted by the model. These counts are tabulated in 

a table known as a confusion matrix. 

IV.2.1.1.1. Random Forests 

Image classification was performed using random forests (RF) (Breiman, 2001). RF is a 

machine learning algorithm that builds an ensemble (or forest) of DTs from a randomised set of 

training data. As argued by Friedl and Brodley (1997), DT classifiers have advantages over 
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traditional supervised classification methods such as maximum likelihood classification. In 

particular, DTs classifiers are non-parametric and can efficiently deal with large, complicated 

datasets without requiring assumptions regarding distributions of input data. This makes them 

ideal candidates for ensemble methods since they usually have low bias and high variance, 

making them very likely to benefit from the averaging process. Each tree is composed of nodes: 

- decision nodes (root node): represents a choice that will result in the subdivision of all 

records into two or more mutually exclusive subsets; 

- chance nodes (internal nodes): represent one of the possible choices available at that 

point in the tree structure; 

- end nodes (leaf nodes): represent the final result of a combination of decisions or events. 

DTs’s analysis aims to identify the best model for subdividing all records into different segments. 

When the sample size is large enough, study data can be divided into training and validation 

datasets. Using the training dataset to build a decision tree model and a validation dataset to 

decide on the appropriate tree size needed to achieve the optimal final model. The training data 

consisting of N records whose class labels are known is typically a table of values obtained by 

overlaying field reference data (e.g. polygons) on a set of satellite images (e.g. spectral bands 

and indices) and extracting the corresponding values. Columns in the training data represent 

variables/predictors while rows represent training samples for the various classes/response 

variables. This set data is subsequently applied to the test set (validation dataset) which consists 

of records with unknown class labels. 

As indicated in the Figure 4.3, the RF algorithm uses a defined N number for training data 

from M number of variables/predictors in the classifier. In this study, the input is divided into 

60% and 40% training and validation data respectively. The number of trees to be constructed 

(Ntree) is fixed so that m numbers (Mtry) of input variables randomly selected are used to 

determine the decision at a node of the tree (m should be much less than M). This is to allow 

prediction of every training sample at least a few times (Liaw and Wiener, 2002). 

Then, by choosing each training cases N times with replacement, training set is determined for 

the tree. The rest of the cases is used to estimate the error of the tree, by predicting their classes. 

For each node of the tree, m variables are randomly chosen in order to base the decision on that 

node. Finally, the best split is calculated based on the m variables in the training set. Each tree is 

fully grown and not pruned. 
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RF uses the gini index for determining the usefulness of a variable in splitting a node (Breiman, 

2001). If a dataset T is split into two subsets T1 and T2 with sizes N1 and N2 respectively, the gini 

index of the split data contains examples from n classes, the gini index (T) is defined as:  

𝑮𝒊𝒏𝒊𝒔𝒑𝒍𝒊𝒕(𝑻) =
𝑵𝟏

𝑵
𝒈𝒊𝒏𝒊(𝑻𝟏) +

𝑵𝟐

𝑵
𝒈𝒊𝒏𝒊(𝑻𝟐) 

The attribute value that provides the smallest Ginisplit (T) is chosen to split the node. The final 

class of each tree is aggregated and voted by weighted values to construct the final classifier. 

Finally, the decision tree model is used on the test data and prediction is done. 

 

Figure 4.3: Flow chart of the image classification model with random forests 

RF was applied to the 10 m resampled S-2 raster layers to create LULC maps of the study 

area in R software environment. This uses prior knowledge of the classes to classify pixels to the 

required classes. Two successive supervised classifications were performed to accurately 

identify different LULC classes as follows: 

- image classification 1: in this classification, a general LULC mapping was performed 

including 6 classes (bare soil, rainfed cultivated area, irrigated areas, shrub lands, forest 

and water). It must be noted that at this level, all irrigated crops were combined into one 

class – irrigated areas; 

(4.1) 
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- image classification 2: at this level of classification, only two classes were considered. 

These are tomatoes and other (non-tomato) crops. All irrigated crops apart from tomatoes 

(i.e., aubergine, cabbage, potato, carrot, pepper, tobacco) were combined into the non-

tomato class. It must be noted that this classification was performed on only the irrigated 

areas as identified in level 1 above. 

IV.2.1.1.2. Validation Method: Classification Accuracy 

A map is a model or generalisation of reality and, therefore, usually has some errors. 

Consequently, it is important to assess the quality of the derived map and express it in a 

meaningful way. The value of thematic maps constructed from remotely sensed data is clearly a 

function of classification accuracy (Foody, 2002). Validating LULC products provides critical 

data quality information to users and producers of these maps. 

To determine the accuracy of each classification, thematic accuracy assessment was 

performed. The referenced data set were used to build a confusion matrix. It basically tells to 

which class the pixels of known class have been classified by showing the known classes in the 

columns and the predicted classes on the rows of a matrix (Jin, Stehman, and Mountrakis, 2014). 

Although a confusion matrix provides the information needed to determine how well a 

classification model performs, summarising this information with a single number would make 

it more convenient to compare the performance of different models. This can be done using a 

performance metric such as overall accuracy, which is defined as follows:  

𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝒔
× 𝟏𝟎𝟎 

Classification algorithms seek models that attain the highest accuracy, this varies from 0 

to 100%. 

 Beside this, the producer’s accuracy, the ratio of pixels classified to the right class and the 

total number of pixels belonging to that class is calculated. It is the probability of a record in a 

certain class being classified correctly – a measure of omission error. The user’s accuracy is the 

ratio of pixels classified to the right class and the total number of pixels that are classified to that 

class. This is the probability that a record classified as a certain class is correct – commission 

error. 

Additionally, the F1 score (Eq. 4.3), which combines producer’s and user’s accuracy into 

a composite measure, was computed for each class. This measure enables a better assessment of 

(4.2) 
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class-wise accuracies. The score has a theoretical range between ‘0’ and ‘1’, where ‘0’ represents 

the worst results, and ‘1’ the best. 

𝑭𝟏𝒔𝒄𝒐𝒓𝒆 = 𝟐 ×
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝒓𝒆𝒄𝒂𝒍𝒍

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝒓𝒆𝒄𝒂𝒍𝒍
 

= 𝟐 ×
𝒖𝒔𝒆𝒓′𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 × 𝒑𝒓𝒐𝒅𝒖𝒄𝒆𝒓′𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚

𝒖𝒔𝒆𝒓′𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 + 𝒑𝒓𝒐𝒅𝒖𝒄𝒆𝒓′𝒔 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚
 

Finally, as formulated by Cohen (1960), KAPPA, a statistic that removes chance as a factor 

of probability is computed. It considers the rate of agreement between the actual class and the 

classifier’s decision. Since agreements are on the diagonal in the confusion matrix, agreement is 

the same as overall accuracy, but this factors in chance. KAPPA is defined as: 

𝑲 =
𝒏𝒂 − 𝒏𝒔

𝒏 − 𝒏𝒔
 

n is the number of records, na is the number of agreements, and ns is the number of agreements 

due to chance. 

IV.2.1.1.3. Mask Derivation 

One obstacle to successful modelling and prediction of crop yields using remotely sensed 

imagery is the identification of image masks. Image masking involves restricting an analysis to 

a subset of an image data rather than using the whole. Kastens et al. (2005) found that cropland 

masking, where all sufficiently cropped pixels are included in the mask regardless of crop type, 

generally leads to improvement in crop yield forecasting ability. This, prior to classification, 

improves crop classification accuracy (Wardlow and Egbert, 2008). For instance, heterogeneous 

fields like the ones in West Africa, crop mapping on full-image scene results in considerable 

confusion between crop/non-crop areas. Most often, farming is done around hamlets and in 

bushes. 

After the image classification 1, only pixels belonging to the irrigated area class were 

selected for the crop type classification at level 2. This means all the other LULC classes 

identified at level 1 (i.e. bare areas, rainfed areas, shrubs, forest, water) were masked out from 

the time-series of S-2 images. Then, classification of tomatoes and non-tomato fields were done 

on only the irrigated areas. 

(4.3) 

(4.4) 
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IV.2.1.2. Spectral Indices and Biophysical Parameters Extraction 

IV.2.1.2.1. Vegetation Indices 

One of the goals of agricultural production is to achieve maximum crop yield at a minimum 

cost. Early detection and management of problems associated with crop yield indicators can help 

increase yield and subsequent profit. VIs are mathematical combinations of mainly red, green 

and infrared spectral bands. They are designed to find functional relationships between crop 

characteristics and RS observations (Wiegand et al., 1990).  

