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ABSTRACT 

High impact rainfall events (HIRE) are among the most challenging intra-seasonal 

climate variability components which threaten human security and natural resources in the 

West African Sudan-Sahel region (WASS). The exposure and vulnerability of rural 

communities and farming systems to random onset of rainy seasons, long dry spells, heavy 

rainfall events, droughts and floods can subsequently increase food insecurity, disasters risks 

on life and property. The identification and use of thresholds can improve the provision of 

weather/climate information to people and smallholder farming systems in order to alleviate 

food crisis and reduce disaster risks in WASS. In-situ observations data (weather, maize 

cultivars and soil datasets), collected from some reference stations, are combined with crop 

model simulations data (DSSATV4.6, www.dssat.net), to generate dates of occurrence and 

amplitudes of first efficient rainfall (FER), extreme dry spells (ExDS), intense rainfall event 

(IRE) and water requirement satisfaction index (WRSI). The threshold values defining these 

agro-climatic HIRE as rainfall extremes are identified and analysed, at the station level and 

upscaled to the WASS level, with respect to observed dry (wet) regime of the cropping seasons. 

The thresholds’ operational rating scales and warning flag colours are suggested for both crop-

climate related indices (i.e. FER, ExDS, WRSI) and the disaster reduction related indices (i.e. 

IRE). Further predictability potentials, at 10-day (dekad) lead time, are investigated for WRSI, 

using a binary logistic regression (BLR) model developed based on observed candidate 

predictors and tested using prefect prognostics (PP) forecasting approach. Forecast verification 

indices show an uneven performance of the PP approach, in predicting WRSI extremes, across 

reference stations with high probability of detection and bias. From these results, the study 

demonstrates that thresholds profiling can improve the quality of agro-meteorological 

information delivery to operational maize monitoring and early warning services against 

rainfall extremes in the fields of disaster risk reduction and food security in this region.  

Key words: High Impact Rainfall Event, Thresholds Analysis, Binary Logistic Regression, 

Perfect Prognostics, Predictability Potentials, Verification, Sudan-Sahel, West Africa.  

   

http://www.dssat.net/
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RESUME 

Les événements pluvieux à haut risque (HIRE) constituent l’une des composantes de la 

variabilité climatique intra-saisonnière les plus désastreuses dans la région soudano-Sahélienne 

de Afrique de l'Ouest (WASS). La vulnérabilité des communautés rurales et systèmes agricoles 

aux débuts hasardeux de la saison pluvieuse, aux longues poches de sécheresse, aux pluies 

intenses, aux sécheresses et aux inondations peuvent accroître les risques d'insécurité 

alimentaire, de catastrophes et la pauvreté. L'identification et l'utilisation de seuils peuvent 

améliorer la qualité de l’information climatique donnée aux petits producteurs afin d’atténuer 

les crises alimentaires et les catastrophes dans la région. Les données d'observations in situ 

(données météorologiques, itinéraire technique du maïs et profils des sols), obtenues de 

certaines stations de référence sont combinées avec des simulations de modèles de cultures 

(DSSATV4.6, www.dssat.net) pour générer les dates d'occurrence et amplitudes de la première 

pluie efficace (FER), des poches de sécheresse extrêmes (ExDS), des événements de pluie 

intense (IRE) et de l’indice de satisfaction des besoins hydriques de la plante (WRSI). Les 

valeurs seuils définissant la sévérité de ces indices agro-climatiques sont identifiées et 

analysées à l’échelle des stations puis généralisées sur le Sahel par rapport au caractère sec 

(humide) des saisons de culture. L’échelle d'évaluation des seuils et les indicateurs d'alerte sont 

suggérés à la fois pour les indices liés aux cultures et au climat (FER, ExDS, WRSI) et ceux 

liés aux catastrophes (IRE). De plus, les potentiels de prévisibilité de 10 jours d’intervalle sont 

étudiés pour WRSI, en utilisant le modèle de régression logistique binaire (BLR) basé sur les 

prédicteurs observés et testé par l’approche « perfect prognosis » de prévision (PP). Les indices 

de vérification des prévisions montrent une performance inégale de l'approche PP dans la 

prévision des WRSI extrêmes, à travers les stations de référence avec une forte probabilité de 

détection et de biais. À partir de ces résultats, l'étude montre que la connaissance des seuils 

peut améliorer la qualité de l'information agro-météorologique au service de la surveillance 

opérationnelle et d'alerte précoce contre les extrêmes pluviométriques dans les domaines de la 

réduction des risques de catastrophes et de la sécurité alimentaire dans la région Soudano-

Sahélienne de l’Afrique de l’Ouest. 

Mots clés : Evènements Pluvieux à Haut Risque, Analyse de Seuils, Régression Logistique 

Binaire, perfect prognosis, Potentiels de Prévisibilité, Vérification, Région Soudano-

Sahélienne, Afrique de l’Ouest.   
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Chapter 1 : INTRODUCTION 

1.1.Background 

The knowledge of weather and climate impacts on rain-fed agriculture in West Africa has 

improved over the past decades. For instance, the planting date is, very often, determined based 

on the soil moisture and the amount of water available for the crop at a given period of time.  

However, putting this knowledge into action that will spur farming communities to cope with the 

adverse consequences of extreme events (water stress, heat stress) is not yet completed. The skills 

required for climate predictions are still imperfect and approaches adopting climate-smart 

practices in West African farming systems have yet to be tested extensively. Therefore, the idea 

of developing an operational agro-climatic monitoring and early warning system (AgMEWS) is a 

breakthrough to technical adaptation measures for the region. For example, smallholder farmers 

need climate information, but they also need practical advice on how this information can be 

translated into optimized actions. 

To tackle the above challenges in the context of a changing climate, The West African Science 

Service Center on Climate Change and Adapted Land Use (WASCAL) developed the APTE-21 

project (“Applying climate forecasts and agricultural practices for translating extreme rainfall of 

the 21st century in flood-risk area”). The APTE-21 project explores and exploits the potential 

advantage of rainfall extremes for smallholder farmers. The project will particularly improve the 

production, access and use of local information on high impact weather/climate events. The output 

will be accessible for family farms in Bakel (Senegal), Ouahigouya and Dano (Burkina Faso) and 

Bolgatanga (Ghana). The project uses proactive and participatory dissemination protocols (climate 

field schools, community co-production, advice and new technology such as mobile phones, 

applications and internet for agro-climatic information extensions), and builds small on-farm 

infrastructure to alleviate negative impacts of rainfall extremes.  

From the above perspective, the present study on “threshold for operational agro-climatic 

monitoring and early warning scheme in the Sahel Region, West Africa” explores the thresholds 

of some agro-climatic indices defining stresses for crops (maize) and builds a perfect prognosis 

for an early warning system on extremes. The outcomes of this research will be relevant to fine-

tune the climate information given to farmers associated with climate-smart agricultural practices. 

Furthermore, it will help improve decision making from a smallholder farmer perspective in this 

era of climate change. 
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1.2.Problem statement 

In the context of high risk weather hazards, intra-seasonal variability of rainfall extreme 

events is the most challenging factor farmers have to face in agriculture and crop water 

management in Africa. Indeed, in the Sahel region of West Africa, AGRHYMET (2010) 

demonstrated a new climate variability with a pattern of mixed dry/wet years starting from the 

year 1994 while, earlier, it showed a succession of wet years (1950-1969) and dry years (1970-

1993). This changeability brought about a new rainfall variability which is said to be characterized 

by false starts, extreme dry spells, floods and droughts, resulting in a reduction in the length of the 

cropping season (Sarr et al., 2015). Moreover, Salack et al. (2016) argued that the hybrid rainfall 

regime (dry/wet) is attributable to global warming and has negative consequences on subsistence 

farming systems. Consequently, with the challenging climate change, these impacts are likely to 

become more dramatic for rain-fed agriculture in West Africa. 

In addition, recent assessments conducted by Lobell et al. (2011) and Waha et al. (2013) 

have shown that the combined impacts of some of these rainfall factors (false starts, extreme dry 

spells, etc.) on agricultural production have been tremendously negative. The consequences 

include not only yield/biomass loss and reduced growth, but also farm flooding, water logging of 

low land crops, arable soil erosion with possible pollen washing and heat stress.  As the frequency 

and intensity of extreme rainfall/drought would certainly increase, farmers are likely to bare dire 

consequences with significant impacts on their livelihood (Sylla et al., 2015). 

Under these circumstances, there is a need to find alternative ways to help farmers cope 

with the challenging situation. Accordingly, the APTE-21 project plans to develop an operational 

agro-climatic early warning system that will enable National Meteorological and Hydrological 

Services (NMHSs) to deliver prompt climate services to farmers for appropriate and accurate 

decisions in crop management under climate change. Key inputs to the system involve near-real-

time observations, forecast products, seasonal predictions, crop yield simulations and related smart 

management practices. The current study essentially focuses on thresholds in an operational agro-

climatic monitoring for maize farming, given their importance in, not only most West African 

countries’ economy but also the food security and livelihood of the populations. The aim is to 

determine threshold values of some agro-climatic indices (first efficient rainfall, extreme dry 

spells, intense rainfall event and crop water requirement satisfaction index) that will trigger an 

early warning scheme to provide understandable and efficient climate information to farmers. 
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1.3.Objectives 

The overall objective of the study is to improve climate information provision to farmers 

through the analysis of thresholds defining agro-climatic extremes for maize production system 

for monitoring and early warnings.  

More specifically, this study aims to: 

 Define high impact rainfall events (HIRE) and crop-climate nexus indices   

 Identify the threshold values defining HIRE and water satisfaction stress for selected maize 

cultivars (i.e. Obatampa and EV-8443);  

 Develop rating scales, timing intervals, risk areas and flag colours for HIRE in operational 

services delivery, using thresholds analyses; and 

 Test the predictability potentials of crop water satisfaction index for use in monitoring and 

early warning against drought stress.  

 

1.4. Research Hypotheses 

The study hypothesizes that “identification and use of thresholds can improve the provision of 

weather/climate information to smallholder farming systems”. 

 

1.5.Research Questions 

Important questions to answer include: 

 What are the agro-meteorological thresholds defining drought (wetness) stress to maize 

cultivars (Obatampa and EV-8443)? 

 What are the rating scales and risk areas of HIRE in the study area? 

 How can threshold analysis be used (extended) in monitoring (warning against) rainfall 

extremes in smallholder subsistence maize farming system? 

 What are the predictability potentials of weather parameters for the crop water requirement 

satisfaction index? 

1.6. Thesis Structure 

This thesis is structured into five major chapters. The introduction (chapter one), encompasses the 

background for the study, problem statement, objectives, research hypotheses and questions. 

Chapter two summarises the results of a literature review positioning operational agro-climatic 

monitoring as a climate change adaptation measure globally and specifically in WASS. Chapter 
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three describes the study area, data sources, data types and the methods used to address the 

research questions. Chapter four provides the results obtained and discussions, and finally chapter 

five gives conclusion and recommendations. For further information sharing, a list of references 

and appendices are provided at the end of this document. 
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Chapter 2 : LITERATURE REVIEW 

2.1.Definition of agro-climatic indices 

An agro-climatic index is a measure or indicator of an aspect of the climate that has an 

agricultural significance (http://glossary.ametsoc.org/wiki/Agroclimatic_index). The indices 

often used in Agrometeorology are the onset, end and length of the growing season, intraseasonal 

rainfall variations (wet and dry spells), the rainfall amount and duration (Selvaraju, 2012). He 

stated that rainfall onset is the date of onset of the growing season as the key variable to which all 

other seasonal rainfall variables are related. A farmer’s signal for sowing may be either a fixed 

calendar period (window), or attainment of some arbitrarily selected build-up of stored soil water 

or attainment of a fixed rainfall threshold. The definition of the potential sowing date with the 

most widespread use in agro-meteorological applications was documented by Stern et al., (1982) 

and is of the general form:  

(i) the start of the rainy season is not considered until after a particular date, ‘d’;  

(ii) the potential start date is defined as the first occurrence of at least ‘x’ mm totalled over 

‘t’ consecutive days; and  

(iii) the potential start could be a false start if a dry spell of ‘n’ or more days in the next ‘m’ 

days occurs afterwards.  