Spectral analysis was conducted for each image to extract normalised and enhanced 

vegetation indices. The four common VIs used to estimate biomass and their mathematical 

formula are listed in Table 4.6 (Cammarano et al., 2014). These are EVI (Enhanced Vegetation 

Index), EVI2 (Enhanced Vegetation Index 2), NDRE (Normalised Difference Red Edge) and 

NDVI. 

Table 4.6: Vegetation Indices used in this study and their mathematical formula 

Vegetation index Equation Reference 

EVI 𝐺
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝐶1 × 𝑅𝑒𝑑 − 𝐶2 × 𝐵𝑙𝑢𝑒 + 𝐿
 (Huete et al., 2002) 

EVI2 𝐺
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 2.4 × 𝑅𝑒𝑑 + 1
 (Jiang et al., 2008) 

NDRE 
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

(Gitelson and 

Merzlyak, 1996) 

NDVI 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (Rouse et al., 1973) 

C1=6, C2=7.5 (coefficients of the aerosol resistance), G=2.5 (gain factor), L=1 (soil-

adjustment factor), NIR: near-infrared band, Red: red band 

 

IV.2.1.2.2. Biophysical Parameters 

Biophysical parameters provide an absolute description of the physical characteristics of 

crops such as biomass and chlorophyll content of plants. Nowadays, RS methods are able to 

accurately estimate those parameters (Dong et al., 2015; Dahms et al., 2016). 

In our study, these parameters were retrieved from the sentinel application platform 

(SNAP) toolbox. Among them, fAPAR, fCover and LAI were used for this investigation. 

fAPAR, fCover and LAI are acute variables for understanding vegetation growth rate and 

predicting crop productivity (Fensholt et al., 2004; Baret et al., 2007; Dahms et al., 2016). It 

mainly consists of generating a comprehensive database of vegetation characteristics and the 

associated S-2 top of canopy (TOC) reflectances. The actual algorithm running in SNAP runs 
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the prediction step of neural network from a set of precomputed coefficients computed during 

the training phase. 

IV.2.1.3. Stepwise Regression Model and Extrapolation 

Stepwise regression was utilised to build the crop yield model. This selects only features –

 VIs or/and biophysical parameters that strongly and significantly explain yield variability. The 

simulation adds variables to a regression model for the purpose of identifying a useful subset of 

predictors. Successful application of this technique has been reported in many studies, such as 

development of indices for global estimation of crop parameters that are sensitive to high 

biomass levels and less influenced by soil reflectance and atmospheric effects (Jiang et al., 2008). 

The subset selection in regression has been done in R environment with the ‘leaps’ package. It 

performs an exhaustive search for the best size of the independent variables for predicting the 

dependent variable in linear regression, using an efficient branch-and-bound algorithm (Lumley, 

2017). One of these advantages is that it takes into consideration the combinations of features. 

Indeed, since the algorithm returns an optimum model of each set, the results do not depend on 

a penalty model for model size – it doesn’t make any difference whether you want to use akaique, 

Bayesian, deviance information criertion, etc.  

The statistical significance is done by calculating the p-value of an F-statistic for the 

various features using diverse feature combinations (Draper and Smith, 1998). Terms are added 

or rejected with the help of a null hypothesis, depending on if the term is already in the model or 

not. If a term is not currently in the model, the null hypothesis is that adding the term to the 

model would lead to a zero coefficient for the term. The term is added to the model if the null 

hypothesis can be rejected. In practice, the terms with p – values less than the defined entrance 

tolerance are compared and the one with the smallest value is added to the model. This step is 

repeated as long as the p-values are low enough. If the term is already in the model, the null 

hypothesis is that it has a zero coefficient. 

Computed VIs and biophysical parameters have been used as independent variables. 

Accounted like described in Table 4.7, a total of 266 independent variables has been tested 

against yield value (dependent variable) of a dimension n= 52 values.  
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Table 4.7: Independent variables description 

Parameter 

formulation 
Description Example Total 

Pdate 
value of the independent variable extracted at the 

specific date by mean 
LAIapr20 17 × 7 

sPdate 
value of the independent variable extracted at the 

specific date by sum 
sLAIapr20 17 × 7 

Ps 
value of the independent variable integral over 

time by mean extracted with the function sum 
LAIs 7 

Pm 
value of the independent variable integral over 

time by mean extracted with the function mean 
LAIm 7 

sPs 
value of the independent variable integral over 

time by sum extracted with the function sum 
sLAIs 7 

sPm 
value of the independent variable integral over 

time by sum extracted with the function mean 
sLAIm 7 

P: name of the independent variable (NDVI, NDRE, EVI, EVI2, fAPAR, LAI, fCover) 

 

All the regression models were weighted by their coefficient of determination (R2), 

adjusted coefficient of determination (Radj
2) and the root mean square error (RMSE) values. Radj

2 

varies from 0 to 1, the closest value to 1 will be selected for the model equation. The extrapolation 

of yield value to the largest area will be done through raster calculation following Eq. 4.5:  

𝒀𝒊𝒆𝒍𝒅 = 𝑹𝟏. 𝜶 + 𝑹𝟐. 𝜷 + ⋯ + 𝑹𝒏. 𝝎 + 𝑪 

R1, R2, Rn are the raster file of the parameter 1, 2 until n (n=number of maximum of subsets); α, 

β and ω are the coefficient of correlation for the respective parameters 1, 2, n; C is the constant 

of the equation. 

IV.2.2. Water Use Estimation: Actual Evapotranspiration with Surface Energy Balance 

models 

This section explains the processes followed to determine the amount of water used to 

produce the modelled agricultural benefit (crop productivity). The determination is mainly based 

on evapotranspiration calculation. 

The amount of water required by various crops to grow optimally (or to meet the water 

loss through ET) is defined as the crop water needs which results mainly from the ETa. A 

relationship between the crop water needs and the crops surface area gives information about 

crop water use. The influence of the climate on crop water needs is given by the reference crop 

evapotranspiration (ETref) discussed in sub-section IV.2.2.3. 

(4.5) 
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Water used by crops (water demand) will be determined from RS data by calculating ETa 

based on the following steps discussed in detail in:  

 determining ETfrac from L8 thermal data;  

 calculating the ETref by applying PM equations;  

 computing the ETa by multiplying ETfrac with ETref; and 

 retrieving the WU by multiplying ETa with irrigated surface area. 

IV.2.2.1. Surface Energy Balance Principle and METRIC Model 

Satellite image provides information for the overpass time only. Energy balance based ET 

algorithms compute an instantaneous ET flux for the image time. The ET flux is calculated for 

each pixel of the image as a ‘residual’ of the surface energy budget equation. This requires the 

computation of net radiation (Rn), soil heat flux (G), and sensible heat flux (H) to solve for latent 

heat flux (LE) or ET as a residual. The basic truth is that evaporation consumes energy. In doing 

so, the energy balance includes all major sources (Rn) and consumers (ET, G, and H) 

(Figure 4.4). 

𝑳𝑬 = 𝑹𝒏 − 𝑮 − 𝑯 

LE is latent heat flux consumed by ETa (W.m-2), Rn is net radiation (W.m-2), G is soil heat flux 

(W.m-2), and H is the sensible heat flux convected to the air (W.m-2).  

Figure 4.4: Surface energy balance (Bastiaanssen et al., 2002) 

Several methods exist incorporating multispectral and thermal bands from satellite imagery 

to estimate actual crop ET. The one used in this research is the METRIC algorithm as published 

by Allen et al. (2007). It estimates three of the four surface energy balance terms, and calculates 

latent heat flux (i.e., ET) as a residual.  

METRIC applies an internal calibration using extreme pixels of well-irrigated and dry soil 

agricultural fields to calculate the ETinst. This calibration approach requires less additional 

atmospheric data for running the model and is therefore widely used for estimating large scale 

(4.6) 
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crop ET in agricultural areas. Moreover, it is crop classification free. For this reason, it is well-

suited for this study to estimate the seasonal ETa for a large agricultural irrigated area. According 

to Allen et al. (2007), ETa calculated by METRIC has a very high correlation with ET, measured 

by lysimeters. This widely used model has been validated in many parts of the world (Rodemaker 

and Driese, 2008; Allen et al., 2011; Bhattarai et al., 2017). 

However, it should be noted that RS based ET is not a measurement of ET, but makes 

approximations from observed radiation at different wavelengths to describe the atmospheric 

and surface interactions (Allen et al., 2011). These estimations need to be validated with field 

measurements of ET such as eddy covariance data, which is a direct measurement of ET or 

reference evapotranspiration (ETref) from historical meteorological data. 