The variables d, x, t, n and m can be defined locally according to user requirements. Stern et al., 

(1982) suggested that the earliest possible start date, ‘d’, might be chosen according to previous 

experience as to whether successful planting had occurred before a particular date, or alternatively, 

when the probability of a dry spell falls below a certain value. Kniveton et al., (2009) defined the 

onset date ‘d’ as the average daily rainfall minimum prior to the average daily rainfall maximum 

using different average periods. Three thresholds (10, 20 and 30 mm) for the variable ‘x’ were 

considered over ‘t’=2 days with dry spells of ‘n’=10 days in the next ‘m’= 30 days. Sivakumar 

(1992), defined the onset date as the date after ‘d’=1st May when rainfall accumulated over ‘t’=3 

consecutive days is at least ‘x’=20 mm and when no dry spell within the next ‘m’=30 days exceeds 

‘n’=7 days. Until recently, this algorithm is used to estimate the potential “planting” date in the 

West African landscape. Omotosho et al., (2000) defined the onset of the rainy season as ‘the 

beginning of the first two rains totalling 20 mm or more, within 7 days, followed by 2 or 3 weeks 

each with at least 50% of the weekly crop water requirement. Dry spell refers to the consecutive 

period with daily precipitation amount that is no more than 1mm/day (She et al., 2016). 

Sometimes, it is after the onset of the season that farmers observe the occurrence of extreme dry 

spells (ExDS) events to constitute a false onset of rainy season. In such case, any rainfall amount 

embedded with the first efficient rainfall may not prevent havoc to seedlings. A situation of false 

http://glossary.ametsoc.org/wiki/Agroclimatic_index
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onset of the season causes the topsoil to dry-up and prevents the germination or emergence of 

seedlings (Ati et al., 2002). Farmers are usually forced to re-plant several times because of false 

onset of the season. The occurrence of ExDS during the growing season (i.e. post-floral ExDS) 

also causes a decrease in agricultural yields (Sivakumar, 1992). Salack et al., (2013) developed an 

extraction algorithm to determine dry spells length and date of occurrence over the West African 

sudan-Sahel. In addition, they established a regional occurrence index (ROI) to capture the spatial 

coherence of extreme dry spell types. In building the algorithm, the threshold of 0.1 mm/day is 

used to define a rainy day in order to capture all daily rainfall events (RR). All daily records are 

coded into alternating 1 and 0 (for rainy and dry days respectively). After each rainy day, 

consecutive dry days were counted (i.e. sequence of days in which RR = 0) to define a dry spell 

(DS). The total numbers of consecutive dry days before the next rainy day was the duration or 

length (L) of the DS. The Julian day of first count corresponded to the onset date (STDATE). The 

total number of DS with length L found in a season was the frequency of occurrence (F). 

Extractions were made on the basis of the first rainfall event recorded by the raingauge after May 

1st. They discovered 4 categories of DS. The short categories of DS are 1–4 days (DS1) and 5–7 

days (DS2). The medium category of observed DS is the class of 8–14 days (DS3). The long dry 

spells category is the set of DS greater than 2 weeks (DS4). Froidurot and Diedhiou, (2017) 

explored the characteristics of wet and dry spells in West Africa. They defined each day as wet or 

dry using a threshold of 1 mm/day. Wet (respectively dry) spells are sequences of consecutive wet 

(dry) days, preceded and followed by dry (wet) days. The length of dry spells lower or equal to 21 

days were analysed. 

Rainfall amount and duration within the rainy season have gained importance for the past decades 

especially due to the frequency of flood and drought events in West Africa. For instance, many 

West African countries reported frequent flood and drought events. In 2010, 1.7 million people 

were affected by floods in Benin, Burkina Faso, Chad, Ghana, Niger, Nigeria, and Togo (Sarr, 

2011). In 2009, Benin, Burkina Faso, Niger and Senegal experienced major floods. In 2012 more 

than 80% of Nigeria was affected by heavy rains which submerged much of Delta and Bayelsa 

states in the southwest, affecting some 350 communities and making 120,000 people homeless. In 

2012, UN agencies estimated that over 16 million people in Mali, Sudan, Niger, Burkina Faso, 

Senegal, The Gambia, and Chad were affected by drought (UCDP 2017). Unfortunately, these 

events have a widespread impact on human security. Besides the fact that research on extreme 

rainfall events in West Africa is scarce, efforts are underway to understand and predict when and 

where heavy rainfall may damage crops and how this may affect food security (Yabi and Afouda, 

2012). New et al. (2006) analysed daily data from six stations in West Africa (two in the Gambia 
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and four in Nigeria) and revealed a rising trend in annual maximum daily rainfall at only one 

observation site. In Cote d’Ivoire, Goula et al. (2012) analysed annual maximum daily rainfall 

time series from 34 stations for the period 1947–1995. Using three indices (annual maximum 

rainfall, number of days where precipitation exceeded a 50 mm threshold, and total days exceeding 

50 mm per year), the study highlighted a downward trend in extreme rainfall events. Zahiri et al., 

(2016) studied the extreme rainfall events in two different climatic zones. Extreme values were 

determined using the Block Maxima Analysis (BMA) and the Peak Over Threshold (POT) method 

as documented by Panthou et al., (2012, 2014). The POT method consists of defining a threshold 

and selecting all variable X occurrences that surpass this threshold and the BMA method defines 

blocks of n occurrences of the random variable X followed by the selection of the maximum value 

within each block. For example, when daily rainfall is set as variable X, the daily data for a one 

year period would be grouped as a single block. The vector of maxima Z, defined as the annual 

maximum daily rainfall value within each block. 

   

2.2. Operational Agro-climatic Monitoring and Early Warning System 

Agro-climatic monitoring and early warning system (AgMEWS) is a term used to define 

the process of identifying weather/climate conditions appropriate for farming activities and 

informing farmers for immediate decision-making in crop management practices. It has the 

advantage of applying climate information (e.g. observations, now-casts, forecasts, predictions) to 

generate and disseminate timely and meaningful warning information enabling individual farmers 

to take necessary measures and act appropriately in sufficient time to reduce the possibility of 

losses(UNISDR, 2009).  

In agro-climatic monitoring, various studies have been done to address the impacts of 

climate change on agriculture and suggest adaptation measures for farmers (Selvaraju, 2012; 

MacCarthy et al., 2013; Kiprotich et al., 2015). The innovative change is the use of climate 

forecast in agriculture. Anaman and Lellyett (1996) promoted weather information in their study 

on the Australian cotton industry. Indeed, a survey on farmers’ perception of an enhanced weather 

information service for cotton production revealed that 51% of the 108 sampled farmers have 

adopted the service due to its timeliness, accuracy, easy understanding and overall usefulness. 

More so, an assessment of weather information benefits for cotton farmers shown that adopting 

an enhanced weather information is cost effective and time saving for cotton production, in 

addition to allowing farmers better plan their household and social activities.  Similarly, Nelson et 

al. (2002) developed in the North East of Australia a discussion support software called Whopper 
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Cropper which provides an effective means to infuse innovations, like seasonal climate 

forecasting, into farming practice. It consists of a database of simulation output and a graphical 

user interface to generate analyses of risks associated with crop management options. It provides 

information on the impact of climate risk on crop yields for crop management alternatives beyond 

the experience of individual farmers, using historical climate records to obtain a very long-term 

perspective. Enhancing the importance of weather information in agriculture, Amegnaglo and 

Mensah-Bonsu (2010) stated that one approach to mitigate climate change is the use of accurate 

meteorological information in agriculture (60-70%). Another assessment conducted by Berg et 

al., (2013) on the adverse consequences of climate change on C4 crop productivity over Africa 

and India, using a newly developed agro- Dynamical Global Vegetation Model (DGVM), revealed 

the negative impacts of temperature and precipitation variability on crop yield and the need for 

adaptation measures and smart agriculture practices to ensure food security on the long run in the 

developing countries. Such practices involve, once again, agro-meteorological solutions especially 

climate/weather forecast combination with crop management options. For instance, in Senegal 

(West Africa), seasonal forecast has recently been applied to agricultural practices in order to help 

smallholder farmers cope with climate change and variability but a holistic approach is needed to 

allow an efficient use of the information.  

A recent innovation is the combination of seasonal forecast with crop simulation models. 

It was developed in India for groundnut production in order to build a combined seasonal weather 

and crop productivity forecasting system using empirical orthogonal function analysis with 

rainfall as predictor, (Challinor et al., 2003). The study concluded that more inputs are important 

to deliver an accurate prediction for seasonal crop yield (other weather parameters and farming 

system information). Hansen and Indeje (2004) explored the combination of seasonal climate 

forecast with crop simulation models for maize yield prediction in semi-arid Kenya. A statistical 

prediction by a non-linear regression was used to predict field-scale maize yields simulated by 

CERES-maize with observed daily weather inputs. From their analysis, it appears that the non-

linear regression has the potential for translating seasonal climate forecasts into predictions of crop 

response. Similarly, Hansen (2005) discussed the importance of an integrated climate-crop 

modelling to improve agricultural use of climate information by smallholder farmers in the 

developing countries. He reasoned that crop models integrated with seasonal climate forecasts 

provide a means of translating forecasts of seasonal climate anomalies into forecasts of production 

impacts. Mishra et al., (2008) applied also statistical method for sorghum yield prediction in 

Burkina Faso. Their Analyses considered empirical and dynamic rainfall forecasts, two methods 
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(regression and stochastic disaggregation) for linking rainfall forecasts with crop simulation, three 

levels of production technology and four forecast dates (15 May, June, July and August) based on 

predictors observed from the preceding month, for the period of available data (1957–1998). The 

output of their study revealed that there is a good prospect for providing useful food security early 

warning information, incorporating climate-based yield forecasts, earlier in the growing season 

than is currently available. 

In the field of early warning system, tools have been developed for crop monitoring to 

alleviate food insecurity. The U.S. Agency for International Development’s Famine Early 

Warning System Network (FEWS NET) provides tools and data for monitoring and forecasting 

the incidence of drought and flooding to identify shocks to the food supply system that could lead 

to famine (Funk and Verdin, 2009). It is a reference network in disaster risk reduction over the 

world. For crop monitoring, the network uses the crop water requirement satisfaction index 

computed based on satellite rainfall estimates, potential evapotranspiration, water holding capacity 

of the soil, crop type, start of season, and length of growing season. Therefore, FEWS NET 

developed the GeoWRSI. It is a Windows application that runs crop-specific water balance models 

using climatic data, and produces a range of outputs that can either be used to help assess and 

monitor crop conditions during the crop growing season, or to conduct historical analysis of the 

impact of seasonal rainfall deficits on crop performance, for a series of years, and for a variety of 

crops (Magadzire, 2016). Another tool used for crop monitoring and forecasting is the 

AgroMetShell developed by a team of researchers including the Southern Africa Development 

Community (SADC) Food Security Program, the Agrometeorology Group, the Environment and 

Natural Resources Service (SDRN) and the Food and Agriculture organization of the United 

Nations (FAO). This tool is used to provide targeted analysis based on vulnerability assessment 

baseline data to determine how the livelihoods of a particular zone will be impacted and to give 

early information as to what yields and production statistics are expected (Mukhala and Hoefsloot, 

2004). The input files to the tool are dekad or daily crop, rain and evapotranspiration data. The 

various outputs indicate which areas in a region, country or province have received minimal 

rainfall, water deficits, and excess water at the various stages of crop growth as these affect yield 

ultimately. As input data is on a dekadal basis, such information can also be obtained at the same 

intervals and when persistent water deficits or indeed excess water are experienced, this may lead 

to poor crop yields, resulting in poor production and food insecurity. 

The exciting literature shown several ways of using seasonal climate forecast in 

agricultural practices, for crop yield prediction and for early warnings. The current study proposes 
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the concept of threshold analysis in agro-climatic monitoring for crop yield prediction. An 

effective Agro-climatic Monitoring and Early Warning System uses both observational data 

(classical and automatic weather station data) and forecasts (microwave link, satellite-derived or 

reanalysis data) through indicators or metrics of farming potentials (i.e., Agro-meteorological 

indices or crop models) to deliver sub-seasonal, seasonal and inter-seasonal information to local 

farmers. Pre-onset information should provide input information on optimum sowing dates 

(dry/wet seeding or transplantation), seasonal rainfall flags (representation of probabilities of 

rainfall amount, onset dates, growth periods) and seasonal predictions of potential crop behaviour. 

Feedback from farmers about the success and failure of the provided information ensures a 

continuous cross-validation process to improve the agro-climatic metrics and the science of 

monitoring and forecasting (Salack et al., 2015).  

 

2.3. Threshold Analysis in Early Warning System 

The notion of threshold analysis is relatively new in relation to agro-climatic early warning 

system in West Africa. Indeed, it has been used in the field of aviation in Burkina Faso by Zabre 

and Sorgho (2015) to predict precipitate and non-precipitate convective clouds.  From Salack et 

al. (2015), the threshold analysis of agro-climatic indices consists of identifying the critical 

detrimental or optimal values to crops/cropping systems and using them in monitoring and 

prediction processes. This method can also be used to identify the profile of a typical dry season. 

Hence, Salack et al. (2016) used it to identify the seasonal and intra-seasonal rainfall 

characteristics, the combination of which, during the life cycle of staple field crops, can strain their 

growth, development and production, if optimum crop management measures are not applied by 

the farmer. As this technique applies to rainfall seasons, it also applies to crops themselves by 

showing the point of inflection in the phenological cycle which can be induced by certain 

environmental constraints such as water stress, soil nutrient depletion, climate change, etc. 