IV.2.2.2. Land Surface Energy Balance 

This section explains how the various components of equation 4.6 is calculated. The sub-

sections below provide details of each. 

IV.2.2.2.1. Surface Radiation Balance Equation: Net Radiation (Rn) 

Rn represents the actual radiant energy available at the surface. It is computed by 

subtracting all outgoing radiant fluxes from all incoming radiant fluxes (Figure 4.5). This is given 

in the surface radiation balance equation:  

𝑹𝒏 = 𝑹𝒔↓ − 𝜶𝑹𝒔↓ + 𝑹𝑳↓ −  𝑹𝑳↑  − (𝟏 − 𝜺𝟎)𝑹𝑳↓ 

Where: RS↓ is the incoming shortwave radiation (W.m-2), α is the surface albedo (dimensionless), 

RL↓ is the incoming longwave radiation (W.m-2), RL↑ is the outgoing longwave radiation (W.m-

2), and εo is the surface thermal emissivity (dimensionless). 

Figure 4.5 : Surface Radiation Balance (Bastiaanssen et al., 2002) 

 

(4.7) 
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 Incoming Solar Radiation 

Incoming solar radiation, direct and diffuse at the Earth’s surface, represents the principal 

energy source for ET. It is computed from a L8 image through a set of steps. Firstly, in order to 

avoid differences in the surface temperature (and finally ET) caused by different incidence angles 

and/or elevations, a surface model  ̶  a stacked raster with DEM, slope and aspect is calculated. 

Then, L8 metadata file (containing sun elevation and azimuth) combined with aspect and slope 

maps estimate solar angles to calculate the incoming solar radiation for each pixel of the scene 

based on equation Eq. 4.8.  

𝑅𝑆↓ =
𝐺𝑠𝑐𝑐𝑜𝑠𝜃𝑟𝑒𝑙 𝜏𝑆𝑊

𝑑2
 

Where Gsc = solar constant (1367 W.m−2); θrel = solar incidence angle; d2 = square of the relative 

Earth–Sun distance; and τsw = broad-band atmospheric transmissivity. 

 Surface Albedo 

Representing the integrated reflectance across the short-wave spectrum (0.2 to 3.2 µm), 

surface albedo is the ratio of reflected solar radiation to the incident solar (short-wave) radiation 

at the surface. In this study, coefficients adjusted by Tasumi, Allen, and Trezza (2008) are used 

as follow: 

𝒂𝒍𝒃𝒆𝒅𝒐 =  𝝆𝒔,𝑩 × 𝟎. 𝟐𝟓𝟒 + 𝝆𝒔,𝑮 × 𝟎. 𝟏𝟒𝟗 + 𝝆𝒔,𝑹 × 𝟎. 𝟏𝟒𝟕 + 𝝆𝒔,𝑵𝑰𝑹 × 𝟎. 𝟑𝟏𝟏

+ 𝝆𝒔,𝑺𝑾𝑰𝑹𝟏 × 𝟎. 𝟏𝟎𝟑 + 𝝆𝒔,𝑺𝑾𝑰𝑹𝟐 × 𝟎. 𝟎𝟑𝟔 

ρs,b is the surface reflectance for band b. 

 Outgoing and Incoming Long-Wave Radiation 

Outgoing long-wave radiation, RL↑, emitted from the surface, is determined by land surface 

temperature (Ts) and surface emissivity (ε0). Landsat’s thermal band gives information on surface 

emissivity and brightness temperature. However, Ts requires LAI values to be computed. This 

value has been retrieved through the method described by (Pôças et al., 2014): 

𝑳𝑨𝑰 = 𝟏𝟏 × 𝑺𝑨𝑽𝑰𝟑 

𝑺𝑨𝑽𝑰 =
(𝟏 + 𝑳)(𝑵𝑰𝑹 − 𝑹𝒆𝒅)

𝑵𝑰𝑹 + 𝑹𝒆𝒅 + 𝑳
 

SAVI is the soil adjusted vegetation index, L=0.5. 

(4.8) 

(4.9) 

(4.10) 
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Ts is computed based on split-window (SW) algorithm developed by Jiménez-Muñoz et al. 

(2014) (Eq. 4.11).  

𝑻𝒔 = 𝑻𝟏𝟎 + 𝟏. 𝟑𝟕𝟖(𝑻𝟏𝟎 − 𝑻𝟏𝟏) + 𝟎. 𝟏𝟖𝟑(𝑻𝟏𝟎 − 𝑻𝟏𝟏)𝟐 − 𝟎. 𝟐𝟔𝟖

+ (𝟓𝟒. 𝟑𝟎 − 𝟐. 𝟐𝟑𝟖𝝎)(𝟏 − 𝜺) + (−𝟏𝟐𝟗. 𝟐𝟎 + 𝟏𝟔. 𝟒𝟎𝝎)𝜟𝜺 

Ts is the land surface temperature (K), T10 and T11 are the at-sensor brightness temperatures for 

bands 10 and 11 of Landsat 8 (K), ε is the mean emissivity, ω is the total atmospheric water 

vapour content (in g.cm-2) and ∆ε is the emissivity difference. 

Using Stefan-Boltzmann (Eq. 4.12) in complement with empirical equation of 

Bastiaanssen (1995) with coefficients developed by Allen (2000) in Olmedo et al. (2017), long 

wave incoming radiation is computed. Outgoing long-wave radiation has been computed through 

Stefan-Boltzmann equation (Eq. 4.13). 

𝑹𝑳↓ = 𝜺𝒂 × 𝝈 × 𝑻𝒔_𝒄𝒐𝒍𝒅
𝟒
 

𝑹𝑳↑ = 𝜺𝟎 × 𝝈 × 𝑻𝒔
𝟒
 

𝜺𝒂 = 𝟎. 𝟖𝟓 × (−𝒍𝒏𝝉𝑺𝑾)𝟎.𝟎𝟗  

𝜺𝟎 = 𝟎. 𝟗𝟓 + 𝟎. 𝟎𝟏 × 𝑳𝑨𝑰  for LAI ≤ 3 and ε0=0.98 when LAI >3 

εa is effective atmospheric emissivity (-); σ is the Stefan-Boltzmann (W.m-2.K-4) constant; Ts_cold 

is the surface temperature at a reference point (cold pixel); ε0 is broad-band surface emissivity; 

τsw is one-way shortwave transmittance for the atmosphere. 

Considering the surface radiation balance, the net radiation is thus estimated. It uses information 

from the image, in addition to measurements of actual vapour pressure and altitude. 

IV.2.2.2.2. Soil Heat Flux (G) 

Soil heat flux is the rate of heat storage into the soil and vegetation due to conduction. The 

following Eq. 4.16 based on Chávez et al., (2005) findings has been used:  

𝑮 = 𝑹𝒏  × (𝟎. 𝟑𝟑𝟐𝟒 − 𝟎. 𝟎𝟐𝟒 × 𝑳𝑨𝑰) × (𝟎. 𝟖𝟏𝟓𝟓 − 𝟎. 𝟑𝟎𝟑𝟐 × 𝒍𝒏(𝑳𝑨𝑰)) 

IV.2.2.2.3. Sensible Heat Flux (H) 

Sensible heat flux is the rate of heat loss to the air by convection and conduction, due to a 

temperature difference. METRIC differs from previous applications of SEBAL principally in 

how the ‘H function’ is calibrated for each specific satellite image. In both METRIC and SEBAL, 

H is estimated from an aerodynamic function as follows:  

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.16) 

(4.15) 
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(4.19) 

𝑯 = 𝛒𝒂𝒊𝒓 × 𝑪𝒑 ×
𝒅𝑻

𝒓𝒂𝒉,𝟏.𝟐
 

ρair is air density (kg.m-3), Cp is specific heat of air at constant pressure (J.kg-1.K-1) and rah,1,2 is 

aerodynamic resistance (s/m) between two near-surface heights, z1 and z2 (generally 0.1 and 2 m 

above the zero-plane displacement height) computed as a function of estimated aerodynamic 

roughness of the particular pixel and an iterative stability correction scheme for atmospheric heat 

transfer based on the Monin-Obhukov stability length scale (Allen, 1996). 

The temperature gradient dT is designed to ‘float’ above the surface, beyond the height for 

sensible heat  roughness (zoh) and zero plane displacement, and can be approximated as a 

relatively simple linear function of Ts, as pioneered by Bastiaanssen (1995).  

𝒅𝑻 = 𝒂 + 𝒃𝑻𝒔 𝒅𝒂𝒕𝒖𝒎 

‘a’ and ‘b’ are empirically determined constants for a given satellite image, Ts datum is surface 

temperature adjusted to a common elevation data for each image pixel using a DEM and 

customized lapse rate. Ts datum corrects for cooling impacts on Ts due to increasing elevation 

within an image that is not related to dT and H. 

Determination of ‘a’ and ‘b’ in Eq. 4.18 involves locating a hot (dry) pixel in a fallow agricultural 

field with large Ts and a cold (wet) pixel with a small Ts (irrigated field) in the RS image. Extreme 

wet and dry pixels has been automatically searched within the satellite scene based on the method 

described by Owusu (2017). The cold condition is typically a well-irrigated alfalfa field where 

ET= ETref. The hot condition is typically a dry, bare agricultural field where ET=0. Then, the 

energy of Eq. 4.6 can be solved for Hcold and Hhot, as respectively following Eq. 4.19 and 4.20. 

𝑯𝒄𝒐𝒍𝒅 = (𝑹𝒏 − 𝑮)𝒄𝒐𝒍𝒅 − 𝑳𝑬𝒄𝒐𝒍𝒅 

𝑯𝒉𝒐𝒕 = (𝑹𝒏 − 𝑮)𝒉𝒐𝒕 − 𝑳𝑬𝒉𝒐𝒕 

IV.2.2.3. ASCE Standardized Penman-Monteith Equation 

ETref is defined as the rate at which readily available soil water is vaporized from specified 

vegetated surfaces (Jensen, Burman, and Allen, 1990). Its purpose is to separate the influence of 

the weather conditions on the ET. The ETref provides a standard to which ET at different periods 

of the year or in other regions can be compared and ET of other crops can be related. 

The relationship between the ETref and the actually grown crop is given by the crop 

factor, Kc, as shown in the following formula:  

(4.17) 

(4.18) 

(4.20) 
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𝑬𝑻𝒓𝒆𝒇 × 𝑲𝒄 = 𝑬𝑻𝒂 

Where ETref  is the reference crop evapotranspiration (mm/day), Kc is the crop factor, ETa is the 

actual crop evapotranspiration (mm/day). 

American Society of Civil Engineers (ASCE, 2000) establishes a uniform ET estimates, 

transferable crop coefficients and two standardized reference evapotranspiration surfaces ET 

(ETsz). Based on the FAO 56 PM equation, two equations with appropriate constants for daily 

and hourly time periods were developed: 

 ETos: for a short crop with an approximate height of 0.12 m (similar to clipped, cool-

season grass); and 

 ETrs: for a tall crop with an approximate height of 0.50 m (similar to full-cover alfalfa). 

The ASCE standardized the PM method for reference ET calculation by Eq. 4.22 

𝑬𝑻𝒔𝒛 =
𝟎. 𝟒𝟖 × 𝜟 × (𝑹𝒏 − 𝑮) + 𝜸 ×

𝑪𝒏

𝑻 + 𝟐𝟕𝟑 × 𝒖𝟐 × (𝒆𝒔 − 𝒆𝒂 )

𝜟 + 𝜸 × (𝟏 + 𝑪𝒅 × 𝒖𝟐)
 

Where ETsz is the standardized reference evapotranspiration for grass (ETos) or alfalfa (ETrs) in 

units based on the time step of mm.d-1 for a 24-h day or mm.h-1 for an hourly time step, Rn is the 

net radiation at the crop surface (MJ.m-2.day-1), G is the soil heat flux (MJ.m-2.day-1),  Т is the 

mean daily air temperature at 2 m height (°C), u2 is the wind speed at 2 m height (m.s-1), es is the 

saturation vapour pressure (kPa), ea is the actual vapour pressure (kPa), (es – ea) is  the saturation 

vapour pressure deficit (kPa), Δ is the slope vapour pressure curve (kPa.°C-1), γ is the 

psychrometric constant (kPa.C-1), Cn is the numerator constant and Cd is the denominator 

constant that changes with reference type and calculation time step. 

Note that ETos equation is identical to the FAO-56 Penman-Monteith. For this study, ETos 

has been selected because the major irrigated crops (tomato, onions and green beans) have their 

average height lower than 0.5 m around Lake Bam (field survey). For the forthcoming sections, 

hourly ETos will be represented by ETo whereas daily ETos by ETr. 

Except in narrow mountain valleys, ETref is relatively stable and often representative for 

areas of 50–100 km distance with relatively small changes (Allen, Tasumi, and Trezza, 2007). 

Thus, if the weather station is in the center of a Landsat image, then a single station may be 

appropriate to use in computing ETo and ETr. 

(4.21) 

(4.22) 
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IV.2.2.4. Crop Water Use 

RS based estimation of ET allows the computation of Kc equivalent called reference 

evapotranspiration fraction (ETfrac) where knowledge of the type of crop and the growth stage 

are not a requirement. ETfrac value is given by the ratio between the instantaneous actual 

evapotranspiration (ETinst) at the satellite overpass and the hourly reference evapotranspiration 

at this time (ETo) (Eq. 4.23). 

𝑬𝑻𝒇𝒓𝒂𝒄 =
𝑬𝑻𝒊𝒏𝒔𝒕

𝑬𝑻𝒐
 

With  𝑬𝑻𝒊𝒏𝒔𝒕 = 𝟑𝟔𝟎𝟎 ×
𝑳𝑬

𝛌𝛒𝒘
 

ETinst is the instantaneous ETa at the satellite overpass (mm.h-1), 3600 is the conversion factor 

from seconds to hours, ρw is the density of water = 1000 kg.m-3, λ is the water latent heat of 

vapourisation = 2.26 106 (J.kg-1) and ETo is the hourly ETref at the time of satellite overpass 

(mm.h-1). 

The daily actual evapotranspiration pixel by pixel (ET24) is finally computed by using ETfrac and 

daily reference evapotranspiration (ETr) as described in Eq. 4.25. 

𝑬𝑻𝟐𝟒 = 𝑬𝑻𝒇𝒓𝒂𝒄 × 𝑬𝑻𝒓 

Then, by assuming that ET24 is constant during the month for the given crop, ET for a specific 

month (ETmonth i) is determined. This leads to accumulation of water evapotranspired for the pixel 

over a span of 1 month by multiplying its ET24 by the number of day in the month.  

𝑬𝑻𝒎𝒐𝒏𝒕𝒉 = 𝑬𝑻𝟐𝟒 × 𝒅   

d is the number of day for the specific month. 

The seasonal crop water use (WUseasonal), is developed by the integral of ETmonth of the 

specific month multiplied by irrigated surface as follows: 

𝑾𝑼𝒔𝒆𝒂𝒔𝒐𝒏𝒂𝒍 = ∑ 𝑬𝑻𝒎𝒐𝒏𝒕𝒉𝒊 

𝒎

𝒊=𝒏

× 𝑺 

WUseasonal is the cumulative WU for a period beginning from month ‘m’ and ending at month ‘n’ 

(in the case of this study from November to April) (m3), ET month i is the actual evapotranspiration 

(m3.ha-1) for one specific month of the farming season, S is the surface area (m2) of irrigated 

tomatoes. 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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Crop productivity Water use Estimation Water productivity 

IV.2.3. Crop Water Productivity Calculation 

WP is a concept to express the value or benefit derived from the use of water and includes 

essential aspects of water management such as production for arid and semi-arid regions. 

Increasing WP means either to produce the same yield with less water resources or to obtain 

higher crop yields with the same water resources (Zwart, 2010). 

In this study, the computation of WP will be done through a simple division of the yield and ETa 

output raster layers as indicated in Figure 4.6. The calculation of WP will be based on the Eq. 

2.1. 

 

 

 

 

 

Figure 4.6: Flow chart of water productivity mapping  
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V. RESULTS 

This chapter presents results of the steps conducted to derive WPM in this study. Divided 

into three main parts, the first two sections highlight the result of the main input described in the 

methodology section. The sub-section V.1 provides results of the crop productivity modelling. 

The accuracy obtained in the LULC and crop classifications are first given and briefly discussed. 

Then, results of the yield modelling to determine the spatial distribution of tomato yield in the 

study area is presented. Next, the sub-section V.2 presents findings on water used by crops. 

Initially, calculated ETfrac from L8 thermal data and ETref for each month of the growing season 

are displayed and briefly discussed. Afterwards, seasonal ETa and WUseasonal is shown. 