 

2.4.Maize Production and Climate Change 

Maize (Zea mays L.) is grown on about 33 million of the total 194 million hectares of 

cultivated land in sub-Saharan Africa (SSA). It is the region’s most important food crop. 

Smallholder farmers, in 46 countries with a combined agricultural population of about 553 million, 

produce maize under diverse and varied agro-ecologies and socioeconomic conditions. Sixteen of 

those countries sow 25 to 65% of their total cultivated area to maize 
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(http://dtma.cimmyt.org/index.php/about/background). Unfortunately, maize production in SSA 

is essentially rain-fed and therefore susceptible to drought, water-logging and extreme temperature 

stresses. A report of the United States Agency for International Development (USAID, 2014), 

reveals that maize production needs a well-aerated and well-drained soil to avoid water-logging 

(500-700 mm of well-distributed rainfall and an average temperature range of 21-30oC). 

Cultivation is not viable when day temperatures are less than 19 °C, with growth stopping at 

temperatures below 10 °C. During flowering, temperatures at midday that reach 35 °C or above 

for several days can destroy pollen, and yields are drastically compromised and reduced.  

In West Africa, maize is cultivated under different climate and conditions. The rainy 

season in coastal areas in West Africa is generally observed from the end of April to July with a 

second and shorter one in September and October. Further inland towards the desert, only one 

rainy season from July to September is observed (WMO, 2015). Climate change has provoked a 

modification in the rainfall distribution over the region. The AGRYMET regional centre reported 

that the crop season 2013 was characterized by a late onset of rains from May to mid-July in the 

Sahel and Gulf of Guinea region (WMO, 2015). Consequently, farmers are subject to yield loss 

with economic implications for their countries.   

Several projects have been designed and implemented in SSA with funding from diverse 

donors to improve productivity at the farm level over the last ten years (Macauley, 2015). The 

Drought Tolerant Maize for Africa (DTMA), the Improved Maize for African Soils (IMAS), the 

Water Efficient Maize for Africa (WEMA), and the Nutritionally-enriched Maize for Ethiopia 

(NuME) are among the key projects in SSA, developing and deploying stress resilient and 

nutritionally enriched maize in SSA. Furthermore, studies are conducted on the impact of climate 

change on maize yield. For instance, Lobell et al. (2011), argued that “roughly 65% of present 

maize-growing areas in Africa would experience yield losses for 1◦C of warming under optimal 

rain-fed management, with 100% of areas harmed by warming under drought conditions”. 

Similarly, Masanganise et al., (2012) predicted the influence of a changing climate on maize yield 

at the end of the 21st century in Zimbabwe. Their results showed that climate change will shift 

planting dates towards delayed planting in the period 2046-2065 which will cause yield reduction 

if farming practices remain traditional. So far, the proposed solutions are mainly the use of drought 

tolerant varieties or water resistant varieties associated in some cases with seasonal forecast 

information for a smart crop management (MacCarthy et al., 2013; Belko et al., 2014; Tarhule 

and Lamb, 2003). 

http://dtma.cimmyt.org/index.php/about/background
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The present thesis is contributing to the existing knowledge by proposing a new approach to 

tackle yield loss in the agricultural sector and disaster risk reduction. The objective is to deliver 

an information package to farmers, including climate smart agricultural practices and an early 

warning system based on agro-climatic indices and seasonal forecasting. Threshold values of 

maize production, which define stress, will be determined related to the agro-climatic indices. 
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Chapter 3 : STUDY AREA, DATA AND METHODS 

3.1. Physical Characteristics of the Study Area 

The West African Sudan-Sahel (WASS) is defined here as the sub-Saharan region 

stretching from the western coasts of Senegal in West Africa to the Eastern edges of Chad between 

10 to 17o N. The rainy season of this region is dominated by the West African monsoon which is 

confined between May and October with June-September receiving the most important amount of 

the seasonal totals (figure 3.1). It is a semi-arid expanse of grassland, shrubs, and small, thorny 

trees lying just to the south of the Sahara Desert. The study area includes much of the southern 

part of Mauritania, Senegal, Mali, Niger, Burkina Faso, and the northern fringes of Ghana, Benin, 

Togo, Cote d’Ivoire and Nigeria. Mean annual rainfall in the Sahel is on the order of 200 to 600 

mm in the north, and 600 to 1300 mm at its southern limit (figure 3.1).  

The mesoscale testbeds also called "core research watersheds" of WASCAL include Dano 

catchment (600 km2) in South-West Burkina Faso, the Vea & Sissili catchments (300 km2 and 

12,633 km2 respectively) in Northeast Ghana and Dassari catchment (200 km2) in Northwest 

Benin (Figure 3.1). The objective of the testbed measurements is adding multiple sensors in 

parallel to keep long-term monitoring records of hydro-climate and land use processes from local-

to-catchment scales using in-situ measurements. The collected panel data is a fundamental asset 

to improve our understanding of uncertainties in near-surface observations useful for calibrating 

biophysical models (Salack et al., 2017). 

Experimental and surveys information are also collected from the APTE-21 pilot sites and 

other traditional experimental stations such as Bambey (Senegal), Dapaong and Mango (Togo) for 

both historical climate data analysis, crop model calibration and sensitivity analyses before the 

study is extended to the entire WASS. The first pilot site, Bakel, is located in Eastern Senegal 

close to the borders with Mali and Mauritania. The area covered by the Bakel pilot site (15o N, 

12.8oW) is close to 22,500 km2 across three main towns (Bele, Keniaba and Moudery). The 

number of inhabitants was estimated at about 220,000 in 2008. The main source of income is small 

scale farming of millet, sorghum, cowpea and livestock breeding (e.g. cattle, sheep). The second 

pilot site, Ouahigouya, is located in the north central plateau of Burkina Faso, with the total 

population being approximately 87,500 inhabitants. Millet, sorghum and cowpea are the staple 

rain-fed crops grown under a rain-fed, subsistence farming system. In Dano, Bolgatanga and 

Dassari, the main rain-fed crops include maize, sorghum, millet, cotton and, to a lesser extent, 

cowpea, groundnut and sesame. Sorghum, cotton and maize are grown in the best soils; millet and 
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sorghum are grown on shallower soils and maize in home gardens. Cowpea is usually grown in 

combination with a cereal (i.e., millet or maize). Rice is grown in flooded lowlands during the 

rainy season. Mango and Dapaong are located in the savannah region of Togo with respectively 

41,464 and 58,071 inhabitants. The main activity therein is agriculture with a focus on livestock 

and crops like maize, millet, cowpea, cotton and tomato.  All pilot sites are located in the WASS 

where the rainfall regime is erratic with mixed dry-wet patterns both at sub-seasonal and seasonal 

scales. 

 

Figure 3.1:Spatial distribution of reference stations and 30-year average rainfall climatology of the Sudan-Sahel region. The 
stars (*) are the pilot sites where historical climate datasets, surveys, agro-climatic field schools and experimental data are 
collected. 

 

3.2. Pedoclimatic Characteristics of the Study Area 

The natural factors affecting the intra-seasonal variability of the rainfall regime in the Sahel 

are namely: the local forcing of the Saharan dry air masses, the polluted aerosols and regional 

scale circulation features including the latitudinal movement of the inter-tropical convergence 

zone (ITCZ), the Saharan heat low (SHL), the variability of lower-to-upper-tropospheric 

circulation features such as the African Easterly Jet (AEJ), the Tropical Easterly Jet (TEJ), the 

African easterly waves and other low-level westerly jets (Salack et al., 2016). The coexistence and 

interactions of these dynamic processes, with an ever changing local land use land cover types, 

determine the dominant weather in a season and its associated weather events. The Sudan-Sahel 

of West Africa is characterized by a long dry season followed by a unique rainy season that gets 

to its peak in July-August and retreats in September. The spatial distribution of annual rainfall 

total decreases as one moves northward from ~1300 mm to 100 mm (Figure 3.1), and it is mainly 

concentrated over a short period of 3-4 months. The organized mesoscale convective systems, also 
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known as squallines, contribute to the majority of the seasonal rainfall totals (Bell and Lamb, 

2006; Smith et al., 2012). Beside the inter-annual and inter-decadal variability (Lebel and Ali 

2009), rainfall has been dominated by a high intra-seasonal distribution of sub-daily rainfall 

intensity (Zahiri et al., 2016) and a high variability of daily events observed in the form of mixed 

dry/wet patterns or hybrid attributed to global and regional warming rates. While the distribution 

of events is mainly concentrated within the June-September period, the seasonal total rainfall 

results from some 40-50 rainy events of which only 2.5%-4% can be considered extreme events 

(Panthou et al., 2014).   

A recent literature review shows that from all external forcing factors, the oceans play the 

major role in modulating the seasonal rainfall of the Sudan-Sahel of West Africa. The Atlantic 

Ocean controls moisture flux into the ITCZ and the equatorial Indo-Pacific oceans control the 

vertical stability and upper troposphere temperatures through deep convection (Liepert and 

Giannini, 2015). The Mediterranean Sea also exerts a positive influence on the Sahel rainfall 

(Rodríguez-Fonseca et al., 2011). The other external influences include westward wave 

propagation caused by convection anomalies of the Indian monsoon (Mohino et al., 2012). At 

seasonal time scales, the most influential oceanic basins to the rainy seasons of the Sudan-Sahel 

are the sub-tropical north Atlantic (10-40oN,15-75oW), the extra-tropical north hemispheric 

Atlantic (30-75oN, 15-75oW), the Mediterranean Sea (0-35oE, 30-44oN), the equatorial Atlantic 

(5oS-5oN, 40oW-15oE), the South Atlantic (10oS-0oN, 20oW-10oE) and the Eastern equatorial 

Indian Ocean (15oS-15oN, 50-90oE) (Salack et al., 2016). 

The WASS is located in the Sahel and Savannah zone according to the soil classification 

in Africa. The Sahel and Savannah area is characterised by a mixed grassland/woodland ecosystem 

that is adjacent to the forest regions. The soils are generally well drained and possess a thin layer 

of organic matter, which can be thicker in wetter conditions. They can support limited cultivation 

but can quickly become impoverished. Most soils are old and deep, with a low nutrient-retention 

capacity because they are dominated by a kaolinitic clay mineralogy. Exceptions are the large 

level areas where shrink-swell clays are found; here the dominant mineralogy is montmorillonitic, 

resulting in a high nutrient-retention capacity. The low leaching also results in the accumulation 

of carbonates if a source of calcium is present. Carbonates are also deposited as wind-blown dust 

(e.g. in the Harmattan regions). Many soils are red in colour due of the accumulation of hematite 

(iron oxide). The dominant soil types are Arenosols, Cambisols, Lixisols, Planosols, Plinthosols, 

Regosols, Solonetz and Vertisols. 
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Soil profiles, in the study, are based on exciting literatures related to dominant soil types and their 

edaphic parameters (e.g. percent clay, silt, stones, organic carbon, total nitrogen, pH in water) in 

Togo, Burkina Faso, Senegal and Ghana (Worou 1985); Kissou et al. (2000); Khouma (2000); 

Abutiate (2013)). In Bakel, a rhodic regosol mainly sandy loam with 150 cm depth was identified. 

Its carbon/nitrogen ratio on average is 12 with the water pH of 7. The main constraint of these 

soils is a low fertility due to the arid climate causing water stress to the crops. Dano, in the south-

west of Burkina Faso, was represented with a rhodic lixisol of 120 cm depth. The organic matter 

ratio is approximately 9 with a water pH of 6.9. For Ouahigouya, the soil profile considered is of 

type eutric regosol with 193 cm depth, a carbon/nitrogen ratio of 10 and a water pH around 6. 

Mango and Dapaong soils (ferric ferralsol) are sandy clayed with 120 cm depth. The 

carbon/nitrogen ratio on average is 9.03 and the water pH around 6. The main development 

constraints of this kind of soil are a low water retention capacity, a rapid desiccation, a low to 

medium chemical fertility, a low organic matter content, an average depth, and a susceptibility to 

erosion. The soil type used for Bolgatanga site is a ferric plinthosol of 75 cm depth with a 

carbon/nitrogen ratio of roughly 10 and a water pH of about 6. 

 

3.3.Data and Methods  

3.3.1. In situ Observational Data 

Datasets were collected from pilot sites and archives of the national meteorological and 

hydrological services (NMHSs) of some WASCAL countries including data from synoptic 

observation. These data cover 1960-2016 period at daily time step of rainfall, maximum 

temperature  (tmax) and minimum temperature (tmin), 2 m wind speed, solar radiation, relative 

humidity. Table 3.1 gives a summary of the data used, parameters and locations. A quality control 

was done for all observations data to identify and correct missing data. 
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Table 3.1: Observed data collected from archives of pilot sites and National meteorological offices of Burkina Faso, Togo, 
Ghana and Senegal 

Stations Longitude Latitude  Period (source) Variables 

Dapaong 0.201023 10.87331 1981-2016 (DNM-TG) Rainfall, tmax, tmin, wind 

speed, sunshine hours, 

relative humidity (max.min) 

Dano -3.060124 11.14905 1970-2016 (ANAM-

BF, WASCAL) 

Rainfall, temperature, wind 

speed, sunshine hours, 

relative humidity 

Bakel -12.46385 14.90267 1960-2010 (ANACIM) Rainfall  

Ouahigouya -2.410991 13.56683 1960-2016 (ANAM-

BF) 

Rainfall  

Bolgatanga -0.8579 10.7875 1976-2016 (Ghana Met 

office, WASCAL) 

Rainfall, temperature, wind 

speed, sunshine hours, 

relative humidity  

Mango 0.4738293 10.35506 1981-2016 (DNM-TG) Rainfall, tmax, tmin, wind 

speed, sunshine hours, 

relative humidity (max.min) 

 

Missing weather parameters were completed with data provided by the NASA’s Prediction 

of Worldwide Energy Resource (POWER) (http://power.larc.nasa.gov/cgi-

bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov). The parameters contained in the 

agro-climatology archive of this portal are based primarily on solar radiation derived from satellite 

observations and meteorological data from assimilation models. The POWER database gives daily 

measurements of minimum and maximum temperatures, wind speed at 10m, relative humidity and 

solar radiation in MJ/m2/d. The meteorological data collected were essentially rainfall, minimum 

and maximum temperature, 2m wind speed, insolation hours and relative humidity. In order to use 

the above information, an excel sheet was established to convert insolation hours to solar radiation 

and 10m wind speed to 2m. The formula of the relationship between solar radiation and sunshine 

hours is taken from the FAO corporate document repository website 

http://www.fao.org/docrep/X0490E/x0490e07.htm, and is expressed as: 

𝑹𝒔 = (𝒂𝒔 + 𝒃𝒔
𝒏

𝑵
)𝑹𝒂   (3.1) 

Where: 𝑅𝑠 is the solar radiation expressed in Mega Joule per meter square per day (MJ/m2/d), 𝑛, 

the actual duration of sunshine in hours, 𝑁, the maximum possible duration of sunshine or daylight 

hours in hour, 
𝑛

𝑁
, the relative sunshine duration, 𝑅𝑎, the extra-terrestrial radiation in MJ/m2/d, 𝑎𝑠, 

http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov
http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov
http://www.fao.org/docrep/X0490E/x0490e07.htm
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the regression constant expressing the fraction of extra-terrestrial radiation reaching the earth on 

overcast days (n=0), and 𝑎𝑠 + 𝑏𝑠, the fraction of extra-terrestrial radiation reaching the earth on 

clear days (n=N). In this study, 0.25 and 0.5 were respectively used for the Amstrong values 𝑎𝑠 

and 𝑏𝑠 since no calibration was conducted. Wind speed conversion, from 10m to 2 m heights is 

based on equation (3.2): 

   𝑾𝒊𝒏𝒅𝟐𝒎 = 𝑾𝒊𝒏𝒅𝟏𝟎𝒎 ∗ 𝟒. 𝟖𝟕/ 𝐥𝐧[𝟔𝟕. 𝟖 ∗ (𝟏𝟎 − 𝟓. 𝟒𝟐)]  (3.2) 

Where 𝑾𝒊𝒏𝒅𝟏𝟎𝒎 and 𝑾𝒊𝒏𝒅𝟐𝒎 are respectively wind speed measured at 10m and 2m heights. 

3.3.2. Crop simulation data 

The crop simulation data is useful to estimate crop water requirement satisfaction index 

(WRSI). To this end, the Decision Support System for Agro-technological Transfer version 4.6 

(DSSAT V4.6) is used to determine two of the agro-climatic indices (sowing dates and WRSI). 

DSSATv4.6 is a process-based model capable of simulating the growth, development and yield of 

around 20 food-fodder-cash crops. Other modules include water balance, nitrogen, phosphorus 

and soil carbon models (Jones et al., 2010). All modules are interlinked in an interface called the 

DSSAT cropping system model (DSSAT-CSM). For the platform to be functional, it is supported 

by database management programs for soil, weather, and crop management and experimental data, 

and by utilities and application programs.  

DSSATv4.6 simulates growth, development and yield as a function of the soil-plant-

atmosphere dynamics. It has been used for many applications ranging from on-farm and precision 

management to regional assessments of the impact of climate variability and climate 

change(Alexandrov and Hoogenboom (2000); Basak et al., (2010); Eitzinger et al., (2017)). 

DSSAT integrates the effects of soil, crop phenotype, weather and management options, and 

allows users to ask "what if" questions by conducting virtual simulation experiments on a desktop 

computer in minutes which would consume a significant part of an agronomist's career if 

conducted as real experiments (Jones et al., (2003); Liu et al., (2011); Corbeels et al., (2016)). 

DSSAT was provided with information related to the soil profile, maize management practices 

(crop density, row separation, fertilization scheme and seeding types and calendar) and climate 

daily data. 

The climate daily data were also imported into DSSAT weather data manager and 

registered as new stations. The CERES-Maize module was calibrated and tested for some maize 

cultivars [obatampa (90 days) and EV-8443 (100 days)]. For these cultivars, genotype parameters 
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from release version of DSSAT4.6 are used but sensitivity analysis was conducted using survey 

datasets in order to test the robustness of these parameters.  

3.3.3. Definition of Indices and Thresholds 

a. Seasonal Drought (wetness) 

The generation of the threshold values which define seasonal droughts or seasonal wetness 

is based on the agro-climatic classification of rainy seasons using cumulated rainfall. In the case 

of the 6-month (May-October) seasonal rainfall amount, we used the standardized precipitation 

index (equation 3.3) to identify a season which can be considered abnormally dry (wet) over each 

stations of the Sahel and pilot sites. We write the individual j station time series of the seasonal 

standardized precipitation anomaly as 𝝀𝒊𝒋
𝒃  where i denotes the year (i = 1k… n), and b = {1960-

2016, 1970-2016, 1976-2016, 1981-2016, 1960-2010, 1961-1990, 1971-2000, 1981-2010, 1991-

2010 and 1997-2016} denotes the baseline periods. The baseline periods, considered in this study, 

include a maximum of 57 years and a minimum of 20 years according to the available time series 

per station. 

𝝀𝒊𝒋
𝒃 =

𝒙𝒊𝒋−𝒙𝒋𝒃̅̅ ̅̅̅

𝝈𝒋𝒃
  (3.3) 

With 𝝀𝒊𝒋
𝒃  as the zero mean and unit variance anomaly, 𝒙𝒋𝒃̅̅ ̅̅  and 𝝈𝒋𝒃 are the mean and inter-

annual standard deviation for baseline b at station j, (j=1…m). The sampling of the baseline takes 

into account the sensitivity of the anomaly to baseline climatology shown by Trenberth et al., 

(2014). It enables composite groups of dry (wet) seasons to be formed based on the most 

persistently negative (positive) trend of the index, irrespective of baseline climatology (Salack et 

al., 2016). This baseline sampling embeds the long term trends and variability found in historical 

rainfall assessments over this region (Lebel and Ali, 2009; Maidment et al., 2015). In the case of 

the 6-month (May-October) seasonal rainfall amount, we choose the threshold -0.5 (+0.5) as the 

number of standard deviations from the mean at which a year is considered abnormally dry (wet) 

over the region in order to approximately match the intensity of abnormally dry years in the case 

of other monitoring indices (Mckee et al., 1993; Vicente-Serrano et al., 2010). Base on 𝝀𝒊𝒋
𝒃  

threshold values of -0.5 (+0.5), agronomic seasons are classified as dry (wet). Hence, the clusters 

of dry seasons (DtC) and wet seasons (WtC) are extracted and analysed comparatively (appendix 

4). According to Salack et al. (2016), any environmental variable belonging to the DtC can 

constitute a critical limit for most cropping systems to be sustained over larger portions of the 

Sahel region. Appendix 5 provides the seasonal cycles of atmospheric variables useful for crops 
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growth, development and production. There is a clear and statistically significant difference 

among rainfall distribution variables such as rainfall amount, number of rainy days as compared 

to others. This suggest that rainfall distribution pattern is the most crucial asset in determining the 

quality of a “good” or “bad” season, other variables modulated crop water requirement though. 

 

b. High Impact Rainfall Events (HIRE) 

Rainfall related factors of high agricultural impacts are mainly the timing and spatial 

distribution of rain events (Salack et al., 2011). The agro-climatic indices used as proxy to monitor 

the potential effects of these rainfall-based factors on crops growth development and yield include 

onset dates (Laux et al., 2008), dry spells after onset modulating occurrence of rains in relation 

with principal crop growth stages, rainfall intensity, number of rainfall events. Other factors such 

as daily temperature range (DTR), wind speeds, relative humidity, and soil moisture depletion and 

evapotranspiration are also useful. A total of one twenty (120) different households were surveyed 

in the 12 villages of the pilot sites. These households are continuously monitored throughout the 

duration of the APTE-21 project to better assess the impact of the agro-climate delivery. The 

analysis of the results show that farmers need the following climate information:  

 The onset and cessation dates of the rainy season will make it possible for them to 

anticipate on the species / varieties to grow, which plots to use and readjust seed stocks 

and land capital; 

 The amount of rainfall that can cause floods. Farmers can prepare nurseries earlier and 

transplant sooner so that transplanted crops may be grown larger enough to withstand the 

arrival of water; 

 A long-range forecast of rainfall allowing farmers to prepare the farm before the rain and 

to transplant the crop; 

 After sowing, short range rainfall forecasts (24h and 48h) are important for organizing 

weeding, fertilization calendars. 

By crossing these results from field surveys, experts’ consultation meetings, and other 

exchange forums with farmers in the APTE-21 pilot sites four agro-climatic indices were 

identified relevant to smallholder farming systems. These indices are tagged “high impact rainfall 

events” (HIRE). They include the first efficient rainfall (FER), the extreme dry spells (ExDS), 

intense rainfall event (IRE) and the crop water requirement satisfaction index (WRSI). 

 First Efficient Rainfall (FER) 
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The FER, is the first rainfall event recorded by a raingauge which is higher than the 

aerodynamic demand of that location. Very often than not, the FER is followed by extreme dry 

spells which may be detrimental to seedlings leading to re-planting and characterizing false onset 

of rainy seasons (Salack et al., 2014). The FER is also a proxy meteorological onset definition of 

rainy season which is different from the agronomic definition of sowing date. Applying partially 

the definition of Stern et al., (1982), the FER was defined with a date of occurrence (variable ‘d’) 

and a rainfall intensity (variable ‘x’).  

The variable ‘x’ is determined based on a range of rainfall amount thresholds (1 to 50 mm) 

over 1st January-31st December period for the reference stations. An algorithm was built to 

determine the FER date and intensity per threshold and year at each station. The date of occurrence 

(considered as day of year) of the FER is computed as the day with a recorded rainfall amount 

greater than the specified threshold. This scheme is considered for both dry and wet seasons of the 

stations as defined by the standardized precipitation index in equation 3.3. A cumulative 

distribution function is used to compare the FER date and intensity of dry and wet seasons. This 

method allowed the identification of a unique threshold to characterise FER in the WASS region.  

 

 Intense Rainfall Event (IRE) 

 An intense rainfall event (IRE) is defined as the exceeding of a threshold that corresponds 

to the 99th percentile of daily rainfall amount of a season as stated in Salack et al., (2017). To 

compute the 99th percentile, a vector of daily values of rainfall RR (RR ≥ 1 mm) of each year was 

created and sorted in ascending order. Then, 99% was multiplied by the total number of those 

values to generate a rank index (if the index obtained is not a whole number, it is rounded to the 

nearest whole number). The rank index is used to extract the corresponding value from the ordered 

vector. This value is considered as the 99th percentile threshold value which is subsequently used 

to extract all intense rainfall events greater or equal to it in each season. All IRE cases are identified 

and extracted with respect to the date of occurrence (DTO) and the accumulated daily amount 

(INT). At each rain gauge location, any daily accumulated rainfall amount is considered as 

extreme if it belongs to the class of IRE.  

To look for possible identical features in all IRE, the same extraction algorithm is applied on an 

additional data set from primary stations’ and stand-alone raingauges owned by National weather 

offices of WASCAL countries. This daily rainfall dataset is retrieved from archives of manual 

ordinary rain gauges dating back in 1960s and updated to 2013-2016. The extracted DTO (here 
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the DTO unit is converted from day-of-year to week-of-year, WOY to reduce signal-to-noise ratio) 

and INT (mm/day) of all IRE are subjected to an unsupervised clustering algorithm that groups 

data based on the Euclidean distance across sample elements in order to find common patterns. 