V.1. Crop Productivity Map 

V.1.1. Spatial Distribution of Crops 

V.1.1.1. Irrigated Area Mapping 

Table 5.1 presents the confusion matrix of the LULC classification (level 1) to determine 

the extent of irrigated and other general LULC classes. An overall accuracy of 92.8% was 

achieved. The kappa value (0.92) indicates that fewer than 1% of pixels classified is due to 

chance. The producer’s accuracy shows that 95% of the record in irrigated land class is classified 

correctly with a probability of 0.86 that this classified record is correct. This is confirmed by its 

F1 score of 0.9. It was found that images acquired during the early period of the dry season 

(October-December) produce the best results.  

Table 5.1 shows that despite the good accuracy obtained for irrigated area class, there 

exists some confusion between this class and both rainfed areas and forest classes. This can be 

explained by the fact that at the onset of the dry season, forest is green, while rainfed cultivated 

areas and irrigated areas may be bare (harvested and ploughed). However, at the peak of the dry 

season, forest and irrigated areas can all be green, thereby causing spectral confusion whereas 

rainfed areas have minimal confusion with these two classes.  
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Table 5.1: Accuracy estimates for the derived irrigated crop mask 

Class 
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F
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Bare soil 995 5 0 0 0 0 1000 1.00 0.98 0.99 

Rainfed area 21 933 30 2 14 0 1000 0.93 0.95 0.94 

Irrigated 

area 
0 26 946 8 20 0 1000 0.95 0.86 0.90 

Shrub land 2 13 9 847 129 0 1000 0.85 0.95 0.90 

Forest 0 7 110 33 850 0 1000 0.85 0.84 0.84 

Water 0 0 1 0 0 999 1000 1.0 1.0 1.0 

Column 

Total 
1018 984 1096 890 1013 999 6000    

Overall Accuracy = 92.83%; Kappa = 0.92 

V.1.1.2. Tomato Plot Mapping 

Table 5.2 shows the accuracy estimates obtained in the crop classification which aimed at 

mapping tomato cultivated areas (tomato mask) against other irrigated crops. An overall 

classification accuracy of 74.3% and kappa coefficient of 59% were achieved. Pixels classified 

as tomatoes have 70% likelihood of being correctly classified. User’s accuracy value of the 

tomato class indicates that 76% of the samples could be correctly classified. Statistics from 

producer’s and user’s accuracy allowed the determination of an F1 score for tomato crop above 

70%. 

In general, there was substantial confusion between tomatoes and other irrigated crops 

(non-tomatoes). Reasons for this confusion are discussed in section VI.1. 

Table 5.2: Accuracy estimates for the tomato crop mask 

Class Tomato 

Non-

Tomato 

crop 

Row 

Total 

Producer’s 

Accuracy 

User’s 

Accuracy 
F1 

Tomato crop 678 297 975 0.70 0.76 0.73 

Non Tomato crop 210 790 1000 0.79 0.73 0.76 

Column Total 888 1087 1975       

Overall Accuracy = 74.33%; Kappa = 0.59 
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Figure 5.1 provides a detailed picture of the classification results obtained for the two 

classifications. First, irrigated areas were mapped by classifying six general LULC classes, 

including irrigated areas. Then, based on the mapped irrigated areas, two crop classes – tomato 

areas and non-tomato areas – were mapped. 
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Figure 5.1: Mask derivation A: LULC map; B: Irrigated land mask; C: Tomato crop under irrigated land map; D: Extracted tomato plot

A B C D 
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V.1.2. Yield Modelling 

The tomato yield (kg.m-2) values (52 plot values in total), obtained from the field survey, 

were correlated with VIs and biophysical parameters derived from S-2 data. The yield 

prediction was conducted through a stepwise regression model to select the best predictor 

subset that significantly explains yield variability at field level. The model selected five 

variables/predictors, explaining 54% (R2
adj) of the variability (Table 5.3). These five predictors 

provided better results than any other combination. 

This regression analysis revealed that for a simple linear model, only the sum of the temporal 

integral of fAPAR (fAPARs) value explain more than 20% of yield variability. The best fit 

subset model is composed of: 

- LAIapr20: LAI value of April 20 extracted by the function mean; 

- LAIm: mean of LAI integral over time extracted by the function mean; 

- sEVImay10: EVI value of May 10 extracted by the function sum; 

- sLAIapr20: LAI value of April 20 extracted by the function sum; 

- EVI2apr20: EVI2 value of April 20 extracted by the function mean. 

Table 5.3: Best subset and image combination for tomato yield variability 

Subset 

size 

Best 

model 

Image 

combination 
R R2 R2

adj RMSE 

1 Linear fAPARs 0.48 0.23 0.21 4.23 

2 
multi-

linear 

LAImay10  
0.58 0.34 0.31 3.95 

sLAIapr20  

3 
multi-

linear 

LAIdec11  

0.66 0.44 0.40 3.69 sEVIdec11  

SndviAll_s  

4 
multi-

linear 

LAIdec11  

0.71 0.50 0.46 3.50 
LAIs  

sEVIdec11  

sfAPARm  

5 
multi-

linear 

LAIapr20  

0.76 0.58 0.54 3.24 

LAIm  

sEVImay10  

sLAIapr20  

EVI2apr20  
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V.1.3. Spatial Extrapolation and Crop Productivity Map 

The most significant model (Table 5.4) was used on the relevant images to extrapolate 

and derive tomato yield map for irrigated fields around Lake Bam. The regression relationship 

of the best model (R2
adj =0.54) is given by:  

𝒀𝒊𝒆𝒍𝒅 = 𝑳𝑨𝑰𝒂𝒑𝒓𝟐𝟎 × 𝟔𝟖. 𝟗𝟒 + 𝑳𝑨𝑰𝒎 × 𝟑𝟑. 𝟕𝟏 − 𝒔𝑬𝑽𝑰𝒎𝒂𝒚𝟏𝟎 × 𝟑𝟑𝟗𝟓𝟏. 𝟐𝟎

− 𝒔𝑳𝑨𝑰𝒂𝒑𝒓𝟐𝟎 × 𝟏. 𝟐𝟑 + 𝑬𝑽𝑰𝟐𝒂𝒑𝒓𝟐𝟎 × 𝟏. 𝟑𝟏 − 𝟑𝟒. 𝟏𝟒 

The fit is statistically significant since the p-value is 8.22×10-08 (<0.05). 

Table 5.4: Best regression analysis model 

  Estimate 
Standard 

Error 
Standardised t-value p-value 

Intercept  -34.14 7.27  -4.70 <.001 

LAIapr20  68.94 10.64 1.31 6.48 <.001 

LAIm  33.71 8.60 0.42 3.92 <.001 

sEVImay10  -33,951.20 7515.06 -0.95 -4.52 <.001 

sLAIapr20  -1.23 0.18 -1.87 -7.02 <.001 

EVI2apr20  1.31 0.25 0.80 5.25 <.001 

F-statistic: 12.79 on 5 and 46 DF, p-value: 8.22×10-08 

 

The result of extrapolation shows spatial variability within tomato yield (kg.m-2) using 

S-2 data (Figure 5.2). This extrapolation was possible as a result of the good understanding we 

had through model development (Table 5.4) and delineation of tomato plot. This CPM is one 

of the key parameters in understanding within and between field variability. 

The yield value around the lake mostly varies from 0.01 to 16 kg.m-2 and these are parcels close 

to the bank of the lake. Descriptive statistics show that 0.01, 100 and 10.35 are respectively 

minimum, maximum and mean yield value (kg.m-2). Higher values are located in the northern 

part of the lake (Figure 5.2). Extracted yield from twenty-two tomatoes plot statistics analysis 

shows that maximum frequencies of yield ranged from 5–20 kg.m-2.

(5.1) 
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Figure 5.2: Tomato crop productivity map 
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V.2. Water Use Estimation 

V.2.1. Evapotranspiration Fraction Modelling (Crop Coefficient) 

ETfrac raster layers (Figure 5.3) were derived using the ETa at the satellite overpass from 

the latent heat flux (i.e., ET) as a residual in METRIC model and ETo.  

Ranging from 0 (dry) to 1 (wet), unitless, ETfrac represents the fraction of net radiant 

energy being used in transpiration by plants or in evaporation of moisture from the surface. In 

calculation of ETfrac (Eq. 4.23), each pixel retains a unique value for ETinst that is derived from 

a common value for ETo, and the representative weather station data.  
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Figure 5.3: Spatio-temporal seasonal changes of evapotranspiration fraction  
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The first and second group of tomato (Tomato 1, Tomato 2) are respectively planted in 

November and December. In January, Tomato 1 is at the maturity stage whereas Tomato 2 in 

the development stage; hence we see significant values of ETfrac (Figure 5.3. C, Figure 5.4). 