The general procedure is to search for a K-partition with locally optimal within-cluster sum of 

squares by moving points from one cluster to another (Hartigan and Wong, 1979). As we have to 

specify the number of clusters to be used to group the data, we computed the percentage of 

variance explained as a function of a possible number of clusters ranging from 2 to 15. The first 

two clusters explain the maximum, followed by the 3rd, the 4th and so on until the marginal gain 

drops, giving an angle in the scree plot. The number of clusters is chosen at this point of the scree 

plot (also called the “elbow”). Once the optimum number of clusters is chosen, clusters centroids 

are calculated iteratively by reassigning data points, ordered by their distances to the overall mean 

of the sample, till the within-cluster variation cannot be reduced any further. The within-cluster 

variation is calculated as the sum of the Euclidean distance between the data values and their 

respective cluster centroids which correspond to the mean values assigned to each cluster 

(Hartigan and Wong, 1979).  

 Extreme Dry Spells (ExDS) 

. The single and multiple rain gauge scale classification for dry spells developed by Salack et al., 

(2014) was adapted to the conditions of this study. The total number of consecutive dry days before 

the next rainy day is the duration or length (L) of the dry spell (DS). The Julian day of first count 

corresponds to the start date (STDATE). The total number of DS with length L found in a season 

is the frequency of occurrence (F). The threshold of 1mm/day is considered to record a rainy day 

followed by 2 consecutive days of rainfall amount less than 1 mm. Dry spells are considered 

extreme when their length is longer than 9 consecutive days and less than 30 days (ExDS). This 

corresponds to categories 3 and 4 as suggested by Salack et al., (2014). ExDS observed after FER 

are called Post-onset dry spells and those observed 65 days after planting date (Abendroth et al., 

2011) are considered post-flowering dry spells.. The K-means partitioning technique was also 

applied for ExDS’s length and week of occurrence categorisation.  

c. The Crop Water Requirement Satisfaction Index (WRSI)  

Crop water requirement satisfaction index (WRSI) is defined as an indicator of crop performance 

based on the availability of water to the crop during a growing season (Senay, 2004). WRSI is 

used worldwide as a monitoring and early warning tool especially for drought-prone regions of 

sub-Saharan Africa. Studies have been conducted using WRSI to evaluate future crop yield under 
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rainfall variability due to climate change and its performance in predicting crop yield (Senay and 

Verdin, 2002; Ahmed et al., 2017). It is usually used in the field of agro-meteorology for crop 

monitoring and early warning for food security (Mukhala and Hoefsloot 2004). In this study, 

WRSI is computed as the ratio of actual crop evapotranspiration (ETAA) to crop water 

requirement (equation 3.4) also called the potential crop evapotranspiration (EOAA). The index 

can be computed on a seasonal or decadal (10 days) basis. A seasonal WRSI reveals the extend of 

water stress for a crop during the growing season while a WRSI compute on dekads gives the 

crop’s use of water at each development stage:                                         

  𝑾𝑹𝑺𝑰𝒊 =
𝑬𝑻𝑨𝑨𝒊

𝑬𝑶𝑨𝑨𝒊
∗ 𝟏𝟎𝟎   (3.4)  

Where i stands for the dekad. A WRSI greater or equal to 50% is interpreted as a “no deficit” 

condition, meaning, all things being equal, that the crop has enough water for its development. On 

the contrary, a WRSI lower than 50% is said to be a “deficit” condition where a crop failure can 

occur due to water stress (Senay, 2004). In this study, WRSI is computed every dekad to estimate 

the availability of water for the crop during its growth and detect the potential forecast products, 

in addition to the soil water holding capacity, essential for an early warning system.  

The actual and potential evapotranspiration of the reference crops are obtained from the Soil-Plant-

Atmosphere output file in DSSATV4.6 experimentation. Maize simulations are useful to estimate 

potential planting dates and WRSI. The experiments are set-up base on the following technical 

itinerary (details in appendix 2):  

 Planting period: For maize, the planting date is defined as the day when minimum soil 

temperature is not less than 8oC, the maximum temperature is not above 32oC (11oC and 

32oC for cowpea) and soil moisture is between 40% and 100% in the first 20 cm depth. 

 Crop management: we opted for dry seeds sown in rows at 80 cm interval for maize and 

30 cm for cowpea and at 3.5 depth. Planting population at seeding was 6.25 plants/m2 for 

maize and 30 for cowpea. At emergence, the number of plants/m2 was set at 6 for maize 

and 28 for cowpea. A tillage was done one week before planting with a blade cultivator at 

8 cm depth. 

 Fertilizers application: 150 kg of NPK and 50 kg of urea were applied to maize cultivars 

respectively 20 and 48 days after sowing. Cowpea crops were simulated without fertilizer 

application. 
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3.3.4. Perfect Prognostics and Binary Logistic Regression 

Model output statistics (MOS) is an objective forecasting technique in which a statistical 

relationship is determined between a predictand and variables forecast by a numerical weather 

prediction model (Shafer and Fuelberg, 2002). A limitation of MOS is that any modification to 

the numerical weather prediction model (NWP) may amplify systematic errors of the equations 

derived from MOS (Wilks, 2006). The Perfect Prognostic (PP) method is an alternative to MOS 

(Shafer and Fuelberg, 2008; Rajeevan et al., 2012). According to Shafer and Fuelberg, (2008), 

“the PP approach develops statistical relationships between observed atmospheric parameters 

and observations of the predictand. Once the statistical relations are determined, forecasts of the 

predictand are obtained by inserting NWP model forecasts of the predictors into the PP equation”. 

The PP was used by Klein (1971), to predict precipitation probabilities in the US, Shafer and 

Fuelberg, (2008) and Rajeevan et al., (2012) for predicting lightning probability. Here, due to the 

agro-climatic nature of the work, PP approach combined with logistic regression model is used to 

explain the effects of the explanatory variables on the binary response.  

A variety of statistical techniques have been used to develop crop-climate relationship 

forecast models. The most common method is multiple linear regression (MLR) (Neumann and 

Nicholson 1972) and Random Forest (RF) methods (Jeong et al., 2016). However, when the 

predictand is “yes” or “no,” binary logistic regression (BLR) often is employed (Shafer and 

Fuelberg, 2008). The BLR, also known as the binomial logit model, is an estimation technique for 

equations with dummy dependent variables that avoids the unboundedness problem of the linear 

probability model by using a variant of the cumulative logistic function (Wooldridge and Jennings, 

1995). Logistic regressions are fit to binary predictands according to the nonlinear equation 

(Shafer and Fuelberg, 2008): 

𝐥𝐧 (
𝑷𝒊

𝟏−𝑷𝒊
) = 𝒃𝟎 + 𝒃𝟏𝒙𝟏 + ⋯ + 𝒃𝒌𝒙𝒌   (3.5) 

With     𝑷𝒊 =
𝐞𝐱𝐩 (𝒃𝟎+𝒃𝟏𝒙𝟏+⋯+𝒃𝒌 𝒙𝒌)

𝟏+𝐞𝐱𝐩 (𝒃𝟎+𝒃𝟏𝒙𝟏+⋯+𝒃𝒌 𝒙𝒌)
    (3.6) 

where pi is the predicted probability resulting from the set of candidate predictors (x1, x2, . . . , xk), 

rainfall, rainy days, relative humidity, daily temperature range, wind speed and solar radiation. 

The quantity on the left of equation (3.5) is the logit link function, which relates the log of the 

odds ratio (p/1-p) to a linear combination of predictors (Shafer and Fuelberg, 2008; Rajeevan et 

al., 2012). The parameters (b0, b1, . . . , bk) are estimated by maximizing a log-likelihood function 

using iterative methods (Wilks, 2006). Equation (3.6) guarantees that the probabilities are bounded 
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within the interval (0, 1) and the relationship between the predictors and the response variable 

follow Bernoulli distributions. 

In this analysis, WRSI is defined as the response variable which values are encrypted into 

1 and 0 based on the threshold values extracted from the cluster of dry seasons (DtC): 

𝑾𝑹𝑺𝑰 = {
𝟏 
𝟎

𝒊𝒇 𝑾𝑹𝑺𝑰 ≤ 𝑫𝒕𝑪𝒕𝒉

𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
    (3.7) 

Where 𝑫𝒕𝑪𝒕𝒉 takes one of each three thresholds of dekadal WRSI values drawn from the set of 

dry seasons also called drought cluster, DtC. Table 3.2 provides an example of 𝑫𝒕𝑪𝒕𝒉 values 

extracted from DtC observed at each reference station and their associated flag colours when these 

values are reached at both vegetative and reproductive phases for maize cultivars. These threshold 

values are considered as reference baseline thresholds useful in monitoring and early warning 

under climate change. 

Table 3.2: Thresholds values of water requirement satisfaction index (WRSI), at vegetative and reproductive phases 

of maize cultivar, derived from the cluster of drought seasons (DtC) observed at reference stations. 
Development stages Threshold Flag colour 

VEGETATIVE 

PHASE 

< 0.3 Red 

[0.3, 0.4] Orange  

]0.4, 0.5] Yellow 

0.5 <   Green  

REPRODUCTIVE 
PHASE 

≤ 0.5 Red  

0.5 < Green 

 

The optimum conditions of crop water satisfaction are provided by atmospheric and soil 

variables. Therefore, BLR is used to develop equations giving the probability of WRSI = {1, 0} 

at each reference station. The objective was to determine whether relationships between observed 

candidate predictors and WRSI were generally the same for all the reference stations or if they 

may vary significantly from one to another. Parameters calculated from weather file make the 

initial set of candidate predictors. Correlation test is conducted using Spearman correlation 

coefficient to determine possible relationship within the candidate predictors and between WRSI 

and those predictors. 

A comparison of verification performance diagram scores (Roebber, 2009) are used to 

decide which candidate predictors lead to highest predictability of WRSI thresholds. In this study, 

PP models are developed based on in-situ observed weather parameters to build the model 

(training samples include DtC and WtC data sets for training the logistic regression models) and 
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independently verified using data provided by the NASA’s Prediction of Worldwide Energy 

Resource (POWER). 

The performance diagram scores are determined based on a 2 x 2 contingency table of 

dichotomous (yes–no) forecasts using varying thresholds of WRSI (average, 5th & 10th percentile 

of DtC). The verification scores considered are the Probability of Detection (POD), BIAS, False 

Alarm Rate (FAR) and the Critical Success Index (CSI; also known as the threat score). The POD 

is the ratio of the number of events correctly predicted by the model to the total number of observed 

events in the sample. The FAR is a measure of the forecast events that fail to occur. The bias B 

indicates the degree of over-forecasting (B>1) or under-forecasting (B<1) an event. Finally, the 

CSI combines attributes of the POD and FAR and can be viewed as a hit rate (HR) after removing 

correct no forecasts (Roebber, 2009).       
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Chapter 4 : RESULTS AND DISCUSSION 

4.1. Results  

4.1.1. Threshold Analysis for Operational Monitoring and Early Warning  

a. First Efficient Rainfall (FER) 

Figure 4.1 shows the intensity of rainfall associated with FER as observed over the 6 reference 

stations (Bakel, Bolgatanga, Dano, Dapaong, Mango and Ouahigouya). Irrespective of the quality 

of the rainy season (dry/wet), the amount of rainfall associated to FER is not more than the 20th 

percentile of all seasonal rain events (Figure 4.1a). However, the dates of occurrence of FER 

exhibit two “break” points common to dry and wet seasons (figure 4.1b). The first date is 

approximately 15 March and the second one approximately the end of May. Hence, we define 

FER as the first day between 15 March and 31 May when the accumulated daily rainfall exceeds 

9.75 mm. 

 
Figure 4.1: Cumulative Frequency of rainfall amount (INT) and dates of occurrence (DOY) of first efficient rainfall 

(FER) over the 6 reference stations depicted from historical daily data series (1960-2016). The black (white) dots 

denote dry (wet) season. 

a) 

b) 
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Figure 4.2 reveals the distribution of rainfall amounts associated to FER events. The highest mode 

of variability is 20-30 mm per day. Very often than not, this rainfall amount highly misleads some 

farmers to sow crop seeds. However, FER are followed by longer dry spells which cause water 

deficit stress, seeds desiccation and re-planting (Ati et al., 2002; Alhassane et al., 2013).  

 
Figure 4.2: the variability mode of the FER quantity at the stations  

Trends analysis of the dates of occurrence, at most locations of the northern WASS, shows 

that FER events are occurring earlier (i.e. decreasing trend) as revealed by figure 4.3. Hence, FER 

events at the reference stations vary with the location of the station in the study area. Indeed, 

stations located in the south Sahel (Dapaong, Mango, Dano, Bolgatanga) perceive the FER from 

the 10th to 20th week of the year on average (March to May), irrespective of the quality of the 

season (dry/wet). In the center Sahel, Ouahigouya, the FER occurs often from the 10th to 25th week 

of the year (March to June), be it a dry or wet year. The north Sahel, Bakel, records the FER within 

the 20th and 30th week of the year (May to July). Figure 4.3 demonstrates the above statements. A 

linear regression model (the red line) and a local polynomial regression model (the blue curve) 

represent the overall trend of the FER WOY. The two models have the same interpretation of the 

inter-annual variability of the FER week of occurrence with respect to the stations. 
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Figure 4.3: the inter-annual variability of the FER date of occurrence at the six stations  

The enquiry was conducted over the WASS region to validate not only the results obtained from 

the 6 stations but also to study the trend over the region. Figure 4.4 summarises the findings where 

the bubbles represent the location of the stations used and their size and colour are related to a 

specific interval of values. The FER intensity in the WASS is in the range of [20mm, 27mm] with 

isolated cases in the western and eastern Sahel where it is from 15 to 20 mm. As for the week of 

occurrence, the FER is registered earlier in the central Sahel than in the western and eastern Sahel 

([13th, 20th] week and [20th, 27th] week respectively). 
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Figure 4.4: Average value of the FER week of occurrence and quantity over the WASS 

 

A comparison of dry and wet seasons on days’ difference between the FER date and the 

planting date obtained from the crop simulation model is established (figure 4.5). The planting 

date is considered to be the first day of July where soil temperature is within 8-32 oC and minimum 

soil water is 40mm at 20 cm depth for both dry and wet seasons. The general remark is an obvious 

difference between FER and planting dates which is accentuated with the quality of the seasons. 

Dry seasons register late FER compared to wet seasons. This assertion is demonstrated by the 

results in figure 4.5, where the days’ difference of FER and planting dates is greater in wet seasons. 

The analysis shows that wet seasons are more susceptible to false onset since rains start early. In 

addition, opting for an earlier planting period may be either risky or optimal for crops due to the 

uncertainty of the FER date. 
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Figure 4.5: Difference between planting dates and first efficient rainfall occurrence dates in the reference stations 

 

b. Extreme Dry Spells (ExDS) 

The occurrence of ExDS, in the WASS region, is categorized in terms of week of occurrence 

(WOY) and length (L). As described in chapter 3, post-onset and post-flowering DS are 

considered. The kmeans results revealed 3 categories of STDATE of ExDS associated with 2 

classes of ExDS length. The post-onset DS can be of different length according to their WOY. 

The first class of ExDS is likely to be observed from end March to end May (week 13 to week 21) 

with a length of about 22 days. It is actually the longest DS found right after the FER date (1st 

post-onset DS). This result confirms the fake character of the FER as onset of the rainy season. 

The second class of ExDS of about 14 days is localised between June and August. June-July is the 

seeding period in most of the Sudan-Sahel region (Waongo, 2015) therefore these DSs are 

considered as the 2nd post-onset ones more likely to affect seeds juvenile phase and cause crop 

failure if they last long. The third category of ExDS also last for about 14 days but occur from 

September to October. The period coincides with the flowering stage of crops (65 days after 

planting), consequently, it is considered as post-flowering ExDS.   
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Table 4.1: classes of extreme dry spells length and week of occurrence 

Category Parameter Average Confidence interval Proportion (%) 

Category 1 
Date (WOY)* 17 [13 ; 21] 25 

Length (#) 22 [19 ; 26] 25 

Category 2 
Date (WOY) 19 [22 ; 35] 53 

Length (#) 14 [10 ; 18] 37.5 

Category 3 
Date (WOY) 39 [36 ; 43] 22 

Length (#) 14 [10 ; 18] 37.5 

 

At the stations’ level, the density of dry spells occurrence varies from a station to the other 

with some similarities. Figure 4.5a shows similar patterns of DS week of occurrence for Mango, 

Dapaong, Dano and Bolgatanga on one side, Bakel and Ouahigouya on the other side. According 

to the FER date, Bakel and Ouahigouya experience, most of the time, late onset of the rainy season, 

therefore, post-onset DS in those areas follow the same trend. Apart from its WOY, EXDS’ length, 

over the stations, reveals a high probability for length greater or equal to 2 weeks and to a lesser 

degree DS of length greater or equal to 3 weeks (figure 4.6b). This is explained by the low 

proportion of the 1st class of DS length (25%) compared to the 2nd class (75%) (Table 4.1). The 

investigation demonstrates once again, for ExDS, that the geographical position of stations in the 

Sudan-Sahel has an impact on the vulnerability of crops to water stress. Indeed, Bakel and 

Ouahigouya having their FER close to the planting period (June-July), expose the crop to potential 

ExDS at its juvenile stage. The remaining stations experience frequent false onset of the season 

since the density of DS occurrence is higher from April to May which happen to be the prone 

period of FER in those areas. In addition, the DS length over that period is also high (22 days) 

likely to damage the seeds if planting occurred subsequently. Post-flowering DSs are observed at 

all the stations because they all present similar mode of variability of DS length but at different 

ratio (figure 4.6b). 
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Figure 4.6: Frequency of dry spells week of occurrence (a) and length (b) at the 6 stations 

At the WASS level, similar enquiry was conducted and average values of DSs’ week of 

occurrence and length were classified as post-onset or post-flowering. Figure 4.7 presents the 

observed results symbolised with bubbles’ colour and size. DSs’ length greater or equal to 10 days 

as well as their week of occurrence are computed for each available station in the WASS and the 

average DS is determined to represent a station on the map. On average, the DS lengths obtained 

were of 3 categories: DS length lower than 10 days, comprises between 10 and 15 days and greater 

than 15 days. Considering the WOY, the average weeks were classified into 5 intervals: week 15th 

to 20th, week 21st to 25th, week 26th to 28th, week 29th to 32nd and week 33rd to 35th. The analysis 

of post-onset DS length and WOY points out a general tendency of DSs’ length lower than 10 

days with localised ones of 10-15 days in the North-Western Sahel and isolated cases in the Eastern 

Sahel. The WOY of post-onset DS is within week 15th to 20th (April-May) in the central Sahel 

while the Eastern and part of the Western Sahel experience such DS within week 21st and week 

25th (May-June) with some isolated DS within week 26th to 28th (June-July). Post-flowering DS 

length in the WASS region has a similar distribution with an additional class (DS greater than 15 

days) localised mainly in the North-Western Sahel. The occurrence of these DSs is recorded within 

week 29th and 32nd (July-August) in the Western and Eastern Sahel while the Central Sahel may 

experience them within week 33rd and 35th (August-September). 

a) 

b) 
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Figure 4.7: Dry spells length and week of occurrence over the WASS region 

c. Intense Rainfall Event (IRE) 

The analysis of the near-ground records depicted from Dano and Dassari catchments show 

that the two parallel rain gauges report the same DTOs but fail to agree to the accumulate daily 

rain rates when INT is above 50-60 mm/day (Figure 4.8). This discrepancy is linked to sensor 

errors sources. These uncertainties may be related to the basic functionality of tipping buckets. 

According to Habib et al., (2001), the tipping bucket suffers from accuracy problems at high rain 

rates: it is usually unable to give an accurate estimate of the peak values within the event. This is 

mainly due to the high gradient of the rain rates at the peaks and valleys of the rainfall time series. 
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Figure 4.8: Dates and amount of rainfall recorded by two parallel tipping bucket raingauges installed in Dano and 

Dassari catchments. 

The kmeans analysis revealed two classes of DTO and three categories of extreme rainfall INT 

(Table 4.2). 

Table 4.2: Categories of intense rainfall events and operational flagging colours (Salack and Saley, 2017) 

Category Parameter Average Confidence interval Proportion (%) Flag colour 

Category 1 
Date (WOY)* 30 [25 ; 35] 92 

Yellow 
Intensity (mm/day) 47 [37 ; 65] 52 

Category 2 
Date (WOY) 30 [25 ; 35] 92 

Orange 
Intensity (mm/day) 75 ]65 ; 85] 40 

Category 3 
Date (WOY) 33 [28 ; 38] 8 

Red 
Intensity (mm/day) 120 > 85 8 

*WOY: Week of a calendar year  

The sites of interest for the study fall within all the categories of IRE identified above. The only 

difference is the probability of occurrence of IRE from a week to the other. Figure 4.9 illustrates 

the mode of variability of IRE’s INT and WOY at each station. 

  
Figure 4.9: densities of intense rainfall event week of occurrence and intensity at the 6 stations 

Over the WASS, the inter-annual variability of seasonal 99th percentile threshold values 

of rainfall intensity depicted over 1960-2016 is illustrated by figure 4.10. There is an increasing 

trend of extreme rainfall with the recent years being similar to the early 1960s. Meanwhile, the 

inter-decadal variation of these events, depicted by the blue curve, shows that the recent recovery 

of rainfall is mainly explained by the rain rates of extreme events. These results are similar to 

arguments provided by Lodoun et al., (2013), Sanogo et al., (2015), Salack et al., (2015) and 

Maidment et al., (2015) among others. 
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Figure 4.10: Historical inter-annual variability of seasonal intense rainfall events  

In the Sudan-Sahel, extreme rainfall events contribute ∼50–90% to the seasonal rainfall 

amount with a South-North gradient (Ta et al. 2016). This inhomogeneous distribution and the 

nested land-atmosphere phenomena involved in the formation of convective systems makes it 

difficult to classify rainfall from the event scale of minutes-to-hours (Mathon et al., 2002; Zahiri 

et al., 2016). Table 4.2 provides the three classes of IRE observed in the Sudan-Sahel region over 

a time scale of week. The categories 1and 2 occur most likely between week 27 and 35 of the year 

with an accumulated daily amount waving across 37-65 mm for category 1 and less or equal to 85 

mm/day for category 2. The daily accumulated rain rate of category 1 has 52% probability of 

occurrence against 40% probability for category 2, within the same period. The rain rates of 

category 3 is identified when more than 85 mm/day, occurring between the 28th and 38th week of 

the year. It is the most damaging class of heavy rains but very difficult to predict. 

The timing of the three categories of IRE (Figure 4.11) falls within three phases of the 

West African monsoon namely the installation phase (July), the intensification phase (August) and 

the retreat phase (September). Category 1 is observed in the installation phase over central sub-

regions after the abrupt monsoon jump (Sultan et al., 2003) while categories 2 and 3 are recorded 

in the intensification and retreat phases respectively. In these last two phases, rainfall intensity is 

characterized by a steady increase until it reaches its maximum at the end of August (also known 

as the continental phase of West African monsoon) and an abrupt retreat in one month, with 

residual rainfall in October (Lebel and Ali 2009). The spatial distribution of DTO of Category 2 

and 3 suggests an east-west bipolar pattern while category 1 is unevenly observed all over the 

region. All categories are recorded with a time lag of at least one week and the western Sahel is 

predominantly influenced by the occurrence of categories 2 and 3 in September. The distribution 

of DTO also exhibits a coherent sub-regional high risk zones of local extreme rainfall. 
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Figure 4.11: Probabilities of IRE occurrence over the WASS region 

 

d. Crop Water Requirement Satisfaction Index (WRSI) 

 WRSI and the Quality of Seasons 

As specified in the methodology, WRSI is the ratio of the actual crop evapotranspiration to the 

crop water requirement. For comparison purpose, the index is computed for dry and wet years at 

each station. The analysis was first based on the WRSI obtained for each cultivar across the 

growing season. It reveals no significant difference between the cultivars, apart from EV-8443 

which has a longer growth cycle and therefore a particular expression at the end of the season. 

Figure 4.12 illustrates the results. Consequently, the WRSI obtained for obatampa cultivar is used 

for further enquiries on the index bearing in mind that the second cultivar has the same behaviour.  
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Figure 4.12: compared WRSI of maize cultivars: obatampa (green) and EV-8443 (black) 

Maize has specific development stages which are subdivided into two main ones namely 

the vegetative and the reproductive phases. Each of them has a critical phase highly dependent on 

water. In the vegetative phase, adequate conditions of water and light are needed for a successful 

juvenile phase of the seed, whereas, in the reproductive phase, the flowering of the plant is crucial 

for a good yield. Based on the exciting knowledge, the computed WRSI has been studied 

according to the 2 phases for dry and wet years over the 6 stations. Figure 4.13 summarizes the 

outcomes of the analysis. It is noticed that, at the vegetative phase, irrespective of the quality of 

the seasons, the WRSI has an encrement trend, while at the reproductive phase, it has a decrease 

trend. The result suggests that a crop is more vulnerable to water stress at the beginning and the 

end of its growth. 