This value is even accentuated by the fact that in late January, the third group of tomato 

(Tomato 3) is planted. ETfrac reaches its maximum in January (green colour spreads spatially 

and increases in intensity). The ETfrac starts decreasing in February and stays stable until early 

March (Figure 5.4) because Tomato 1 has been harvested and Tomato 2 is in mid-season 

growth stage. In late March and April, ETfrac drastically decreases because there is almost no 

crop on the field. Especially in late April, most of the tomato surface is totally dry apart from 

the north-western part of the lake where wetland is dominated at that time of the season 

(Figure 5.3.F). 

 

Figure 5.4: Tomato plot evapotranspiration fraction dynamic curve 

V.2.2. Reference Evapotranspiration 

Hourly meteorological data (section IV.1.2.2) from the closest (Ouahigouya) synoptic 

meteorological station was used to apply the ASCE standardized PM method to compute hourly 

and daily ETref (Table 5.5). 

Table 5.5: ASCE-EWRI standardized reference evapotranspiration 

Reference ET 
2016 2017 

Nov Dec Jan Feb Mar Apr 

ETo (mm.hour-1) 5.71 4.10 5.01 5.76 7.17 12.86 

ETr (mm.day-1) 50.44 38.60 45.04 53.75 64.39 110.79 

 

-200

-100

0

100

200

300

400

500

600

700

800

Nov Dec Jan Fev Mar AprS
u

m
 o

f 
to

m
a
to

 p
ix

el
s 

v
a
lu

e 

(u
n

it
le

ss
)

ET fraction dynamic

ET: Evapotranspiration; ETr: short reference crop ET at daily time step 

ETo: short reference crop ET at hourly (daytime) time step – time of the satellite overpass 



 

52 
 

The time of satellite overpass ranges from 10:25 AM to 10:26 AM. ETref for both hourly 

and daily time scale increase gradually from December to March. However, that of April, 

which is the maximum, is almost twice the value of March. Allen et al. (2005) recommend the 

use of the standardized equation and procedure when possible to represent reference ET for the 

establishment of reproducible and universally transferable ET estimates, climatic description, 

and derived crop and landscape coefficients. 

V.2.3. Seasonal Water Use 

The daily ETa (ET24) was computed by using ETfrac and the daily reference 

evapotranspiration (ETr). METRIC allows production of maps that can express ETa at both the 

proportion and the spatial distribution of ETa. It has some significant advantages over many 

traditional applications of satellite-based energy balance in that its calibration is made using 

ETref rather than evaporative fraction. The use of ETref for the extrapolation of ETinst from 

periods of 24 hours and longer compensates for regional advection effects by not tying the 

evaporative fraction to net radiation, since ET can exceed daily net radiation in many arid or 

semi-arid locations. The quantification of ETa on a field by field for each the irrigated cropping 

season 2016-2017 around Lake Bam is highlighted on Figure 5.5. The water loss through 

evaporation and transpiration are expressed in thousands m3.ha-1 for the entire study area. 
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Figure 5.5: Actual seasonal evapotranspiration around Lake Bam for the growing period of 2016–2017 
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The mean value of ETa was used to give indications about ETa characteristics of irrigated 

areas for each month during the tomato cropping season. Negative values of ETa has not been 

treated as 0 as recommended by Wilcox and Sly (1976). Twenty-two selected tomato plots 

were used for inter-comparison of ETa over the tomato cropping season at the satellite overpass 

(Figure 5.6). Extracted values for January, February and March have the highest ETa with daily 

average quantity of respectivily 34.5, 11.63 and 14.35 mm.day-1. This is because it is at that 

time most of the irrigated crops are either in development or maturity growth stage as 

confirmed by the crop calendar from the field survey (Table 4.5). Daily ETa for December 22 

got the lowest mean and negative value, this suggests that the moisture content of the soil 

increased before the image acquisition. 

 

Figure 5.6: Daily evapotranspiration extracted from 22 tomato plot at the time of 

the satellite overpass 

Estimation of ETa at different temporal scales allow the assessment of crop water usage 

over the season. The water use value has been retrieved by multiplying the ETa of each pixel 

by its surface area. As each L8 pixel has been resample to 10 m, one pixel surface is equal to 

0.01 ha. The overall crop water use for the 3162.68 ha of irrigated area for the 2016/2017 

cropping season was estimated at about 4.82 × 106 m3. Tomato plots (859.75 ha) constitutes 

out of that 37% of irrigation water requirements with 1.48 × 106 m3 (Figure 5.7). 
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Figure 5.7: Seasonal water demand of crop under irrigated land 

V.3. Crop Water Productivity 

The Tomato CPM was derived by dividing the crop productivity map by the seasonal 

water use layer. The result, expressed in kg.m-3, is illustrated in Figure 5.8. The WPM shows 

within and between field variability in tomato WP. The best bet scenario is to continue to 

produce more (increase WP) food from existing croplands and water. In the literature, a review 

based on 11 publications, from 1998 to 2008, with a number of 181 experimental point 

worldwide (Rashidi and Gholami, 2008) found that tomato WP from between 2.58 to 11.88 

kg.m-3. In order to benchmark to a global standard, the maximum pixel value has been set to 

12 kg.m-3. Thus, WP of the irrigated tomato crop (the most dominant crop in and around Lake 

Bam) varied between 0–12 kg.m-3. 

The result in Figure 5.8 shows that 600 ha out of 859.75 ha have crop WP range of 0.01-1 kg.m-

3. That is not concentrated in a particular area but dispersed in the study area. Crop WP for 22 

tomato plots ranges between 0.33 and 3.5 kg.m-3. With a standard deviation of 0.95 kg.m-3, the 

mean value of crop WP for those plots is 1.24 kg.m-3,which is largely below the international 

reference for tomatoes defined by 10-12 kg.m-3 by FAO (2017).  

On Figure 5.9, only 10.5% of the tomato crop area had a WP value of 2.5 kg.m-3 or higher. 

About 82.05% of the tomato area had values lower than 1.63 kg.m-3. In other words, the map 

shows that 89.46% (769.16 ha) tomato area for the season 2016–2017 falls in the category of 

low WP of 2.5 kg.m-3or less. This clearly implies the opportunity to grow more food on the 

existing lands through better land and water management practices.  

37%

63%

Tomato crop Non tomato crop
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Figure 5.8: Tomato water productivity map (WPM) 
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Figure 5.9: Pin-pointing areas of low and high tomato water productivity  
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VI. DISCUSSION OF RESULTS 

This section discusses the results presented in Chapter V. It is structured around three 

main sub-sections. The first (VI.1) deals with results obtained from tomato crops mapping 

process. It discusses challenges in crop mapping in West Africa and points out the advantages 

of implemented classification approach. RS approach that helps in predicting yield is further 

discussed. The second sub-section (VI.2) discusses results obtained from water use estimation. 

The meaning of values found in section V.2 is argued. The last sub-section explains the 

practical value of WP obtained during this research. 

VI.1. Crop Productivity 

VI.1.1. Classification Accuracy 

In a RF classification, each node is split using the best predictor out of a subset of 

predictors randomly chosen at that node. This somewhat counterintuitive strategy turns out to 

perform very well compared to many other classifiers, including discriminant analysis, support 

vector machines and neural networks, and is robust against overfitting (Breiman, 2001). In 

addition, it is very user-friendly in the sense that it has only two parameters (the number of 

variables in the random subset at each node and the number of trees in the forest), and is usually 

not very sensitive to their values. The method used in our study executed well since the overall 

accuracy of the consecutive classification was respectively 92.83% and 74.33%. 

VI.1.2. Crop Calendar Overlaps and Variable Planting Dates 

An underlying challenge to crop separability that was identified in classifications step 

is the overlap of the cropping calendar. Farmers in the study area do not seed and/or plow at 

the same time. As identified by Hassan (1996), farmers who have plans of planting multiple 

crops on the same land may start cultivation earlier than those who practise mono-cropping. 

However, identification of unique crop spectral profiles is essential for the success of crop 

mapping (Odenweller and Johnson, 1984). That practice, like around Lake Bam, reduces 

classification accuracy by creating similarities in the spectral profiles of different crops and 

differences in the spectral profiles of same crops (Forkuor et al., 2014). This is the case for 

onions and tomato in January due to analogous response captured by the satellite. Peña-

Barragán et al. (2011 also attributed the major confusion between some summer crops 

(safflower, sunflower and tomatoes) to similarities in their development stages and cropping 

calendar.  
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Despite the challenge of cropping calendar overlaps, the implemented approach, and 

availability of satellite imagery for the whole cropping season (18 S-2 images) achieved 

acceptable separability for tomato crop class. 

VI.1.3. Landscape Heterogeneity and Per-pixel Classification 

Traditional pixel-based analysis of remotely sensed data results in inaccurate 

identification of some crops due to pixel heterogeneity, mixed pixels, spectral similarity, and 

crop pattern variability. High spectral within-field heterogeneity, which could be caused by 

variations in soil fertility, soil moisture conditions and pest or diseases, often results in a 

classifier assigning different classes to pixels in the same field (Smith and Fuller, 2001). In 

West Africa, the heterogeneity of the landscape (Cord et al., 2010) and frequent intercropping 

aggravates this situation. 

The accuracy of the classifications in this study could be improved by adopting a per-field 

classification approach as reported by Ban (2003). But, per-field approaches require 

availability of a topographic vector database of field boundaries. This is a major limitation for 

implementation of such approaches in most parts of West Africa, since vector databases of 

field boundaries do not exist.  

VI.1.4. Yield Predictions 

The regression model developed to estimate the crop productivity can be used to predict 

crop yield in subsequent years provided no significant changes are made to the existing 

cropping system. Derivation of the dependent RS variables (Eq 5.1) ahead of the harvest season 

can provide agricultural managers with some yield estimates at the end of the season. However, 

there could be high uncertainties in such yield predictions. This is particularly the case in early 

season. Generally, the uncertainty declines towards the end of the season (Hansen, 2005). 

Although VIs like NDVI is widely used for yield modelling (Kumar, 2015), it is a very poor 

indicator of vegetation properties when quantitative, reliable, accurate estimates are required. 

Indeed, the problem with NDVI is that while high values of this index do suggest the presence 

of vegetation in the scene, its actual numerical value is quite sensitive to a number of other 

factors, including some which have nothing to do with the vegetation itself. For instance, cloud 

contamination, soil moisture, or angular configuration of illumination and observation can 

significantly affect the index value, even if the surface type and properties did not change. By 

contrast, physically based parameters like fAPAR, LAI and fCover are more reliable variables 

to describe the instantaneous productivity of plant canopies. They are a critical parameter for 
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assessing vegetation growth rates and predicting crop productivity (Fensholt, Sandholt, and 

Rasmussen, 2004; Claverie et al., 2012). 

This explains why most of the highly correlated independent variables in the regression 

model turned out to be biophysical parameters, especially those related to the late season. A 

study in Argentina by Lopresti, Di Bella, and Degioanni (2015) demonstrated wheat yield 

prediction 30 days before the harvest, after stages of heading and anthesis. This has been done 

at a regional scale combining yield data of past nine seasons. The relationship between 

moderate-resolution imaging spectroradiometer (MODIS)  250 m of spatial resolution image 

and NDVI was explained by an R2 value of 0.75. Our case used data from one season and a 

high resolution sensor (10 m). 

Regular monitoring of biomass production can be used to timely identify areas of lagging 

production which could indicate pests, diseases or other potential threats. Timely detection 

supports timely action to mitigate crop damage. Additionally, money can be saved due to a 

more localised application of pesticides. On a larger scale, biomass production of different 

fields within an irrigation system, region or country can be compared, giving insight in spatial 

variations in production. 

VI.2. Evapotranspiration 

VI.2.1. Water Use Maps 

The accuracy of water use maps depends on the validity of ETfrac maps and ETref. One 

should generally expect ETfrac values to range from 0 to about 1.0 (Jensen, Burman, and Allen, 

1990). At a completely dry pixel, ET=0 and therefore ETfrac =0. ETref generally represents an 

upper bound on ET for large expanses of well-watered vegetation. Negative values for ETfrac 

can occur in METRIC due to systematic errors caused by various assumptions made earlier in 

the energy balance process and due to random error components. So for the dry pixels (non-

transpiring vegetation or dry soil), 0 should be considered as the final ETfrac value. That was 

the case in this study. 

ETr should be permanently greater than the estimated daily ETa for a validation of the 

model. As shown in Table 6.1, for all the dates of ETa modelling, ETr is constantly greater than 

ETa. Platonov et al. (2008) suggested that to get the same ETa values, applying different 

methods for ETr calculation requires use of different crop coefficients. According to FAO 

(2017), maximum Kc (ETfrac) for tomato is around 1.2-1.4, meaning that seasonal ET can be 

underestimated and WP values overestimated. Similar observation was made by Biradar et al. 
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(2008) in ET modelling of wheat, maize and cotton based on simplified surface energy balance 

model (SSEB). 

Table 6.1: Reference evapotranspiration and 24 actual evapotranspiration 

comparison 

ET value 
2016 2017 

Nov Dec Jan Feb Mar Apr 

max ETa 

(mm.day-1) 
26 30.88 18.48 28.4 30.91 15.3 

ETr 

(mm.day-1) 
50.44 38.6 45.04 53.75 64.39 110.79 

ET: Evapotranspiration; max ETa: maximum actual ET pixels value for the day 

ETr: short reference crop ET at daily time step 

VI.2.2. Water Requirement 

Monitoring ET variation on a regular basis gives a direct insight in crop water status. 

Areas of low crop water use can be identified, either within field status or within an entire 

irrigation system. Large differences in ET within fields might indicate points of water logging 

or faulty irrigation equipment or prompt better field levelling. The L8 pixel 30m×30m (0.09 

ha) is lower than the mean surface of tomato plot which is 0.2 ha (the maximum is 0.62 ha, 

field survey). This can explain why spatial variation of ETa within tomatoes plot is so constant. 

In Asia and Europe, where land for irrigation is very big, the variation within the field could 

be apparent and obvious. Irrigation managers can monitor the crop water consumption within 

their area on a real-time basis, or look at accumulated figures from an entire season and analyse 

the spatial distribution of crop water consumption from year to year. 

VI.3. Crop Water Productivity Standard 

VI.3.1. Tomato Water Productivity Benchmarking 

The extensive literature review of WP values in the world for main irrigated crops by 

Zwart and Bastiaanssen (2004) covers wheat, rice, cotton, and maize. A plausible crop WP 

range under farm management conditions for tomato has been investigated by Rashidi and 

Gholami (2008) in Iran. The crop WP range is determined by taking the 5 and 95 percentiles 

of the cumulative frequency distribution. The range of WP values for tomatoes is very large 

(2.58-11.88 kg.m-3) with a maximum frequency of crop WP ranged from 3.5 to 5.5 yields 

among all experiments. Around Lake Bam, only about 10% of the area under tomatoes has WP 

values within this range. FAO (2017) established that the water utilisation efficiency for 

harvested yield for fresh tomatoes is 10 to 12 kg.m-3. Our results imply that there is significant 
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scope for increasing WP for growing more food to feed the ballooning populations in the 

coming decades without having to increase allocations of croplands and\or water. 

VI.3.2. Improving Crop Water Productivity 

In order to understand why some plots in the study area have higher WP values than 

others, a field visit on the lower WP plots needs to be undertaken to know different land and 

water management practices – amount of pesticides, soil properties, etc. Platonov et al., (2008) 

found that in Galaba farms (Uzbekistan), lower WP values occurred mainly because of the high 

percentage of soil salinity (43% of farms) and water logging (31% of farms). The other factors 

that influenced WP variations were land levelling (14%), water deficit (7%), and others (5%).  

The highest values of tomato WP (9.26 to 13.3 kg.m-3) are reported in Iran by Sadreghaen 

et al. (2002) in a combination of alternate micro irrigation and deficit irrigation. In South 

Africa, Pienaar (2014) utilised and tested various innovation technologies aimed at increasing 

tomato WP. Improved management practices, such as soil nutrient management and mulching, 

were introduced in the 2nd and 3rd seasons of tomato trials at field level at Mzilela farm. Results 

showed tomato yield increased from an average of 26.5 t.ha-1 to 120.9 t.ha-1 and WP increased 

from 4.61 kg.m-3 to 17.69 kg.m-3 after experimentation. Thus, specific practice to specify place 

can increase tomato WP around Lake Bam. 