More specifically, dry and wet years follow the same trend but at different rate. Bakel 

displays a clear difference between the WRSI of dry and wet years, whereas, the other stations 

present slight variance with wet years recording the highest indices. Globally, apart from Bakel 
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which has an obvious water stress problem compensated during a wet year, and to a lesser degree 

Mango and Ouahigouya, the other stations seem not to differenciate between wet and dry years.  

A way of explaining the results is related to the rainfall amount and its date of occurrence. 

Indeed, during a wet year, rainfall is more frequent and more or less intense than in a dry year. 

Unfortunately, a rain is useful for a crop only if it occurs at the right time of its growth. In this 

study, there is an uncertainty related to the useful rain which is supposed to boost the seasonal 

WRSI. Subsequently, the relationship between WRSI and the quality of the seasons is real beside 

the fact that it encompasses some non-neglictible parameters (figure 4.13). 
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Figure 4.13: Crop water requirements estimated during vegetative (top panel) and reproductive (bottom) phases of 

dry and wet cluster of seasons at reference stations (1960-2016). 

 WRSI Versus Crop Yield 

The amount of water available for a crop during its growth determines its performance, all 

things being equal. The WRSI illustrates the impact of water stress on the potential crop yield. 

Figures 4.14a and 4.14b represent the potential yield obtained with regards to the seasonal WRSI 

for the considered maize cultivars (Obatampa and EV-8443) at the 6 targeted stations. It is 

observed that, irrespective of the cultivars, the potential yield evolves according to the availability 

(WRSI>50%) or the deficit (WRSI<50%) of water in the soil. The analysis, at station level, shows 

that Bakel and Ouahigouya registered, on average, lower potential yield compared to the other 

stations for both obatampa and EV-8443. Similar trend is observed at Dano station but to a lesser 

extent. The general remark is that low yield is obtained when the seasonal WRSI belongs to the 

range 20-70%. 

The available data at Bakel station displays a seasonal WRSI lower than 50% irrespective of 

years. Besides, the soil profile, used for the site in DSSAT V4.6, has a low fertility due to the local 

climate causing water stress to the crops. The two maize cultivars have approximately the same 

performance, even though EV-8443 has a better potential yield, they have not reached 1000 kg/ha. 
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At Dano and Ouahigouya, the cultivars performed moderately with a maximum potential yield of 

2500 kg/ha for obatampa and 3000 kg/ha for EV-8443. Such yields are obtained at these stations 

due to the seasonal WRSI ranging from 50% to approximately 75%. The three remaining stations, 

Bolgatanga, Dapaong and Mango, had the highest yields of the season both for obatampa and EV-

8443, and the analysis of the seasonal WRSI shows values comprise between 80 to 100% with 

exceptional years (few of them) recording 50%. The water stress level at these stations is 

minimized compared to Bakel, Dano and Ouahigouya. 

The results observed at the 6 stations allow the detection of thresholds for the WRSI 

considering the conditions of the simulations. Three categories of WRSI are identified taking into 

account the yields recorded. The first category is WRSI lower than 50% which results mainly into 

very low potential yields from the cultivars. The second category is a WRSI within 50 and 75% 

which permits to moderate potential yields observed also for the 2 cultivars and finally the third 

category of WRSI greater or equal to 80% resulting in very high potential yields. It is important 

to recall that these results reflect the applied conditions and methods used to assess water stress at 

the 6 stations. Further investigations are needed to generalize these thresholds at the WASS level. 

 
 

Figure 4.14: relationship between WRSI and crop yield considering (a) Obatampa and (b) EV-8443 cultivars 

a) 

b) 
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4.1.2. Predictability Potentials of WRSI 

a. Binary Logistic Regression Model Analysis 

The BLR model is developed with the candidate predictors for three level of WRSI 

thresholds. 10-day average, 10th percentile and 5th percentile of the time series are considered. The 

10-day average is determined by aggregating the drought cluster series per dekad using the mean 

function. 10th and 5th percentiles are computed alike the 99th percentile of the IRE. The response 

variables were then obtained using the equation 3.7. However, it is clear from table 4.3 that some 

of the candidate predictors contain redundant information leading to high multicollinearity. 

Mutual correlations were found to be more than 0.6 and statistically significant between daily 

rainfall and number of rainy days.  Including predictors with strong multicollinearity can lead to 

poor estimates of the regression parameters (Wilks, 2006; Shafer and Fuelberg, 2008).  

Table 4.3: Candidate predictors used to develop the regression models and Spearman rank correlations with the 

binary (yes/no) WRSI thresholds at each reference station. (*) marks the parameters where high multicollinearity is 

found to be statistically significant 
Parameters Unit Bakel Bolgatanga Dano Dapaong Mango Ouahigouya 

Relative humidity % 0.44 -0.06 0.69 0.4 0.32 0.38 

Wind speed m/s -0.58 -0.66 -0.57 -0.61 -0.52 -0.71 

Solar radiation MJ/m2/d -0.51 -0.17 -0.22 -0.25 -0.11 -0.45 

Rainfall* Mm 0.52 0.26 0.44 0.24 0.24 0.46 

Rainy days* Day 0.6 0.37 0.55 0.37 0.38 0.46 

Diurnal 

temperature 

range 

oC -0.33 0.11 -0.42 -0.03 -0.05 -0.53 

*Multicollinearity variables 

Due to the multicollinearity between some predictors, different combinations are tested in 

developing the BLR model. By removing these variables, a first set of predictors is defined for the 

forecast of threshold values including rainfall amount (RAIN), relative humidity (RHUM), daily 

temperature range (DTR), solar radiation (SRAD), wind speed (WIND). The ANOVA statistical 

test of the BLR model at the reference stations shows significant difference between observed 

candidate predictors according to the level of thresholds and the stations considered. 

In Bakel, an analysis of the thresholds revealed two candidate predictors with statistically 

significant predictability potential of the WRSI. The predictors are SRAD and RAIN. Besides, 

RHUM, WIND and DTR are statistically significant and can be used to predict the dekad-average 

and the 10th percentile of WRSI. The results of Bolgatanga present a heterogeneous pattern of 

candidate predictors with respect to the thresholds. WIND, RHUM and DTR for the dekad-

average, WIND for the 10th percentile and RAIN for the 5th percentile. At Dano station, two 
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thresholds of WRSI can be predicted (dekad-average and 10th percentile) since some predictors 

(RHUM and RAIN) are statistically significant. In Dapaong, as well as Bolgatanga, the predictors 

depend on the threshold considered. For the dekad-average, RHUM and SRAD are statistically 

relevant in forecasting WRSI. For 10th percentile, RHUM, WIND and RAIN are reported potential 

predictors and for 5th percentile, RHUM and RAIN present a significance in predictability. For 

Mango station, irrespective of thresholds, RHUM is a strongly significant predictor. Finally, 

Ouahigouya station presents RAIN as the solely significant predictor for WRSI’s thresholds. More 

details are available in the appendix 7. 

The BLR model permits an overview of the potential predictors’ performance in forecasting the 

considered thresholds of WRSI, site specific.   

b. Independent Verification Using Perfect Prognostics 

In order to test the ability to predict WRSI thresholds, the same candidate predictors are 

considered, as the observed variables can be taken from another source at historical and near real 

time. Hence, the same candidate predictors were taken from data provided by the NASA’s 

Prediction of Worldwide Energy Resource (POWER). These variables are based primarily on solar 

radiation derived from satellite observations and meteorological data from assimilation models. 

Using data from the POWER website as the input data to the BLR model to forecast WRSI 

thresholds as defined by equation 3.7. The BLR provides a probability ranging between 0 and 1. 

To forecast the WRSI at vegetative and/or reproductive phases of maize crops, the probability 

calculated from the BLR must be close to or equal to 1. If not, the calculated probability will be 

0. This is the perfect prognostic (PP) approach. The distribution of the forecasted WRSI are 

compared to the observed distribution of WRSI thresholds encrypted into {1, 0} with verification 

scores of a 2 x 2 contingency table included in a performance diagram (Roebber, 2009). The 

verification scores considered are the Probability of Detection (POD), BIAS, False Alarm Rate 

(FAR) and the Critical Success Index (CSI). 

The independent verification of the PP does not provide "good" probability of detection 

(POD) in Dapaong and Bolgatanga. However, The POD is higher in Bakel, Dano and Mango with 

much higher bias compared to climatology. In Ouahigouya, the results of the BLR model based 

on the PP are not better than the climatology (figure 4.15). The BRL-based PP approach 

overestimated the 10-day lead time forecasts with higher predictability potentials at some of the 

reference stations. This uneven performance distribution of the PP model can be related to the 

limited number of candidate predictors. Therefore, more sensitivity assessment needs to be carried 
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out over a larger spectrum of candidate predictors (e.g. soil temperatures, NDVI etc.) to reach 

better performance in the WASS. 

 
Figure 4.15: Performance diagram of perfect prognostics forecast based on a binary linear regression model for 6 

reference stations of the study area. 

4.2. Discussion 

Seasonal to intra-seasonal rainfall distribution consists of several rainfall extremes of high 

impact on food security, disaster risk reduction and livelihood. The high impact rainfall events 

(HIRE) defined in this study are among the most crucial in operational monitoring and early 

warning services in WASS. Hence, the identified parameters such as first efficient rainfall (FER), 

extreme dry spells (ExDS), intense rainfall events (IRE) are useful in monitoring farm crops but 

also directly linked to disaster risk diagnostics in case of drought or floods. While crop water 

requirement index (WRSI) is seen as a crop-climate related index, its usefulness expends to the 

area of food security and drought monitoring.  These parameters are all related to quality of the 

rainy season (dry/wet) and complete those defined by Jalloh et al., (2011) for an improved 

information delivery and adaptation to climate variability and change. 

The thresholds found for each element are relevant in making the profile of a possible quality 

of a rainy season and fine-tuning climate information to smallholder farmers. In West Africa, 

seasonal forecasting is based on multiple approaches used by National Meteorological and 

Hydrological Services (Dodd and Jolliffe, 2001; Omotosho et al., 2000; Sivakumar, 1992). The 

thresholds provided by this study break the ground for an improved seasonal and intra-seasonal 
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forecasts provision with an additional knowledge of rating scales and warning flags for FER, 

ExDS, IRE and WRSI. In an operational agro-climatic monitoring, this is helpful to identify each 

parameter as rainfall extreme and improve the quality of weather/climate information to farmers, 

and others on false onset of the rainy season, dry spells greater or equal to 10 days with precision 

according to their week of occurrence and the potential occurrence of heavy rainfall in the season. 

The knowledge of a probable false onset and ExDS enables the farmer to plan farm activities and 

seeds ahead of optimum planting dates (Sivakumar, 1992, Salack et al., 2014, Sarr et al., 2015). 

Information about possible ExDS during the growing season can also lead to adoption of 

drought/flood tolerant cultivars and other climate-smart agricultural practices (Belko et al., 2014). 

The IRE information is important to disaster management institutions (Salack et al., 2017) but 

also farmers to plan and adjust on-farm activities against soil erosion, waterlogging, use of 

fertilizers and chemical. 

The crop water requirement satisfaction index (WRSI) indicates the crop performance based 

on water supply and demand experienced during the growing season. For maize cultivars 

considered in this study, simulations showed that WRSI below 70 and 50% negatively impact the 

potential yield. This result is in line with Thole (2009) and Senay and Verdin (2002) investigations 

in Zambia and Ethiopia respectfully who found that maize yield and WRSI are positively 

correlated. WRSI is influenced by the quality of the season, it performs better when a year records 

high rainfall amounts (wet). Studies have shown that precipitation and potential evapotranspiration 

are the most important inputs for WRSI computation (Senay and Verdin 2002; Funk and Verdin 

2009). In the WASS region, rainfall is susceptible to be a limiting factor to high values of WRSI 

in the region. Therefore, monitoring lower values of WRSI at vegetative and reproduction phases 

of maize are of crucial importance for food crisis alleviation.  

The results of the binary logistic regression (BLR) model based on an independent perfect 

prognostic (PP) forecasting technic exhibits high predictability potentials. This is breakthrough to 

early warning services delivery at 10-day lead time against crop water stress. Although, the limited 

number of candidate predictors selected in this study do not provide the best forecast of WRSI 

thresholds but show that PP approach has promising performance skills in early warning schemes.  
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Chapter 5 : Conclusion, Recommendations and Perspectives 

 

5.1. Conclusion 

West African Sudan-Sahel is frequently exposed to multiple natural hazards at different scales 

(Asare-Kyei et al., 2015), notably extreme dry spells, intense rainfall, floods, droughts, air 

pollution, heat waves, wildfire, etc. and global climate warming may likely increase the frequency 

and intensity of some of these extreme events or a mixture of some in a unique season/location 

(Sylla et al., 2015; Salack et al., 2016). A recent Climate Risk and Early Warning Systems 

(CREWS) analysis shows that West African countries are most vulnerable to weather extremes 

because they often have the lowest early warning capabilities, weak or non-existent dissemination 

systems, and lack of effective emergency planning in case of alerts and warning information 

(http://newsroom.unfccc.int/media/454810/crews-presentation.pdf). Therefore, all adaptation 

measures that will spur our population to build resilience relay on the ability of climate information 

producers to monitor and predict HIRE and WRSI thresholds.  