The next and last chapter of this thesis briefly explained the implications of the findings 

for all the stakeholders in line with the Lake Bam water resource and proffer possible solutions 

for the limitation of my study.  
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VII. CONCLUSION 

VII.1. Principal Findings 

WP spatial model has been developed using multi-temporal high resolution RS data (S-

2 and L8). Examination of rudimentary irrigation system around Lake Bam (Burkina Faso) to 

map crop WP through the use of satellite-based approaches highlights areas of high and low 

WP. During the determination of the two main inputs of WP in the crop productivity part, RF 

algorithm gave satisfactory result to the two-step approach for image classification as well as 

the formulated model prediction. Then, for the second input, spatio-temporal water use by crop 

for all irrigated fields as well as for tomatoes was succinctly quantified. 

Low WP areas dominate around Lake Bam. This result will help us focus on areas of low 

WP and establish causes for same. Once this is accomplished, strategies can be developed to 

increase WP of these areas. If this is achieved, food security of future generations can be 

secured without having to increase croplands and\or greater water use. 

VII.2. Policy and Practice Recommendations 

VII.2.1. Crop Monitoring and Biomass Production 

Actual biomass production data is valuable for individual farmers. Such information can 

help farmers to identify potential weak spots in their fields that require urgent attention. 

Moreover, efficient application of costly agricultural inputs such as fungicides and pesticides 

can mean substantial financial savings. Extrapolated crop yield maps can thus allow 

improvement on areas of low productivity with appropriate management practices. 

Production gap analyses can give governments and policymakers valuable insight into 

the extent to which the productivity capacity can improve within their borders to be able to 

feed future generations. This will significantly influence the development of food security 

policies and agricultural investments. In other word, the current production can be compared 

to actual and realistically attainable production for a certain region with similar circumstances 

(variety crop, soil moisture and weather conditions) so that with good farming practices and 

better use of agricultural inputs the same high production can be attainable. 

VII.2.2. Water Resources Management 

Evapotranspiration data is valuable for a lot of people dealing with water resources, from 

farmers themselves to policymakers. Individual farmers can use the data to optimise their crop 

water status, and thus their production. This is in collaboration with agricultural advisors who 

can oversee bottlenecks on a larger scale and support farmers to improve their practices to 
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achieve the best possible yield. Water managers can use information to improve water 

distribution within their irrigation systems. However, informal irrigation system in many places 

in West Africa can restrict the proper usage of that spatial statistic.  

For Policymakers ETa information will mean factual information on which to to base 

sustainable water management decisions. Indeed, combining ET data with land use maps 

provides quantified information on water consumption per land use categories such as 

agricultural land, forests, rangeland and wetlands. This could support the monitoring of water 

quotas per category as defined by (inter-) national policy and justify actions to be taken to reach 

such quota. Up-to-date and basin-wide ET information is a crucial input in hydrological models 

capable of simulating the future impact of water management decisions made today. Being able 

to compare water availability scenarios when deciding on future water management policies 

will support water management authorities tasked with the development of long-term river 

basin management plans to take the most sustainable course. 

A policy mechanism for water extraction from the Lake using motor pumping could be 

planned. A field interview around Lake Bam revealed that the three main motor pumps used 

around the lake draw water at a rate of (power) 60 to 100 m3.h-1. Thus, for each month, a timing 

of pumping water based on the type of motor pump can be set to achieve crop water 

requirements. This can improve WUE which will subsequently increase WP around the lake. 

VII.3. Further Studies 

The need for conducting WPM studies using high spatial resolution remote sensing data 

from Landsat type sensors is critical so that crop level water use and WP can be studied. This 

is a significant advantage over coarser resolution imagery like the one from MODIS. Existence 

of high resolution images like S-2 is now overcoming the problem of resolution for crop 

delineation. METRIC model requires rigorous meteorological data which may discourage 

WPM studies using remote sensing in data scare region. 

Due to inability of optical systems to acquire useful images during cloudy weather, 

contribution of synthetic-aperture radar (SAR) data in both crop mapping and ET modelling is 

of paramount interest. Indeed, SAR sensors are independent of weather conditions, as they 

have their own source of energy and therefore do not depend on the sun’s energy. Its image 

acquired either during the day or night has high resolution capability. A combination of very 

high image resolution like the one of rapid eye sensors (6.5 m) and SAR may increase 



 

65 
 

variability of ET within field and ensure accurate discrimination of different crop types. This 

will finally reduce uncertainty of the modelling. 

This study was limited to physical part of WP, but a monetary value on WP will put more 

attention on both farmers and policy makers on the importance of improving WP. However, 

the need to understand factors affecting WP is very important. Be able to come out with the 

degree of influence of various factors on WP variations within and between fields may 

necessarily lead to finding appropriate solutions.  
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APPENDICES 

APPENDIX A 

Summary of existing major satellite-based ET mapping methods (K. Zhang, Kimball, and Running, 2016) 

Model Advantages Assumptions/Limitations ET partition 
Input 

parameters 

One-source SEB; 

One-source spatial 

variability SEB 

Simple, low requirement for 

metrological data 

 Only available for clear-sky; 

 requires parameterisation of excessive resistance and local 

calibration; 

 susceptible to T s and T a errors; 

 requires scaling of instantaneous to daily values 

No partition Rn, Ts. Ta 

Two-source SEB 
Low requirement for 

meteorological forcing 

 Only available for clear-sky; 

 high sensitivity to surface temperature errors; 

 requires scaling of instantaneous to daily values 

Soil and vegetation 

components 
Rn, Ts. Ta 

Two-source time 

differencing SEB 

Low requirements for 

meteorological forcing; reduced 

sensitivity to absolute Ts − T a 

difference; does not need local 

calibration 

 Only available for clear-sky; 

 high sensitivity to surface temperature errors; 

 requires scaling of instantaneous to daily values 

Soil and vegetation 

components 
Rn, Ts 

Ts – VI methods 
Low sensitivity to T s errors; low 

metrological data requirement 

 Only available for clear-sky; 

 relationships derived from T s – VI space is oversimplified;  

 requires scaling of instantaneous to daily values 

Soil and vegetation 

components 
Rn, Ts, VI 

PM models 

Process-based; physically sound; 

temporally continuous coverage; 

flexible time step; no or low 

requirements for surface 

temperature 

 High meteorological forcing requirements; 

 simplified or semi-empirical estimate of canopy 

conductance 

Soil, vegetation, 

and/or open water 

components 

Rn/radiations, 

Ta, air vapour 

pressureand 

LAI/VI 



 

XII 
 

Model Advantages Assumptions/Limitations ET partition 
Input 

parameters 

PT models 
Simple; moderate requirements 

for meteorological forcing 

 Many simplifications of physical processes; 

 requires ground heat flux as an input or assumes that it is 

negligible; 

 applied on a monthly time scale 

Soil and vegetation 

components 

Rn, Ta, 

albedo, 

water 

vapour 

pressure 

MEP model 
Low requirement for 

meteorological forcing 

Requires continuous land surface temperature to produce 

continuous ET record 

Soil, vegetation, 

and/or open water 

components 

Rn, Ts, qs 

Water balance 

methods 
Simple and easy to be applied 

 Cannot directly derive gridded evaporation values; 

 has coarse spatiotemporal resolution; 

 sensitive to precipitation data error 

No partition 
P, runoff 

and ∆Sw 

Other water 

carbon linkage 

methods 

Considering the linkage between 

carbon and water fluxes 

 Can have high requirements for forcing data and be 

impacted by data gaps and errors but differ in different 

models; 

 empirical carbon – water relationships may be used 

Usually partition 

into soil and 

vegetation 

components 

Varies 

among 

different 

models 

Empirical models Simple, easy to apply 

 Requires calibration; 

 degraded capabilities outside of calibration area; 

oversimplification of physical processes; 

 subject to weather conditions if land surface temperature is 

required 

Usually do not 

partition E 

Varies 

among 

different 

models. 

 

 

Rn: net radiation, Ts: surface temperature, Ta: air temperature, VI: vegetation indices, LAI: leaf area index, ∆Sw: change in water storage 



 

XIII 
 

TigerBridge Project:                                    

Questionnaire for Irrigated Agriculture 

A. GENERAL INFORMATION 

B. CULTIVATED TERRESTRIAL AREA AND 

MANAGED LAND 

APPENDIX B 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Name of village: 

3. Name of village: 

2. Date/time of survey: 

4. Waypoint Numbers 

5. Which crops have 

been cultivated? 

Name Height (cm) Age (weeks/months) 

6. When was the land Ploughed? 

7. Has any crop been harvested? Yes No 

8. If yes, what & when? What When 

9. If no, anticipated harvest 

date 
10. What crop(s) did farmer cultivate last 

year? 
11. If yes, what was the production volume (tons) or yield 

(t/ha) 

Crop Production/yield 

NOTE 