All HIRE and WRSI thresholds identified are qualified as rainfall extremes as they relate to 

the quality of rainy season, crop growth, development and yield in the West African Sudan-Sahel 

region. In the context of high climate variability, the knowledge of these threshold values, their 

rating scales, warning flag colours, and risk areas, suggested in this study, can be used in operation 

climate services provision. Applying these thresholds in climate information production chain 

(e.g. seasonal, sub-seasonal now casting and/or forecasting, etc.) can improve weather/climate 

information provision to farmers, disaster risks management organisations, and other application 

sectors. The usefulness of thresholds analysis and its extension to small holder subsistence farming 

system is much dependent on the predictability of WRSI thresholds. However, the results of this 

study prove that the BLR model embedded in a PP forecasting approach provides uneven 

performance skill over the reference stations of this study.  

 

   5.2. Recommendations and Perspectives  

Therefore, it is recommended that a sensitivity assessment is carried out on the prediction 

model to include a larger number of candidate predictors. Another perspective is to extend the 

predictability potential to other crop types such as cowpea, millet and rice to cover the major staple 

food and fodder crops of the WASS. In order to improve near-real time monitoring of rainfall 

extremes and information delivery to users, the identified threshold values can be automatically 

linked to an observation network of sensors measuring weather/climate variables, in the form of a 

http://newsroom.unfccc.int/media/454810/crews-presentation.pdf
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user-friendly tool kit or application. This perspective would need a permanent collaboration 

between climate scientists, extension agents and other climate services broker in support of human 

security in West Africa. 
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APPENDIXES  

1. Soil profiles information 

SOIL TYPE: FERRIC FERRALSOL 

Depth (cm) 0-20 20-50 50-90 90-120 

Elements (%) 

Sand 35.15 14.47 10.5 15.67 

Silt 6.25 6.5 13.25 16.25 

Clay 11 39 44.5 29.25 

Organic matter (%) 

Carbon (C) 1.16 0.96 0.83 0.83 

Nitrogen (N) 0.1 0.12 0.11 0.1 

Ratio C/N 11.6 8 7.5 7.5 

Cation exchange 

capacity (CEC) 

8.9 14.2 17.6 12.7 

pH 

H2O 6.8 6.6 6.6 6.7 

 

SOIL TYPE: RHODIC REGOSOL 

Depth (cm) 0-10 10-40 40-56 56-150 

Elements (%) 

Sand 87.7 85.9 74.2 77.4 

Silt 6.1 3.3 3.3 3.8 

Clay 4,8 10,2 12,2 8,4 

Organic matter (%) 

Carbon (C) 1,48 1,52 1.52 1.52 

Nitrogen (N) 0,12 0,13 0.13 0.13 

Ratio C/N 12,3 11,7 11.7 11.7 

Cation exchange 

capacity (CEC) 
1,89 3,53 3,57 3,58 

pH 

H2O 7,6 7,5 7,4 8 

 

SOIL TYPE: RHODIC LIXISOL 

Depth (cm) 0-10 10-25 25-70 70-120 

Elements (%) 

Sand 36 37 44.4 76.1 

Silt 14.4 5.6 15.8 9.4 
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Clay 49.5 57.5 39.8 14.6 

Organic matter (%) 

Carbon (C) 0.73 0.62 0.27 0.1 

Nitrogen (N) 0,08 0,06 0.03 0.03 

Ratio C/N 9 10 9 3 

Cation exchange 

capacity (CEC) 
11.6 11.0 9.6 5.6 

pH 

H2O 6.9 6.7 6.8 7.2 

 

SOIL TYPE: EUTRIC REGOSOL 

Depth (cm) 0-16 16-45 45-74 74-100 100-118 118-155 155-193 

Elements (%) 

Sand 81.4 79.8 74.35 64.9 71.4 40.7 40.4 

Silt 14.6 13.7 16.6 23.6 14.6 17.8 20.6 

Clay 4,00 6,50 9,00 11,50 14.00 41,50 39,00 

Organic matter (%) 

Carbon (C) 0,41 0,25 0,22 0,19 0,17 0,17 0,13 

Nitrogen (N) 0,031 0,022 0,020 0,017 0,017 0,017 0,014 

Ratio C/N 13 11 11 11 11 10 9 

Cation exchange 

capacity (CEC) 
3,11 3,62 3,53 3,95 3,44 9,80 10,00 

pH 

H2O 5,87 6,60 6,52 6,90 6,84 7,60 8,42 

 

SOIL TYPE : FERRIC PLINTHOSOL 

Depth (cm) 0 -20 20-40 40-75 

Elements (%) 

sand 77.86 77.28 78.84 

silt 16.14 16.72 16.16 

clay 6 6 5 

Organic matter (%) 

Carbon (C) 1.01 0.87 0.89 

Nitrogen (N) 0.09 0.08 0.08 

Ratio C/N 11.2 10.9 11.1 

Cation exchange 

capacity (ECE) 
4.18 3.63 2.87 

pH 
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H2O 5.69 5.74 5.93 

 

2. Crop simulation details 

CROPS MAIZE 

CROP MANAGEMENT 

Cultivars Obatampa, EV-8443-TG 

Planting date- emergence date simulated 

Planting method Dry seeds 

Planting distribution rows 

Plant population at seeding, plant/m2 6.25 

Plant population at emergence, plant/m2 6 

Row spacing, cm 80 

Plant depth, cm 3.5 

Fertilizer 20 DAP: 150 kg NPK 
48 DAP: 50 kg of Urea 

Tillage (Days Before Planting) Blade cultivator at 8 cm 

SIMULATION OPTIONS 

Simulation date Days before tillage with CEREZ-Maize 

Simulation methods Evapotranspiration: FAO-56 

Infiltration: soil conservation service 

Photosynthesis : radiation efficiency 

Hydrology : Ritchie water balance 

Method of soil organic matter: century 

Parton 

Soil evaporation method: Ritchie ceres 

Soil layer distribution: model-specified soil 
layers 

Simulation management Planting: from 1st to 31st July when soil 

temperature is within 8-32 oC, soil water 

content is in the range 40-100% at 20 cm 

depth. 

Harvest at maturity, no irrigation, no organic 

amendment 

Frequency of outputs 10 days 

 

3. Agro-climatic Indices 

 

 

4. Seasonal drought (wetness) distribution at the stations 

Definition Unit Parameter Tag name index 

First Efficient 

Rainfall 
WOY 

Daily rainfall 

(mm) 
False onset FER 

Start date of dry 
spells > 9 days 

WOY Dry days 
Extreme dry 

spells 
ExDS 

Intense Rainfall 

event 
WOY 

Daily rainfall 

(mm) 
Intense rainfall IRE 

Crop Water 
requirement 

satisfaction 

index 

% 

Dekad water 
requirement and 

crop 

evapotranspiration 

Drought stress 

factor 
WRSI 
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Dapaong Mango Dano Bakel Ouahigouya Bolgatanga 

dry wet dry wet Dry wet dry wet dry wet dry wet 

1983 1994 1981 1982 1973 1970 1960 1964 1971 1962 1977 1989 

1984 1998 1990 1987 1977 1971 1972 1965 1972 1963 1980 1991 

1985 1999 1992 1996 1980 1972 1973 1966 1973 1981 1981 1996 

1986 2001 1995 1998 1983 1981 1976 1967 1977 1994 1984 1999 

1990 2003 1997 1999 1984 1986 1977 1974 1982 2007 1985 2007 

1991 2007 2000 2004 1990 1988 1979 1975 1983 2010 1990 2009 

1995 2009 2001 2007 2002 1989 1980 1988 1984 2012 1995 2012 

2000 2013 2002 2009 2005 1995 1984 1994 1985 2015 2002   

  2016 2003 2012 2009 1999 1987 1995 1987 2016 2004   

    2005     2003 1992 1999 1990   2005   

    2006     2010 1996 2000 2011   2006   

    2013     2011   2003     2011   

    2014     2012   2004         

    2015         2007         

              2010         

 

5. Seasonal cycles of some parameters useful for crops in a dry/wet cluster of years depicted 

from historical time series (1960-2016) following the standardized precipitation index with 

variable baseline. 
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6. Kmeans results for ExDS and IRE 
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7. ANOVA tables of the BLR model  

 

Threshold 1: dekad-average 

threshold 2: 10th 

percentile 

threshold 3: 5th 

percentile 

Bakel 

Variables Pr(>Chi) 

Significance 

level Pr(>Chi) 

Significance 

level Pr(>Chi) 

Significance 

level 

SRAD 0.015414 * 0.001274 ** 0.006835 ** 

RAIN 0.000206 *** 0.016981 * 0.002766 ** 

WIND 0.888368   0.014748 * 1   

RHUM 0.002057 ** 0.579629   0.999998   

DTR 0.986737   0.00297 ** 1   

Bolgatanga 

SRAD 0.439511   0.12727   0.21552   

RAIN 0.492708   0.1056   0.03493 * 

WIND 0.051952 . 0.01124 * 0.27449   

RHUM 0.007523 ** 0.10265   0.10384   

DTR 0.000785 *** 0.4382   0.23511   

Dano 

RHUM 0.07641 . 0.00681 ** 0.1315   

RAIN 3.94E-05 *** 0.009734 ** 0.2404   

SRAD 0.0171 * 0.313046   0.5393   

WIND 0.2317   0.023218 * 0.2492   

DTR 0.81276   0.78656   0.6798   

Dapaong 

RHUM 0.01896 * 0.001595 ** 0.012089 * 

WIND 0.17794   0.087546 . 0.198979   

SRAD 0.03508 * 0.726532   0.54589   

RAIN 0.44302   0.000148 *** 0.007849 ** 

DTR 0.13612   0.977086   0.523578   
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Mango 

RHUM 0.000247 *** 4.88E-07 *** 0.000295 *** 

WIND 0.000246 *** 0.2657   0.278475   

SRAD 0.409039   0.7401   0.744738   

RAIN 0.180732   0.2083   0.327737   

DTR 0.451805   0.4746   0.32697   

Ouahigouya 

RAIN 0.000602 *** 0.16223   0.2412   

SRAD 0.093537 . 0.05996 . 0.2448   

WIND 0.20722   0.24743   0.7737   

RHUM 0.07496 . 0.32791   0.0883 . 

DTR 0.555743   0.32201   0.9072   

 

8. Research budget 

Designation Unit Quantity Unit cost 

(Euros) 

Amount (Euros) 

CONTRIBUTION FROM MRP-CCHS 

Research work 

Data acquisition  station 8 15 120 

Training on cowpea cultivars 

(Nigeria) 

day 10 50 500 

Training on S2S & TIGGE 

forecasting data management in Paris 

(France) 

day 10 100 1000 

Total 1    1620 

Mobility 

Bus ticket  ticket 2 35  70 

Accommodation week 17 50 850 

Local transport  Per month 4 30 120 

Total 2        1040 

Printing and binding 

Printing of proposal (black-white) page 150 0.02 3 

Printing of proposal (color pages) page 36 0.2 7.2 

Proposal binding (6 documents) - - - 2 

Thesis draft printing page 70*4 0.02 5.6 

Printing of the thesis draft color 

pages  

page 20*4 0.2 16 

Final printing of the thesis page 70*6 0.02 8.4 

Final printing of the thesis color 

pages  

page 20*6 0.2 24 

Thesis binding (6 documents) - - - 4 

Total 3    70.2 
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MRP total T1 + T2 + T3 2730.2 

CONTRIBUTION FROM APTE-21 PROJECT 

Field excursion to Paris (France) day 10 250 2500 

Field excursion to International 

Institute in Tropical Agriculture 

(IITA) in Nigeria 

day 10 70 700 

Total 4    3200 

Grand Total  MRP total + T4   5930.2 

 

 

9. Tentative timeline 

 

ACTIVITIES Jul-17 Aug-17 Sep-17 Oct-17 Nov-17 Dec-17 Jan-18 

Historical data acquisition        

Draft of 1st paper on  "perfect prognosis & seasonal 

forecasting of rainfall extremes" 

       

Data cleaning and calibration        

Field excursion to IITA for training on cowpea 

cultivars (Nigeria) 

       

Training on S2S & TIGGE data management in Paris 

(France) 

       

Training on crop modelling in Ouaga        

Development of the early warning toolkit        

Thesis writing        

Draft of 2nd paper on "thresholds analysis in early 

warning systems" 

       

Return trip to Togo for thesis defense        


